
Convolutional neural networks. Can
they help us solve pathplanning

efficiently?

Jesús Villar Méndez

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 1, 2021

Supervised by: Joaquín Torres Sospedra

http://creativecommons.org/licenses/by-nc-sa/3.0/




To my parents, who, on their own, unique, way, have always sup-
ported me on this journey we call life.

To my sister, María, for always having an eye on me during this
hard process of carrying with the subject of Mobile Device Appli-
cations while working on my external internship and moving this
project forward, I don’t always have a place to thank her and this is
the perfect chance.

To my best friend Pablo, for sharing with me a little bit of his joy
day after day and making this four years I have been studying far
from home worthwhile.

To those who have accompanied me despite my ups and downs
here in Castellón.





Acknowledgments

I would like to thank my Final Degree Work supervisor, Joaquín Torres Sospedra, for
allowing me to work at my own pace and letting me know how to handle the delivery
and presentation of this kind of documents, José Vicente Martí Avilés, coordinator of
Final Degree Works, for lending me a helping hand while worried about deadlines and
delivery tasks and Francisco Miguel Morales Sánchez, friend of mine, for lending me a bit
of his time and computation power while implementing the neural network depicted on
this project and using his Drive to allow me sending data set images when my computer
couldn’t.

i





Abstract

This document presents the project report of the Video Games Design and Development
Degree Final project by Jesús Villar Méndez. It consists on an HTML5 and Javascript
program that allows the user to solve randomly generated maps of islands using a path-
planning algorithm to solve them and a pix2pix neural network that has been trained
with the data set generated by the program. The program also allows file imports in
order to train more specific cases and a download function. Besides that, the project
also integrates some CSS style modifications that provides a better looking result and
makes the user experience far more pleasant.

iii





Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Work Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Environment and Initial State . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Related subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Planning and resources evaluation 5
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resource Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Project analysis and design 9
3.1 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Work Development and Results 13
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Data set development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Neural network development . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusions and Future Work 27
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 29

v



vi Contents

A Other considerations 31
A.1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Neural network accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B Source code 33



List of Figures

2.1 Gantt diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 UI mock-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Noise material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Compositer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Blender noise islands generation . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 HTML5 initial display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 First approach to path finding algorithm . . . . . . . . . . . . . . . . . . . . . 17
4.6 Border island approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Border follow algorithm diagram . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8 Noise generator approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Data set composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.10 Final program unsolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.11 Final program solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.12 Final results collage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii





List of Tables

3.1 Functional requirement «REQ1. Image manage» . . . . . . . . . . . . . . . . 10
3.2 Functional requirement «REQ2. Drawing function» . . . . . . . . . . . . . . 10
3.3 Functional requirement «REQ3. Download function» . . . . . . . . . . . . . . 10
3.4 Functional requirement «REQ4. Solve function» . . . . . . . . . . . . . . . . 10

ix





C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Environment and Initial State . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Related subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The problem that will be assessed on this project document is the viability of the use
of convolutional neural networks on path planning problems. This chapter reflects what
were the objectives presented in order to start the project as well as the initial mindset
I was at when the project development started.

1.1 Work Motivation

Being this project a project related to neural networks the initial motivation was to,
at last, after four years on this degree, get to understand at an user level how neural
networks work. The idea that I had is that neural networks, in this case, convolutional
ones, worked internally with layers of filters that somehow created different results or
got to detect some specific traits of an image. It seemed natural to me to think that
path planning problems were a specific topic that could be addressed with this kind of
filters but I did not know to which stent. That was the birth of this project thesis and
knowing that neural network training is costly maybe that cost would be worth if it
allows the program to provide results with similar quality but better performance.

1



2 Introduction

1.2 Objectives

In order to get a clear idea about how useful might or might not be the use of convolu-
tional neural networks I have come up with a series of sub objectives that can help us
get the necessary resources to put onto test this idea.

1. Develop an application that, starting from an image file previously obtained from
a render, gets to solve the path planning problem going from a point A to B in a
precise way, not necessarily at execution time.

2. Implement the basics of a convolutional neural network either using a library or
writing down the code by oneself.

3. Train that neural network using the data obtained from the application created.

4. Put into practice the results and take conclusions about the do ability and final
state of the technique.

1.3 Environment and Initial State

As I pointed earlier, my interest on neural networks gave this project a promising initial
state, despite not knowing exactly how they worked it makes an easy and enjoyable task
to learn more about the internal working of this technique. In relation to the data set,
things were a little bit different, I had notions on how to program for HTML5, JavaScript
and CSS but I had never delved that much so it will be interesting to see what I can
learn.

1.4 Related subjects

Along the four years of this degree on Video game development and design a few subjects
have already touched some topics related to this FDP, these subjects are:

1. VJ1217 - Design and Development of Web Games. Introducing HTML5 and
JavaScript programming.

2. VJ1214 - Video Game Consoles and Devices. Introducing low-level programming.

3. VJ1234 - Advance Interaction Techniques. Introducing deeper concept of program-
ming such as ML agents and genetic algorithms. Inspiring to say the least.

4. VJ1231 - Artificial Intelligence. Introducing neural networks for the first time.

5. VJ1212 - Graphics Communication. Introducing Blender and 3D rendering.

6. VJ1216 - 3D Design. Introducing texture use on 3D programs.



1.4. Related subjects 3

7. VJ1209 - 2D Design. Introducing drawing algorithms such as Bresenham’s line
algorithm.

8. VJ1221 - Computer Graphics. Introducing shader programming and texture pro-
gramming.

9. VJ1224 - Software Engineering. Introducing project planning.





C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resource Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

On this chapter I will expose the original planning of the project in relation to the
objectives presented on chapter one, section 1.2 and later it will be explained how some
elements of temporal planning got to change in order to deal with my external internship
and other subject assessments.

2.1 Planning
The development of this project will be fragmented in three main blocks:

• Previous to training work.

– Render generation. Using a camera that renders at an specified resolution
(256px * 256px at least). Using a render will help me create the basic problems
for the data set in an efficient way and will allow me to make more and more
images with the least effort possible.

– Path planning generator. On this block it will be developed a program that
should solve the path finding problem in a way that should provide better
results than A* can give. This path planning generator, though not strictly
necessary, will give me the ability to create a data set with less effort than
the one I would need if I got to make all the data set, problems and solutions,
all by myself.

5



6 Planning and resources evaluation

• Research and implementation of neural networks. On this block I will enter full on
researching convolutional neural networks specifications and balance the pros and
cons of creating my own neural network or using a library that can implement it
for me. This will be the hardest part of the development process of this project
but it will provide me the insight necessary to grasp the knowledge I will need to
make conclusions. Besides that, in this block I will also train the neural network
with the data set created and see the do ability of a small demo using the training
results.

• Conclusions. This is the most important part of the project, I will get to write
down all the conclusions obtained from the development of neural networks and
give a verdict on why using convolutional neural networks is a good or bad idea
when talking about path planning.

2.1.1 Expected results

Taking into account the huge amount of variables depicted on this planning it is plausible
to expect from this research:

1. A data set generator.

2. A training data set.

3. A set of images generated by the neural network.

4. A clear idea or concept that will allow us to deduce the feasibility of using this
technique.

2.2 Resource Evaluation
In order to develop the full project I will make use of these Technologies and tools:

1. MSI GT72VR 7RD Dominator (7th gen CPU, 16GB RAM, GTX 1060 GPU). My
day to day use PC.

2. Visual Studio Code. The simplest and cleanest way to code, easy and comfortable
thanks to the use of extensions it will help create the path finding program with
ease.

3. HTML5 and JavaScript. After thinking a while about which programming lan-
guage could I use to create a program with an interface I thought about VJ1217 -
Design and Development of Web Games and the experience I gained with HTML
and JavaScript using the canvas and after a more detailed understanding of the
properties that a canvas has I think it will suit me. I also took a look at process-
ing, a java-based language more focused on image treatment but, being the work



2.2. Resource Evaluation 7

Figure 2.1: Gantt diagram



8 Planning and resources evaluation

that I will do here focused on block 1 I considered learning another programming
language just to get an easier walk on this part I thought it was not worth a shot,
that being said, if at the end HTML5 and JavaScript turn out to be harder than
expected I have my eye on processing.

4. Blender. Having used Blender for 3 of the four years on this degree has given me
the confidence to know it will suit me well when developing the renders of the path
planning problems. Having the knowledge I have on nodes and shaders I think it
will be the perfect way to enhance productivity and obtain a deeper understanding
of this tool I love so much.

