
A video game to simulate themanaging of
an hospital

Aleksey Vyachislavov Ovseychik

Final DegreeWork
Bachelor’s Degree in

Video GameDesign and Development
Universitat Jaume I

July 1, 2021

Supervised by: BegoñaMartínez Salvador

http://creativecommons.org/licenses/by-nc-sa/3.0/

To all of my friends for helpingme stress out and forget about the project
for a couple of hours.

*

Tomy parents for supporting during this four years.

*

And to you Ana,
for listeningme talk for hours in some strange language

and givingme advises even if you did not even knowwhat I was talking about,
for supportingme every single day during this project

and cheer me up when I was lost.
Thank you

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Begoña Martínez
Salvador, for her patience and guidance through all this journey.

I also would like to thank Sergio BarrachinaMir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

The aim of this project is to make the player understand how hard the medical stuff
works and howdifficult is to put together all the people, infrastructure and equipment
in order to ensure our right to a free , universal and high quality medical attention.

iii

Contents

Contents v

1 Introduction 1
1.1 WorkMotivation . 1
1.2 Objectives . 2
1.3 Game Dynamics . 3
1.4 Environment and Initial State . 4
1.5 The state of the healthcare system in Spain after the pandemics 4

2 Planning and resources evaluation 7
2.1 Planning . 7
2.2 Resource Evaluation . 13

3 System Analysis and Design 15
3.1 Requirement Analysis . 15
3.2 SystemDesign . 22
3.3 System Architecture . 39
3.4 Interface Design . 39

4 WorkMethodology, Work Development, and Results 43
4.1 Workmethodology . 43
4.2 Work Development . 45
4.3 Results . 61

5 Conclusions and FutureWork 63
5.1 Conclusions . 63
5.2 Future work . 64

A Other considerations 65
A.1 First section . 65

Bibliography 67

B Source code 69

v

C
H
A
P
TE

R

1
Introduction

Contents
1.1 WorkMotivation . 1
1.2 Objectives . 2
1.3 GameDynamics . 3
1.4 Environment and Initial State . 4
1.5 The state of the healthcare system in Spain after the pandemics . . . 4

This chapter must reflect what is going to be done during the development of the
work. Although the fundamental point is to state the objectives of the presentedwork,
it is also interesting to comment on the need, idea, etc., thatmotivates it, and the state
fromwhich it was started.

1.1 WorkMotivation
What motivated me to do this project is to report the lack of resources that the public
healthcare system faces.

Also, I wanted to report how the healthcare staff has to try to help any patient de-
spite all. This total focus on the patient brings a lot of mental problems for not always
being able to do it [2].

This project was chosen because in the last pandemics our healthcare system has
been overcrowded. Because of this many people couldn’t be treated as they deserve.

I want to report this situation and I want tomake people feel it first hand.
The goal of the project is to teach every player that the public healthcare system is

a basic right of every single citizen of our country.

1

2 Introduction

To achieve universal attention we need more funds, more people, and the effort of all
of us to overcome the actual situation.

This goal will be accomplished by the game’s core mechanics. These mechanics
were designed to make the player suffer the stress of building andmaintaining a hos-
pital. All of this disposing of a small number of resources.

Also, as in a real hospital, the game won’t give a single moment to relax.
The patients will come non-stop. The player will have to be constantly attentive

and making life-changing decisions. These decisions will make a huge impact on the
patients. They will make the difference between life and death. They will also give the
player total responsibility for the patients’ lives.

The player may read every single one of the patients’ clinical history. It is essential
to understand the nature of their illnesses and treat them correctly.

The players won’t be controlling a special character. They will manage the entire
hospital. So in fact, they will be controlling every single worker of themedical staff.

This means that all the decisions and the prime responsibility lie on the player.

The implementation of this mechanic will make the players feel in the position of
thehealthcare staff. Also, itwill enable them tounderstand thework and the effort that
they put in favor of our health.

The aimof themechanics is that the player feelsmentally exhausted at the end of a
play session. This is for making them feel as tired as themedical staff feels after a long
work shift.

Regarding the art style, I will use low poly art [5] (see Figure 1.1) to make the visual
aesthetic look simple.

The reason is that this gameaims tomake theplayer feel exhaustedandunderstand
the stress we put on the public healthcare workers.

I don’t want the player to be distracted with the art or trying to build a beautiful
and visually pleasant hospital. Instead, the player will need to focus on the effective-
ness and to be able to treat correctly every single patient that crosses the door.

1.2 Objectives

The goal of the project is to teach every player that the public healthcare system is a
basic right of every single citizen of our country.

1.3. Game Dynamics 3

FIGURE 1.1: Sample of low poly art

To achieve universal attention we needmore funds, more people, and the effort of
all of us to overcome the actual situation.

My objectives with this project are:

• Develop a game that makes the player think and raise awareness about the lack
of resources in the public healthcare system.

• Implementmechanics that allow theplayer tobe in thepositionof thehealthcare
staff.

• Implement mechanics that allow the player tomanage and build their hospital.

• Deliver a unique game experience for every player.

1.3 GameDynamics

In this section, I will explain the dynamic of the game and how the objectives are go-
ing to be reached. Themechanics and the system I will mention in this section will be
described in detail in the following chapters.

Theplayerwill startwithafixedamountofmoney, hewill need to invest thatmoney
in order to build the hospital and hire workers.

The player will have to buy rooms to build the hospital and hire workers to pop-
ulate it. These rooms must be connected in order to be used. The hired workers will
search for a place towork according to their role if they do not find it theywill go to the
resting room.

4 Introduction

Each patient will be randomly generated with an illness, this illness will have a
treatment. In order to treat a patient, the hospital will need to have the specific equip-
ment and staff to do the procedure. For example, if a patient has a broken leg to treat
him the hospital will need a radiology room and a radiologist.

Patients work in a similar way, they will search an empty place in the room they
need to go to, if they do not find one they will go to the waiting room.

The patient firstwill go to the reception, after that to a consult, there the doctorwill
assign a treatment to the patient.

The player will be redirected to a series of doctors to be treated. If for some proce-
dure a doctor or equipment is missing the patient will return to the waiting room.

In thewaiting room, thepatient’spatiencebarwill start todecreases. If thepatience
bar reaches 0 at some point hewill return to his home and the player will lose a certain
quantity of money.

If the patient completes the treatment successfully the player will gain a certain
quantity of money.

Every timemorepatientswill come to thehospital. Thiswill force theplayer to con-
tinuebuilding thehospital andhiringworkers inorder to attend toall thenewpatients.

1.4 Environment and Initial State

This gamewill be developed usingUnity Engine. The programmingwill be all done by
myself excluding the usage of some libraries. The art will be partially done by me and
for the other part, I will search for free assets on the Internet. This is due to the size of
the project, the number of assets that are needed, and the time that I have to develop
it.

All the art must resemble the aesthetic of the low poly art. This will improve the
performance of the game andwill helpme dealingwith the creation of the assets. This
is due to the simplicity that characterizes this aesthetic.

1.5 The state of the healthcare system in Spain after the
pandemics

One of the main objectives of this game is to raise awareness about the state of the
healthcare system in Spain.

Our medical staff was the first line in the battle with COVID-19. and are the first to
suffer the consequences of the pandemics.

1.5. The state of the healthcare system in Spain after the pandemics 5

According to this report one-half of the nurses are in danger of suffering frommen-
tal illnesses [1]. A 15 percent ensures that they had psychological help during the pan-
demics.

This situation is due to the overpopulation that our hospitals. This report marks
that 8/10 nurses claim that the hospitals have a lack of medical staff [2].

This battle took the lives of more than 17,000 sanitarians all over the world that
fought[3] this virus. They gave their life for us.

This game ismyway to honor these people and to contribute even if it is in a slight
way to fight against the COVID-19.

C
H
A
P
TE

R

2
Planning and resources evaluation

In this chapter, I will detail the planning that I will be following up during this project.

Contents
2.1 Planning . 7
2.2 Resource Evaluation . 13

2.1 Planning
First of all, I planned theoverall of the tasks onwhich Iwill work during this project(see
Table 2.1).

This table servedme as a guide to developingmore precise planning of the project
(see Figure 2.1). The planning was made using a Gantt chart, this planning will not be
definitive. It will workmore as a guide rather than strict planning.

In the reality, my work differed quite from the initial planning. After the finaliza-
tion of the project I made another Gantt chart to visualize the job that I have done(see
Figures 2.2, 2.3, 2.4).

For a comfortable visualization, this Gantt chart has been split into 3 parts. These
parts are the sprints in which the project was split, in 4.1 I will explain in more detail
the workmethodology I followed in this project.

7

8 Planning and resources evaluation

This chart differs from the first one due to few reasons:

• In the first chart I did not take into account the June exams.

• I implemented pretty all the functionality specified in Figure 2.1 but I changed
the order of the implementations. This change was made to optimize the time
and for being able to make small tests. First I planned to implement single me-
chanics and debug them individually and interacting with others. But it makes
moresense to implement togetheragroupofmechanics thatare relatedand then
test them all together.

• Also in the middle of the project I decided not to put so much effort into the art.
Art is not my strong point and I prefer to deliver well-polished mechanics and
interesting gameplay. Even if I had invested a lot of hours in modeling the result
will be somemediocre characters and props.

Task Hours
Creation or importation of assets 50
Hospital management mechanics 110
Patient management mechanics 80
Implement miscellaneous
functionalities 70
Research about some diseases and the
workflow of a hospital 20
Final memory 10
Presentation of the project 10
Total 350

TABLE 2.1: Resume of the planning

2.1. Planning 9

FIGURE 2.1: Gantt chart of the first planning

10 Planning and resources evaluation

FIGURE 2.2: Gantt chart corresponding to the 1st sprint

2.1. Planning 11

FIGURE 2.3: Gantt chart corresponding to the 2nd sprint

12 Planning and resources evaluation

FIGURE 2.4: Gantt chart corresponding to the 3rd sprint

2.2 Resource Evaluation
The only human resource that I will need to develop this project is my time. I worked
nearly 315 hours on this project. The average yearly salary of a junior game program-
mer is around 28.000€ [4]. If we divide it by 14 that is the number of payments that the
averageworker gets paid in Spain (12-month salaries + 2 extraordinary salaries) we get
2.000€ permonth. In Spain, a regular worker works 40 hours a week, which is amonth
thatmeans 160 hours ofwork. Asmentioned above Iworked 315 hours, which approx-
imately means twomonths of work.

