UNIVERSITAT
JAUME-I

A video game to simulate the managing of
an hospital

Aleksey Vyachislavov Ovseychik

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume |

July 1, 2021

Supervised by: Begofia Martinez Salvador

@0l

http://creativecommons.org/licenses/by-nc-sa/3.0/

To all of my friends for helping me stress out and forget about the project
for a couple of hours.

*

To my parents for supporting during this four years.

*

And to you Ana,
for listening me talk for hours in some strange language
and giving me advises even if you did not even know what I was talking about,
for supporting me every single day during this project
and cheer me up when I was lost.
Thank you

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Begofia Martinez
Salvador, for her patience and guidance through all this journey.

I also would like to thank Sergio Barrachina Mir and José Vte. Marti Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

http://lorca.act.uji.es/curso/latex/

Abstract

The aim of this project is to make the player understand how hard the medical stuff
works and how difficult is to put together all the people, infrastructure and equipment
in order to ensure our right to a free , universal and high quality medical attention.

iii

Contents

Contents v
1 Introduction 1
1.1 WorkMotivation 1
1.2 Objectives i i e e e 2
1.3 GameDynamics e 3
1.4 Environmentand Initial State 4
1.5 The state of the healthcare system in Spain after the pandemics 4
2 Planning and resources evaluation 7
2.1 Planning e 7
2.2 ResourceEvaluation. 13
3 System Analysis and Design 15
3.1 RequirementAnalysis 15
3.2 SystemDesign 22
3.3 SystemArchitecture 39
34 InterfaceDesign 39
4 Work Methodology, Work Development, and Results 43
4.1 Workmethodology 43
4.2 WorkDevelopment 45
43 Results e e 61
5 Conclusions and Future Work 63
5.1 Conclusions 63
52 Futurework 64
A Other considerations 65
Al Firstsection 65
Bibliography 67
B Source code 69

CHAPTER

L]
Introduction
Contents

1.1 WorkMotivation 1
1.2 Objectives e 2
1.3 GameDynamics e 3
1.4 Environment and Initial State 4
1.5 The state of the healthcare system in Spain after the pandemics . .. 4

This chapter must reflect what is going to be done during the development of the
work. Although the fundamental point is to state the objectives of the presented work,
itis also interesting to comment on the need, idea, etc., that motivates it, and the state
from which it was started.

1.1 Work Motivation

What motivated me to do this project is to report the lack of resources that the public
healthcare system faces.

Also, I wanted to report how the healthcare staff has to try to help any patient de-
spite all. This total focus on the patient brings a lot of mental problems for not always
being able to do it [2].

This project was chosen because in the last pandemics our healthcare system has
been overcrowded. Because of this many people couldn’t be treated as they deserve.

[want to report this situation and I want to make people feel it first hand.
The goal of the project is to teach every player that the public healthcare system is

a basic right of every single citizen of our country.

1

Introduction

To achieve universal attention we need more funds, more people, and the effort of all
of us to overcome the actual situation.

This goal will be accomplished by the game’s core mechanics. These mechanics
were designed to make the player suffer the stress of building and maintaining a hos-
pital. All of this disposing of a small number of resources.

Also, as in a real hospital, the game won't give a single moment to relax.

The patients will come non-stop. The player will have to be constantly attentive
and making life-changing decisions. These decisions will make a huge impact on the
patients. They will make the difference between life and death. They will also give the
player total responsibility for the patients’ lives.

The player may read every single one of the patients’ clinical history. It is essential
to understand the nature of their illnesses and treat them correctly.

The players won't be controlling a special character. They will manage the entire
hospital. So in fact, they will be controlling every single worker of the medical staff.

This means that all the decisions and the prime responsibility lie on the player.

The implementation of this mechanic will make the players feel in the position of
the healthcare staff. Also, it will enable them to understand the work and the effort that
they put in favor of our health.

The aim of the mechanics is that the player feels mentally exhausted at the end of a
play session. This is for making them feel as tired as the medical staff feels after a long
work shift.

Regarding the art style, I will use low poly art [5] (see Figure 1.1) to make the visual
aesthetic look simple.

Thereason is that this game aims to make the player feel exhausted and understand
the stress we put on the public healthcare workers.

I don’t want the player to be distracted with the art or trying to build a beautiful

and visually pleasant hospital. Instead, the player will need to focus on the effective-
ness and to be able to treat correctly every single patient that crosses the door.

1.2 Objectives

The goal of the project is to teach every player that the public healthcare system is a
basic right of every single citizen of our country.

1.3. Game Dynamics

FIGURE 1.1: Sample of low poly art

To achieve universal attention we need more funds, more people, and the effort of
all of us to overcome the actual situation.
My objectives with this project are:

* Develop a game that makes the player think and raise awareness about the lack
of resources in the public healthcare system.

e Implement mechanics that allow the player to be in the position of the healthcare
staff.

e Implement mechanics that allow the player to manage and build their hospital.

* Deliver a unique game experience for every player.

1.3 Game Dynamics

In this section, I will explain the dynamic of the game and how the objectives are go-
ing to be reached. The mechanics and the system [will mention in this section will be
described in detail in the following chapters.

The player will start with a fixed amount of money, he will need to invest that money
in order to build the hospital and hire workers.

The player will have to buy rooms to build the hospital and hire workers to pop-
ulate it. These rooms must be connected in order to be used. The hired workers will
search for a place to work according to their role if they do not find it they will go to the
resting room.

Introduction

Each patient will be randomly generated with an illness, this illness will have a
treatment. In order to treat a patient, the hospital will need to have the specific equip-
ment and staff to do the procedure. For example, if a patient has a broken leg to treat
him the hospital will need a radiology room and a radiologist.

Patients work in a similar way, they will search an empty place in the room they
need to go to, if they do not find one they will go to the waiting room.

The patient first will go to the reception, after that to a consult, there the doctor will
assign a treatment to the patient.

The player will be redirected to a series of doctors to be treated. If for some proce-
dure a doctor or equipment is missing the patient will return to the waiting room.

In the waiting room, the patient’s patience bar will start to decreases. If the patience
bar reaches 0 at some point he will return to his home and the player will lose a certain
quantity of money.

If the patient completes the treatment successfully the player will gain a certain
quantity of money.

Every time more patients will come to the hospital. This will force the player to con-
tinue building the hospital and hiring workers in order to attend to all the new patients.

1.4 Environment and Initial State

This game will be developed using Unity Engine. The programming will be all done by
myself excluding the usage of some libraries. The art will be partially done by me and
for the other part, I will search for free assets on the Internet. This is due to the size of
the project, the number of assets that are needed, and the time that I have to develop
it.

All the art must resemble the aesthetic of the low poly art. This will improve the
performance of the game and will help me dealing with the creation of the assets. This
is due to the simplicity that characterizes this aesthetic.

1.5 The state of the healthcare system in Spain after the
pandemics

One of the main objectives of this game is to raise awareness about the state of the
healthcare system in Spain.

Our medical staff was the first line in the battle with COVID-19. and are the first to
suffer the consequences of the pandemics.

1.5. The state of the healthcare system in Spain after the pandemics

According to this report one-half of the nurses are in danger of suffering from men-
tal illnesses [1]. A 15 percent ensures that they had psychological help during the pan-
demics.

This situation is due to the overpopulation that our hospitals. This report marks
that 8/10 nurses claim that the hospitals have a lack of medical staff [2].

This battle took the lives of more than 17,000 sanitarians all over the world that
fought[3] this virus. They gave their life for us.

This game is my way to honor these people and to contribute even if it is in a slight
way to fight against the COVID-19.

CHAPTER

Planning and resources evaluation

In this chapter, I will detail the planning that I will be following up during this project.

Contents
21 Planning e 7
2.2 ResourceEvaluation, 13

2.1 Planning

First of all, I planned the overall of the tasks on which I will work during this project(see
Table 2.1).

This table served me as a guide to developing more precise planning of the project
(see Figure 2.1). The planning was made using a Gantt chart, this planning will not be
definitive. It will work more as a guide rather than strict planning.

In the reality, my work differed quite from the initial planning. After the finaliza-
tion of the project I made another Gantt chart to visualize the job that I have done(see
Figures 2.2, 2.3, 2.4).

For a comfortable visualization, this Gantt chart has been split into 3 parts. These
parts are the sprints in which the project was split, in 4.1 I will explain in more detail
the work methodology I followed in this project.

Planning and resources evaluation

This chart differs from the first one due to few reasons:
¢ In the first chart I did not take into account the June exams.

* [implemented pretty all the functionality specified in Figure 2.1 but I changed
the order of the implementations. This change was made to optimize the time
and for being able to make small tests. First I planned to implement single me-
chanics and debug them individually and interacting with others. But it makes
more sense to implement together a group of mechanics that are related and then
test them all together.

e Also in the middle of the project I decided not to put so much effort into the art.
Art is not my strong point and I prefer to deliver well-polished mechanics and
interesting gameplay. Even if I had invested a lot of hours in modeling the result
will be some mediocre characters and props.