5. Unity. As the game engine we have learned more profoundly through the degree it
is the wisest choice I can ever make if I want to try out and test the path planning
neural network.

6. Python, C#? Not knowing if I am going to develop the neural network from
scratch or taking it from a library I do not know which language I will get to
use. That being said, I know it is common for artificial intelligence scripts to be
programmed on python, so it is worth taking a closer look on it when the time
comes.



C
h

a
p

t
e

r

3
Project analysis and design

Contents
3.1 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as its interface design.

3.1 Requirement Analysis

To carry out a job, it is necessary to perform a preliminary analysis of its requirements.
In this section it will be detailed the functional and non-functional requirements of the
presented work.

3.1.1 Functional Requirements

The functional requirements we look forward to while developing this application are:
The proposed system should allow the use of images created on Blender, give the

user the ability to place the initial and final point so the program can solve it and let
you download the images. This functional requirements are shown at tables 3.1, 3.2,
3.3 and 3.4.

9



10 Project analysis and design

Input: Image file

Output: Image displayed on screen

The user can import its own images, following certain rules in order to train
the neural network with more specific tasks and in order to get more concrete
results.

Table 3.1: Functional requirement «REQ1. Image manage»

Input: User click on screen

Output: Set of initial and end point

The user clicks on the screen and gets to place on the map the initial and end
points that the path planning algorithm will solve in order to train the neural
network.

Table 3.2: Functional requirement «REQ2. Drawing function»

Input: User clicks on "Download"

Output: PNG image requested

The user clicks on the download button and gets in return the PNG of the map
displayed on canvas.

Table 3.3: Functional requirement «REQ3. Download function»

Input: User clicks on "Solve"

Output: Canvas display solution requested

The user clicks on the solve button and gets in return the path from initial
point to end point displayed on canvas.

Table 3.4: Functional requirement «REQ4. Solve function»



3.2. System Design 11

3.1.2 Non-functional Requirements

As for non-functional requirements it is, from a design perspective, important:

1. The system will be easy to use.

2. The interface will be clean and responsive.

3. Maps will consist on islands and they will be aesthetically pleasant.

3.2 System Design

In order to visualize how the program flow will work there is this activity diagram: (See
figure 3.1)

Figure 3.1: Activity Diagram

As it can be read on the figure 3.1 the user can choose between importing an image
from his PC or randomly generate one using a noise generator function, then place the
points on the interface, solve the path planning problem and then download the image
of the path and the initial premise.

3.3 System Architecture

This program, being created on HTML5 and JavaScript, can be run on almost any
system that can deal any web browser HTML5-compliant. Google Chrome or Firefox



12 Project analysis and design

should work just fine. Besides that it might be helpful to use an 5th generation or greater
CPU in order to run the program smoothly.

3.4 Interface Design
The interface, as described on the non-functional requirements 3.1.2, has to be clean and
responsive. In order to do so it will be implemented using CSS and provide the user a
list of buttons that invoke the functionalities required 3.1.1. (See figure 3.2)

Figure 3.2: UI mock-up



C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Data set development . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Neural network development . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

On this chapter it will be detailed how this project has been developed and its results.

4.1 Introduction
On this section, it will be introduced how the data set problem has been addressed, the
ins and outs during its development and how the neural network got to be chosen and
implemented.

4.2 Data set development

4.2.1 Data set description

The final data set presented is conformed by a set of 206 images, later modified to
increase the information to 824 images via rotations and flips. Each of this images got
to be transformed to JPEG, losing some quality but on essence they are based on a
noise texture, layered in order to create islands, the input images have two red points
signaling the place where the path must begin and end and the target images are just
the same but with magenta strokes signaling the path the neural network should draw.

13



14 Work Development and Results

4.2.2 Blender rendering

Following the planning, the project development started and the first step was to open
Blender and try out and generate some randomly generated islands. In order to do so,
it has been implemented a blender material that, using the object texture coordinate
and a mapping node that connect to the vector input of a Noise Texture node, generates
a noise with 0.4 scale, 2.0 detail and 0.0 distortion which is deprived of any color by
using a Color Ramp node.(See figure 4.1) Then this material is applied to a plane with
a camera pointing at it with no anti aliasing and a resolution of 256x256 pixels in order
to render it.

Figure 4.1: Noise material

Once the render is done. By using the image Compositer that Blender lends us and
applying to it another Color Ramp Node, the values of black and white the noise has can
be painted by layers changing the image into a plain colors islands’ map or a topology
map with more detail. (See figures 4.2, 4.3)

Figure 4.2: Compositer

This maps were at first very helpful during the first steps of development but they
were not perfect. Despite adjusting the Compositer to draw the maps using pure RGB
colors (Red [255,0,0], Green[0,255,0], Blue[0,0,255]) the resulting image fidelity was not



4.2. Data set development 15

(a) Noise map (b) Plain colors map (c) Beautified map

Figure 4.3: Blender noise islands generation

correct, so, in the HTML program it was required a normalizing method to properly
make the algorithm work.

4.2.3 HTML5 first steps

Carrying this work on, the time for using JavaScript was near. It has already been
created a HTML5 basic interface that included a few buttons, a canvas[2], an input file
section[10] and a hidden image which display was "None" that will storage the imported
images before it was displayed into the canvas. (See figure 4.4)

(a) Initial HTML5 program state (b) Debug features

Figure 4.4: HTML5 initial display

This visual would eventually evolve into a more refined one. (See figures 4.11, 4.10)

4.2.4 Class Point

First of all it was an urgent need to implement a point class to help the drawing process
way more intuitive[4]. This point class implemented

• Its own constructor based on x,y position on canvas.



16 Work Development and Results

• A getColor method which differentiates between, black, white, red, green, blue,
magenta and yellow. Any color that is not into that list would be defined as
undefined.

• A getColorRGBA method which returns an array with the RGBA values of the
color on the point this method is called on.

• A setColor method that paints the point into a given RGBA color code.

• A nearTo method which returns a Boolean that confirms if the point where this
method is called on is near to a certain color.

• A countNear method that counts how many points of certain color are near the
point the method is called on.

• A tangentOfColor method that returns the points of certain color that are in touch
with the point the method is called on.

• A pointsNearTo method that returns the points of certain color that are in nearby
the point the method is called on.

• A directionTo method that returns an array with the direction in relation to the
point the method is called on to a certain color.

• A next method, used on loops to follow certain order.

• A last method, used on loops to follow certain order.

• A getDirectionVector method that returns the normalized direction vector based
on its last position.

4.2.5 Path finding algorithm first approach

It was the time for implementing the path finding algorithm the neural network will have
to decode and I thought about finding the shortest path between two points. A* was
my first thought. It has been developed on subjects like VJ1231 Artificial Intelligence,
however I started to think that a way point based algorithm will suit this topic best and
with that in mind and taking into account that there is no shortest path than a straight
line between two points a line generation algorithm must be implemented. And so it
got done, Bresenham’s line algorithm[18] got implemented and points of interest were
looked for. After some tests and profuse thinking some tries were made. (See figure 4.5)



4.2. Data set development 17

(a) Initial map state (b) Initial iteration (c) Final iteration

Figure 4.5: First approach to path finding algorithm

4.2.6 Path finding algorithm final approach

This initial steps were not quite promising but something was certain, the most impor-
tant points where placed right into the island borders, in the limit where you can trace
a line without crossing land and where you cannot do so. There had to be a way to
find those points and here the next idea was met. If a straight line between initial point
and final point was drawn the island where the line collides should get bordered and, on
that borders, it must be found the points that delimit the frontier where a line can be
drawn without colliding any land. Taking advantage on the fact that the map resolution
is 256x256 pixels and the color depth that canvas use is of 255 on four channels of color,
the color of the point can be use as a data structure with the methods next and last
interpreting blue and alpha as x and y for next point coordinates and red and green
as the x and y for last point coordinates. By doing so the results of the borders were
unidirectional paths that ended where no more points can be drawn. (See figure 4.6)

(a) Initial approach to border
island

(b) Second approach to border
island

(c) Final approach to border is-
land

Figure 4.6: Border island approaches

This method was interesting but it had a major trouble. There were loops that could
not be solved. On certain points the border of the island generates a strait of one pixel



18 Work Development and Results

of width so if the border generator enters that loop (thing that is unlikely to happen
without certain rules) it cannot keep on propagating and the border is not fully drawn.
To solve the problem the border drawing algorithm must be improved. The rule finally
followed by the algorithm is:

1. If the previous point is near a green point try to turn on that direction.

2. If the current point is near a green point try to turn on that direction.

3. If none of the previous possibilities are correct try instead turn to the opposite
direction.

4. Try to go forward.

5. Try to go to the opposite direction of the first intent.

Following this instructions the algorithm will try to enter each and every nook.
When the pointer cannot go any deeper the variable redrawneeded is set to true and the
recursion goes back and the algorithm then follows its next desired direction completing
the loop completely. (See figure 4.7)

Figure 4.7: Border follow algorithm diagram

With the border drawn there must be created an algorithm that can follow it. Start-
ing from the contact point, the algorithm follows to the next point determined by next()



4.2. Data set development 19

method but also tries to find other direction points that are perpendicular to its direc-
tion. If a point with that condition is met the next point is pushed into a stack and the
perpendicular point is followed. Once there are no more points to follow, the stack pops
the last point saved and so all points of the border are followed.