In conclusion, the time spent on this project on average had a value of approxi-
mately 4000€.

In regard of the equipment I will use:

• A laptop computer.

• An USBmouse.

• Headphones.

• Amonitor.

I will also need the following software:

• Unity 3D (Student license)

• Visual Studio (Student license)

• GitHub (Free Version)

• Adobe Photoshop (Student license)

• Blender 2.91 (Free Software)

• OverLeaf (Free)

• GoogleDocs (Free)

• Monday (Free version)

• Lucid Charts (Free version)

• AppMoqups (Free version)

• Visual Paradigm (Free version)

C
H
A
P
TE

R

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 15
3.2 SystemDesign . 22
3.3 System Architecture . 39
3.4 Interface Design . 39

This chapter presents the requirements analysis, design, and architecture of the
proposed work, as well as, where appropriate, its interface design.

3.1 Requirement Analysis

To carry out a job, it is necessary to perform a preliminary analysis of its requirements.
In this section, I will detail the functional and non-functional requirements of this
work

3.1.1 Functional Requirements

A functional requirement is a featureor a function that thedevelopersof aprojectmust
implement to allow users to accomplish their tasks.

This is the list of the functional requirements of this project:

1. The player will be able to start a new game.

15

16 System Analysis and Design

2. Theplayerwill be able tomove the camera in fourdirectionsusing the arrowkeys
or the left mouse button.

3. The player will be able to rotate the camera using the rightmouse button or with
“Q” to rotate to the right and “E” to rotate to the left.

4. The player will be able to zoom in and out using themouse wheel.

5. The player will be able to build a hospital placing the rooms where and how he
wants.

6. The player will be able to choose which players hire if he has enoughmoney.

7. The player will be able to check the statistics of the game.

8. The player will count on a specific amount ofmoney and he will be able toman-
age the budget of the hospital.

9. The player will be able to earn money treating patients and then he will be able
to waste it building rooms or hiring workers.

10. The player will be able to control the waiting times of the patients.

11. The playermustmaintain the hospital workingwhile waves of patients are arriv-
ing.

12. The patients will arrive at the hospital and then lead to the reception. There they
will be assigned to a consult if there is any free. If the patient can not find an
empty consult he will go to the waiting room.

3.1.2 Non-functional Requirements

A non-functional requirement describes how the system must behave and establish
the limits of its functionality.

This is the list of the functional requirements of this project:

1. Anewplayerwithout experiencewill be able to learn toplay the game in less than
15minutes.

2. All the items present in the game will be low poly.

3. The UI will be simple and clean.

3.2. SystemDesign 17

FIGURE 3.1: Use Case diagram

18 System Analysis and Design

Use case ID: UC01
Name: Move the camera
Requirement: 1
Actors: Player
Description: The player moves the camera
Preconditions:

1. Not have any UI window open

Normal sequence steps:

1. Click and drag with the left mouse button

2. Press the arrow keys

3. The cameramoves in thedirectionof the keys pressedor in thedirection
of themouse

Alternative sequence steps: None

TABLE 3.1: Functional requirement «Use case 01. Move the camera»

FIGURE 3.2: The statistics window in game

3.2. SystemDesign 19

Use case ID: UC02
Name: Rotate the camera
Requirement: 2
Actors: Player
Description: The player rotates the camera
Preconditions:

1. Not have any UI window open

Normal sequence steps:

1. Click and drag with the right mouse button

2. Press “Q” or “E

3. The camera rotates to the left if the player drags to the left or presses "Q"
or the right if the player drags to the right or presses "E"

Alternative sequence steps: None

TABLE 3.2: Functional requirement «Use case 02. Rotate the camera»

FIGURE 3.3: The tab displayed when a patient is selected

20 System Analysis and Design

Use case ID: UC03
Name: Zoom
Requirement: 3
Actors: Player
Description: The player zooms the camera
Preconditions:

1. Not have any UI window open

Normal sequence steps:

1. Use themouse wheel

2. If the player scrolls up the camera will zoom in, if he scrolls down the
camera will zoom out.

Alternative sequence steps: None

TABLE 3.3: Functional requirement «Use case 03. Zoom »

FIGURE 3.4: The tab displayed when a worker is selected

3.2. SystemDesign 21

FIGURE 3.5: The room store in game

FIGURE 3.6: The hiring tab in game

22 System Analysis and Design

Use case ID: UC04
Name: Check statistics
Requirement: 12
Actors: Player
Description: The player opens a windowwhere the statistics are displayed (see Figure 3.2)
Preconditions:

1. Not have any UI window open

2. Open the statistics window first

Normal sequence steps:

1. Left click on the statistics icon

2. The statistics window is opened and displayed inmiddle of the screen

3. The statistics icon changes it is color to green

Alternative sequence steps: None

TABLE 3.4: Functional requirement «Use case 04. Check statistics»

3.2 SystemDesign
The next use case tables come from the following Use Case diagram (see Figure 3.1):

The following figures (see Figure 3.7) and (see Figure 3.8) represent the sequence of
actions that follows a patient and the sequence of the actions described by the UC09
(see Table 3.9) respectively.

3.2. SystemDesign 23

Use case ID: UC05
Name: Select patient
Requirement: 5
Actors: Player
Description: A patient is selected (see Figure 3.3)
Preconditions:

1. Not have any UI window open

2. Not have fixed another patient or worker info tab to screen

Normal sequence steps:

1. Left click directly on a patient

2. A small tab is opened int the down-right corner displaying the selected
patient statistics

3. The camera is locked to the patient’s position

Alternative sequence steps: None

TABLE 3.5: Functional requirement «Use case 05. Select patient»

24 System Analysis and Design

Use case ID: UC06
Name: Select worker
Requirement: 6
Actors: Player
Description: A worker is selected (see Figure 3.4)
Preconditions:

1. Not have any UI window open

2. Not have fixed another patient or worker info tab to screen

Normal sequence steps:

1. Left click directly on a doctor

2. A small tab is opened int the down-right corner displaying the selected
doctor statistics

3. The camera is locked to the doctor’s position

Alternative sequence steps: None

TABLE 3.6: Functional requirement «Use case 06. Select worker»

3.2. SystemDesign 25

Use case ID: UC07
Name: Open the information tab
Requirement: 7
Actors: Player
Description: Displays the information of the selected agent
Preconditions:

1. Not have any UI window open

2. Left click on a worker or on a patient

3. Not have fixed another patient or worker info tab to screen

Normal sequence steps:

1. Left click directly on a doctor or on a patient

2. The agent info tab will be displayed at the under-right corner

Alternative sequence steps:

1. If an information tab is fixed to the screen on click on a patient or on a
worker it will still display the fixed tab

TABLE 3.7: Functional requirement «Use case 07. Open the information tab»

26 System Analysis and Design

Use case ID: UC08
Name: Buy room
Requirement: 8
Actors: Player
Description: Purchase a room from the store (see Figure 3.5)
Preconditions:

1. Have opened the store

2. On the store have choose the buy rooms tab

3. Left click on the room you want to buy

4. Have enoughmoney to buy the room

Normal sequence steps:

1. Open shop

2. The shop windowwill be displayed on the screen

3. Select room tab from the shop window

4. The room tab will change it is color to green and the room shop will be
displayed

5. Purchase the room

6. The shop windowwill close

7. The room price will be subtracted from the player’s money

8. The roomwill be ready to be placed on themap

Alternative sequence steps: None

1. If you do not have enough money to purchase the room an alert will be
displayed and youwill still be in the shopwith thebuy room tabopened.

TABLE 3.8: Functional requirement «Use case 08. Buy room»

3.2. SystemDesign 27

Use case ID: UC09
Name: Hire worker
Requirement: 9
Actors: Player
Description: Hire a worker from the store (see Figure 3.6)
Preconditions:

1. Have opened the store

2. On the store have choosed the hire workers tab

3. Left click on the worker you want to hire

4. Have enoughmoney to hire the worker

Normal sequence steps:

1. Open shop

2. The shop windowwill be displayed on the screen

3. Select the hiring tab from the shop window

4. The hire tab will change it is color to green and the worker shop will be
displayed

5. Hire a worker

6. The shop windowwill close

7. The worker salary will be subtracted from the player’s money

8. The worker will enter the hospital and start to work

Alternative sequence steps: None

1. If you do not have enoughmoney to hire the worker an alert will be dis-
played and you will still be in the shop with the buy hire tab opened

TABLE 3.9: Functional requirement «Use case 09. Hire worker»

28 System Analysis and Design

Use case ID: UC10
Name: Rotate the camera
Requirement: 10
Actors: Player
Description: Opens the shop window
Preconditions:

1. Not have any UI window open

2. Left click on the shop icon

Normal sequence steps:

1. Click on the shop icon

2. The shop windowwill be displayed

3. The shop button will change it is color to green

Alternative sequence steps: None

TABLE 3.10: Functional requirement «Use case 10. Rotate the camera»

3.2. SystemDesign 29

Use case ID: UC11
Name: Move room
Requirement: 11
Actors: Player
Description: Move a room according to themouse position
Preconditions:

1. Have edit mode active

2. Left click on a room

Normal sequence steps:

1. Left click on a room

2. The room will be displayed on green or in red depending on if it can be
placed in themouse position

3. Move themouse to the desired position

4. The house will move according to that position position

5. Left click again to place the room on themouse position

6. The roomwill be displayed with it is normal colors

Alternative sequence steps: None

1. If the room is collidingwith another object the roomwill change its color
to red and when you left-click to place it will not be placed and an alert
will be triggered