Task Hours
Creation or importation of assets 50
Hospital management mechanics 110
Patient management mechanics 80
Implement miscellaneous 70
functionalities
Research about some diseases and the

. 20
workflow of a hospital
Final memory 10
Presentation of the project 10
Total 350

TABLE 2.1: Resume of the planning

2.1. Planning

obe

LZ0Z €D

uoissaibold a1 pue solueyosw a4 ysiod (D
sayou|b pue sbnq x14 (D
dooj sjgefed a1 1ssL

soweyosw ay1 1sal prex (D

S2Ip 62 ® 5 unl- 5 2w e eseyd Bunsa)

n
siesse wasayp jo uoneso (D
S3WBUINS puB $aleu ysiuads J0) s3Iy NOSH buneaso .
p2 pue Gunsodw| (D

gs e fow - U0z e uy

sju2ned pue SJ34IoM U3 L0 S|pow gg AUl D

warshs yseL (D
Bupuyuied @

S2p 0T e LE-TL Jew e v Buwwesbog

wasfs wena @
siasom Buwy pue SuniH (D
waisds feqg (D
waisfs Asuowy (D
puom ayl punose bunow (D
6unipa pue buiping (D

SOIp Qo e || J2W - || 3U3 e sojueyospy Bujwwelboig

soweyosw uisssq

L7 2Ip « subisaq

2Ip LT ® 0L "3

Lz0z 20 1707 LD

ing

Gantt chart of the first plann

FIGURE 2.1

dous JI0M 31 UO SIUSWIS/

w
Q
o
Q.
€
L]

S2Ip 3 8 97 - 61 Jow e Jupds ISL ay) 03 payeal sapesbdn pue 1saikeld

t

mn

Planning and resources evaluation

10

waisfsyszl [P
v saxon (D
319ka fea ||
wawabeueyy dous ||
J3|jonu0) eiawe) ||
Inoiseg |
swoou Gunip3 [
pus plom B

S2IpgE @ gL W -5 03 @ Liupds

esned (D

SRID 67 ® § 03} - || 'SUs e Yeasg wex3

opezuene 021un 03afold | soiueyosw ubisaa (ENEGEGEGEGED
R s

selp LZ ® 0L '3U3 - |Z 2Ip « ubjsag

“Aew Jqe Jew ‘g BU

Gantt chart corresponding to the 1st spr

FIGURE 2.2

11

2.1. Planning

uonng asojo In |l
IN Y1 10 SJ0|0D 3y} pue s|ensiA ay) jo ubisipay §
swool ay} 1o 2iboj ayy buibueys |
I 3u3 Jo 2160] 3y} o1 sabuey) §
$J0100p J0j wooJ Buiem pappvy |

swaned ay) Joi pue SJ0100P 3yl 104 SWool (e ul s1abiel pappy |

sep 7L et - £ 2w e uuds puz ays o) pajjeas sapesbdn pue ysaile|d

wasfisin @
wsalsAs dinjooy §
mopuim uondao3y §
sdn-samog |
ge} oyul JaxoM |
ge1 ojul uaned §
apow 11pa ul uoneussoyul a0l |
walsfs aseasig
woou siskjeuy |

"~ LR
JU00J ADO|

(&)

pE

'S

=4

siusned JoJ wool

©

s
e

seip oz # 7 few -/ Jos e Ziuuds

suonewiue uo bunuom
a
poi §

S2p QL 0 U02-37 J2W e S}aSSE 1S4

L]

siaoeseyd sjqefeld uou Buljspo

Wy
£
=
=)
s
n
-
i

Aew Jqe

Gantt chart corresponding to the 2nd sprint

FIGURE 2.3

12

Planning and resources evaluation

'3 » 14 dias

¥.15-2

a

Sprint3 e« m
tistics
O uid Valls
S cuild Floor

O Gro0h stst

FIGURE 2.4: Gantt chart corresponding to the 3rd sprint

2.2 Resource Evaluation

The only human resource that I will need to develop this project is my time. I worked
nearly 315 hours on this project. The average yearly salary of a junior game program-
mer is around 28.000€ [4]. If we divide it by 14 that is the number of payments that the
average worker gets paid in Spain (12-month salaries + 2 extraordinary salaries) we get
2.000€ per month. In Spain, a regular worker works 40 hours a week, which is a month
that means 160 hours of work. As mentioned above I worked 315 hours, which approx-
imately means two months of work.

In conclusion, the time spent on this project on average had a value of approxi-
mately 4000€.
In regard of the equipment [will use:

* Alaptop computer.

¢ An USB mouse.

* Headphones.

* A monitor.

I will also need the following software:

 Unity 3D (Student license)

Visual Studio (Student license)

GitHub (Free Version)

Adobe Photoshop (Student license)

Blender 2.91 (Free Software)

OverLeaf (Free)

GoogleDocs (Free)

Monday (Free version)

Lucid Charts (Free version)
* App Moqups (Free version)

* Visual Paradigm (Free version)

CHAPTER

System Analysis and Design

Contents
3.1 RequirementAnalysis 15
3.2 SystemDesign e 22
3.3 SystemArchitecture L o oL 39
34 InterfaceDesign o .. 39

This chapter presents the requirements analysis, design, and architecture of the
proposed work, as well as, where appropriate, its interface design.
3.1 Requirement Analysis
To carry out a job, it is necessary to perform a preliminary analysis of its requirements.

In this section, I will detail the functional and non-functional requirements of this
work

3.1.1 Functional Requirements

Afunctional requirement is a feature or a function that the developers of a project must
implement to allow users to accomplish their tasks.

This is the list of the functional requirements of this project:

1. The player will be able to start a new game.

15

System Analysis and Design

2. The player will be able to move the camera in four directions using the arrow keys
or the left mouse button.

3. The player will be able to rotate the camera using the right mouse button or with
“Q” torotate to the right and “E” to rotate to the left.

4. The player will be able to zoom in and out using the mouse wheel.

5. The player will be able to build a hospital placing the rooms where and how he
wants.

6. The player will be able to choose which players hire if he has enough money.
7. The player will be able to check the statistics of the game.

8. The player will count on a specific amount of money and he will be able to man-
age the budget of the hospital.

9. The player will be able to earn money treating patients and then he will be able
to waste it building rooms or hiring workers.

10. The player will be able to control the waiting times of the patients.

11. The player must maintain the hospital working while waves of patients are arriv-
ing.

12. The patients will arrive at the hospital and then lead to the reception. There they

will be assigned to a consult if there is any free. If the patient can not find an
empty consult he will go to the waiting room.

3.1.2 Non-functional Requirements

A non-functional requirement describes how the system must behave and establish
the limits of its functionality.

This is the list of the functional requirements of this project:

1. Anew player without experience will be able to learn to play the game in less than
15 minutes.

2. All the items present in the game will be low poly.

3. The Ul will be simple and clean.

3.2. System Design

17

Move Camera

Rotate Camera

Zoom Cameara

Check Statistics

<¢lneludes>

Select Patient [—

v
[
h

S = Show Information

Select Worker -------
=<Include=>

Buy room

Check store

Hire worker

Mowve reom

Select Room

Rotate room

Build Floor

Build Wall

FI1GURE 3.1: Use Case diagram

18

System Analysis and Design

Use case ID: UC01

Name: Move the camera

Requirement: 1

Actors: Player

Description: The player moves the camera

Preconditions:

1. Not have any Ul window open

Normal sequence steps:
1. Click and drag with the left mouse button
2. Press the arrow keys

3. The camera moves in the direction of the keys pressed or in the direction
of the mouse

Alternative sequence steps: None

TaBLE 3.1: Functional requirement «Use case 01. Move the camera»

ROOM INFO STATISTICS

29000
2633
2366
2099
1832

1565
1298
1081
7640
4970

2300
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FI1GURE 3.2: The statistics window in game

3.2. System Design

19

Use case ID: UC02

Name: Rotate the camera

Requirement: 2

Actors: Player

Description: The player rotates the camera

Preconditions:

1. Not have any UI window open

Normal sequence steps:
1. Click and drag with the right mouse button
2. Press “Q” or “E

3. The camerarotates to the left if the player drags to the left or presses "Q"
or the right if the player drags to the right or presses "E"

Alternative sequence steps: None

TaBLE 3.2: Functional requirement «Use case 02. Rotate the camera»

Ficure 3.3: The tab displayed when a patient is selected

20

System Analysis and Design

Use case ID: UC03

Name: Zoom

Requirement: 3

Actors: Player

Description: The player zooms the camera

Preconditions:

1. Not have any UI window open

Normal sequence steps:
1. Use the mouse wheel

2. If the player scrolls up the camera will zoom in, if he scrolls down the
camera will zoom out.

Alternative sequence steps: None

TaBLE 3.3: Functional requirement «Use case 03. Zoom »

FIGURE 3.4: The tab displayed when a worker is selected

3.2. System Design

21

HIRING

Consulta Radiologia

Consulta Radiclogia

Analisis

Sala de analisis

FI1GURE 3.5: The room store in game

HIRING

EDUARDO FLORES ROSELLO
Radiologist

W

YASSINE MOLERO ESPIN

Consult

W

MARC POVEDA DA SILVA
Radiologist

W

LUIS FRANCISCO ROCHA FRIAS
Analist

FIGURE 3.6: The hiring tab in game

22

System Analysis and Design

Use case ID: UC04

Name: Check statistics

Requirement: 12

Actors: Player

Description: The player opens a window where the statistics are displayed (see Figure 3.2)

Preconditions:
1. Not have any Ul window open

2. Open the statistics window first

Normal sequence steps:
1. Left click on the statistics icon
2. The statistics window is opened and displayed in middle of the screen

3. The statistics icon changes it is color to green

Alternative sequence steps: None

TABLE 3.4: Functional requirement «Use case 04. Check statistics»

3.2 System Design

The next use case tables come from the following Use Case diagram (see Figure 3.1):

The following figures (see Figure 3.7) and (see Figure 3.8) represent the sequence of
actions that follows a patient and the sequence of the actions described by the UC09
(see Table 3.9) respectively.

3.2. System Design

23

Use case ID: UC05

Name: Select patient

Requirement: 5

Actors: Player

Description: A patient is selected (see Figure 3.3)

Preconditions:
1. Not have any UI window open

2. Not have fixed another patient or worker info tab to screen

Normal sequence steps:
1. Left click directly on a patient

2. A small tab is opened int the down-right corner displaying the selected
patient statistics

3. The camera is locked to the patient’s position

Alternative sequence steps: None

TaBLE 3.5: Functional requirement «Use case 05. Select patient»

24

System Analysis and Design

Use case ID: UC06

Name: Select worker

Requirement: 6

Actors: Player

Description: A worker is selected (see Figure 3.4)

Preconditions:
1. Not have any UI window open

2. Not have fixed another patient or worker info tab to screen

Normal sequence steps:
1. Leftclick directly on a doctor

2. A small tab is opened int the down-right corner displaying the selected
doctor statistics

3. The camera is locked to the doctor’s position

Alternative sequence steps: None

TaBLE 3.6: Functional requirement «Use case 06. Select worker»

3.2. System Design 25

Use case ID: UC07

Name: Open the information tab

Requirement: 7

Actors: Player

Description: Displays the information of the selected agent

Preconditions:
1. Not have any UI window open
2. Left click on a worker or on a patient

3. Not have fixed another patient or worker info tab to screen

Normal sequence steps:
1. Left click directly on a doctor or on a patient

2. The agent info tab will be displayed at the under-right corner

Alternative sequence steps:

1. If an information tab is fixed to the screen on click on a patient or on a
worker it will still display the fixed tab

TaBLE 3.7: Functional requirement «Use case 07. Open the information tab»

26

System Analysis and Design

Use case ID: UC08

Name: Buy room

Requirement: 8

Actors: Player

Description: Purchase a room from the store (see Figure 3.5)

Preconditions:
1. Have opened the store
2. On the store have choose the buy rooms tab
3. Left click on the room you want to buy

4. Have enough money to buy the room

Normal sequence steps:
1. Open shop
The shop window will be displayed on the screen

Select room tab from the shop window

Ll

The room tab will change it is color to green and the room shop will be
displayed

Purchase the room
The shop window will close

The room price will be subtracted from the player’'s money

® N o o

The room will be ready to be placed on the map

Alternative sequence steps: None

1. If you do not have enough money to purchase the room an alert will be
displayed and you will still be in the shop with the buy room tab opened.