This method also implements the checks necessaries to see if you can draw a line
from the point that draws the line towards the end.

4.2.7 Noise generation

While developing these features I had to take a break from the project if I wanted to
pass VJ1229 Mobile Device Applications. On that break I got to the realisation that
if noise were to be generated externally it would be so user-demanding to generate all
images on blender and import them all one by one so why not implementing my own
noise generator? The idea was great but that was not quite well planned, I researched
through all noise generation tutorials I could find[13][5][11][7] but the expected results
could not be achieved. (See figures 4.8a and 4.8b). I even tried to test some concepts
about random[3] noise generation but soon I realised that it was consuming some precious
time I had not at that point.

Against my will but knowing that this was the best thing It could be done with the
amount of time remaining I searched the internet and found Noise.js[9], a library devel-
oped by Joseph Gentle, soon it got implemented on the project combining two simplex
noises with random seeds the detailed looked for was found, the normalizeRenderColors
function changed to suit correctly the new noise and it was working. (See figure 4.8)

(a) Perlin noise attempt (b) Perlin noise attempt (c) Noise.js result

Figure 4.8: Noise generator approaches

4.2.8 Path finding problems

Unfortunately time was running out and I had to end the data set because too much
time had already been spent on its development. Waypoint class was quickly developed
and some methods were dedicated to create a tree that would have to grow towards
the final point. using the border methods described before. That is where real trouble



20 Work Development and Results

began. FollowLoop and border methods had some small issues, border required, due to
a specific case, that the only island in green would necessarily be the one who has to
get bordered. if that was not the case loops could be made between islands and the
algorithm would enter an infinite loop. Solved that issue, if islands were big enough,
the recursion stack size got exceeded and the program crashed. That issue could not
be solved in time if I wanted to train the data set so in the end I reduced the islands
size and left the algorithm halfway the point I wanted it to get. It worked, but not
consistently enough. The project needed to keep on going forward so the data set got to
be generated with that algorithm, if the neural network was able to learn that it would
be able to learn with a similar data set a little bit more carefully crafted. That being
said the data set was created. It was composed at first by 103 images for the input and
another 103 images for the output. (See figure 4.9)

(a) Normalized image (b) Input (c) Target result

Figure 4.9: Data set composition

4.3 Neural network development

The development of the neural network started at first looking for documentation and
searching the best kind of neural network that could help solve this problem.

The first option that appeared after realising that building the neural network from
scratch was not a viable option[1] was Brain.js[16][8], a JavaScript library that could
allow the project to be fully supported on HTML5 and ease the implementation because
it would not be necessary to deeply research other programming languages. However
that was not actually the best approach to follow. With further research Google Colab
appeared as a training solution. Not only it does not require any computation from the
system using it but it also provide a virtual GPU that gets to do all the hard work and
it would not be necessary for me to install Conda, numpy or TensorFlow. The tool was
chosen but the approach was still not certain.

After a little bit more of research and looking through Two Minute Papers YouTube
channel[17] it was there, Pix2Pix[14][15] [12], a Generative Adversarial Network intended
to transform an image into another. The paper was available and the descriptions on how



4.3. Neural network development 21

Figure 4.10: Final program unsolved

Figure 4.11: Final program solved



22 Work Development and Results

the neural network worked was clear. The architecture of this neural network consisted
on a generator conformed by an encoder and decoder that, parting from an image,
generates another with the data that got discriminated by the encoder and decoder.
That generated image is then judged by a discriminator, a system that internally works
similarly to the generator but instead of creating a new image it creates a diagram where
it is marked how believable the result of the generator is and with that information the
results is evaluated and the neural network back propagates this results so the learning
process is made.

On his hand the Spanish youtuber Dot CSV made a video tutorial[6] on how to
implement this paper[14]. Followed that tutorial and looking into the recommendations
made by the paper author about the training data set size was some changes were made.
The original data set was composed by 103 images. This images were made following
some clear ideas in order to make this work. It was obvious that if each map had only
one solution the neural network will not even recognise the starting point and ending
point as an important part of the process of generation. With that in mind there were
a few solved images from different points on the same map. Despite that the size of the
data set was ten times smaller than the one recommended but looking into the random
jitter implementation it was clear. If the images were rotated 4 times and mirrored
another four times the size of the data set would increase eight times its size. The
images were converted to JPEG to avoid troubles with the alpha channel and then the
training began.

Google Colab offers 12 hours a day to the users to work with this tool for free. If
you want to use better GPUs or extend that time the fee is of 9.99€ a month. This fact
was not taking into account the first time the program was sent to train and the process
stopped at epoch 73 leaving some inconclusive results. The training got to be repeated
once again 12 hours later losing a huge amount of time and it got to epoch 217. And
then, after months of work, the results appeared.

4.4 Design choices
During the development of the data set, some design features that were clear got to
change. The two most important features that have changed drastically are:

1. Border Finding Algorithm. The border finding algorithm initially proposed looked
for accessible areas that would eventually be travelled by using a search tree.
However this implementation lacked concreteness, it was useful to know which
places on the map should be travelled but not the exact point the path should be
printed on in order to be the shortest path. After some updates on the algorithm
it got to be disposed so the border drawing with points projection described at
subsection 4.2.6 which ended up being more efficient and intuitive.

2. Noise Generation. On the objective section 1.2, while talking about this project
functionalities it is specified that render generated images can be solved with the
data set generation program. With that in mind the file selector was added to the



4.5. Results 23

project but as time passes It was more and more evident that having the noise
generator outside the project was a bad idea, it required so much effort from the
user to generate, find, select, place and save the image so in order to make the user
experience easier a noise button was added to the project, saving a lot of time in
the data set generation but investing a little bit too much on implementing this
generator.

4.5 Results
(See figure 4.12)

Taking into account the objectives presented in chapter 1, section 1.2, and the ex-
pected results in chapter 2, section 2.1, subsection 2.1.1 on one way or another they have
all been met however the results can be improved.

1. Develop an application that, starting from an image file previously obtained from
a render, gets to solve the path planning problem going from a point A to B in
a precise way, not necessarily at execution time. The data set generator can be
improved by implementing A* to the waypoints structure and there are a few bugs
that should be taking into account to provide a better user experience. Whatsoever
the program was not fully intended for user usage and its main objective was to
facilitate the task of creating the data set, objective that has been met.

2. Implement the basics of a convolutional neural network either using a library or
writing down the code by oneself. This task has been fully complete.

3. Train that neural network using the data obtained from the application created.
This task has been fully complete.

4. Put into practice the results and take conclusions about the do ability and final
state of the technique. This task will be completed on the conclusions subsection
of this results section.

Even though the objectives have been achieved, the planning process was not followed
as conscientiously as I would have like because of the development of other simultaneous
projects ending up extending the data set creation process and compressing the time of
neural network implementation and memory craft.

4.5.1 Neural network results analysis

The results the neural network has given allow us to get into conclusions.
First of all, the neural networks started its learning by drawing purple strokes at

random and during the learning process the neural network starts recognising island
borders efficiently. Basic concepts such as, paths must be drawn on water are efficiently
learnt but it does not recognise any relation between the path it has to generate and the
red points placed on the map.



24 Work Development and Results

The hypothesis I weigh on why does it not work properly seems to point to the size of
the initial and ending points which. After being filtered through the generator encoder
the information that places the red points is partially lost and so the neural network can
learn how to draw paths but cannot successfully paint the right path.

This problem seems to me a design problem so the results are inconclusive. If the
hypothesis results to be true, convolutional neural networks can solve path planning
problems. That being said, this document cannot prove that idea.