TABLE 3.11: Functional requirement «Use case 11. Move room»

30 System Analysis and Design

Use case ID: UC12
Name: Rotate room
Requirement: 12
Actors: Player
Description: Rotates a building +90 degrees on the Z-axis
Preconditions:

1. Have edit mode active

2. Left click on a room

Normal sequence steps:

1. Left click on a room

2. Right-click to rotate +90 degrees on the Z-axis

3. The room will be displayed on green or in red depending on if it can be
placed in themouse position

4. Left click again to place the room on themouse position

5. The roomwill be displayed with it is normal colors

Alternative sequence steps: None

1. If the room is colliding with another object after a rotation the room
will change its color to red and when you left-click to place it will not
be placed and an alert will be triggered

TABLE 3.12: Functional requirement «Use case 12. Rotate room»

3.2. SystemDesign 31

Use case ID: UC13
Name: Select room
Requirement: 13
Actors: Player
Description: Selects a room
Preconditions:

1. Have edit mode active

2. Left click on a room

Normal sequence steps:

1. Left click on a room to select it

2. The roomwill switch it is color to green

Alternative sequence steps: None

TABLE 3.13: Functional requirement «Use case 13. Select room»

32 System Analysis and Design

Use case ID: UC14
Name: Build wall
Requirement: 14
Actors: Player
Description: Builds the walls of a room using themouse input
Preconditions:

1. Activate the buildingmode

2. Select the building wall mode

3. Left click to select the start point

4. Left click to select the end point and build the wall from the start point
to the end point

Normal sequence steps:

1. Left click to place the start point

2. A columnwill be instantiated in the start point

3. other columns will be instantiated in the path that themouse follows

4. Left click again to place an endpoint and build awall between these two
points in a straight line

5. A wall will be built from the start to the endpoint

Alternative sequence steps: None

1. If thewall collideswithanother its colorwill change to redand if you left-
click the second time to build thewall it will not be built and an alert will
be triggered

TABLE 3.14: Functional requirement «Use case 14. Build wall»

3.2. SystemDesign 33

Use case ID: UC15
Name: Build floor
Requirement: 15
Actors: Player
Description: Builds the floor of a room using themouse input
Preconditions:

1. Activate the buildingmode

2. Select the building floor mode

3. Left click to select the start grid cell

4. Left click to select the end cell and build the floor in the area between
the start cell and the end cell

Normal sequence steps:

1. Left click to place a start cell

2. A floor panel will be instantiated at the start cell

3. Floor panels will be instated filling the area between the start and the
endpoint

4. Left click again to place an end cell and build the floor under the area
between these two cells

Alternative sequence steps: None

1. If the floor collides with floor its color will change to red and if you left-
click the second time to build the floor it will not be built and an alert
will be triggered

TABLE 3.15: Functional requirement «Use case 15. Build floor»

34 System Analysis and Design

The sequence of actions of a patient going towork described in (see Figure 3.7) can
also be described using an activity diagram (see Figure 3.9).

The action described by the UC09 (see Table 3.9) and the sequence diagram (see
Figure 3.8) can also be described using an activity diagram (see Figure 3.10).

3.2. SystemDesign 35

FIGURE 3.7: Sequence diagram of a patient going to the consult

36 System Analysis and Design

FIGURE 3.8: Sequence diagram of a doctor going to work

3.2. SystemDesign 37

FIGURE 3.9: Activity diagram of a patient going to the consult

38 System Analysis and Design

FIGURE 3.10: Activity diagram of a doctor going to work

3.3. System Architecture 39

3.3 System Architecture

The requirements to play this game will be very basic and are the following:

• CPU: Pentium 4 processor (3.0 GHz, or better)

• CPU SPEED: 3.0 GHz

• RAM: 1 GB

• OS: Windows 7/Vista/XP/Windows 10

• VIDEO CARD: DirectX 9 level Graphics Card

• PIXEL SHADER: 2.0

• SOUNDCARD: Yes

• FREE DISK SPACE: 1 GB

• DEDICATED VIDEO RAM: 1 GB

3.4 Interface Design

In this section, I will show the interfacemock-ups that I developed during the project.

To keep consistency between all the components that integrate the interface I cre-
ated a color palette to restrain the colors that the interface elements can have.

The interface of the game was developed with twomain objectives inmind:

• Maintain the interface clear

• Provide the player access to a big amount of information on demand

All this extra information will be displayed in tabs and windows to keep the inter-
face clean and do not overpopulate it with tons of information.

In the main state of the interface we can see that all the buttons are in the down-
side panel so the player screen is pretty clean. This panel provides the player a list of
buttons that on interaction with will open extra windows. This will provide the player
with information and will allow him to perform some actions. Some actions could be:
opening the store (see Figure 3.11) or checking the game statistics (see Figure 3.12).

Moreover, some tabs can be opened on demand of the player like the patient state
tab (see Figure 3.13) or the worker state tab (see Figure 3.14). These tabs will display

40 System Analysis and Design

extra information to the player but still allowing him to keep playing.

All the iconsused in theUIareopen-licenseandhavebeendownloaded fromStream-
line [6].

FIGURE 3.11: Mock-Up of the shop interface

3.4. Interface Design 41

FIGURE 3.12: Mock-Up of the statistics interface

42 System Analysis and Design

FIGURE 3.13: Mock-Up of the patient information tab

FIGURE 3.14: Mock-Up of the worker information tab

C
H
A
P
TE

R

4
WorkMethodology, Work Development,

and Results

Contents
4.1 Workmethodology . 43
4.2 Work Development . 45
4.3 Results . 61

In this chapter, Iwill resume the jobdoneduring thisproject, describe theworkflow
that I followed and explain with examples how works the most important mechanics
of the game developed.

4.1 Workmethodology

First of all, as mentioned in the section 2.1 I divided the work of this project into 3
sprints using an agile methodology [6].

The workflow followed in this methodology can be found in this figure (see Fig-
ure 4.1).

Before each sprint, I planned themechanics that are going to be developed during
the sprint. This planning wasmade using a tool calledMilanote [7]. This tool provides
the user an environment to organize the work using visual boards (see Figure 4.2).

43

44 WorkMethodology, Work Development, and Results

After this planning, I started to work on the tasks that I planned for this sprint. The
tasks were split into the important mechanics and add-onmechanics.

The importantmechanics are the ones that their lack in the project will result in an
unplayable game or an impoverished version of the game. The add-onmechanics are
mechanics that do not affect drastically the gameplay. They improve some aspects of
the gameplay but if they are missing the overall of the project will not be affected.

This distinction was made because every sprint has a deadline. First are imple-
mented the importantmechanics and then the add-ons. This ismade to prioritize the
important parts of the project. If after the deadline of a sprint all the important me-
chanics were completed the testing started even if the add-ons were not finished. If
some important mechanics were not completed the deadline was delayed. This delay
was big enough to ensure the completion of the unfinishedmechanic or mechanics.

After the deadline had arrived and all the important mechanics of the sprint were
completed the playtest started.

FIGURE 4.1: Diagram of the workflow of a Sprint

4.2. Work Development 45

During the playtest I tested everymechanic implemented this sprint in interaction
with the rest of themechanics. If I found a bug or a glitch I wrote it down on a specific
board inMilanote (see Figure 4.3).

When the playtests ended I tried to fix all the bugs that were found and improved
the work of the mechanics. After the fixes and improvements, I playtested the game
again andwrote down the bugs, this loop continued for amaximumof 2weeks or until
I fix all bugs. During the fixing, I focused on the major bugs. If after the 2 weeks there
were bugs that causedmajor problems I delayed the beginning of the next sprint until
the biggest bugs were fixed.

4.2 Work Development
This sectionwill work as a resume in chronological order of the implementation of the
most important mechanics of the game.

FIGURE 4.2: Sample of a board used for organize the tasks left to do

46 WorkMethodology, Work Development, and Results

First of all, I created a placeholder space to simulate where the game is going to be
played. Then I started the implementation of the first mechanic.

4.2.1 Building System

The core of a Tycoon gameof building hospitals for sure is going to be the buildingme-
chanic. To develop thismechanic I first needed to implement some system to help the
player place the rooms andmanage the environment.

I decided that this system is going to be a grid systemwhere space will be split into
cells. In the grid system, every room will occupy a determined number of cells. The
room’s positionwill be snapped to a cell avoiding roomsbe placed in amiddle of a cell.
This mechanic aims to help the player place the rooms without worrying on connect
them exactly or overlap two rooms. Also to help the players place rooms the grid will
be displayed on the floor (see Figure 4.4).

For thedesignof thebuilding system, I aimedondesigningamechanic that is func-
tional butmore importantly easy to use and responsive. This is the design pattern that
will follow over the whole project. In a game with so many mechanics, it is very im-
portant to make them intuitive. This prevents the player from having to learn how to
interact with every single mechanic.

FIGURE 4.3: Sample of a board used for listing the known bugs

4.2. Work Development 47

In the case of the building system, when the player buys a room it will appear on
themapandwill follow theplayer’smouse. When theplayer clicks if the room isplaced
correctly it will be built in the room’s current position. To communicate to the player
if he can build a room in the current position the roomwill be drawn in green (see Fig-
ure 4.5). If building is not allowed it will be drawn in red (see Figure 4.6). Also if the
player tries to build in a not allowed place an error message will be shown in the con-
sole (see Figure 4.17). I will explain this mechanic further in this section.

In addition to the building system, players can modify the hospital layout if edit

FIGURE 4.4: Image of the grid

FIGURE 4.5: Image of a room that can be built

48 WorkMethodology, Work Development, and Results

mode is activated. Edit mode allows the player to select a room and move it or/and
rotate it. During the edition of a roomcolor legend to communicate to the player if the
room is placeable or not is the same.