TABLE 3.8: Functional requirement «Use case 08. Buy room»

3.2. System Design 27

Use case ID: UC09

Name: Hire worker

Requirement: 9

Actors: Player

Description: Hire a worker from the store (see Figure 3.6)

Preconditions:

1.
2.
3.

4.

Have opened the store
On the store have choosed the hire workers tab
Left click on the worker you want to hire

Have enough money to hire the worker

Normal sequence steps:

1.
2.

=~

® N o o

Open shop

The shop window will be displayed on the screen

. Select the hiring tab from the shop window

The hire tab will change it is color to green and the worker shop will be
displayed

Hire a worker
The shop window will close
The worker salary will be subtracted from the player’s money

The worker will enter the hospital and start to work

Alternative sequence steps: None

1.

If you do not have enough money to hire the worker an alert will be dis-
played and you will still be in the shop with the buy hire tab opened

TABLE 3.9: Functional requirement «Use case 09. Hire worker»

28

System Analysis and Design

Use case ID: UC10

Name: Rotate the camera

Requirement: 10

Actors: Player

Description: Opens the shop window

Preconditions:
1. Not have any UI window open

2. Leftclick on the shop icon

Normal sequence steps:
1. Click on the shop icon
2. The shop window will be displayed

3. The shop button will change it is color to green

Alternative sequence steps: None

TaBLE 3.10: Functional requirement «Use case 10. Rotate the camera»

3.2. System Design 29

Use case ID: UC11

Name: Move room

Requirement: 11

Actors: Player

Description: Move a room according to the mouse position

Preconditions:

1.

2.

Have edit mode active

Left click on a room

Normal sequence steps:

1.

2.

Left click on a room

The room will be displayed on green or in red depending on if it can be
placed in the mouse position

. Move the mouse to the desired position

The house will move according to that position position

. Left click again to place the room on the mouse position

The room will be displayed with it is normal colors

Alternative sequence steps: None

1.

If the room is colliding with another object the room will change its color
to red and when you left-click to place it will not be placed and an alert
will be triggered

TaBLE 3.11: Functional requirement «Use case 11. Move room»

30

System Analysis and Design

Use case ID: UC12

Name: Rotate room

Requirement: 12

Actors: Player

Description: Rotates a building +90 degrees on the Z-axis

Preconditions:

1.

2.

Have edit mode active

Left click on a room

Normal sequence steps:

1.

2.

Left click on a room

Right-click to rotate +90 degrees on the Z-axis

. The room will be displayed on green or in red depending on if it can be

placed in the mouse position
Left click again to place the room on the mouse position

The room will be displayed with it is normal colors

Alternative sequence steps: None

1.

If the room is colliding with another object after a rotation the room
will change its color to red and when you left-click to place it will not
be placed and an alert will be triggered

TaBLE 3.12: Functional requirement «Use case 12. Rotate room»

3.2. System Design

Use case ID: UC13

Name: Select room

Requirement: 13

Actors: Player

Description: Selects a room

Preconditions:
1. Have edit mode active

2. Left click on aroom

Normal sequence steps:
1. Left click on a room to select it

2. The room will switch it is color to green

Alternative sequence steps: None

TaBLE 3.13: Functional requirement «Use case 13. Select room»

32

System Analysis and Design

Use case ID: UC14

Name: Build wall

Requirement: 14

Actors: Player

Description: Builds the walls of a room using the mouse input

Preconditions:

1.

s W

Activate the building mode
Select the building wall mode
Left click to select the start point

Left click to select the end point and build the wall from the start point
to the end point

Normal sequence steps:

1.
2.

Left click to place the start point

A column will be instantiated in the start point

. other columns will be instantiated in the path that the mouse follows

. Left click again to place an endpoint and build a wall between these two

points in a straight line

. A wall will be built from the start to the endpoint

Alternative sequence steps: None

1.

If the wall collides with another its color will change to red and if you left-
click the second time to build the wall it will not be built and an alert will
be triggered

TaBLE 3.14: Functional requirement «Use case 14. Build wall»

3.2. System Design

33

Use case ID: UC15

Name: Build floor

Requirement: 15

Actors: Player

Description: Builds the floor of a room using the mouse input

Preconditions:
1. Activate the building mode
2. Select the building floor mode
3. Leftclick to select the start grid cell

4. Left click to select the end cell and build the floor in the area between
the start cell and the end cell

Normal sequence steps:
1. Left click to place a start cell
2. Afloor panel will be instantiated at the start cell

3. Floor panels will be instated filling the area between the start and the
endpoint

4. Left click again to place an end cell and build the floor under the area
between these two cells

Alternative sequence steps: None

1. If the floor collides with floor its color will change to red and if you left-
click the second time to build the floor it will not be built and an alert
will be triggered

TABLE 3.15: Functional requirement «Use case 15. Build floor»

34

System Analysis and Design

The sequence of actions of a patient going to work described in (see Figure 3.7) can
also be described using an activity diagram (see Figure 3.9).

The action described by the UC09 (see Table 3.9) and the sequence diagram (see
Figure 3.8) can also be described using an activity diagram (see Figure 3.10).

3.2. System

Design

Patient Reception Waiting room Consult
i i i i
| I | I
I I i i
i I | i
I i |
| ! |
: I |
searchFreeWindow() | I I
| I
i |
Alternative } }
[there is a ! !
free window in < ——————————————_______________ | !
reception | assignWindowToBeAttended() i I
i i
| |
i i
| I
i i
I i
i |
I |
| I
i i
= S | i
[Else] ! |
i
|
searchEmptySeat() !
|
P SO E i
assignSeat() |
I
goToSeatAssigned() |
i
|
I
i
goToWindow() }
i
i
|
] i
redirectPatientToConsuit() !
i
searchEmptyConsult()

Alternative

[If there is a -
free consult |

assignConsultToPatient()

searchEmptySeat()
D assignseaty | T
goToSeatAssigned()
I goToConsult
|
i
e .
attendPatient()

FIGURE 3.7: Sequence diagram of a patient going to the consult

36 System Analysis and Design

Doctor Consult Waiting room

searchEmptyConsult()

|
i
|
|
i
|
I
i
|
|
Alternative }
[If there is an !
empty consult e |
Py ! assignConsultTowork() I
i
|
I
i
i
|
i
|
|
i
7777777777777777777777 |
[Else] !
searchEmptySeat()
.
assignSeat()
goToSeatAssigned()
goToAssignedConsult()
-
redirectPatientToConsult()
> »
checklfTherelsAPatientinTheConsult()
Alternative
[If there is a
patient in the
]
consult] assignPatientToTheDoctor
cheachAgain()
[Else]
.l .
patientNull()

attendPatientOnCosnult()

FIGURE 3.8: Sequence diagram of a doctor going to work

3.2. System Design 37

al Paradigm Online Free Edition [|
aradigm bnin k I‘Panentgetmgatentmn

Is there a window?

‘Go to the waiting room

Go fo the free window|
Get attended at the reception

No Yes

4
Is there an %W\m consult?

Assign consultation room
Go to the consultation room
Get attended at the consultation room

The doctor will redirect the

patient to the next room

Yes No No Yes

y A)£

Is there space Is there space
in some radiology room| (in some analysis room

iology room| Go to the analysis room

L

The patient needs more atention?|

No

Return home

FIGURE 3.9: Activity diagram of a patient going to the consult

38

System Analysis and Design

Visual Paradigm Online Free Edition [

Select hiring tab

Select worker

Has player enough money
to hire the worker?

(Worker hired

CWorker go to working ronm)

No * Yes

V ™

Go to the waiting room Is there space jn some room?
Assign room I

(Work]

Visual Paradigm C:é Free Edition

FIGURE 3.10: Activity diagram of a doctor going to work

3.3. System Architecture

39

3.3 System Architecture
The requirements to play this game will be very basic and are the following:

e CPU: Pentium 4 processor (3.0 GHz, or better)

CPU SPEED: 3.0 GHz

RAM:1GB

0OS: Windows 7/Vista/XP/ Windows 10

VIDEO CARD: DirectX 9 level Graphics Card

PIXEL SHADER: 2.0

SOUND CARD: Yes

FREE DISK SPACE: 1 GB

DEDICATED VIDEO RAM: 1 GB

3.4 Interface Design

In this section, I will show the interface mock-ups that I developed during the project.

To keep consistency between all the components that integrate the interface I cre-
ated a color palette to restrain the colors that the interface elements can have.

The interface of the game was developed with two main objectives in mind:
* Maintain the interface clear
 Provide the player access to a big amount of information on demand

All this extra information will be displayed in tabs and windows to keep the inter-
face clean and do not overpopulate it with tons of information.

In the main state of the interface we can see that all the buttons are in the down-
side panel so the player screen is pretty clean. This panel provides the player a list of
buttons that on interaction with will open extra windows. This will provide the player
with information and will allow him to perform some actions. Some actions could be:
opening the store (see Figure 3.11) or checking the game statistics (see Figure 3.12).

Moreover, some tabs can be opened on demand of the player like the patient state
tab (see Figure 3.13) or the worker state tab (see Figure 3.14). These tabs will display

40

System Analysis and Design

extra information to the player but still allowing him to keep playing.

Alltheicons used in the Ul are open-license and have been downloaded from Stream-
line [6].