4.5. Results 25

(a) Epoch 0 (b) Epoch 3 (c) Epoch 40 (d) Epoch 79

(e) Epoch 80 (f) Epoch 85 (g) Epoch 87 (h) Epoch 89

(i) Epoch 90 (j) Epoch 116 (k) Epoch 117 (l) Epoch 118

(m) Epoch 167 (n) Epoch 168 (o) Epoch 169 (p) Epoch 206

(q) Epoch 209 (r) Epoch 214

Figure 4.12: Final results collage





C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

To wrap up this FDP there are a few ideas that are stuck on my head. It has been
four years since I started studying this career and I have put huge amounts of work
and love on projects that have been immensely by other students, the pressure of doing
something remarkable without dying at the attempt was critical during the development
of this project. Mobile device applications, legal aspects of video games, this project and
the external internships at the same time have crushed my soul a little bit, and while I
am writing this I, at last, feel some relieve, it is all coming together.

Neural networks have got my attention from time to time, I had a feeling that
this project would show impressive results but I feel a little disappointed on how the
results could not be conclusive. With this neural network "fiasco" at least I have had an
opportunity to improve my ability with JavaScript, HTML5 and CSS.

Despite all the suffering, I have enjoyed this project a lot.

27



28 Conclusions and Future Work

5.2 Future work
Though enjoying this project development, my head needs some rest. I know myself and
it is probable that it will come the day when I look back at these days and think "I can
fix that", so chances are I will probably continue working on this project. My hypothesis
are there on the table, waiting to be proven, it is just a matter of time, the way is to
improve the path planning algorithm, augment the size of the red dots and learn more
about how neural networks internally work.



Bibliography

[1] 3Blue1Brown. Neural networks playlist. https://www.youtube.com/watch?v=
aircAruvnKk&list=PLZHQObOWTQDNU6R167000DxZCJB − 3pi&abchannel =
3Blue1Brown.Accessed : 2021 − 04 − 28.

[2] anonym. Canvas antialias. https://www.xspdf.com/resolution/50518085.html. Accessed:
2021-02-21.

[3] anonym. Math.random(). https://developer.mozilla.org/es/docs/Web/JavaScript/
Reference/GlobalObjects/Math/random.Accessed : 2019 − 04 − 26.

[4] anonym. Pixel manipulation with canvas. https://developer.mozilla.org/es/docs/Web/API/
Canvas_API/Tutorial/Pixelmanipulationwithcanvas.Accessed : 2019 − 02 − 28.

[5] Solving Code. Noise map generator (perlin noise) using javascript and
canvas. https://www.youtube.com/watch?v=AZRSkm9UD6o&abchannel =
SolvingCode.Accessed : 2021 − 04 − 5.

[6] Dot CSV. Generando flores realistas con ia - pix2pix | ia note-
book 5. https://www.youtube.com/watch?v=YsrMGcgfETY&abchannel =
DotCSV.Accessed : 2021 − 06 − 11.

[7] Hugo Elias. Perlin noise. https://web.archive.org/web/20080724063449/
http://freespace.virgin.net/hugo.elias/models/mperlin.htm.Accessed : 2021 − 04 − 10.

[8] FreeCodeCamp.org. Neural networks with javascript - full course using
brain.js. https://www.youtube.com/watch?v=6E6XecoTRVo&abchannel =
freeCodeCamp.org.Accessed : 2021 − 05 − 4.

[9] Joseph Gentle. Noise.js. https://github.com/josephg/noisejs. Accessed: 2021-04-7.

[10] Thomas Steiner Kayce Basques, Pete LePage. Read files in javascript.
https://web.dev/read-files/. Accessed: 2021-02-19.

[11] LaNsHoR. Ruido perlin. https://www.lanshor.com/ruido-perlin/. Accessed: 2021-04-10.

[12] MoPaMo. ml5-library. https://github.com/ml5js/ml5-library. Accessed: 2021-06-10.

[13] Jen Lowe Patricio Gonzalez Vivo. The book of shaders. https://thebookofshaders.com/.
Accessed: 2021-03-7.

29



30 Bibliography

[14] Tinghui Zhou Alexei A. Efros Phillip Isola, Jun-Yan Zhu. Image-to-image translation
with conditional adversarial nets. https://phillipi.github.io/pix2pix/. Accessed: 2021-
06-11.

[15] Yining Shi. Pix2pix. https://learn.ml5js.org//reference/pix2pix. Accessed: 2021-06-10.

[16] Ringa Tech. Tu primera red neuronal - inteligencia artificial.
https://www.youtube.com/watch?v=UNFFLJPW7KQ&abchannel =
RingaTech.Accessed : 2021 − 05 − 4.

[17] TwoMinutePapers. Ai makes stunning photos from your drawings (pix2pix) | two
minute papers 133. https://www.youtube.com/watch?v=u7kQ5lNfUfg&abchannel =
TwoMinutePapers.Accessed : 2021 − 06 − 11.

[18] Wikipedia. Algoritmo de bresenham. https://es.wikipedia.org/wiki/Algoritmo_de_
Bresenham. Accessed: 2021-03-8.



A
p

p
e

n
d

ix A
Other considerations

This appendix is included to comment some aspects not considered in the rest of the
template.

A.1 Bibliography
All elements placed on the Bibliography were key to the evolution of this project, however
this project does not fully rely on bibliography and a lot of work behind the data set
generator path finding algorithm is original.

A.2 Neural network accuracy
The displayability of the neural network accuracy was not presented on this document
because of some troubles related to google Colab working.

31





A
p

p
e

n
d

ix B
Source code

33



34 Source code

HTML5 Code

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Dataset Generator</title>

5 <style>

6 body {

7 background: rgb(255, 255, 255);

8 }

9
10 .button {

11 background: #ffffff;

12 color:rgb(14, 27, 39);

13 padding: 5px;

14 width: 100%;

15 outline: none;

16 border: none;

17 border-radius: 10px;

18 box-shadow: 0px 8px 15px rgba(23, 27, 21, 0.2);

19 transition: all 0.3s ease 0s;

20 font-family:-apple-system, BlinkMacSystemFont, ’Segoe UI’, Roboto,

21 Oxygen, Ubuntu, Cantarell, ’Open Sans’, ’Helvetica Neue’, sans-serif;

22 }

23
24 .button:hover {

25 background-color: #ff9b17;

26 box-shadow: 0px 15px 20px rgba(229, 159, 46, 0.4);

27 color: #fff;

28 transform: scale(110%);

29 font-family:-apple-system, BlinkMacSystemFont, ’Segoe UI’, Roboto,

30 Oxygen, Ubuntu, Cantarell, ’Open Sans’, ’Helvetica Neue’, sans-serif;

31 }

32
33 .foot {

34 padding: 5px;

35 padding-top: 100px;

36 background: #ffffff;

37 }

38
39 #footText {

40 font-size: 0.6em;

41 font-style: italic;

42 font-family: -apple-system, BlinkMacSystemFont, ’Segoe UI’, Roboto,

43 Oxygen, Ubuntu, Cantarell, ’Open Sans’, ’Helvetica Neue’, sans-serif;

44 }

45
46 #main {

47 margin-top: 10px;

48 text-align: center;

49 }

50 #canvas {

51 background-color: rgb(0, 0, 0);

52 border-style:dotted;



Source code 35

53 border-radius: 10px;

54 border-color: rgb(229, 159, 46);

55 box-shadow: 0px 15px 15px rgba(229, 159, 46, 0.4);

56 transform: scale(150%);

57 height: 256px;

58 width: 256px;

59 }

60 #body {

61 margin: auto;

62 margin-top: 100px;

63 width: 50%;

64 text-align: center;

65 justify-content: space-evenly;

66 display: flex;

67 }

68
69 #buttons {

70 margin: initial;

71 padding-left:95px;

72 width: 100%;

73 text-align: center;

74 justify-content: space-evenly;

75 display: flex;

76 flex-direction: column;

77 align-items: stretch;

78 }

79 #selector{

80 margin: auto;

81 margin-top: 100px;

82 width: 50%;

83 text-align: center;

84 justify-content: space-evenly;

85 display: flex;

86 }

87 </style>

88 </head>

89 <body>

90 <div id="body">

91 <canvas id="canvas"></canvas>

92
93 <p><img id="preview"></p>

94
95 <p id = "buttons">

96 <button class = button onclick = "solveWaypoint();">Solve</button>

97 <button class = button id="debug1" onclick = "download();">Download</button>

98 <button class = button id="debug5" onclick = "CreateRandomNoise()">Noise</button>