4.2.2 Camera Controller

The next important functionality I added was the camera control script. The camera
in a Tycoon game is a key aspect because, during the gameplay, the player will need
to constantly navigate through the map. This navigation must be comfortable and
easy. While controlling the camera the player will be able to move around, rotate and
zoom. Speaking about the controls, every player has a different taste on how to con-
trol a game. Because of that, we allowed the player to control the camera bothwith the
mouse and the keyboard.

At this point, I did not know the size of the playing area or the height of the rooms.
I do not want to choose some values for the playing area and then be restricted to that
values for the rest of the project. To avoid that I built a script that allowedme to tweak
all that values. This permitted me to play with the values and get the best results (see
Figure 4.7).

4.2.3 Character Generator

After the implementation of the camera, I decided that it was time to start the creation
of the characters. I am not the best at modeling so I decided that for the sake of the

FIGURE 4.6: Image of a room that can not be built

4.2. Work Development 49

project it was a better idea to find an asset pack instead of modeling the characters
myself. I found this open license asset pack [8].

This pack comes with a lot of types of characters, but their format did not fit what I
needed for my project. The reason was that the characters of the pack came all in one
single mesh (see Figure 4.8).

As in this game, there will be a lot of patients it is mandatory to have a kind of sys-
tem that generates them randomly. Otherwise, after a few hours, the player will notice
that the same characters are appearing over and over again.

FIGURE 4.7: The camera options that can bemodified

50 WorkMethodology, Work Development, and Results

FIGURE 4.8: The original asset from the asset pack

4.2. Work Development 51

To achieve this randomness I modified the assets of the pack. I separated all the
parts of themesh found on the characters(see Figure 4.9). The random character gen-
erator is inspiredby thecharacter creator systems that somegameshave (seeFigure4.10).
In these systems the gamehas apool of objects for every customizable part of the char-
acter and the player can choose every part and combine them. This results in a differ-
ent character for every player. The players can also name their characters. In these
systems, the variety comes from the size of the pools or the number of options.

In the game this character creation is done randomly, the character generator has
a pool for:

• Hair models

• Hair color

• Eye color

• Skin color

• Upper-Clothes model

• Upper-Clothes color

• Down-Clothes model

• Down-Clothes color

• Names

• Surnames

Combining these parameters, every character generated will be different from the
others (see Figure 4.11). Also, some combinations create special characters, there are
more than 10 special characters. Find them all! (see Figure 4.12)
This character generator generates both workers and patients.

Following my attempt to populate a bit the world after the implementation of the
character generator I started the creation of the rooms (see Figure 4.15). Asmentioned
before the assetswill be lowpoly (see Figure 1.1). Lowpoly is both an art style and form
of optimizing a game and gain performance.

For this game, I designed a color palette made of 64 colors (see Figure 4.14). The
aim of having a palette is that all the assets of the game will have this palette as the
only material.

The optimization comes when applying this unique material to a complex object.
For example in a character, amaterial is created for each color used, brown for thehair,

52 WorkMethodology, Work Development, and Results

FIGURE 4.9: Themodified asset from the asset pack

4.2. Work Development 53

FIGURE 4.10: Character creator of the gameHytale

FIGURE 4.11: Two characters randomly generated

54 WorkMethodology, Work Development, and Results

FIGURE 4.12: Special character

4.2. Work Development 55

blue for the eyes, blue for the pants ...,. To draw this character the engine will have to
search inmemory everymaterial and access it. In an object with a lot ofmaterials, this
can be very resource-consuming. Instead of that if an atlas material is used the ma-
chine only has to access one material. Using this atlas material the system will apply
the color according to the coordinates of the texture. Here an explanation of how the
texture coordinates work can be found (see Figure 4.13).

4.2.4 AI

Once the characters weremodeled it was time to develop the IA. I split the IA into two
types the basic IA and the task system.

The basic system is the one that all the medical staff will have. Workers can also
have a specific role. For this project a developed a few, consultation doctors, radiolo-
gists, annalists, and receptionists. All of them follow the same basic rules. I will briefly
explain them in the next paragraph but the full explanation can be found on this se-
quence diagram (see Figure 3.8) and in this activity diagram (see Figure 3.9).

A worker entering the hospital will search for a free space to work. In the case of
the doctors an empty room of his role, in the case of the receptionist a free seat in the
reception. If they do not find somewhere to work they will go to the resting room until
there is a free space. If they find somewhere to work they will go there and wait until
a patient comes. Once a patient came they will attend them and redirect to the next

FIGURE 4.13: Explanation of how the texture coordinates work (Image of Mega-Man 8-bits)

56 WorkMethodology, Work Development, and Results

FIGURE 4.14: This is the color palette used for all the assets in the game

FIGURE 4.15: Themodeling of the radiology room

4.2. Work Development 57

procedure or home. If the patient has ended the treatment.

Patients follow this samemethodwith the difference that if they donot find a space
in the place they want to go they will go to the waiting room. More explanation about
this canbe foundon this sequencediagram (seeFigure 3.7) and in this activity diagram
(see Figure 3.9).

The task system is used by special workers like cleaners. While there is nothing to
do they will be in the resting room. The tasks are put on a queue to be completed in
order of entry, once a task is on the queue a free worker will be assigned to that task.
The worker will see what consists the task and will try to complete it.

All the workers will need pathfinding to be able to traverse the hospital. Imple-
menting pathfinding was a difficult part of the project where I invested quite a time
thinking about the better way to do it.

To implement pathfinding I thought of two ways. One way was using the grid sys-
tem and assigning to each cell a node and then simply use the A* algorithm [9] to find
the shortest path between two nodes [11]. The other using the Unity navigable mesh
system [12].

Using navigablemesh themeshmust be baked in the editor mode to after be used
during the gameplay. Using pathfinding at the beginning of the script a graphmade of
nodes must be built[10]. The problem of this is that they require baking the mesh or
creating the graph both of these operations have a heavy impact on the performance.
But there is another problem, themachine can not know how every hospital will look.
This means the navigable mesh or the graph should be recalculated during gameplay.
This can cause a big slowdown in the player’s computer what it is inadmissible for a
good playing experience.

The way I resolved this is using Unity navigable mesh and the NavMesh Compo-
nent repository [12] shared on GitHub [13].

This repository provides a script that generates a volume of the desired size. Inside
this volume, the navigable mesh can be modified on run-time. Instead of rebuilding
the entire navigable mesh, this script updates only the nodes that have been affected
by themodification (see Figure 4.16).

4.2.5 UI Design and Implementation

After the implementation of the AI, I focused on the design of theUI. TheUI aims to be
simple but still allow theplayer to open tabs andwindows to displaymore information
when needed. Tycoon games are hard tomanage and involve a lot of mechanics. This
makes that sometimes it is hard to know exactly what is going on, to overcome this I

58 WorkMethodology, Work Development, and Results

implemented the console. The console is a text box where important information will
be displayed. This is made to inform the player when something has happened. It is
placed in the middle of the HUD to catch the player’s focus. Also, when the message
to display is an errormessage the text boxwill flash in red to ensure the player watch it
(see Figure 4.17).

4.2.6 Statistics

Anothermechanic related to theUIworthmentioninghere is the statisticsgraph. Statis-
tics are very important in the Tycoon genre. It is very important to allow the player
access to asmuch data as it is possible to help himmanage the hospital andmake im-
portant decisions.

FIGURE 4.16: Two navigable meshes generated on run time andmerged together

4.2. Work Development 59

4.2.7 The edit mode

The statistics graph has two variables, the number of incomes (green) and the num-
ber of expenses (red). Every graph represents the statistics of a year and every step on
the graph represents amonth. The player will have access to all statistics starting from
the year the game started and can switch between them to display them. The most
complex part of this implementation was showing the information correctly. Values
betweenmonths and between years differ a lot. To solve this I developed a system that
ensures that the displaying information is scaled properly. The values will go always
from theminimum value to the maximum and the steps in the Y-axis will be adjusted
based on that. Due to this, the player can switch between all years without problem
because the graph will be recalculated and displayed correctly on the screen.

FIGURE 4.17: Image of an error message

60 WorkMethodology, Work Development, and Results

The last importantmechanic to theUI is theEditMode, theeditmodehas two func-
tionalities. On one hand, it enables the selection of the rooms to thenmove or/and ro-
tate them (see Table 3.11) and (see Table 3.12). On the other, it shows the information
about all the rooms. It informs visually the type and the state of the room so the player
is always informed on what is going on. It warns the player which rooms are not us-
ablemarking them on red and displaying a text explaining why are they unusable (see
Figure 4.17).

FIGURE 4.18: Left: Usable consultation room
Right: Unusable radiology room

4.3. Results 61

4.3 Results
Speaking about the results, at this point the game is playable. It is not enjoyable and
it has not the content needed to be a game that can be found in the market but it can
be played. It presents perfectly themainmechanics of the game that will result if I had
more time to end this project.

All the chore mechanics are implemented. The game is in a state where if a player
could try the game for a fewminutes he will be able to understand how the game loop
works and what is the direction that the project has.

On one hand, this game is not ready to be commercialized. It is normal because
tycoons games require a lot of mechanics, systems interconnected, and a lot of assets
and options to keep the player engaged in the game.

But on the other hand, the game is at a state where it could be published or up-
loaded as early access. This means that the game is playable but it is still under devel-
opment. The early-access works as a form to show what your game has to offer to the
world and to start building a community.

In conclusion the game is not finished but I think the objectives of this project are
reached. Tycoon games are huge in content andmechanics. I have accomplished the
main aimof the project thatwas tomake a playable version of a Tycoon game and I am
proud of the results.