STORE HIRING

HIRING

Frice

HIRING STORE

Room name
Description
Price

Room name
o Description

Price

Room name
o Description

Price

Room name
o Description

Price

Room name
o Description

Price

Room name

Description
Price

FI1GURE 3.11: Mock-Up of the shop interface

Power-Ups

Frice
Power-Ups

Price
Power-Ups

3.4. Interface Design 41

ROOM INFO STATISTICS

ROOM INFO STATISTICS ROOM INFO STATISTICS

Room name: Room statistics

Room name: Room statistics

Room name: Room statistics

FIGURE 3.12: Mock-Up of the statistics interface

42 System Analysis and Design

F1GURE 3.13: Mock-Up of the patient information tab

F1GURE 3.14: Mock-Up of the worker information tab

CHAPTER

Work Methodology, Work Development,

and Results
Contents
4.1 Workmethodology, 43
4.2 WorkDevelopment e 45
43 Results e e 61

In this chapter, I will resume the job done during this project, describe the workflow
that I followed and explain with examples how works the most important mechanics
of the game developed.

4.1 Work methodology

First of all, as mentioned in the section 2.1 I divided the work of this project into 3
sprints using an agile methodology [6].

The workflow followed in this methodology can be found in this figure (see Fig-
ure 4.1).

Before each sprint, I planned the mechanics that are going to be developed during
the sprint. This planning was made using a tool called Milanote [7]. This tool provides
the user an environment to organize the work using visual boards (see Figure 4.2).

43

44

Work Methodology, Work Development, and Results

After this planning, I started to work on the tasks that I planned for this sprint. The
tasks were split into the important mechanics and add-on mechanics.

The important mechanics are the ones that their lack in the project will result in an
unplayable game or an impoverished version of the game. The add-on mechanics are
mechanics that do not affect drastically the gameplay. They improve some aspects of
the gameplay but if they are missing the overall of the project will not be affected.

This distinction was made because every sprint has a deadline. First are imple-
mented the important mechanics and then the add-ons. This is made to prioritize the
important parts of the project. If after the deadline of a sprint all the important me-
chanics were completed the testing started even if the add-ons were not finished. If
some important mechanics were not completed the deadline was delayed. This delay
was big enough to ensure the completion of the unfinished mechanic or mechanics.

After the deadline had arrived and all the important mechanics of the sprint were
completed the playtest started.

(Pla)
= ytest
—

Bug report

>

(Implementation ’
Improve .
A <)
mechanics AN jves

A A

Is deadline
expired

Is there
any bug

Mechanics can
be improved

Yes.
(Planning ’

A

Is there
any major
bug

(Start ’ End) No

FIGURE 4.1: Diagram of the workflow of a Sprint

Yes

4.2. Work Development

45

During the playtest I tested every mechanic implemented this sprint in interaction
with the rest of the mechanics. If I found a bug or a glitch I wrote it down on a specific
board in Milanote (see Figure 4.3).

When the playtests ended I tried to fix all the bugs that were found and improved
the work of the mechanics. After the fixes and improvements, I playtested the game
again and wrote down the bugs, thisloop continued for a maximum of 2 weeks or until
I fix all bugs. During the fixing, I focused on the major bugs. If after the 2 weeks there
were bugs that caused major problems I delayed the beginning of the next sprint until
the biggest bugs were fixed.

4.2 Work Development

This section will work as a resume in chronological order of the implementation of the
most important mechanics of the game.

Mecanicas Sprint 2

Next steps

FIGURE 4.2: Sample of a board used for organize the tasks left to do

46

Work Methodology, Work Development, and Results

First of all, I created a placeholder space to simulate where the game is going to be
played. Then I started the implementation of the first mechanic.

4.2.1 Building System

The core of a Tycoon game of building hospitals for sure is going to be the building me-
chanic. To develop this mechanic I first needed to implement some system to help the
player place the rooms and manage the environment.

I decided that this system is going to be a grid system where space will be split into
cells. In the grid system, every room will occupy a determined number of cells. The
room’s position will be snapped to a cell avoiding rooms be placed in a middle of a cell.
This mechanic aims to help the player place the rooms without worrying on connect
them exactly or overlap two rooms. Also to help the players place rooms the grid will
be displayed on the floor (see Figure 4.4).

For the design of the building system, aimed on designing a mechanic that s func-
tional but more importantly easy to use and responsive. This is the design pattern that
will follow over the whole project. In a game with so many mechanics, it is very im-
portant to make them intuitive. This prevents the player from having to learn how to
interact with every single mechanic.

Bugs conocidos

Bugs:
[] Cuando abres las estadisticas la tabla esta vacia
[] Los trabajadores miran hacia atrés en radiclogia

[] Cuando desactivas el modo de fijacién la cdmara pega un salto

FI Team planner
(¢}

FI1GURE 4.3: Sample of a board used for listing the known bugs

4.2. Work Development

47

In the case of the building system, when the player buys a room it will appear on
the map and will follow the player’s mouse. When the player clicks if the room is placed
correctly it will be built in the room’s current position. To communicate to the player
ifhe can build a room in the current position the room will be drawn in green (see Fig-
ure 4.5). If building is not allowed it will be drawn in red (see Figure 4.6). Also if the
player tries to build in a not allowed place an error message will be shown in the con-
sole (see Figure 4.17). [will explain this mechanic further in this section.

In addition to the building system, players can modify the hospital layout if edit

e

5
5
Q5

99,9009

%
5

FIGURE 4.5: Image of a room that can be built

48

Work Methodology, Work Development, and Results

mode is activated. Edit mode allows the player to select a room and move it or/and
rotate it. During the edition of a room color legend to communicate to the player if the
room is placeable or not is the same.

4.2.2 Camera Controller

The next important functionality I added was the camera control script. The camera
in a Tycoon game is a key aspect because, during the gameplay, the player will need
to constantly navigate through the map. This navigation must be comfortable and
easy. While controlling the camera the player will be able to move around, rotate and
zoom. Speaking about the controls, every player has a different taste on how to con-
trol a game. Because of that, we allowed the player to control the camera both with the
mouse and the keyboard.

At this point, I did not know the size of the playing area or the height of the rooms.
I do not want to choose some values for the playing area and then be restricted to that
values for the rest of the project. To avoid that I built a script that allowed me to tweak
all that values. This permitted me to play with the values and get the best results (see
Figure 4.7).

4.2.3 Character Generator

After the implementation of the camera, [decided that it was time to start the creation
of the characters. I am not the best at modeling so I decided that for the sake of the

FIGURE 4.6: Image of a room that can not be built

4.2. Work Development

49

project it was a better idea to find an asset pack instead of modeling the characters
myself. I found this open license asset pack [8].

This pack comes with a lot of types of characters, but their format did not fit what I
needed for my project. The reason was that the characters of the pack came all in one
single mesh (see Figure 4.8).

As in this game, there will be a lot of patients it is mandatory to have a kind of sys-
tem that generates them randomly. Otherwise, after a few hours, the player will notice
that the same characters are appearing over and over again.

v Camera Controller (Script) @ 3 ¢

Camera L MainCamera (Trar &

Movement Speed

FIGURE 4.7: The camera options that can be modified

50

Work Methodology, Work Development, and Results

3
Ml Body

Add Modifier
ViEEE-

B, CharacterArmature

FIGURE 4.8: The original asset from the asset pack

4.2. Work Development 51

To achieve this randomness I modified the assets of the pack. I separated all the
parts of the mesh found on the characters(see Figure 4.9). The random character gen-
erator is inspired by the character creator systems that some games have (see Figure 4.10).
In these systems the game has a pool of objects for every customizable part of the char-
acter and the player can choose every part and combine them. This results in a differ-
ent character for every player. The players can also name their characters. In these
systems, the variety comes from the size of the pools or the number of options.

In the game this character creation is done randomly, the character generator has
a pool for:

* Hair models

* Hair color

* Eye color

* Skin color

e Upper-Clothes model
e Upper-Clothes color
e Down-Clothes model
* Down-Clothes color
¢ Names

e Surnames

Combining these parameters, every character generated will be different from the
others (see Figure 4.11). Also, some combinations create special characters, there are
more than 10 special characters. Find them all! (see Figure 4.12)

This character generator generates both workers and patients.

Following my attempt to populate a bit the world after the implementation of the
character generator I started the creation of the rooms (see Figure 4.15). As mentioned
before the assets will be low poly (see Figure 1.1). Low poly is both an art style and form
of optimizing a game and gain performance.

For this game, I designed a color palette made of 64 colors (see Figure 4.14). The
aim of having a palette is that all the assets of the game will have this palette as the
only material.

The optimization comes when applying this unique material to a complex object.
For example in a character, a material is created for each color used, brown for the hair,

Work Methodology, Work Development, and Results

Armature

Object W, C

Sroup EE

Bindto & Ve

x Groups
Bone Envel

FIGURE 4.9: The modified asset from the asset pack

4.2. Work Development 53

MY AVATAR

CHARACTER CREATOR

PANTS &

ha; !a'_sa' A

e | A ASNE Nt

<

e N N

CANCEL

FIGURE 4.10: Character creator of the game Hytale

FIGURE 4.11: Two characters randomly generated

54

Work Methodology, Work Development, and Results

FIGURE 4.12: Special character

4.2. Work Development

55

blue for the eyes, blue for the pants ...,. To draw this character the engine will have to
search in memory every material and access it. In an object with a lot of materials, this
can be very resource-consuming. Instead of that if an atlas material is used the ma-
chine only has to access one material. Using this atlas material the system will apply
the color according to the coordinates of the texture. Here an explanation of how the
texture coordinates work can be found (see Figure 4.13).

4.2.4 Al

Once the characters were modeled it was time to develop the IA. I split the IA into two
types the basic IA and the task system.

The basic system is the one that all the medical staff will have. Workers can also
have a specific role. For this project a developed a few, consultation doctors, radiolo-
gists, annalists, and receptionists. All of them follow the same basic rules. I will briefly
explain them in the next paragraph but the full explanation can be found on this se-
quence diagram (see Figure 3.8) and in this activity diagram (see Figure 3.9).

A worker entering the hospital will search for a free space to work. In the case of
the doctors an empty room of his role, in the case of the receptionist a free seat in the
reception. If they do not find somewhere to work they will go to the resting room until
there is a free space. If they find somewhere to work they will go there and wait until
a patient comes. Once a patient came they will attend them and redirect to the next

0 1 2

Texture coodinates
(3.5,0.5)

F1GURE 4.13: Explanation of how the texture coordinates work (Image of Mega-Man 8-bits)

56 Work Methodology, Work Development, and Results

F1GURe 4.14: This is the color palette used for all the assets in the game

FIGURE 4.15: The modeling of the radiology room

4.2. Work Development

57

procedure or home. If the patient has ended the treatment.