99 </p>

100 </div>

101
102 <script src=’perlin.js’></script>

103 <script src=’datasetGenerator.js’></script>

104
105 <div id = "selector"><input class = "button" type="file" onchange="previewImage(this);"></div>

106 <footer class="foot">



36 Source code

107 <p id = "footText">Author: Jesús Villar Méndez<br>

108 Noise generation library: Joseph Gentle <br>

109 <a href="mailto:JVMEmploy@gmail.com">JVMEmploy@gmail.com</a></p>

110 </footer>

111 </body>

112 </html>

JavaScript Code

1 class Point {

2 constructor(x, y) {

3 this.x = x;

4 this.y = y;

5 }

6 position() {

7 return this.y * 4 * canvas.width + this.x * 4;

8 }

9 getColor() {

10 var result = ’U’;

11 if (data[this.position()] == 255) {

12 if (data[this.position() + 1] == 255) {

13 if (data[this.position() + 2] == 255) {

14 result = ’W’;

15 }

16 else if (data[this.position() + 2] == 0) {

17 result = ’Y’;

18 }

19 }

20 else if (data[this.position() + 1] == 0) {

21 if (data[this.position() + 2] == 255) {

22 result = ’M’

23 }

24 else if (data[this.position() + 2] == 0) {

25 result = ’R’

26 }

27 }

28 }

29 else if (data[this.position()] == 0) {

30 if (data[this.position() + 1] == 255) {

31 if (data[this.position() + 2] == 0) {

32 result = ’G’;

33 }

34 }

35 else if (data[this.position() + 1] == 0) {

36 if (data[this.position() + 2] == 255) {

37 result = ’B’

38 }

39 else if (data[this.position() + 2] == 0) {

40 result = ’K’

41 }

42 }

43 }



Source code 37

44 return result;

45 }

46 setColor(r, g, b, a) {

47 data[this.position()] = r;

48 data[this.position() + 1] = g;

49 data[this.position() + 2] = b;

50 data[this.position() + 3] = a;

51 }

52 getColorRGBA() {

53 var r = data[this.position()];

54 var g = data[this.position() + 1];

55 var b = data[this.position() + 2];

56 var a = data[this.position() + 3];

57 return new Array(r, g, b, a);

58 }

59 nearTo(color) {

60 var aux1 = new Point(this.x, this.y + 1);

61 var aux2 = new Point(this.x + 1, this.y);

62 var aux3 = new Point(this.x, this.y - 1);

63 var aux4 = new Point(this.x - 1, this.y);

64 var aux5 = new Point(this.x + 1, this.y + 1);

65 var aux6 = new Point(this.x - 1, this.y + 1);

66 var aux7 = new Point(this.x + 1, this.y - 1);

67 var aux8 = new Point(this.x - 1, this.y - 1);

68 return aux1.getColor() == color || aux2.getColor() == color ||

69 aux3.getColor() == color || aux4.getColor() == color ||

70 aux5.getColor() == color || aux6.getColor() == color ||

71 aux7.getColor() == color || aux8.getColor() == color;

72 }

73 countNear(color) {

74 var aux1 = new Point(this.x, this.y + 1);

75 var aux2 = new Point(this.x + 1, this.y);

76 var aux3 = new Point(this.x, this.y - 1);

77 var aux4 = new Point(this.x - 1, this.y);

78 var count = 0;

79 if (aux1.getColor() == color) {

80 count++;

81 }

82 if (aux2.getColor() == color) {

83 count++;

84 }

85 if (aux3.getColor() == color) {

86 count++;

87 }

88 if (aux4.getColor() == color) {

89 count++;

90 }

91 return count;

92 }

93 tangentOfColor(color) {

94 var down = new Point(this.x, this.y + 1);

95 var right = new Point(this.x + 1, this.y);

96 var up = new Point(this.x, this.y - 1);

97 var left = new Point(this.x - 1, this.y);



38 Source code

98
99 var elements = new Array(0);

100
101 if (up.getColor() == color) {

102 elements.push(up);

103 }

104 if (down.getColor() == color) {

105 elements.push(down);

106 }

107 if (right.getColor() == color) {

108 elements.push(right);

109 }

110 if (left.getColor() == color) {

111 elements.push(left);

112 }

113 return elements;

114 }

115 pointsNearTo(color) {

116 var aux1 = new Point(this.x, this.y + 1);

117 var aux2 = new Point(this.x + 1, this.y);

118 var aux3 = new Point(this.x, this.y - 1);

119 var aux4 = new Point(this.x - 1, this.y);

120 var aux5 = new Point(this.x + 1, this.y + 1);

121 var aux6 = new Point(this.x - 1, this.y + 1);

122 var aux7 = new Point(this.x + 1, this.y - 1);

123 var aux8 = new Point(this.x - 1, this.y - 1);

124
125 var elements = new Array(0);

126
127 if (aux1.getColor() == color) {

128 elements.push(aux1);

129 }

130 if (aux2.getColor() == color) {

131 elements.push(aux2);

132 }

133 if (aux3.getColor() == color) {

134 elements.push(aux3);

135 }

136 if (aux4.getColor() == color) {

137 elements.push(aux4);

138 }

139 if (aux5.getColor() == color) {

140 elements.push(aux5);

141 }

142 if (aux6.getColor() == color) {

143 elements.push(aux6);

144 }

145 if (aux7.getColor() == color) {

146 elements.push(aux7);

147 }

148 if (aux8.getColor() == color) {

149 elements.push(aux8);

150 }

151 return elements;



Source code 39

152 }

153 directionTo(color) {

154 var down = new Point(this.x, this.y + 1);

155 var right = new Point(this.x + 1, this.y);

156 var up = new Point(this.x, this.y - 1);

157 var left = new Point(this.x - 1, this.y);

158
159 var directedToGreen = new Array(0);

160
161 if (up.getColor() == color) {

162 directedToGreen.push(’U’);

163 }

164 if (down.getColor() == color) {

165 directedToGreen.push(’D’);

166 }

167 if (right.getColor() == color) {

168 directedToGreen.push(’R’);

169 }

170 if (left.getColor() == color) {

171 directedToGreen.push(’L’);

172 }

173 return directedToGreen;

174 }

175 next() {

176 var coors = this.getColorRGBA()

177 return new Point(coors[2], coors[3]);

178 }

179 last() {

180 var coors = this.getColorRGBA()

181 return new Point(coors[0], coors[1]);

182 }

183
184 getDirectionVector() {

185 var coors = this.getColorRGBA()

186 return new Point(coors[2] - this.x, coors[3] - this.y);

187 }

188 }

189
190 class wayPoint {

191 constructor(x, y, parent) {

192 this.x = x;

193 this.y = y;

194 this.parent = parent

195 this.d = 0;

196 if (parent != null) {

197 this.d = Math.sqrt((parent.x - this.x) ^ 2 + (parent.y - this.y) ^ 2)

198 }

199 this.childs = new Array(0);

200 }

201 addChild(x, y) {

202 var push = true;

203 this.childs.forEach(element => {

204 if (element.x == x && element.y == y) {

205 if (element.d == this.d) {



40 Source code

206 push = false;

207 }

208 }

209 });

210 if (this.parent != null && this.parent.x == x && this.parent.y == y) {

211 push = false;

212 }

213 if (push) {

214 this.childs.push(new wayPoint(x, y, this));

215 }

216 }

217 renderUp() {

218 var nextNode = this.parent;

219 var thisPoint = new Point(this.x, this.y);

220 if (nextNode != null) {

221 var parentPoint = new Point(nextNode.x, nextNode.y);

222 }

223 while (nextNode != null) {

224 DrawColorLine(thisPoint, parentPoint);

225 thisPoint.setColor(255, 0, 0, 255);

226 parentPoint.setColor(255, 0, 0, 255);

227 thisPoint = new Point(nextNode.x, nextNode.y);

228 if (nextNode.parent != null) {

229 parentPoint = new Point(nextNode.parent.x, nextNode.parent.y);

230 nextNode = nextNode.parent;

231 }

232 else {

233 nextNode = null;

234 }

235 }

236 generalInit.setColor(255, 0, 0, 255);

237 end.setColor(255, 0, 0, 255);

238 reload();

239 }

240 }

241
242 var findEnd = true;

243 var canvas = document.getElementById("canvas");

244 var context = canvas.getContext("2d");

245 var myImageData;

246 var data;

247 var init = new Point(null, null);

248 var generalInit = new Point(null, null);

249 var end = new Point(null, null);