C
H
A
P
TE

R

5
Conclusions and FutureWork

Contents
5.1 Conclusions . 63
5.2 Future work . 64

5.1 Conclusions
Thisprojectwas a goodchallenge toput to test all the knowledge that I acquiredduring
this degree. I have used the skills I acquired in almost every subject I have taken in this
degree, I have:

• Modeled 3D assets (VJ1216 - 3DDESIGN)

• Used a game engine to developmy game (VJ1227 - GAME ENGINES)

• ProgrammedonCSharp, anobject-basedprogramming language (VJ1203 -PRO-
GRAMMING I and VJ1208 - PROGRAMMING II)

• Rendered custommeshes using GLSL (VJ1221 - COMPUTER GRAPHICS)

• Usedsomedata structures to improveperformance (VJ1215 -ALGORITHMSAND
DATA STRUCTURES)

• Implemented a basic AI to control agents in the game (VJ1231 - ARTIFICIAL IN-
TELLIGENCE)

• Used diagrams and other types of documentation to organizemywork (VJ1224 -
SOFTWARE ENGINEERING)

63

64 Conclusions and FutureWork

Theseareonly a fewexamplesof all theknowledgeandskills acquired in thisdegree
that I put into practice to develop this project.

To conclude I think that developing this project I have learned a lot because is the
first project I faced alone and it is the biggest project that I took part in and handling
it has put me in a real challenge and gave me a really good experience in this type of
projects.

5.2 Future work
I am very proud of this project and I think that I prepared the ground for a big project
that is powerfull and I will work on it until the due of the project and after that, I will
continue to work on it. My planwith this game is to develop something I will be proud
of publishing and publish it as my first serious game.

A
P
P
E
N
D
IX A

Other considerations

A.1 First section
During thedevelopmentof this project Iwatcheda series of videos tohelpmeget ideas
or concepts to develop the different mechanics.

Here is the reproduction list of all of these videos:

https://www.youtube.com/playlist?list=PLfnR6EzV3q3LWpeyeQSHjaMTRjB7Bxc-P

65

https://www.youtube.com/playlist?list=PLfnR6EzV3q3LWpeyeQSHjaMTRjB7Bxc-P

Bibliography

[1] Covid-19: 50 percent of the nurses are at risk of suffering frommental disorders,
https : / / www . redaccionmedica . com / secciones / enfermeria /

covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767

[2] Eight out of 10 nurses report the lack of medical staff during the pandemic,
https://www.actasanitaria.com/enfermeras-denuncian-falta-personal-pandemia/

[3] We have not cared for thosewho care for us: more than 17,000 healthworkers died
from Covid,
https : / / www . redaccionmedica . com / secciones / enfermeria /

covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767

[4] Sueldos para Game Programmer,
https://www.glassdoor.es/Sueldos/espa~na-game-programmer-sueldo-SRCH_IL.0,

6_IN219_KO7,22.htm

[5] Streamline,
https://app.streamlinehq.com/icons

[6] Building an Agile Process Flow: A Comprehensive Guide,
https://kanbanize.com/agile/project-management/workflow

[7] Milanote,
https://milanote.com/

[8] Ultimate Animated Character Pack,
https://quaternius.com/packs/ultimatedanimatedcharacter.html

[9] A* search algorithm,
https://www.geeksforgeeks.org/a-search-algorithm/

[10] Graph Data Structure,
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/

[11] Node,
https://en.wikipedia.org/wiki/Node_(computer_science)

67

https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.actasanitaria.com/enfermeras-denuncian-falta-personal-pandemia/
https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.redaccionmedica.com/secciones/enfermeria/covid-19-50-enfermeras-tiene-riesgo-sufrir-trastorno-mental-1767
https://www.glassdoor.es/Sueldos/espa~na-game-programmer-sueldo-SRCH_IL.0,6_IN219_KO7,22.htm
https://www.glassdoor.es/Sueldos/espa~na-game-programmer-sueldo-SRCH_IL.0,6_IN219_KO7,22.htm
https://app.streamlinehq.com/icons
https://kanbanize.com/agile/project-management/workflow
https://milanote.com/
https://quaternius.com/packs/ultimatedanimatedcharacter.html
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://en.wikipedia.org/wiki/Node_(computer_science)

68 Bibliography

[12] Unity NavigableMesh,
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

[13] Git Hub,
https://github.com/

[14] Unity-Technologies/NavMeshComponents,
https://github.com/Unity-Technologies/NavMeshComponents

https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://github.com/
https://github.com/Unity-Technologies/NavMeshComponents

A
P
P
E
N
D
IX B

Source code

In the following pages you can find fragments of my code, the length of the full code it
is very long tobewrite here so I onlywrote themost important functions ofmyproject,
the full source code can be found in this repository:

https://github.com/al375729/Hospital-Tycoon

69

https://github.com/al375729/Hospital-Tycoon

70 Source code

Grid Display

LISTING B.1: Grid Display
1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.EventSystems;

5
6 public class GridDisplay : MonoBehaviour

7 {

8 // Start is called before the first frame update

9
10 public Test test;

11 private Grid grid;

12 private int[,] cuadricula;

13 private TextMesh[,] gridTextMesh;

14 private int filas;

15 private int columnas;

16 public Material material;

17
18 private Vector3 Origin;

19 private Vector3 Diference;

20 void Start()

21 {

22 grid = test.getGrid();

23 cuadricula = test.getCuadricula();

24 gridTextMesh = test.getTextMesh();

25 filas = test.getFilas();

26
27 columnas = test.getColumnas();

28 }

29
30 private bool IsMouseOverUI()

31 {

32 return EventSystem.current.IsPointerOverGameObject();

33 }

34
35 // Update is called once per frame

36 void Update()

37 {

38
39 }

40

Source code 71

41 private void OnPostRender()

42 {

43 for (int i = 0; i < cuadricula.GetLength(0); i++)

44 {

45
46 for (int j = 0; j < cuadricula.GetLength(1); j++)

47 {

48
49 DrawLine(grid.GetWorldPosition(i, j) -

50 new Vector3(filas * 2.5f, 0, columnas

51 * 2.5f) , grid.GetWorldPosition(i, j + 1) -

52 new Vector3(filas * 2.5f, 0,

53 columnas * 2.5f));

54
55 DrawLine(grid.GetWorldPosition(i, j)

56 - new Vector3

57 (filas * 2.5f, 0, columnas

58 * 2.5f),

59 grid.GetWorldPosition(i + 1, j) -

60 new Vector3(filas * 2.5f, 0,

61 columnas * 2.5f));

62
63 }

64 }

65 DrawLine(grid.GetWorldPosition(0, columnas) -

66 new Vector3(filas * 2.5f, 0, columnas *
67 2.5f), grid.GetWorldPosition(filas, columnas)

68 - new Vector3(filas * 2.5f, 0, columnas

69 * 2.5f));

70
71 DrawLine(grid.GetWorldPosition(filas, 0)

72 - new Vector3(filas * 2.5f, 0, columnas *
73 2.5f),

74 grid.GetWorldPosition(filas, columnas)

75 - new Vector3(filas * 2.5f, 0, columnas

76 * 2.5f));

77 }

78
79
80 void DrawLine(Vector3 inicio, Vector3 fin)

81 {

82
83 GL.Begin(GL.LINES);

72 Source code

84 material.SetPass(0);

85 GL.Color(Color.black);

86 GL.Vertex(inicio);

87 GL.Vertex(fin);

88
89 GL.End();

90
91 }

92
93 void LateUpdate()

94 {

95 if (Input.GetMouseButtonDown(0))

96 {

97 Origin = MousePos();

98 }

99 if (Input.GetMouseButton(0))

100 {

101 Diference = MousePos() - transform.position;

102 transform.position = Origin - Diference;

103 }

104
105 }

106 Vector3 MousePos()

107 {

108 return Camera.main.ScreenToWorldPoint(Input.mousePosition);

109 }

110
111 }

Source code 73

Drag Buildings

LISTING B.2: Drag Buildings
1 using System;

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine.EventSystems;

5 using UnityEngine;

6 using TMPro;

7
8 public class DragBuildings : MonoBehaviour

9 {

10 public bool placed = false;

11 private float zCoord;

12
13 public GameObject prefab;

14
15 private Grid grid;

16
17 public bool isSelected = true;

18 bool isColliding = false;

19
20 public Material originalMaterial;

21
22 public Material[] materiales;

23
24 private Quaternion objectToRotate;

25
26 public static bool globalSelection = false;

27 private Vector3 position;

28 private Quaternion rotation;

29
30 private bool lastFrameWasEditMode;

31
32 private bool addedReferences = false;

33
34 ConsultController consultController;

35 RadiologyController radiologyController;

36 AnalisisController analisisController;

37 private enum State

38 {

39 WaitingForTask,

40 DoingTask,

74 Source code

41 DoingTaskClean,

42 }

43 private void Start()

44 {

45 consultController = ConsultController.Instance;

46 radiologyController = RadiologyController.Instance;

47 analisisController = AnalisisController.Instance;

48
49 transform.GetChild(transform.childCount -

50 2).gameObject.GetComponent<MeshRenderer>().enabled = false;

51
52 this.gameObject.transform.GetChild(gameObject.transform.childCount -

53 2).GetComponent<RoomStatus>().workers = "NO HAY TRABAJADORES ASIGNADOS " +

54 "\n" + "\n";

55 }

56
57 void OnMouseDown()

58 {

59 //PatientInfo.disablePanel();

60
61 if (!IsMouseOverUI())

62 {

63 if (!isSelected && !globalSelection && GlobalVariables.EDIT_MODE)

64 {

65 isSelected = true;

66 globalSelection = true;

67 position = transform.position;

68 rotation = transform.rotation;

69
70 if(addedReferences)

71 {

72 deleteReferences();

73 addedReferences = false;

74 }

75
76
77 }

78 else if (!isSelected && !globalSelection &&

79 GlobalVariables.DELETE_MODE)

80 {

81 if (addedReferences)

82 {

83 deleteReferences();

Source code 75

84 addedReferences = false;

85 }

86 Destroy(this.gameObject);

87
88 }

89 else

90 {

91 if (!isColliding && isSelected)

92 {

93 if(this.gameObject.GetComponent<RoomComprobations>().