Patients follow this same method with the difference that if they do not find a space
in the place they want to go they will go to the waiting room. More explanation about
this can be found on this sequence diagram (see Figure 3.7) and in this activity diagram
(see Figure 3.9).

The task system is used by special workers like cleaners. While there is nothing to
do they will be in the resting room. The tasks are put on a queue to be completed in
order of entry, once a task is on the queue a free worker will be assigned to that task.
The worker will see what consists the task and will try to complete it.

All the workers will need pathfinding to be able to traverse the hospital. Imple-
menting pathfinding was a difficult part of the project where I invested quite a time
thinking about the better way to do it.

To implement pathfinding I thought of two ways. One way was using the grid sys-
tem and assigning to each cell a node and then simply use the A* algorithm [9] to find
the shortest path between two nodes [11]. The other using the Unity navigable mesh
system [12].

Using navigable mesh the mesh must be baked in the editor mode to after be used
during the gameplay. Using pathfinding at the beginning of the script a graph made of
nodes must be built[10]. The problem of this is that they require baking the mesh or
creating the graph both of these operations have a heavy impact on the performance.
But there is another problem, the machine can not know how every hospital will look.
This means the navigable mesh or the graph should be recalculated during gameplay.
This can cause a big slowdown in the player’s computer what it is inadmissible for a
good playing experience.

The way I resolved this is using Unity navigable mesh and the NavMesh Compo-
nent repository [12] shared on GitHub [13].

This repository provides a script that generates a volume of the desired size. Inside
this volume, the navigable mesh can be modified on run-time. Instead of rebuilding
the entire navigable mesh, this script updates only the nodes that have been affected
by the modification (see Figure 4.16).

4.2.5 UI Design and Implementation

After the implementation of the Al, I focused on the design of the UI. The Ul aims to be
simple but still allow the player to open tabs and windows to display more information
when needed. Tycoon games are hard to manage and involve a lot of mechanics. This
makes that sometimes it is hard to know exactly what is going on, to overcome this I

58

Work Methodology, Work Development, and Results

implemented the console. The console is a text box where important information will
be displayed. This is made to inform the player when something has happened. It is
placed in the middle of the HUD to catch the player’s focus. Also, when the message
to display is an error message the text box will flash in red to ensure the player watch it
(see Figure 4.17).

4.2.6 Statistics

Another mechanicrelated to the Ul worth mentioning here is the statistics graph. Statis-
tics are very important in the Tycoon genre. It is very important to allow the player
access to as much data as it is possible to help him manage the hospital and make im-
portant decisions.

FIGURE 4.16: Two navigable meshes generated on run time and merged together

59

4.2. Work Development

tmode

o

4.2.7 Theed

n
m
t
d
m

o <
OOOOOO

1 [75] [72]

[75]
m = =5 S 52
n@fmdeub
o Por 5T
= g 808 &
VJtTVJS .
trr — sY9) =
5908 .0p=8535F§
ST BELeET =209
< o o= 2= S =
o 8 Od W._lC
228588 ¢2% 7
er.UWJHMIMSh
HSEESSS3 gz
MYS.BM@MVQHW.O
< = _— >
LEESELEEE
Osm..Lcnlu._m .nn%
Ccsmntﬂ.ler
o= D — eser
fUChhwm..etC
OaMttOI,.&ed
IR ==Y Qg
MeW%mOdhhw
ha WTetCI
EEcZ2ZosaTs &
2228823553
s E:caogeT
S25288=-58%§
;QRY.HWﬁomca
a8 =2gg8 2.5 5T
ESCCSEEEEE
EEEEEEEEAT
< © o= feel
5 2T 0 <
wgmmmm.mtmm
WW,.H eegms;r
teodlpM.me.Lme
Sﬂﬂmwmewmtb
S egEF2fE2d o
C9 8822 F2 02
S225eE 33 E g
m(smf..me A o
g%eao..lhm.m
P a0 g+ g e 0
2 o = g
S S 00 g R=co
Zoc-S2ESETS
555889268

[av] —_— 4]
b IR A <) O 5 20 =
Mogymwume
hmueeOmLuMO%e
FoEESco0oc& 00

-—
N
o
N
S—
Lo
—
<
N

FIGURE 4.17: Image of an error

60

Work Methodology, Work Development, and Results

Thelastimportant mechanic to the Ul is the Edit Mode, the edit mode has two func-
tionalities. On one hand, it enables the selection of the rooms to then move or/and ro-
tate them (see Table 3.11) and (see Table 3.12). On the other, it shows the information
about all the rooms. It informs visually the type and the state of the room so the player
is always informed on what is going on. It warns the player which rooms are not us-
able marking them on red and displaying a text explaining why are they unusable (see
Figure 4.17).

29/5/2

FIGURE 4.18: Left: Usable consultation room
Right: Unusable radiology room

4.3. Results

61

4.3 Results

Speaking about the results, at this point the game is playable. It is not enjoyable and
it has not the content needed to be a game that can be found in the market but it can
be played. It presents perfectly the main mechanics of the game that will result if I had
more time to end this project.

All the chore mechanics are implemented. The game is in a state where if a player
could try the game for a few minutes he will be able to understand how the game loop
works and what is the direction that the project has.

On one hand, this game is not ready to be commercialized. It is normal because
tycoons games require a lot of mechanics, systems interconnected, and a lot of assets
and options to keep the player engaged in the game.

But on the other hand, the game is at a state where it could be published or up-
loaded as early access. This means that the game is playable but it is still under devel-
opment. The early-access works as a form to show what your game has to offer to the
world and to start building a community.

In conclusion the game is not finished but I think the objectives of this project are
reached. Tycoon games are huge in content and mechanics. [have accomplished the
main aim of the project that was to make a playable version of a Tycoon game and I am
proud of the results.

CHAPTER

Conclusions and Future Work

Contents
51 Conclusions o i i i e e 63
52 Futurework e 64

5.1 Conclusions

This project was a good challenge to put to test all the knowledge that I acquired during
this degree. I have used the skills acquired in almost every subject I have taken in this
degree, I have:

e Modeled 3D assets (VJ1216 - 3D DESIGN)
* Used a game engine to develop my game (V]1227 - GAME ENGINES)

* Programmed on C Sharp, an object-based programming language (VJ1203 - PRO-
GRAMMING I and V]J1208 - PROGRAMMINGI)

* Rendered custom meshes using GLSL (V]J1221 - COMPUTER GRAPHICS)

* Used some data structures to improve performance (VJ1215 - ALGORITHMS AND
DATA STRUCTURES)

* Implemented a basic Al to control agents in the game (VJ1231 - ARTIFICIAL IN-
TELLIGENCE)

* Used diagrams and other types of documentation to organize my work (V]1224 -
SOFTWARE ENGINEERING)

63

64

Conclusions and Future Work

These are only a few examples of all the knowledge and skills acquired in this degree
that I put into practice to develop this project.

To conclude I think that developing this project I have learned a lot because is the
first project I faced alone and it is the biggest project that I took part in and handling
it has put me in a real challenge and gave me a really good experience in this type of
projects.

5.2 Future work

I am very proud of this project and I think that I prepared the ground for a big project
that is powerfull and I will work on it until the due of the project and after that, I will
continue to work on it. My plan with this game is to develop something I will be proud
of publishing and publish it as my first serious game.

APPENDIX

Other considerations

A.1 Firstsection

During the development of this project I watched a series of videos to help me getideas
or concepts to develop the different mechanics.

Here is the reproduction list of all of these videos:

https://www.youtube.com/playlist?list=PLfnR6EzV3q3LWpeyeQSHjaMTRjB7Bxc-P

65

https://www.youtube.com/playlist?list=PLfnR6EzV3q3LWpeyeQSHjaMTRjB7Bxc-P

(4]

[5]

(8]

(9]

Bibliography

Covid-19: 50 percent of the nurses are at risk of suffering from mental disorders,
https : / / www . redaccionmedica . com / secciones / enfermeria /
covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767

Eight out of 10 nurses report the lack of medical staff during the pandemic,
https://www.actasanitaria.com/enfermeras-denuncian-falta-personal-pandemia/

We have not cared for those who care for us: more than 17,000 health workers died
from Covid,

https : / / www . redaccionmedica . com / secciones / enfermeria /
covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767

Sueldos para Game Programmer,
https://www.glassdoor.es/Sueldos/espa~na-game-programmer-sueldo-SRCH_IL.O,
6_IN219_KO07,22.htm

Streamline,
https://app.streamlinehq.com/icons

Building an Agile Process Flow: A Comprehensive Guide,
https://kanbanize.com/agile/project-management/workflow

Milanote,
https://milanote.com/

Ultimate Animated Character Pack,
https://quaternius.com/packs/ultimatedanimatedcharacter.html

A* search algorithm,
https://www.geeksforgeeks.org/a-search-algorithm/

[10] Graph Data Structure,

https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/

[11] Node,

https://en.wikipedia.org/wiki/Node_(computer_science)

67

https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.actasanitaria.com/enfermeras-denuncian-falta-personal-pandemia/
https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.glassdoor.es/Sueldos/espa~na-game-programmer-sueldo-SRCH_IL.0,6_IN219_KO7,22.htm
https://www.glassdoor.es/Sueldos/espa~na-game-programmer-sueldo-SRCH_IL.0,6_IN219_KO7,22.htm
https://app.streamlinehq.com/icons
https://kanbanize.com/agile/project-management/workflow
https://milanote.com/
https://quaternius.com/packs/ultimatedanimatedcharacter.html
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://en.wikipedia.org/wiki/Node_(computer_science)

68

Bibliography

[12] Unity Navigable Mesh,
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

[13] Git Hub,
https://github.com/

[14] Unity-Technologies/NavMeshComponents,
https://github.com/Unity-Technologies/NavMeshComponents

https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://github.com/
https://github.com/Unity-Technologies/NavMeshComponents

APPENDIX

Source code

In the following pages you can find fragments of my code, the length of the full code it
isverylongto be write here so I only wrote the most important functions of my project,
the full source code can be found in this repository:

https://github.com/al375729/Hospital-Tycoon

69

https://github.com/al375729/Hospital-Tycoon

70

Source code

© © N O s W =

BWw W W W W W W W W W N NNDNDNNN NN e e e e e e e e
S © ®© N O g o W= O O N g WO O NN s W = O