250 var redrawneeded = false;

251 var solved = false;

252 var contact;

253 var borderStack = new Array();

254 var pointsToSet = 2;

255 var waypointTree = new wayPoint(0, 0, null);

256 var noiseSeed1 = Math.random();

257 var noiseSeed2 = Math.random();

258 var normalized = false;

259 context.imageSmoothingEnabled = false;



Source code 41

260 document.getElementById("preview").style.display = "none";

261 canvas.height = 256;

262 canvas.width = 256;

263 context.drawImage(new Image(), 0, 0, canvas.width, canvas.height);

264 myImageData = context.getImageData(0, 0, canvas.width, canvas.height);

265 data = myImageData.data;

266 canvas.addEventListener(’click’, checkColor, false);

267
268
269 function previewImage(input) {

270 var reader = new FileReader();

271 reader.onload = function (e) {

272 document.getElementById("preview").setAttribute("src", e.target.result);

273 };

274 reader.readAsDataURL(input.files[0]);

275 setTimeout(() => { setImage(); }, 100);

276 }

277 function setImage() {

278 console.log("Wiwi")

279 var image = document.getElementById("preview");

280 if (Math.min(image.height, image.width) > 256) {

281 canvas.height = 256;

282 canvas.width = 256;

283 }

284 else {

285 canvas.height = image.height;

286 canvas.width = image.width;

287 }

288
289 pointsToSet = 2;

290 context.drawImage(image, 0, 0, canvas.width, canvas.height);

291 myImageData = context.getImageData(0, 0, canvas.width, canvas.height);

292 data = myImageData.data;

293 reload();

294 }

295
296 function download() {

297 downloadCanvasAsImage("target");

298 changeColors(’R’, 0, 0, 255, 255);

299 changeColors(’M’, 0, 0, 255, 255);

300 generalInit.setColor(255, 0, 0, 255);

301 end.setColor(255, 0, 0, 255);

302 reload();

303 downloadCanvasAsImage("init");

304 }

305
306 function downloadCanvasAsImage(title) {

307 let downloadLink = document.createElement(’a’);

308 downloadLink.setAttribute(’download’, title + ".png");

309 canvas.toBlob(function (blob) {

310 let url = URL.createObjectURL(blob);

311 downloadLink.setAttribute(’href’, url);

312 downloadLink.click();

313 });



42 Source code

314 }

315
316 function solveWaypoint() {

317 waypointTree = new wayPoint(generalInit.x, generalInit.y, null);

318 normalizeRenderColors();

319 findEnd = true;

320 growTree(waypointTree);

321 }

322
323 function growTree(waypoint) {

324 var borderInit = solve()

325 if (borderInit != null) {

326 followLoop(borderInit, waypoint, true)

327 clearLoops();

328 if (waypoint.childs.length > 0) {

329 waypoint.childs.forEach(child => {

330 init = new Point(child.x, child.y);

331 if (!canDrawLine(init, end) && findEnd) {

332 growTree(child);

333 }

334 else if (findEnd) {

335 child.addChild(end.x, end.y);

336 child.childs.forEach(child => {

337 if (child.x == end.x && child.y == end.y) {

338 child.renderUp();

339 findEnd = false;

340 }

341 });

342 }

343 });

344 }

345 }

346 }

347 function drawLine(pointA, pointB) {

348 if (canDrawLine(pointA, pointB)) {

349 DrawColorLine(pointA, pointB);

350 solved = true;

351 return null;

352 }

353 var x = pointA.x;

354 var y = pointA.y;

355 var dY = pointB.y - pointA.y;

356 var dX = pointB.x - pointA.x;

357 var IncYi;

358 var IncXi;

359 var IncYr;

360 var IncXr

361 if (dY >= 0) { IncYi = 1; }

362 else { dY = -dY; IncYi = -1; }

363 if (dX >= 0) { IncXi = 1; }

364 else { dX = -dX; IncXi = -1; }

365 if (dX >= dY) { IncYr = 0; IncXr = IncXi; }

366 else { IncXr = 0; IncYr = IncYi; var aux = dX; dX = dY; dY = aux; }

367 var avR = 2 * dY; var av = avR - dX; var avI = av - dX;



Source code 43

368
369 var currentPos = new Point(null, null);

370 var auxPos = new Point(null, null);

371 contact = new Point(null, null);

372 while (!(x == pointB.x && y == pointB.y)) {

373 currentPos.x = x;

374 currentPos.y = y;

375 if (currentPos.getColor() == ’R’

376 && !(currentPos.x == init.x && currentPos.y == init.y)) {

377 break;

378 }

379 auxPos.x = currentPos.x + IncXi;

380 auxPos.y = currentPos.y + IncYi;

381 if (av >= 0 && auxPos.getColor() == ’G’) {

382 contact.x = x;

383 contact.y = y;

384 changeColors(’G’, 255, 255, 0, 255);

385 colorInTouchIsland(contact, ’Y’, 0, 255, 0, 255);

386 borderIsland(contact.x, contact.y, pointA.x, pointA.y);

387 changeColors(’Y’, 0, 255, 0, 255);

388 return contact;

389 }

390 else {

391 auxPos.x = currentPos.x + IncXr;

392 auxPos.y = currentPos.y + IncYr;

393 if (auxPos.getColor() == ’G’) {

394 contact.x = x;

395 contact.y = y;

396 changeColors(’G’, 255, 255, 0, 255);

397 colorInTouchIsland(contact, ’Y’, 0, 255, 0, 255);

398 borderIsland(contact.x, contact.y, pointA.x, pointA.y);

399 changeColors(’Y’, 0, 255, 0, 255);

400 return contact;

401 }

402 }

403 if (av >= 0) { x = x + IncXi; y = y + IncYi; av = av + avI; }

404 else { x = x + IncXr; y = y + IncYr; av = av + avR; }

405 }

406 solved = true;

407 return null;

408 }

409
410 function clearLoops() {

411 changeColors(’U’, 0, 0, 255, 255);

412 }

413
414 function clearInitEnd() {

415 init = null;

416 generalInit = null;

417 end = null;

418 pointsToSet = 2;

419 reload();

420 }

421



44 Source code

422
423 function solve() {

424 solved = false;

425 if (!normalized) {

426 normalizeRenderColors();

427 }

428 return drawLine(init, end);

429 }

430
431 function changeColors(color, r, g, b, a) {

432 var changingPoint = new Point(0, 0);

433 for (var x = 0; x < canvas.width; x++) {

434 for (var y = 0; y < canvas.height; y++) {

435 changingPoint.x = x;

436 changingPoint.y = y;

437 if (changingPoint.getColor() == color) {

438 changingPoint.setColor(r, g, b, a);

439 }

440 }

441 }

442 }

443
444 function colorInTouchIsland(point, islandColor, r, g, b, a) {

445 var p = point.pointsNearTo(islandColor);

446 if (p.length > 0) {

447 for (var i = 0; i < p.length; i++) {

448 p[i].setColor(r, g, b, a);

449 colorInTouchIsland(p[i], ’Y’, 0, 255, 0, 255);

450 }

451 }

452 }

453
454 function normalizeRenderColors() {

455 if (!normalized) {

456 normalized = true;

457 var auxPoint = new Point(null, null);

458 for (x = 0; x < canvas.width; x++) {

459 for (y = 0; y < canvas.height; y++) {

460 auxPoint.x = x;

461 auxPoint.y = y;

462 if (auxPoint.getColorRGBA()[0] == 54 &&

463 auxPoint.getColorRGBA()[1] == 59 &&

464 auxPoint.getColorRGBA()[2] == 160

465 ) {

466 auxPoint.setColor(0, 0, 255, 255);

467 }

468 else if (auxPoint.getColorRGBA()[0] == 51 &&

469 auxPoint.getColorRGBA()[1] == 69 &&

470 auxPoint.getColorRGBA()[2] == 173

471 ) {

472 auxPoint.setColor(0, 0, 255, 255);

473 }

474 else if (auxPoint.getColorRGBA()[0] == 56 &&

475 auxPoint.getColorRGBA()[1] == 76 &&



Source code 45

476 auxPoint.getColorRGBA()[2] == 183

477 ) {

478 auxPoint.setColor(0, 0, 255, 255);

479 }

480 else if (auxPoint.getColorRGBA()[0] == 255 &&

481 auxPoint.getColorRGBA()[1] == 0 &&

482 auxPoint.getColorRGBA()[2] == 0) {

483 auxPoint.setColor(255, 0, 0, 255);