94 isReachable())

95 {

96 addReferences();

97 addedReferences = true;

98
99 this.gameObject.transform.GetChild

100 (this.gameObject.transform.childCount -

101 2).GetComponent<RoomStatus>().reachable = "";

102
103 this.gameObject.transform.GetChild

104 (this.gameObject.transform.childCount -

105 2).GetComponent<RoomStatus>().updateText();

106 }

107 else

108 {

109 this.gameObject.transform.GetChild

110 (this.gameObject.transform.childCount -

111 2).GetComponent<RoomStatus>().reachable =

112 "ESTA SALA ES INALCANZABLE" + "\n" + "\n";

113 this.gameObject.transform.GetChild

114 (this.gameObject.transform.childCount -

115 2).GetComponent<RoomStatus>().updateText();

116 }

117
118 changeMaterialOfChildren(0);

119 position = transform.position;

120 rotation = transform.rotation;

121
122 int x, z;

123 GetGridPos(GetMouseWorldPos(), out x, out z);

124
125 Vector3 posicion;

126 posicion = GetWorldPosition(x, z);

76 Source code

127
128 Vector2 vec = GridController.gridToMatrix(x, z);

129 x = (int)vec.x;

130 z = (int)vec.y;

131 GridController.setPrefabRoom(x, z, this.gameObject);

132 Debug.Log(x + " , " + z);

133
134 isSelected = false;

135 globalSelection = false;

136 }

137 }

138 }

139
140 }

141
142 private bool IsMouseOverUI()

143 {

144 return EventSystem.current.IsPointerOverGameObject();

145 }

146 private void Update()

147 {

148 if (GlobalVariables.UI_OPEN)

149 {

150 changeMaterialOfChildren(0);

151 isSelected = false;

152 globalSelection = false;

153 }

154 if (Input.GetMouseButtonDown(1))

155 {

156 if (isSelected)

157 {

158 objectToRotate = this.transform.rotation * Quaternion.Euler

159 (0, -90, 0);

160 }

161
162 }

163
164 if (isColliding && isSelected)

165 {

166 changeMaterialOfChildren(2);

167 }

168
169 else if (!isColliding && isSelected) changeMaterialOfChildren(1);

Source code 77

170
171 if (isSelected == true)

172 {

173 zCoord = Camera.main.WorldToScreenPoint(

174
175 gameObject.transform.position).z;

176
177
178 int x, z;

179 GetGridPos(GetMouseWorldPos(), out x, out z);

180 Debug.Log(GetMouseWorldPos());

181 Vector3 posicion;

182 posicion = GetWorldPosition(x, z);

183
184 transform.position = new Vector3(posicion.x, 0, posicion.z);

185
186 }

187
188
189
190 if (GlobalVariables.EDIT_MODE && !isSelected && !isColliding)

191 {

192 transform.GetChild(0).gameObject.GetComponent<ObjectsOnRoom>()

193 .changeMaterial(0);

194
195 this.gameObject.transform.GetChild(gameObject.transform.childCount -

196 2).GetComponent<RoomStatus>().updateText();

197
198 transform.GetChild(transform.childCount -

199 2).gameObject.GetComponent<MeshRenderer>().enabled = true;

200
201 transform.GetChild(transform.childCount -

202 1).gameObject.GetComponent<SpriteRenderer>().enabled = true;

203
204
205 }

206 else if (GlobalVariables.EDIT_MODE && isSelected)

207 {

208 transform.GetChild(transform.childCount -

209 2).gameObject.GetComponent<MeshRenderer>().enabled = false;

210
211 transform.GetChild(transform.childCount -

212 1).gameObject.GetComponent<SpriteRenderer>().enabled = false;

78 Source code

213
214 }

215 else if (!GlobalVariables.EDIT_MODE && !isSelected && !isColliding)

216 {

217 transform.GetChild(0).gameObject.GetComponent<ObjectsOnRoom>()

218 .changeMaterial(3);

219
220 transform.GetChild(transform.childCount -

221 2).gameObject.GetComponent<MeshRenderer>().enabled = false;

222
223 transform.GetChild(transform.childCount -

224 1).gameObject.GetComponent<SpriteRenderer>().enabled = false;

225 }

226
227 lastFrameWasEditMode = GlobalVariables.EDIT_MODE;

228
229 }

230
231 private void changeMaterialOfChildren(int index)

232 {

233 //transform.GetComponent<MeshRenderer>().material = material;

234 for (int i = 0; i < transform.childCount - 2; i++)

235 {

236 if (transform.GetChild(i).GetComponent

237 <ObjectsOnRoom>() != null)

238 {

239 transform.GetChild(i).GetComponent

240 <ObjectsOnRoom>()

241 .changeMaterial(index);

242 }

243 else

244 {

245 for (int j = 0; j < transform.GetChild(i).childCount; j++)

246 {

247 if (transform.GetChild(i).GetChild(j).GetComponent

248 <ObjectsOnRoom>() != null)

249
250 transform.GetChild(i).GetChild(j).GetComponent

251 <ObjectsOnRoom>().changeMaterial(index);

252 }

253
254
255 }

Source code 79

256
257 }

258 }

259
260 private void LateUpdate()

261 {

262 if (!IsQuaternionInvalid(transform.rotation) &&

263 !IsQuaternionInvalid(objectToRotate))

264 {

265 transform.rotation = Quaternion.Lerp(transform.rotation,

266 objectToRotate, 70f * Time.deltaTime);

267 }

268 }

269
270 private bool IsQuaternionInvalid(Quaternion q)

271 {

272 bool check = q.x == 0f;

273 check &= q.y == 0;

274 check &= q.z == 0;

275 check &= q.w == 0;

276
277 return check;

278 }

279 private Vector3 GetMouseWorldPos()

280 {

281 //(x,y)

282 Vector3 mousePoint = Input.mousePosition;

283
284 //z

285 mousePoint.z = zCoord;

286
287 return Camera.main.ScreenToWorldPoint(mousePoint);

288 }

289
290
291 public Vector3 GetWorldPosition(int x, int z)

292 {

293 return new Vector3(x, 0, z) * 5;

294 }

295
296 public void GetGridPos(Vector3 posicion, out int x, out int z)

297 {

298 x = Mathf.FloorToInt(posicion.x / 5);

80 Source code

299 z = Mathf.FloorToInt(posicion.z / 5);

300 }

301
302
303 void OnCollisionStay(Collision col)

304 {

305 if ((col.gameObject.CompareTag("Building")

306 && isSelected))

307 {

308 isColliding = true;

309 }

310 }

311
312 void OnCollisionExit(Collision other)

313 {

314 if ((other.gameObject.CompareTag("Building")

315 && isSelected))

316 {

317 isColliding = false;

318 }

319 }

320
321
322 public void addReferences()

323 {

324 for (int i = 0; i < transform.childCount - 2; i++)

325 {

326 if (transform.GetChild(i).GetComponent

327 <ObjectsOnRoom>() != null)

328 {

329 ObjectsOnRoom obj = transform.GetChild(i).GetComponent

330 <ObjectsOnRoom>();

331
332 int index;

333
334 switch (obj.objectType)

335 {

336 case ObjectsOnRoom.type.ConsultDoctor:

337 index = consultController.addDoctor

338 (transform.GetChild(i).transform);

339 obj.indexInList = index;

340
341 break;

Source code 81

342
343 case ObjectsOnRoom.type.ConsultPatient:

344 index = consultController.addPatient

345 (transform.GetChild(i).transform);

346
347 obj.indexInList = index;

348 break;

349
350 case ObjectsOnRoom.type.None:

351 break;

352
353 case ObjectsOnRoom.type.RadiologyDoctor:

354 index = radiologyController.addDoctor

355 (transform.GetChild(i).transform);

356 obj.indexInList = index;

357
358 break;

359
360 case ObjectsOnRoom.type.RadiologyPatient:

361 index = radiologyController.addPatient

362 (transform.GetChild(i).transform);

363
364 obj.indexInList = index;

365 break;

366
367 case ObjectsOnRoom.type.AnalysisDoctor:

368 index = analisisController.addDoctor

369 (transform.GetChild(i).transform);

370
371 obj.indexInList = index;

372 break;

373
374 case ObjectsOnRoom.type.AnalysisPatient:

375 index = analisisController.addPatient

376 (transform.GetChild(i).transform);

377
378 obj.indexInList = index;

379 break;

380
381 }

382 }

383 }

384 }

82 Source code

385
386 public void deleteReferences()

387 {

388 for (int i = 0; i < transform.childCount - 2; i++)

389 {

390 if (transform.GetChild(i).GetComponent

391 <ObjectsOnRoom>() != null)

392 {

393 ObjectsOnRoom obj = transform.GetChild(i).GetComponent

394 <ObjectsOnRoom>();

395
396 switch (obj.objectType)

397 {

398 case ObjectsOnRoom.type.ConsultDoctor:

399 consultController.updateIndexOfDoctors

400 (obj.indexInList);

401 break;

402
403 case ObjectsOnRoom.type.ConsultPatient:

404 consultController.updateIndexOfPatients

405 (obj.indexInList);

406 break;

407
408 case ObjectsOnRoom.type.None:

409 break;

410 }

411 }

412 }

413 }

414 }

Source code 83

Camera Controller

LISTING B.3: Grid Display
1 using System;

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using UnityEngine.EventSystems;

6 using UnityEngine.UI;

7
8 public class CameraController : MonoBehaviour

9 {

10 public static CameraController instance;

11 public static Transform objectToFollow;

12
13 public float movementSpeed;

14 public float speed;

15 public float normalSpeed;

16 public float fastSpeed;

17 public float time;

18 public float rotation;

19 public float xLimit = 100;

20 public float yLimit = 100;

21 public int zoomInLimit = 100;

22 public int zoomOutLimit = 500;

23
24 public Image img;

25 public static Image button;

26 public Vector3 zoom;

27
28
29
30 public Vector3 newPosition;

31 public Quaternion newRotation;

32 public Vector3 newZoom;

33
34 public Vector3 dragStartPos;

35 public Vector3 dragCurrentPos;

36
37 public Vector3 rotateStartPos;

38 public Vector3 rotateCurrenttPos;

39
40 void Start()