Grid Display

Li1sTING B.1: Grid Display

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.EventSystems;

public class GridDisplay : MonoBehaviour

{

// Start is called before the first frame update

public Test test;

private Grid grid;

private int[,] cuadricula;
private TextMesh[,] gridTextMesh;
private int filas;

private int columnas;

public Material material;

private Vector3 0Origin;
private Vector3 Diference;
void Start()

{
grid = test.getGrid();
cuadricula = test.getCuadriculal();
gridTextMesh = test.getTextMesh();
filas = test.getFilas();
columnas = test.getColumnas();
}
private bool IsMouseOverUI()
{
return EventSystem.current.IsPointerOverGameObject();
}

// Update is called once per frame
void Update()
{

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Source code

71

private void OnPostRender()

{

for (int i = 0; i < cuadricula.GetlLength(0); i++)

{
for (int j = 0; j < cuadricula.GetLength(1l); j++)
{
DrawLine(grid.GetWorldPosition(i, j) -
new Vector3(filas * 2.5f, 0, columnas
* 2.5f) , grid.GetWorldPosition(i, j + 1) -
new Vector3(filas * 2.5f, 0O,
columnas * 2.5f));
DrawLine(grid.GetWorldPosition(i, j)
- new Vector3
(filas *x 2.5f, 0, columnas
*x 2.5f),
grid.GetWorldPosition(i + 1, j) -
new Vector3(filas * 2.5f, 0O,
columnas * 2.5f));
}
}

DrawLine(grid.GetWorldPosition(0, columnas) -
new Vector3(filas * 2.5f, 0, columnas x*
2.5f), grid.GetWorldPosition(filas, columnas)

- new Vector3(filas * 2.5f, 0,
*x 2.5f));

columnas

DrawLine(grid.GetWorldPosition(filas, 0)

- new Vector3(filas * 2.5f, 0,
2.5f),

columnas *

grid.GetWorldPosition(filas, columnas)

- new Vector3(filas * 2.5f, 0,
* 2.5F));

columnas

void DrawLine(Vector3 inicio, Vector3 fin)

{

GL.Begin(GL.LINES);

72

Source code

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

108
109
110
111

material.SetPass(0);
GL.Color(Color.black);
GL.Vertex(inicio);
GL.Vertex(fin);

GL.End();
}
void LateUpdate()
{
if (Input.GetMouseButtonDown(0))
{
Origin = MousePos();
}
if (Input.GetMouseButton(0))
{
Diference = MousePos() - transform.position;
transform.position = Origin - Diference;
}
¥
Vector3 MousePos()
{
return Camera.main.ScreenToWorldPoint (Input.mousePosition);
}

© o N O g W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Source code 73

Drag Buildings

LisTING B.2: Drag Buildings
using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine.EventSystems;
using UnityEngine;
using TMPro;

public class DragBuildings : MonoBehaviour

{
public bool placed = false;
private float zCoord;

public GameObject prefab;
private Grid grid;

public bool isSelected = true;
bool isColliding = false;

public Material originalMaterial;
public Material[] materiales;
private Quaternion objectToRotate;

public static bool globalSelection = false;
private Vector3 position;
private Quaternion rotation;

private bool lastFrameWasEditMode;
private bool addedReferences = false;

ConsultController consultController;
RadiologyController radiologyController;
AnalisisController analisisController;
private enum State
{

WaitingForTask,

DoingTask,

74

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

DoingTaskClean,
}

private void Start()

{

consultController = ConsultController.Instance;

radiologyController = RadiologyController.Instance;
analisisController = AnalisisController.Instance;

transform.GetChild(transform.childCount -

2) .gameObject.GetComponent<MeshRenderer>().enabled = false;

this.gameObject.transform.GetChild(gameObject.transform.childCount -
2) .GetComponent<RoomStatus>().workers = "NO_HAY_TRABAJADORES_ASIGNADOS_"

||\n|| + Il\nll;

void OnMouseDown ()

{
//PatientInfo.disablePanel();

if (!IsMouseOverUI())
{

if (!isSelected && 'globalSelection && GlobalVariables.EDIT_MODE)

{

isSelected = true;
globalSelection = true;
position = transform.position;
rotation = transform.rotation;

if(addedReferences)

{
deleteReferences();
addedReferences = false;

}

else if (!isSelected && !'globalSelection &&
GlobalVariables.DELETE_MODE)

{

if (addedReferences)

{

deleteReferences();

Source code

Source code

84 addedReferences = false;

85 }

86 Destroy(this.gameObject);

87

88 }

89 else

90 {

91 if (!isColliding && isSelected)

92 {

93 if(this.gameObject.GetComponent<RoomComprobations>().
94 isReachable())

95 {

96 addReferences() ;

97 addedReferences = true;

98

99 this.gameObject.transform.GetChild

100 (this.gameObject.transform.childCount -

101 2) .GetComponent<RoomStatus>().reachable = "";
102

103 this.gameObject.transform.GetChild

104 (this.gameObject.transform.childCount -
105 2) .GetComponent<RoomStatus>() .updateText();
106 }

107 else

108 {

109 this.gameObject.transform.GetChild

110 (this.gameObject.transform.childCount -
111 2) .GetComponent<RoomStatus>().reachable =
112 "ESTA_SALA_ES_INALCANZABLE" + "\n" + "\n";
113 this.gameObject.transform.GetChild

114 (this.gameObject.transform.childCount -
115 2) .GetComponent<RoomStatus>().updateText();
116 }

117

118 changeMaterialOfChildren(0);

119 position = transform.position;

120 rotation = transform.rotation;

121

122 int x, z;

123 GetGridPos (GetMouseWorldPos(), out x, out z);
124

125 Vector3 posicion;

126 posicion = GetWorldPosition(x, z);

76

Source code

127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

Vector2 vec = GridController.gridToMatrix(x, z);

X = (int)vec.x;
z = (int)vec.y;

GridController.setPrefabRoom(x, z, this.gameObject);

n n
[y]

Debug.Log(x + + z);

isSelected = false;
globalSelection = false;

private bool IsMouseOverUI()

{

}

return EventSystem.current.IsPointerOverGameObject();

private void Update()

{

if (GlobalVariables.UI_OPEN)
{
changeMaterialOfChildren(0);
isSelected = false;
globalSelection = false;
}
if (Input.GetMouseButtonDown(1))
{
if (isSelected)
{

objectToRotate = this.transform.rotation * Quaternion.Euler

(0, -90, 0);

if (isColliding && isSelected)

{
changeMaterialOfChildren(2);

else if (!isColliding && isSelected)

changeMaterialOfChildren(1);

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

212

Source code

77

if (isSelected == true)

{

zCoord = Camera.main.WorldToScreenPoint(

gameObject.transform.position).z;

int x, z;

GetGridPos (GetMouseWorldPos(), out x, out z);
Debug.Log(GetMouseWorldPos());

Vector3 posicion;

posicion = GetWorldPosition(x, z);

transform.position = new Vector3(posicion.x, 0, posicion.z);

if (Globalvariables.EDIT_MODE && !'isSelected && !isColliding)

{
transform.GetChild(0).gameObject.GetComponent<0ObjectsOnRoom>()
.changeMaterial(0);

this.gameObject.transform.GetChild(gameObject.transform.childCount -
2) .GetComponent<RoomStatus>() .updateText();

transform.GetChild(transform.childCount -
2).gameObject.GetComponent<MeshRenderer>().enabled = true;

transform.GetChild(transform.childCount -
1) .gameObject.GetComponent<SpriteRenderer>().enabled = true;

}
else if (GlobalVariables.EDIT_MODE && isSelected)

{
transform.GetChild(transform.childCount -
2) .gameObject.GetComponent<MeshRenderer>().enabled = false;

transform.GetChild(transform.childCount -
1) .gameObject.GetComponent<SpriteRenderer>().enabled = false;

78

Source code

213

215
216
217
218
219
220

222
223
224

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

}
else if (!GlobalVariables.EDIT_MODE && !isSelected && !isColliding)

{
transform.GetChild(0) .gameObject.GetComponent<ObjectsOnRoom>()
.changeMaterial(3);

transform.GetChild(transform.childCount -
2) .gameObject.GetComponent<MeshRenderer>().enabled = false;

transform.GetChild(transform.childCount -
1) .gameObject.GetComponent<SpriteRenderer>().enabled = false;

lastFrameWasEditMode = GlobalVariables.EDIT_MODE;

private void changeMaterialOfChildren(int index)

{

//transform.GetComponent<MeshRenderer>().material = material;
for (int i = 0; i < transform.childCount - 2; i++)
{

if (transform.GetChild(i).GetComponent

<0ObjectsOnRoom>() != null)

{
transform.GetChild (i) .GetComponent
<0bjectsOnRoom> ()
.changeMaterial(index);
}
else
{
for (int j = 0; j < transform.GetChild(i).childCount; j++)
{
if (transform.GetChild(i).GetChild(j).GetComponent
<0ObjectsOnRoom>() != null)
transform.GetChild(i).GetChild(j).GetComponent
<0bjectsOnRoom>() .changeMaterial (index) ;
}

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

Source code

79

private void LateUpdate()

{

if (!IsQuaternionInvalid(transform.rotation) &&
1IsQuaternionInvalid(objectToRotate))
{
transform.rotation = Quaternion.Lerp(transform.rotation,
objectToRotate, 70f * Time.deltaTime);

private bool IsQuaternionInvalid(Quaternion q)

{

}

bool check = gq.x == 0f;

check &= q.y == 0;
check &= q.z == 0;
check &= q.w == 0;

return check;

private Vector3 GetMouseWorldPos()

{

//(X,y)
Vector3 mousePoint = Input.mousePosition;

//z
mousePoint.z = zCoord;

return Camera.main.ScreenToWorldPoint (mousePoint);

public Vector3 GetWorldPosition(int x, int z)

{

return new Vector3(x, 0, z) *x 5;

public void GetGridPos(Vector3 posicion, out int x, out int z)

{

x = Mathf.FloorToInt(posicion.x / 5);

80

Source code

299
300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

332
333
334
335
336
337
338
339
340
341

z = Mathf.FloorToInt(posicion.z / 5);

void OnCollisionStay(Collision col)