484 }

485 else if (auxPoint.getColorRGBA()[0] == 207 &&

486 auxPoint.getColorRGBA()[1] == 182 &&

487 auxPoint.getColorRGBA()[2] == 49) {

488 auxPoint.setColor(0, 255, 0, 255);

489 }

490 else if (auxPoint.getColorRGBA()[0] == 0 &&

491 auxPoint.getColorRGBA()[1] == 140 &&

492 auxPoint.getColorRGBA()[2] == 0) {

493 auxPoint.setColor(0, 255, 0, 255);

494 }

495 else if (auxPoint.getColorRGBA()[0] == 87 &&

496 auxPoint.getColorRGBA()[1] == 100 &&

497 auxPoint.getColorRGBA()[2] == 42) {

498 auxPoint.setColor(0, 255, 0, 255);

499 }

500 else if (auxPoint.getColorRGBA()[0] == 143 &&

501 auxPoint.getColorRGBA()[1] == 104 &&

502 auxPoint.getColorRGBA()[2] == 52) {

503 auxPoint.setColor(0, 255, 0, 255);

504 }

505 else if (auxPoint.getColorRGBA()[0] == 93 &&

506 auxPoint.getColorRGBA()[1] == 74 &&

507 auxPoint.getColorRGBA()[2] == 30) {

508 auxPoint.setColor(0, 255, 0, 255);

509 }

510 }

511 }

512 reload();

513 }

514 else {

515 normalized = false;

516 CreateNoise();

517 }

518
519 }

520
521
522 function canDrawLine(pointA, pointB) {

523 var x = pointA.x;

524 var y = pointA.y;

525 var dY = pointB.y - pointA.y;

526 var dX = pointB.x - pointA.x;

527 var IncYi;

528 var IncXi;

529 var IncYr;



46 Source code

530 var IncXr

531 if (dY >= 0) { IncYi = 1; }

532 else { dY = -dY; IncYi = -1; }

533 if (dX >= 0) { IncXi = 1; }

534 else { dX = -dX; IncXi = -1; }

535 if (dX >= dY) { IncYr = 0; IncXr = IncXi; }

536 else { IncXr = 0; IncYr = IncYi; var aux = dX; dX = dY; dY = aux; }

537 var avR = 2 * dY; var av = avR - dX; var avI = av - dX;

538
539 var currentPos = new Point(null, null);

540 var auxPos = new Point(null, null);

541 contact = new Point(null, null);

542 var drawable = true;

543 while (!(x == pointB.x && y == pointB.y)) {

544 currentPos.x = x;

545 currentPos.y = y;

546 if (av >= 0) {

547 auxPos.x = currentPos.x + IncXi;

548 auxPos.y = currentPos.y + IncYi;

549 }

550 else {

551 auxPos.x = currentPos.x + IncXr;

552 auxPos.y = currentPos.y + IncYr;

553 }

554 if (auxPos.getColor() == ’G’) {

555 drawable = false;

556 break;

557 }

558 if (av >= 0) { x = x + IncXi; y = y + IncYi; av = av + avI; }

559 else { x = x + IncXr; y = y + IncYr; av = av + avR; }

560 }

561 return drawable;

562 }

563
564 function DrawColorLine(pointA, pointB) {

565 var x = pointA.x;

566 var y = pointA.y;

567 var dY = pointB.y - pointA.y;

568 var dX = pointB.x - pointA.x;

569 var IncYi;

570 var IncXi;

571 var IncYr;

572 var IncXr

573 if (dY >= 0) { IncYi = 1; }

574 else { dY = -dY; IncYi = -1; }

575 if (dX >= 0) { IncXi = 1; }

576 else { dX = -dX; IncXi = -1; }

577 if (dX >= dY) { IncYr = 0; IncXr = IncXi; }

578 else { IncXr = 0; IncYr = IncYi; var aux = dX; dX = dY; dY = aux; }

579 var avR = 2 * dY; var av = avR - dX; var avI = av - dX;

580
581 var currentPos = new Point(null, null);

582
583 contact = new Point(null, null);



Source code 47

584 while (!(x == pointB.x && y == pointB.y)) {

585 currentPos.x = x;

586 currentPos.y = y;

587
588 currentPos.setColor(255, 0, 255, 255);

589 if (av >= 0) { x = x + IncXi; y = y + IncYi; av = av + avI; }

590 else { x = x + IncXr; y = y + IncYr; av = av + avR; }

591 reload();

592 }

593 }

594
595 function followLoop(point, waypoint, visibility) {

596 var aux = point.next();

597
598 var vector = point.getDirectionVector();

599 var tangentPoints = point.tangentOfColor(’U’);

600 if (tangentPoints.length > 2) {

601 for (var i = 0; i < tangentPoints.length; i++) {

602 if (arePerpendicular(point, tangentPoints[i])) {

603 if (!(tangentPoints[i].x == point.next().x

604 && tangentPoints[i].y == point.next().y)

605 && (tangentPoints[i].last().x == point.x

606 && tangentPoints[i].last().y == point.y)

607 ) {

608 if (!(point.next().x == point.x && point.next().y == point.y)) {

609 borderStack.push(point.next());

610 }

611 aux = tangentPoints[i];

612 }

613 }

614 }

615 }

616 //Normal treatment

617 var wayPointPoint = new Point(waypoint.x, waypoint.y)

618 if (!(point.next().x == point.x && point.next().y == point.y)) {

619 if (canDrawLine(point, wayPointPoint) && !visibility) {

620 visibility = true;

621 if (waypoint.parent != null && waypoint.parent.parent != null) {

622 if (!canDrawLine(point,

623 new Point(waypoint.parent.parent.x, waypoint.parent.parent.y))) {

624 waypoint.addChild(point.x, point.y);

625 }

626 }

627 else {

628 waypoint.addChild(point.x, point.y);

629 }

630 }

631 else if (visibility && !canDrawLine(point, wayPointPoint)) {

632 visibility = false;

633 if (waypoint.parent != null && waypoint.parent.parent != null) {

634 if (!canDrawLine(point.last(),

635 new Point(waypoint.parent.parent.x, waypoint.parent.parent.y))) {

636 waypoint.addChild(point.last().x, point.last().y);

637 }



48 Source code

638 }

639 else {

640 waypoint.addChild(point.last().x, point.last().y);

641 }

642 }

643 followLoop(aux, waypoint, visibility);

644 }

645
646 if (point.next().x == point.x && point.next().y == point.y) {

647 if (borderStack.length > 0) {

648 if (canDrawLine(point, wayPointPoint) && visibility == false) {

649 visibility = true;

650 if (waypoint.parent != null && waypoint.parent.parent != null) {

651 if (!canDrawLine(point,

652 new Point(waypoint.parent.parent.x, waypoint.parent.parent.y))) {

653 waypoint.addChild(point.x, point.y);

654 }

655 }

656 else {

657 waypoint.addChild(point.x, point.y);

658 }

659 }

660 else if (visibility && !canDrawLine(point, wayPointPoint)) {

661 visibility = false;

662 if (waypoint.parent != null && waypoint.parent.parent != null) {

663 if (!canDrawLine(point.last(),

664 new Point(waypoint.parent.parent.x, waypoint.parent.parent.y))) {

665 waypoint.addChild(point.last().x, point.last().y);

666 }

667 }

668 else {

669 waypoint.addChild(point.last().x, point.last().y);

670 }

671 }

672 aux = borderStack.pop();

673 followLoop(aux, waypoint, visibility);

674 }

675 else {

676 return;

677 }

678 }

679 }

680
681 function arePerpendicular(pointA, pointB) {

682 vectorA = pointA.getDirectionVector();

683 vectorB = pointA.getDirectionVector();

684 vectorA = normalizeVector(vectorA);

685 vectorB = normalizeVector(vectorB);

686
687 return (Math.abs(vectorA.x) == Math.abs(vectorB.x)

688 || Math.abs(vectorB.x) == Math.abs(vectorB.y));

689 }

690
691 function normalizeVector(vector) {



Source code 49

692 if (Math.abs(vector.x) > Math.abs(vector.y)) {

693 vector.y = 0;

694 vector.x = (vector.x != 0) ? Math.abs(vector.x) / vector.x : 0;

695 }

696 else {

697 vector.x = 0;

698 vector.y = (vector.y != 0) ? Math.abs(vector.y) / vector.y : 0;

699 }

700 return vector;

701 }

702 function getMousePos(canvas, evt) {

703 var rect = canvas.getBoundingClientRect();