84 Source code

41 {

42 instance = this;

43 newPosition = transform.position;

44 newRotation = transform.rotation;

45 newZoom = camera.localPosition;

46 button = img;

47 }

48
49 // Update is called once per frame

50 void Update()

51 {

52 if(objectToFollow != null)

53 {

54 transform.position = objectToFollow.position;

55
56 }

57 else

58 {

59 HandlePlayerKeyboardInput();

60 HandlePlayerMouseInput();

61 }

62
63 if(Input.GetKeyDown(KeyCode.Escape))

64 {

65 button.color = Color.white;

66 objectToFollow = null;

67 }

68
69 }

70
71 private void HandlePlayerMouseInput()

72 {

73 if (!IsMouseOverUI() && !GlobalVariables.UI_OPEN)

74 {

75 if(Input.GetMouseButtonDown(0) && !DragBuildings.globalSelection &&

76 !GlobalVariables.UI_OPEN)

77 {

78 Plane plane = new Plane(Vector3.up, Vector3.zero);

79
80 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);

81
82 float hitPoint;

83

Source code 85

84 if(plane.Raycast(ray , out hitPoint))

85 {

86 dragStartPos = ray.GetPoint(hitPoint);

87 }

88 }

89
90 if (Input.GetMouseButton(0) && !DragBuildings.globalSelection &&

91 !GlobalVariables.UI_OPEN)

92 {

93 Plane plane = new Plane(Vector3.up, Vector3.zero);

94
95 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);

96
97 float hitPoint;

98
99 if (plane.Raycast(ray, out hitPoint))

100 {

101 dragCurrentPos = ray.GetPoint(hitPoint);

102
103 newPosition = transform.position + dragStartPos - dragCurrentPos;

104 }

105 }

106
107 if (Input.mouseScrollDelta.y != 0 && !GlobalVariables.UI_OPEN)

108 {

109 newZoom += Input.mouseScrollDelta.y * zoom;

110 }

111
112 if (Input.GetMouseButtonDown(1) && !DragBuildings.globalSelection &&

113 !GlobalVariables.UI_OPEN)

114 {

115 rotateStartPos = Input.mousePosition;

116 }

117
118 if (Input.GetMouseButton(1) && !DragBuildings.globalSelection &&

119 !GlobalVariables.UI_OPEN)

120 {

121 rotateCurrenttPos = Input.mousePosition;

122
123 Vector3 rotation = rotateStartPos - rotateCurrenttPos;

124
125 rotateStartPos = rotateCurrenttPos;

126

86 Source code

127 newRotation *= Quaternion.Euler(Vector3.up * (rotation.x / 5f));

128 }

129
130 }

131 }

132 void HandlePlayerKeyboardInput()

133 {

134 if (!IsMouseOverUI() && !GlobalVariables.UI_OPEN)

135 {

136 if (Input.GetKey(KeyCode.LeftShift))

137 {

138 speed = fastSpeed;

139 }

140 else

141 {

142 speed = normalSpeed;

143 }

144
145 if(Input.GetKey(KeyCode.UpArrow) || Input.GetKey(KeyCode.W))

146 {

147 newPosition += transform.forward * speed;

148 }

149
150 if (Input.GetKey(KeyCode.DownArrow) || Input.GetKey(KeyCode.S))

151 {

152 newPosition += transform.forward * -speed;

153 }

154
155 if (Input.GetKey(KeyCode.RightArrow) || Input.GetKey(KeyCode.D))

156 {

157 newPosition += transform.right * speed;

158 }

159
160 if (Input.GetKey(KeyCode.LeftArrow) || Input.GetKey(KeyCode.A))

161 {

162 newPosition += transform.right * -speed;

163 }

164
165 if (Input.GetKey(KeyCode.Q))

166 {

167 newRotation *= Quaternion.Euler(Vector3.up * -rotation);

168 }

169

Source code 87

170 if (Input.GetKey(KeyCode.E))

171 {

172 newRotation *= Quaternion.Euler(Vector3.up * rotation);

173 }

174
175 if (Input.GetKey(KeyCode.R))

176 {

177 newZoom += zoom;

178 }

179
180 if (Input.GetKey(KeyCode.T))

181 {

182 newZoom -= zoom;

183 }

184
185 newPosition.x = Mathf.Clamp(newPosition.x, -xLimit, xLimit);

186 newPosition.z = Mathf.Clamp(newPosition.z, -yLimit, yLimit);

187
188 newZoom.y = Mathf.Clamp(newZoom.y, zoomInLimit, zoomOutLimit);

189 newZoom.z = Mathf.Clamp(newZoom.z, -zoomOutLimit, -zoomInLimit);

190
191 transform.position = Vector3.Lerp(transform.position,

192 newPosition, time * Time.deltaTime);

193
194 transform.rotation = Quaternion.Lerp(transform.rotation,

195 newRotation, time * Time.deltaTime);

196
197 camera.localPosition =

198 Vector3.Lerp(camera.transform.localPosition, newZoom, time

199 * Time.deltaTime);

200 }

201 }

202
203 private bool IsMouseOverUI()

204 {

205 return EventSystem.current.IsPointerOverGameObject();

206 }

207
208 public static void setObjectToFollow(GameObject gameObject)

209 {

210 Debug.Log(gameObject.name);

211 objectToFollow = gameObject.transform;

212 button.color = Color.green;

88 Source code

213 Debug.Log(button.name);

214
215 }

216
217 public static void deleteObjectToFollow(GameObject gameObject)

218 {

219 if(objectToFollow == gameObject) objectToFollow = null;

220 }

221 }

Source code 89

Character Generator

LISTING B.4: Character Generator
1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class CharacterGenerator : MonoBehaviour

7 {

8 public GameObject prefab;

9
10 public Material[] materialesPelo;

11 public Material[] materialesPiel;

12 public Material[] camsieta;

13 public Material[] pantalon;

14 public Material[] ojos;

15
16 public GameObject[] pelosHombre;

17 public GameObject[] pelosMujer;

18 public GameObject[] peloFacial;

19
20 private List<GameObject> genertaedCharactersList;

21
22 public PopulateWorkerShop workerShop;

23
24 public Material bata;

25
26 private int generatingCount = 18;

27
28 public GameObject parent;

29
30 void Start()

31 {

32 genertaedCharactersList = new List<GameObject>(20);

33
34
35
36 for (int i = 0; i < generatingCount; i++)

37 {

38 int genero = Random.Range(0, 2);// 0 --> M || 1 --> F

39
40

90 Source code

41 int ranType = Random.Range(0, 4);

42
43 int colorDePelo = Random.Range(0,materialesPelo.Length);

44
45 GameObject instance = Instantiate(prefab, this.transform.position + new Vector3((15 * i) + 50f, 0, 0), Quaternion.identity);

46 instance.transform.SetParent(parent.transform);

47 genertaedCharactersList.Add(instance);

48
49
50
51 switch (ranType)

52 {

53 case 0:

54 instance.GetComponent<Worker>().setType("Receptionnist");

55 instance.GetComponent<Worker>().role = "Receptionnist";

56 instance.AddComponent<Recepcionsit>();

57 break;

58
59 case 1:

60 instance.GetComponent<Worker>().setType("Consult");

61 instance.GetComponent<Worker>().role = "Consult";

62 instance.AddComponent<Consult>();

63 break;

64
65 case 2:

66 instance.GetComponent<Worker>().setType("Radiologist");

67 instance.GetComponent<Worker>().role = "Radiologist";

68 instance.AddComponent<Radiologist>();

69 break;

70
71 case 3:

72 instance.GetComponent<Worker>().setType("Analist");

73 instance.GetComponent<Worker>().role = "Analist";

74 instance.AddComponent<Analist>();

75 break;

76 }

77
78 int ranBonuses = Random.Range(0, 10);

79
80 switch (ranBonuses)

81 {

82
83 case 0:

Source code 91

84
85 instance.GetComponent<Worker>().walkingSpeedBonus = 3;

86 break;

87
88 case 1:

89
90 instance.GetComponent<Worker>().treatingSpeedBonus = 9;

91 break;

92
93 case 2:

94
95 instance.GetComponent<Worker>().moneyBonus = 15;

96 break;

97 }

98
99 if (genero == 0)

100 {

101 instance.GetComponent<Worker>().gender = "Male";

102 int randomPelo = Random.Range(0, pelosHombre.Length);

103
104 string name = Names.getNameMale();

105 instance.GetComponent<Worker>().name = name;

106 instance.name = name;

107
108 if (randomPelo != materialesPelo.Length)

109 {

110 GameObject pelo = Instantiate(pelosHombre[randomPelo],

111 genertaedCharactersList[i].transform, false);

112
113 pelo.name = "Pelo";

114 pelo.transform.rotation = Quaternion.Euler(-90f, 0, 0);

115 pelo.transform.localScale = new Vector3(1f, 1f, 1f);

116 pelo.transform.localPosition = new Vector3(0f, 0f, 0f);

117 }

118
119 int randomBarba = Random.Range(0, 11);

120 if (randomBarba == 0 || randomBarba == 1)

121 {

122 GameObject barba = Instantiate(peloFacial[randomBarba],

123 genertaedCharactersList[i].transform, false);

124
125 barba.name = "PeloFacial";

126 barba.transform.rotation = Quaternion.Euler(-90f, 0, 0);

92 Source code

127 barba.transform.localScale = new Vector3(1f, 1f, 1f);

128 barba.transform.localPosition = new Vector3(0f, 0f, 0f);

129 }

130 }

131
132 else

133 {

134 int randomPelo = Random.Range(0, pelosMujer.Length);

135
136 string name = Names.getNameFemale();

137 instance.GetComponent<Worker>().name = name;

138 instance.name = name;

139 instance.GetComponent<Worker>().gender = "Female";

140 if (randomPelo != materialesPelo.Length)

141 {

142 GameObject pelo = Instantiate(pelosMujer[randomPelo],

143 genertaedCharactersList[i].transform, false);

144
145 pelo.name = "Pelo";

146 pelo.transform.rotation = Quaternion.Euler(-90f, 0, 0);

147 pelo.transform.localScale = new Vector3(1f, 1f, 1f);

148 pelo.transform.localPosition = new Vector3(0f, 0f, 0f);

149 }

150 }

151
152
153
154
155 int children = genertaedCharactersList[i].