{
if ((col.gameObject.CompareTag("Building")
&& isSelected))
{
isColliding = true;
}
}
void OnCollisionExit(Collision other)
{
if ((other.gameObject.CompareTag("Building")
&& isSelected))
{
isColliding = false;
}
}

public void addReferences()
{
for (int i = 0; 1 < transform.childCount - 2; i++)
{
if (transform.GetChild(i).GetComponent
<0ObjectsOnRoom>() !'= null)
{
ObjectsOnRoom obj = transform.GetChild(i).GetComponent
<0ObjectsOnRoom>();

int index;

switch (obj.objectType)
{
case ObjectsOnRoom.type.ConsultDoctor:
index = consultController.addDoctor
(transform.GetChild(i).transform);
obj.indexInList = index;

break;

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Source code

81

case ObjectsOnRoom.type.ConsultPatient:
index = consultController.addPatient
(transform.GetChild(i).transform);

obj.indexInList = index;
break;

case ObjectsOnRoom.type.None:
break;

case ObjectsOnRoom.type.RadiologyDoctor:
index = radiologyController.addDoctor
(transform.GetChild(i).transform);
obj.indexInList = index;

break;

case ObjectsOnRoom.type.RadiologyPatient:
index = radiologyController.addPatient
(transform.GetChild(i).transform);

obj.indexInList = index;
break;

case ObjectsOnRoom.type.AnalysisDoctor:
index = analisisController.addDoctor
(transform.GetChild(i).transform);

obj.indexInList = index;
break;

case ObjectsOnRoom.type.AnalysisPatient:
index = analisisController.addPatient
(transform.GetChild(i).transform);

obj.indexInList = index;
break;

82

Source code

385
386
387
388
389
390
391
392
393
394
395
396

398
399
400
401
402
403
404
405
406
407
408
409
410

412
413
414

public void deleteReferences()
{
for (int i = 0; 1 < transform.childCount - 2; i++)
{
if (transform.GetChild(i).GetComponent
<0bjectsOnRoom>() !'= null)
{
ObjectsOnRoom obj = transform.GetChild(i).GetComponent
<0ObjectsOnRoom>();

switch (obj.objectType)
{
case ObjectsOnRoom.type.ConsultDoctor:
consultController.updateIndexOfDoctors
(obj.indexInList);
break;

case ObjectsOnRoom.type.ConsultPatient:
consultController.updateIndexOfPatients
(obj.indexInList);
break;

case ObjectsOnRoom.type.None:
break;

© o N O g W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Source code

Camera Controller

L1sTING B.3: Grid Display

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.EventSystems;
using UnityEngine.UI;

public class CameraController :

{
public
public

public
public
public
public
public
public
public
public
public
public

public
public
public

public
public
public

public
public

public
public

static CameraController instance;
static Transform objectToFollow;

float movementSpeed;
float speed;

float normalSpeed;
float fastSpeed;

float time;

float rotation;

float xLimit = 100;
float yLimit = 100;

int zoomInLimit = 100;
int zoomOutLimit = 500;

Image img;
static Image button;
Vector3 zoom;

Vector3 newPosition;
Quaternion newRotation;
Vector3 newZoom;

Vector3 dragStartPos;
Vector3 dragCurrentPos;

Vector3 rotateStartPos;
Vector3 rotateCurrenttPos;

void Start()

MonoBehaviour

84

Source code

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

instance

= this;

newPosition = transform.position;
newRotation = transform.rotation;

newZoom

= camera.localPosition;

button = img;

// Update is called once per frame
void Update()

{

if(objectToFollow != null)

{

}

else

{

transform.position = objectToFollow.position;

HandlePlayerKeyboardInput();
HandlePlayerMouseInput();

if (Input.GetKeyDown(KeyCode.Escape))

{

button.color = Color.white;
objectToFollow = null;

private void HandlePlayerMouseInput()

{

if (!'IsMouseOverUI() && 'GlobalVariables.UI_OPEN)

{

if(Input.GetMouseButtonDown(0) && 'DragBuildings.globalSelection &&
IGlobalVariables.UI_OPEN)

{

Plane plane = new Plane(Vector3.up, Vector3.zero);

Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);

float hitPoint;

Source code

84 if(plane.Raycast(ray , out hitPoint))

85 {

86 dragStartPos = ray.GetPoint(hitPoint);

87 }

88 }

89

90 if (Input.GetMouseButton(0) && !'DragBuildings.globalSelection &&
91 IGlobalVariables.UI_OPEN)

92 {

93 Plane plane = new Plane(Vector3.up, Vector3.zero);

94

95 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
96

97 float hitPoint;

98

99 if (plane.Raycast(ray, out hitPoint))

100 {

101 dragCurrentPos = ray.GetPoint(hitPoint);

102

103 newPosition = transform.position + dragStartPos - dragCurrentPos;
104 }

105 }

106

107 if (Input.mouseScrollDelta.y != 0 && !'GlobalVariables.UI_OPEN)
108 {

109 newZoom += Input.mouseScrollDelta.y * zoom;

110 }

111

112 if (Input.GetMouseButtonDown(1l) && !DragBuildings.globalSelection &&
113 IGlobalVariables.UI_OPEN)

114 {

115 rotateStartPos = Input.mousePosition;

116 }

117

118 if (Input.GetMouseButton(l) && !DragBuildings.globalSelection &&
119 IGlobalVariables.UI_OPEN)

120 {

121 rotateCurrenttPos = Input.mousePosition;

122

123 Vector3 rotation = rotateStartPos - rotateCurrenttPos;

124

125 rotateStartPos = rotateCurrenttPos;

126

Source code

127 newRotation *= Quaternion.Euler(Vector3.up * (rotation.x / 5f));
128 }

129

130 }

131 }

132 void HandlePlayerKeyboardInput()

133 {

134 if ('IsMouseOverUI() && 'GlobalVariables.UI_OPEN)

135 {

136 if (Input.GetKey(KeyCode.LeftShift))

137 {

138 speed = fastSpeed;

139 }

140 else

141 {

142 speed = normalSpeed;

143 }

144

145 if(Input.GetKey(KeyCode.UpArrow) || Input.GetKey(KeyCode.W))
146 {

147 newPosition += transform.forward x speed;

148 }

149

150 if (Input.GetKey(KeyCode.DownArrow) || Input.GetKey(KeyCode.S))
151 {

152 newPosition += transform.forward * -speed;

153 }

154

155 if (Input.GetKey(KeyCode.RightArrow) || Input.GetKey(KeyCode.D))
156 {

157 newPosition += transform.right * speed;

158 }

159

160 if (Input.GetKey(KeyCode.LeftArrow) || Input.GetKey(KeyCode.A))
161 {

162 newPosition += transform.right x -speed;

163 }

164

165 if (Input.GetKey(KeyCode.Q))

166 {

167 newRotation *= Quaternion.Euler(Vector3.up * -rotation);
168 }

169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

212

Source code

87

if (Input.GetKey(KeyCode.E))

{

newRotation *= Quaternion.Euler(Vector3.up * rotation);
}
if (Input.GetKey(KeyCode.R))
{

newZoom += zoom;
}
if (Input.GetKey(KeyCode.T))
{

newZoom -= zoom;
}

newPosition.x
newPosition.z

Mathf.Clamp(newPosition.x, -xLimit, xLimit);
Mathf.Clamp (newPosition.z, -ylLimit, yLimit);

Mathf.Clamp(newZoom.y, zoomInLimit, zoomQutLimit);
Mathf.Clamp(newZoom.z, -zoomQutLimit, -zoomInLimit);

newZoom.y
newZoom. z

transform.position = Vector3.Lerp(transform.position,
newPosition, time x Time.deltaTime);

transform.rotation = Quaternion.Lerp(transform.rotation,
newRotation, time x Time.deltaTime);

camera.localPosition =
Vector3.Lerp(camera.transform.localPosition, newZoom, time
x Time.deltaTime);

}
}
private bool IsMouseOverUI()
{
return EventSystem.current.IsPointerOverGameObject();
}

public static void setObjectToFollow(GameObject gameObject)
{

Debug.Log(gameObject.name);

objectToFollow = gameObject.transform;

button.color = Color.green;

88

Source code

213

215
216
217
218
219
220

Debug.Log(button.name);

public static void deleteObjectToFollow(GameObject gameObject)

{
if(objectToFollow == gameObject) objectToFollow = null;

© O N OO s W N =

BWw W W W W W W W W W N NDNDNDNNDNDNNN e e e e e e e
S © ®© N O g s W N = O ©W N g WO O NN W = O

Source code

89

Character Generator

LiSTING B.4: Character Generator

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class CharacterGenerator : MonoBehaviour

{
public

public
public
public
public
public

public
public
public

GameObject prefab;

Material[] materialesPelo;
Material[] materialesPiel;
Material[] camsieta;
Material[] pantalon;
Material[] ojos;

GameObject[] pelosHombre;
GameObject[] pelosMujer;
GameObject[] peloFacial;

private List<GameObject> genertaedCharactersList;

public

public

private int generatingCount

public

PopulateWorkerShop workerShop;

Material bata;

18;

GameObject parent;

void Start()

{

genertaedCharactersList = new List<GameObject>(20);

for (int i = 0; i < generatingCount; i++)

{

int genero = Random.Range(0, 2);// 0 --> M || 1 -->

90

Source code

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

int ranType = Random.Range(0, 4);

int colorDePelo

GameObject instance = Instantiate(prefab, this.transform.position + new Vector3((

Random.Range(0,materialesPelo.Length);

instance.transform.SetParent(parent.transform);
genertaedCharactersList.Add(instance);

switch (ranType)

{

case 0:
instance
instance
instance
break;

case 1:
instance
instance
instance
break;

case 2:
instance
instance
instance
break;

case 3:
instance
instance
instance
break;

int ranBonuses =

.GetComponent<Worker>() .setType("Receptionnist");
.GetComponent<Worker>().role = "Receptionnist";
.AddComponent<Recepcionsit>();

.GetComponent<Worker>().setType("Consult");
.GetComponent<Worker>().role = "Consult";
.AddComponent<Consult>();

.GetComponent<Worker>() .setType("Radiologist");
.GetComponent<Worker>().role = "Radiologist";
.AddComponent<Radiologist>();

.GetComponent<Worker>().setType("Analist");
.GetComponent<Worker>().role = "Analist";
.AddComponent<Analist>();

Random.Range (0, 10);

switch (ranBonuses)

{

case 0:

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Source code

91

instance.GetComponent<Worker>().walkingSpeedBonus = 3;
break;

case 1:

instance.GetComponent<Worker>().treatingSpeedBonus = 9;
break;

case 2:

instance.GetComponent<Worker>().moneyBonus = 15;

break;
}
if (genero == 0)
{
instance.GetComponent<Worker>().gender = "Male";

int randomPelo = Random.Range (0, pelosHombre.Length);

string name = Names.getNameMale();
instance.GetComponent<Worker>().name = name;
instance.name = name;

if (randomPelo '= materialesPelo.Length)

{
GameObject pelo = Instantiate(pelosHombre[randomPelo],
genertaedCharactersList[i].transform, false);

pelo.name = "Pelo";

pelo.transform.rotation = Quaternion.Euler(-90f, 0, 0);
pelo.transform.localScale = new Vector3(1lf, 1f, 1f);
pelo.transform.localPosition = new Vector3(0f, 0f, 0f);

}

int randomBarba = Random.Range(Q, 11);

if (randomBarba == 0 || randomBarba == 1)
{

GameObject barba = Instantiate(peloFacial[randomBarbal,
genertaedCharactersList[i].transform, false);

barba.name = "PeloFacial";
barba.transform.rotation = Quaternion.Euler(-90f, 0, 0);

92

Source code

127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

barba.transform.localScale = new Vector3(1f, 1f, 1f);
barba.transform.localPosition = new Vector3(0f, 0f, 0f);

}
}
else
{
int randomPelo = Random.Range(0, pelosMujer.Length);
string name = Names.getNameFemale();
instance.GetComponent<Worker>().name = name;
instance.name = name;
instance.GetComponent<Worker>().gender = "Female";
if (randomPelo != materialesPelo.Length)
{
GameObject pelo = Instantiate(pelosMujer[randomPelo],
genertaedCharactersList[i].transform, false);
pelo.name = "Pelo";
pelo.transform.rotation = Quaternion.Euler(-90f, 0, 0);
pelo.transform.localScale = new Vector3(1f, 1f, 1f);
pelo.transform.localPosition = new Vector3(0f, 0f, 0f);
}
}

int children = genertaedCharactersList[i].
transform.childCount;

for (int j = 0; j < children; ++j)
{

int ran = Random.Range(0, materialesPiel.Length);

if(genertaedCharactersList[i].transform.GetChild(j).

GetComponent<SkinnedMeshRenderer>() != null)

{
if (genertaedCharactersList[i].transform.GetChild(j).
name == "Cejas")
{

genertaedCharactersList[i].transform.GetChild(j).
GetComponent<SkinnedMeshRenderer>() .material =

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

212

Source code

93

}

materialesPelo[colorDePelo];

}
else if (genertaedCharactersList[i].transform.GetChild(j)
.name == "Piel")

{
genertaedCharactersList[i].transform.GetChild(j).
GetComponent<SkinnedMeshRenderer>() .material =
materialesPiel[ran];
}
else if (genertaedCharactersList[i].transform.
GetChild(j).name == "Bata")
{
genertaedCharactersList[i].transform.GetChild(j).
GetComponent<SkinnedMeshRenderer>().material = bata;
}

else if (genertaedCharactersList[i].transform.GetChild(j).
name == "Camiseta")

{
int randomCamiseta = Random.Range(Q, camsieta.lLength);
genertaedCharactersList[i].transform.GetChild(j).
GetComponent<SkinnedMeshRenderer>() .material =
camsieta[randomCamisetal;

}

else if (genertaedCharactersList[i].transform.GetChild(j).
name == "Pantalones")

{
int randomPantalon = Random.Range(0, camsieta.lLength);
genertaedCharactersList[i].transform.GetChild(j).
GetComponent<SkinnedMeshRenderer>().material =
pantalon[randomPantalon];

}

else if (genertaedCharactersList[i].transform.GetChild(j)

.name == "0jos")

{
int ojosRandom = Random.Range(0, ojos.Length);
genertaedCharactersList[i].transform.GetChild(j).
GetComponent<SkinnedMeshRenderer>() .material =
ojos[ojosRandom];

}

else if (genertaedCharactersList[i].transform.GetChild(j).

94

Source code

213

215
216
217
218
219
220

222
223
224

226
227
228
229
230

GetComponent<MeshRenderer>() != null)

{
genertaedCharactersList[i].transform.GetChild(j)
.GetComponent<MeshRenderer>() .material =
materialesPelo[colorDePelo];

workerShop
.setUI(genertaedCharactersList);

© O N OO s W N =

BWw W W W W W W W W W N NDNDNDNNDNDNNN e e e e e e e
S © ®© N O g s W N = O ©W N g WO O NN W = O

Source code

95

WorkerAl

L1STING B.5: WorkerAI

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.AI;

public class WorkerAI : MonoBehaviour

{

private State state = State.WaitingForTask;
private CurrentTask currentTask = CurrentTask.nullTask;

private float maxWaitingTime = 1f;
private float waitingTime = 1f;

//[SerializeField]

private TaskManagement taskManagement;
private TaskManagement.TaskClean task;
private Vector3 target;

Renderer rend;

public Color c;

public bool working = false;

private bool sub_taskl = false;

private bool sub_task2 = false;
private bool sub_task3 false;

private bool runing = false;

private TaskManagement.TaskClean taskClean;
private TaskManagement.TaskCleanStain taskCleanStain;

private NavMeshAgent agent;

public GameObject mancha;

private GameObject Stain;

96

Source code

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

private Vector3 comprobacion = new Vector3(123f, 321f,

NavMeshAgent navMeshAgent;
private enum CurrentTask

{
taskl,
task2,
task3,
nullTask,
¥
private enum State
{
WaitingForTask,
DoingTask,
DoingTaskClean,
¥
private void Start()
{
navMeshAgent = this.GetComponent<NavMeshAgent>();
taskManagement = TaskManagement.Instance;
state = State.WaitingForTask;
currentTask = CurrentTask.nullTask;
agent = this.GetComponent<NavMeshAgent>();
}

private void Update()

{
if (target != null && target != comprobacion &&
agent.remainingDistance >= 1.5f)

456f) ;

{
//target = comprobacion;
//Vector3 rotation = Quaternion.LookRotation(target).eulerAngles;
//rotation.y = 0Of;
//rotation.z = 0Of;
transform.LookAt(target);
1

if (state == State.WaitingForTask && working &&
gameObject.GetComponent<NavMeshAgent>()!= null)

Source code

84 {

85 waitingTime -= Time.deltaTime;
86
87 if (waitingTime <= 0)

88 {

89 waitingTime = maxWaitingTime;
90 RequestTask();

91 RequestTaskClean();

92 }

93 }

94
95 if (state == State.DoingTask && working)
9 {

97 ManageTaskClean(taskClean);

98
99 }

100 else if (state == State.DoingTaskClean && working)
101 {

102 Stain = taskCleanStain.trash;

103 ManageTaskCleanStain(taskCleanStain);

104
105 }
106
107 }
108
109
110
111 private void ManageTaskClean(TaskManagement.TaskClean taskClean)
112 {

113 if (sub_taskl == false && !runing)

114 {

115 target = taskClean.position;

116 currentTask = CurrentTask.taskl;

117 callCoroutine();

118 }

119
120 else if (sub_taskl == true && !sub_task2
121 && !'runing)

122 {

123 currentTask = CurrentTask.task?2;

124 callCoroutine();

125 }

126

98

Source code

127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

else if (sub_taskl == true && sub_task2 &&
Isub_task3 && !runing)

{
Debug.Log("r2");
target = taskClean.position2;
currentTask = CurrentTask.task3;
callCoroutine();

}

else if (sub_taskl == true && sub_task2
&& sub_task3)

{
Debug.Log("He_acabado_todo");
StopAllCoroutines();
RestartValues();
target = Vector3.zero;

}

private void ManageTaskCleanStain(TaskManagement.
TaskCleanStain taskClean)

{

if (sub_taskl == false && !'runing)

{
target = taskClean.position;
currentTask = CurrentTask.taskl;
callCoroutine();

}

else if (sub_taskl == true && !sub_task2

&& !runing)

{

currentTask = CurrentTask.task2;
callCoroutine();

else if (sub_taskl == true && sub_task2)

{
Debug.Log("He_acabado_todo");

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

212

Source code

99

Destroy(Stain.gameObject);
Stain = null;

StopAllCoroutines();
RestartValues();
navMeshAgent.isStopped = true; ;

private void RestartValues()

{

//ag
task

stat
sub_
sub_

sub_

runi

ent.isStopped = true;
Clean = null;

e = State.WaitingForTask;
taskl = false;
task2 = false;

task3 = false;

ng = false;

public void callCoroutine()

{

runi
if (
& s
{

}

else if (currentTask == CurrentTask.task2

&& s
{

}

else

{

ng = true;

currentTask == CurrentTask.task?2
tate == State.DoingTaskClean)
target = comprobacion;
StartCoroutine(FadeOut());

tate == State.DoingTask)

sub_task2 = true;
runing = false;

StartCoroutine(ExampleFunction());

100

Source code

213

215
216
217
218
219
220

222
223
224

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

public void RequestTask()

{

taskClean = taskManagement.RequestTask();
if (taskClean !'= null)

{

state = State.DoingTask;

public void RequestTaskClean()

{

taskCleanStain = taskManagement.
RequestTaskClean();
if (taskCleanStain != null)

{

state = State.DoingTaskClean;

IEnumerator ExampleFunction()

{

bool end = false;
agent.destination = target;
while ('end)

{

if (agent.remainingDistance <= 0.1f
&& agent.pathPending == false)

{
end = true;
}
if (end)
{

//state = State.WaitingForTask;

if (currentTask == CurrentTask.taskl)

{

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

Source code

101

//Debug.Log("Fin de la tarea 1");
sub_taskl = true;

runing = false;

yield break;

}
else if (currentTask == CurrentTask.task3)
{
//Debug.Log("Fin de la tarea 2");
sub_task3 = true;
runing = false;
yield break;
}

yield break;

yield return null;

IEnumerator FadeOut()

{

LeanTween.alpha(Stain, 0f, 2f).setDelay(0f);
yield return new WaitForSeconds(2);
sub_task2 = true;

runing = false;

Source code 103

	Contents
	Introduction
	Work Motivation
	Objectives
	Game Dynamics
	Environment and Initial State
	The state of the healthcare system in Spain after the pandemics

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Methodology, Work Development, and Results
	Work methodology
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Other considerations
	First section

	Bibliography
	Source code