704 var MousePos = new Point(Math.round((evt.clientX - rect.left) / (rect.right - rect.left) * canvas.width),

705 Math.round((evt.clientY - rect.top) / (rect.bottom - rect.top) * canvas.height))

706 return MousePos;

707 }

708 function checkColor(evt) {

709 var pos = getMousePos(canvas, evt)

710 if (pointsToSet == 0) {

711 console.log(’================’)

712 console.log(’x, y ’, pos.x, pos.y);

713 console.log(’================’)

714 console.log(’LastX: ’, data[pos.position()]);

715 console.log(’LastY: ’, data[pos.position() + 1]);

716 console.log(’----------------’)

717 console.log(’NextX: ’, data[pos.position() + 2]);

718 console.log(’NextY: ’, data[pos.position() + 3]);

719 console.log(’================’)

720 console.log(pos.getColor());

721 }

722 else {

723 pos.setColor(255, 0, 0, 255);

724 pointsToSet--;

725 if (pointsToSet == 1) { init = pos; generalInit = pos }

726 else { end = pos; }

727 reload();

728 }

729 }

730 function borderIsland(x, y, prevx, prevy) {

731 if (x < canvas.width && y < canvas.height && x > -1 && y > -1 && !solved) {

732 var point = new Point(x, y)

733 if ((point.getColor() == ’B’ || point.getColor() == ’R’) && point.nearTo(’G’)) {

734 var up = new Point(x, y - 1);

735 var down = new Point(x, y + 1);

736 var right = new Point(x + 1, y);

737 var left = new Point(x - 1, y);

738 var vector = new Point((x - prevx), (y - prevy));

739 //NormalizeVector

740 vector = normalizeVector(vector);

741 //PreviousPoint

742 var previousPoint = new Point(prevx, prevy);

743
744 if (vector.x == 0) {

745 if (vector.y == 1) {



50 Source code

746 vector = ’D’

747 }

748 else {

749 vector = ’U’

750 }

751 }

752 else if (vector.x == 1) {

753 vector = ’R’;

754 }

755 else { vector = ’L’ }

756
757 let order = new Array();

758 switch (vector) {

759 case ’U’:

760 if (previousPoint.directionTo(’G’).includes(’R’)) {

761 order.push(right);

762 }

763 else if (point.directionTo(’G’).includes(’R’)) {

764 order.push(right);

765 }

766 else { order.push(left) }

767 order.push(up);

768 if (order.includes(left)) {

769 order.push(right);

770 }

771 else {

772 order.push(left)

773 }

774 order.push(down);

775 break;

776 case ’D’:

777 if (previousPoint.directionTo(’G’).includes(’L’)) {

778 order.push(left);

779 }

780 else if (point.directionTo(’G’).includes(’L’)) {

781 order.push(left);

782 }

783 else { order.push(right); }

784 order.push(down);

785 if (order.includes(left)) {

786 order.push(right);

787 }

788 else { order.push(left); }

789 order.push(up);

790 break;

791 case ’L’:

792 if (previousPoint.directionTo(’G’).includes(’U’)) {

793 order.push(up);

794 }

795 else if (point.directionTo(’G’).includes(’U’)) {

796 order.push(up);

797 }

798 else { order.push(down); }

799 order.push(left);



Source code 51

800 if (order.includes(up)) {

801 order.push(down);

802 }

803 else { order.push(up); }

804 order.push(right);

805 break;

806 case ’R’:

807 if (previousPoint.directionTo(’G’).includes(’U’)) {

808 order.push(up);

809 }

810 else if (point.directionTo(’G’).includes(’U’)) {

811 order.push(up);

812 }

813 else { order.push(down); }

814 order.push(right);

815 if (order.includes(up)) {

816 order.push(down);

817 }

818 else { order.push(up); }

819 order.push(left);

820 break;

821 }

822 if ((order[0].getColor() == ’B’

823 || order[0].getColor() == ’R’)

824 && order[0].nearTo(’G’)) {

825 point.setColor(prevx, prevy, order[0].x, order[0].y);

826 redrawneeded = false;

827 borderIsland(order[0].x, order[0].y, x, y);

828 }

829 else if ((order[1].getColor() == ’B’

830 || order[1].getColor() == ’R’)

831 && order[1].nearTo(’G’)) {

832 point.setColor(prevx, prevy, order[1].x, order[1].y);

833 redrawneeded = false;

834 borderIsland(order[1].x, order[1].y, x, y);

835 }

836 else if ((order[2].getColor() == ’B’

837 || order[2].getColor() == ’R’)

838 && order[2].nearTo(’G’)) {

839 point.setColor(prevx, prevy, order[2].x, order[2].y);

840 redrawneeded = false;

841 borderIsland(order[2].x, order[2].y, x, y);

842 }

843 else {

844 if ((right.x == contact.x && right.y == contact.y)

845 || (left.x == contact.x && left.y == contact.y)

846 || (up.x == contact.x && up.y == contact.y)

847 || (down.x == contact.x && down.y == contact.y)) {

848 solved = true;

849 }

850 else {

851 redrawneeded = true;

852 }

853 point.setColor(prevx, prevy, point.x, point.y);



52 Source code

854 return;

855 }

856
857 if (redrawneeded && (order[0].getColor() == ’B’

858 || order[0].getColor() == ’R’)

859 && order[0].nearTo(’G’)) {

860 point.setColor(prevx, prevy, order[0].x, order[0].y);

861 redrawneeded = false;

862 borderIsland(order[0].x, order[0].y, x, y);

863 }

864 else if (redrawneeded && (order[1].getColor() == ’B’

865 || order[1].getColor() == ’R’)

866 && order[1].nearTo(’G’)) {

867 point.setColor(prevx, prevy, order[1].x, order[1].y);

868 redrawneeded = false;

869 borderIsland(order[1].x, order[1].y, x, y);

870 }

871 else if (redrawneeded && (order[2].getColor() == ’B’

872 || order[2].getColor() == ’R’)

873 && order[2].nearTo(’G’)) {

874 point.setColor(prevx, prevy, order[2].x, order[2].y);

875 redrawneeded = false;

876 borderIsland(order[2].x, order[2].y, x, y);

877 }

878 }

879 }

880 }

881 function reload() { context.putImageData(myImageData, 0, 0); }

882
883 function CreateRandomNoise() {

884 canvas.height = 256;

885 canvas.width = 256;

886 noiseSeed1 = Math.random();

887 noiseSeed2 = Math.random();

888 pointsToSet = 2;

889 CreateNoise();

890 }

891 function CreateNoise() {

892 normalized = false;

893 var height = 100;

894 height = 115;

895 var auxPoint = new Point(0, 0)

896 for (var x = 0; x < canvas.width; x++) {

897 for (var y = 0; y < canvas.height; y++) {

898 auxPoint.x = x;

899 auxPoint.y = y;

900 scale = 4.25;

901 zoom = 175;

902 noise.seed(noiseSeed1);

903 var value = noise.simplex2(x * scale / zoom, y * scale / zoom);

904 noise.seed(noiseSeed2);

905 var value2 = noise.simplex2(x * scale * 2.5 / zoom, y * scale * 2.5 / zoom);

906 value = (((value + value2) / 2) + 1) * 128;

907



Source code 53

908 if (value > 115 + height) { // High mountains

909 auxPoint.setColor(93, 74, 30, 255)

910 }

911 else if (value > 95 + height) { // Mountains

912 auxPoint.setColor(143, 104, 52, 255)

913 }

914 else if (value > 80 + height) { //Hillside

915 auxPoint.setColor(87, 100, 42, 255)

916 }

917 else if (value > 55 + height) { //Grass

918 auxPoint.setColor(0, 140, 0, 255)

919 }

920 else if (value > 45 + height) { // Sand

921 auxPoint.setColor(207, 182, 49, 255)

922 }

923 else if (value > 40 + height) { //Shallow Water

924 auxPoint.setColor(56, 76, 183, 255)

925 }

926 else if (value > 30 + height) { //Water

927 auxPoint.setColor(56, 76, 183, 255)

928 }

929 else if (value > 10 + height) { //Deep Water

930 auxPoint.setColor(51, 69, 173, 255)

931 }

932 else { //Very deep water

933 auxPoint.setColor(54, 59, 160, 255)

934 }

935 }

936 }

937 reload();

938 }




	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State
	Related subjects

	Planning and resources evaluation
	Planning
	Resource Evaluation

	Project analysis and design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Introduction
	Data set development
	Neural network development
	Design choices
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Other considerations
	Bibliography
	Neural network accuracy

	Source code