156 transform.childCount;

157
158 for (int j = 0; j < children; ++j)

159 {

160 int ran = Random.Range(0, materialesPiel.Length);

161
162 if(genertaedCharactersList[i].transform.GetChild(j).

163 GetComponent<SkinnedMeshRenderer>() != null)

164 {

165 if (genertaedCharactersList[i].transform.GetChild(j).

166 name == "Cejas")

167 {

168 genertaedCharactersList[i].transform.GetChild(j).

169 GetComponent<SkinnedMeshRenderer>().material =

Source code 93

170 materialesPelo[colorDePelo];

171
172 }

173 else if (genertaedCharactersList[i].transform.GetChild(j)

174 .name == "Piel")

175 {

176 genertaedCharactersList[i].transform.GetChild(j).

177 GetComponent<SkinnedMeshRenderer>().material =

178 materialesPiel[ran];

179
180 }

181 else if (genertaedCharactersList[i].transform.

182 GetChild(j).name == "Bata")

183 {

184 genertaedCharactersList[i].transform.GetChild(j).

185 GetComponent<SkinnedMeshRenderer>().material = bata;

186 }

187 else if (genertaedCharactersList[i].transform.GetChild(j).

188 name == "Camiseta")

189 {

190 int randomCamiseta = Random.Range(0, camsieta.Length);

191 genertaedCharactersList[i].transform.GetChild(j).

192 GetComponent<SkinnedMeshRenderer>().material =

193 camsieta[randomCamiseta];

194 }

195 else if (genertaedCharactersList[i].transform.GetChild(j).

196 name == "Pantalones")

197 {

198 int randomPantalon = Random.Range(0, camsieta.Length);

199 genertaedCharactersList[i].transform.GetChild(j).

200 GetComponent<SkinnedMeshRenderer>().material =

201 pantalon[randomPantalon];

202 }

203 else if (genertaedCharactersList[i].transform.GetChild(j)

204 .name == "Ojos")

205 {

206 int ojosRandom = Random.Range(0, ojos.Length);

207 genertaedCharactersList[i].transform.GetChild(j).

208 GetComponent<SkinnedMeshRenderer>().material =

209 ojos[ojosRandom];

210 }

211 }

212 else if (genertaedCharactersList[i].transform.GetChild(j).

94 Source code

213 GetComponent<MeshRenderer>() != null)

214 {

215 genertaedCharactersList[i].transform.GetChild(j)

216 .GetComponent<MeshRenderer>().material =

217 materialesPelo[colorDePelo];

218 }

219
220
221
222 }

223 }

224
225 workerShop

226 .setUI(genertaedCharactersList);

227 }

228
229
230 }

Source code 95

WorkerAI

LISTING B.5: WorkerAI
1 using System;

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using UnityEngine.AI;

6
7 public class WorkerAI : MonoBehaviour

8 {

9 private State state = State.WaitingForTask;

10 private CurrentTask currentTask = CurrentTask.nullTask;

11
12 private float maxWaitingTime = 1f;

13 private float waitingTime = 1f;

14
15 //[SerializeField]

16 private TaskManagement taskManagement;

17 private TaskManagement.TaskClean task;

18
19 private Vector3 target;

20
21 Renderer rend;

22
23 public Color c;

24
25 public bool working = false;

26
27 private bool sub_task1 = false;

28 private bool sub_task2 = false;

29 private bool sub_task3 = false;

30
31 private bool runing = false;

32
33 private TaskManagement.TaskClean taskClean;

34 private TaskManagement.TaskCleanStain taskCleanStain;

35
36 private NavMeshAgent agent;

37
38 public GameObject mancha;

39
40 private GameObject Stain;

96 Source code

41
42 private Vector3 comprobacion = new Vector3(123f, 321f, 456f);

43
44 NavMeshAgent navMeshAgent;

45 private enum CurrentTask

46 {

47 task1,

48 task2,

49 task3,

50 nullTask,

51 }

52 private enum State

53 {

54 WaitingForTask,

55 DoingTask,

56 DoingTaskClean,

57 }

58
59 private void Start()

60 {

61 navMeshAgent = this.GetComponent<NavMeshAgent>();

62 taskManagement = TaskManagement.Instance;

63 state = State.WaitingForTask;

64 currentTask = CurrentTask.nullTask;

65
66 agent = this.GetComponent<NavMeshAgent>();

67 }

68
69 private void Update()

70 {

71 if (target != null && target != comprobacion &&

72 agent.remainingDistance >= 1.5f)

73 {

74 //target = comprobacion;

75 //Vector3 rotation = Quaternion.LookRotation(target).eulerAngles;

76 //rotation.y = 0f;

77 //rotation.z = 0f;

78
79 transform.LookAt(target);

80 }

81
82 if (state == State.WaitingForTask && working &&

83 gameObject.GetComponent<NavMeshAgent>()!= null)

Source code 97

84 {

85 waitingTime -= Time.deltaTime;

86
87 if (waitingTime <= 0)

88 {

89 waitingTime = maxWaitingTime;

90 RequestTask();

91 RequestTaskClean();

92 }

93 }

94
95 if (state == State.DoingTask && working)

96 {

97 ManageTaskClean(taskClean);

98
99 }

100 else if (state == State.DoingTaskClean && working)

101 {

102 Stain = taskCleanStain.trash;

103 ManageTaskCleanStain(taskCleanStain);

104
105 }

106
107 }

108
109
110
111 private void ManageTaskClean(TaskManagement.TaskClean taskClean)

112 {

113 if (sub_task1 == false && !runing)

114 {

115 target = taskClean.position;

116 currentTask = CurrentTask.task1;

117 callCoroutine();

118 }

119
120 else if (sub_task1 == true && !sub_task2

121 && !runing)

122 {

123 currentTask = CurrentTask.task2;

124 callCoroutine();

125 }

126

98 Source code

127
128 else if (sub_task1 == true && sub_task2 &&

129 !sub_task3 && !runing)

130 {

131 Debug.Log("r2");

132 target = taskClean.position2;

133 currentTask = CurrentTask.task3;

134 callCoroutine();

135 }

136 else if (sub_task1 == true && sub_task2

137 && sub_task3)

138 {

139 Debug.Log("He acabado todo");

140
141
142
143 StopAllCoroutines();

144 RestartValues();

145 target = Vector3.zero;

146
147 }

148 }

149
150 private void ManageTaskCleanStain(TaskManagement.

151 TaskCleanStain taskClean)

152 {

153 if (sub_task1 == false && !runing)

154 {

155 target = taskClean.position;

156 currentTask = CurrentTask.task1;

157 callCoroutine();

158 }

159
160 else if (sub_task1 == true && !sub_task2

161 && !runing)

162 {

163 currentTask = CurrentTask.task2;

164 callCoroutine();

165 }

166
167 else if (sub_task1 == true && sub_task2)

168 {

169 Debug.Log("He acabado todo");

Source code 99

170 Destroy(Stain.gameObject);

171 Stain = null;

172
173 StopAllCoroutines();

174 RestartValues();

175 navMeshAgent.isStopped = true; ;

176
177 }

178 }

179
180 private void RestartValues()

181 {

182 //agent.isStopped = true;

183 taskClean = null;

184
185 state = State.WaitingForTask;

186
187 sub_task1 = false;

188 sub_task2 = false;

189 sub_task3 = false;

190
191 runing = false;

192 }

193
194 public void callCoroutine()

195 {

196 runing = true;

197 if (currentTask == CurrentTask.task2

198 && state == State.DoingTaskClean)

199 {

200 target = comprobacion;

201 StartCoroutine(FadeOut());

202 }

203 else if (currentTask == CurrentTask.task2

204 && state == State.DoingTask)

205 {

206 sub_task2 = true;

207 runing = false;

208 }

209 else

210 {

211 StartCoroutine(ExampleFunction());

212 }

100 Source code

213
214 }

215
216 public void RequestTask()

217 {

218 taskClean = taskManagement.RequestTask();

219 if (taskClean != null)

220 {

221 state = State.DoingTask;

222 }

223 }

224
225 public void RequestTaskClean()

226 {

227 taskCleanStain = taskManagement.

228 RequestTaskClean();

229 if (taskCleanStain != null)

230 {

231 state = State.DoingTaskClean;

232 }

233 }

234
235
236
237 IEnumerator ExampleFunction()

238 {

239 bool end = false;

240 agent.destination = target;

241 while (!end)

242 {

243
244 if (agent.remainingDistance <= 0.1f

245 && agent.pathPending == false)

246 {

247 end = true;

248 }

249
250 if (end)

251 {

252 //state = State.WaitingForTask;

253
254 if (currentTask == CurrentTask.task1)

255 {

Source code 101

256 //Debug.Log("Fin de la tarea 1");

257 sub_task1 = true;

258 runing = false;

259 yield break;

260 }

261 else if (currentTask == CurrentTask.task3)

262 {

263 //Debug.Log("Fin de la tarea 2");

264 sub_task3 = true;

265 runing = false;

266 yield break;

267
268 }

269 yield break;

270 }

271
272 yield return null;

273 }

274 }

275
276
277 IEnumerator FadeOut()

278 {

279 LeanTween.alpha(Stain, 0f, 2f).setDelay(0f);

280 yield return new WaitForSeconds(2);

281 sub_task2 = true;

282 runing = false;

283 }

284
285 }

Source code 103

	Contents
	Introduction
	Work Motivation
	Objectives
	Game Dynamics
	Environment and Initial State
	The state of the healthcare system in Spain after the pandemics

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Methodology, Work Development, and Results
	Work methodology
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Other considerations
	First section

	Bibliography
	Source code

