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In the present research, a high-resolution, detailed electric load dataset was assessed, collected by smart
meters from nearly a thousand households in Hungary, many of them single-family houses. The objective
was to evaluate this database in detail to determine energy consumption profiles from time series of daily
and annual electric load. After representativity check of dataset daily and annual energy consumption
profiles were developed, applying three different clustering methods (k-means, fuzzy k-means, agglom-
erative hierarchical) and three different cluster validity indexes (elbow method, silhouette method, Dunn
index) in MATLAB environment. The best clustering method for our examination proved to be the k-
means clustering technique. Analyses were carried out to identify different consumer groups, as well
as to clarify the impact of specific parameters such as meter type in the housing unit (e.g. peak, off-
peak meter), day of the week (e.g. weekend, weekday), seasonality, geographical location, settlement
type and housing type (single-family house, flat, age class of the building). Furthermore, four electric user
profile types were proposed, which can be used for building energy demand simulation, summer heat
load and winter heating demand calculation.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Objective

Building energy regulations focus on increasing the perfor-
mance of building structures and energy supply systems. This
way, overall energy use associated with building characteristics
is decreasing. However, it was observed that human behaviour in
buildings plays an essential role in the energy balance of a building
[1]. When an occupant turns on the heating, opens the window or
switches on the light, the building’s energy balance affects the
overall energy consumption. The rebound effect makes the issue
even more critical in energy-efficient buildings: as operation costs
become significantly lower, users lost an important motivation fac-
tor in saving energy. Significant effort has been made recently (lar-
gest international cooperative project: IEA EBC Annex 66 [2]) to
investigate and understand building occupants’ everyday activi-
ties, presence schedules and overall attitude to sustainability that
influence energy consumption.

A principal research trend in occupant behaviour modelling is
the application of data-driven methods [3,4]. In the past, only some
segments of the building stock’s and building users’ energy perfor-
mance could be analysed simply because of the lack of detailed
consumption-related information. Nowadays, the most significant
challenge in this area of research is still the lack of high-
resolution data on a large building population.

In our research, a high-resolution, detailed electric load dataset
was used which was collected by smart meters in nearly a thou-
sand households in Hungary, many of them single-family houses.
Our objective is to evaluate this database in detail, determine
energy consumption profiles from time series of daily and annual
electric load, and examine the factors influencing the profiles.
There are only a few examples in the literature to assess a building
sample of this size. We do not know of any similar analysis in the
Eastern European region, which is important because the economic
and cultural environment affects consumer habits as well.
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Nomenclature

Abbreviations
m_1-12 data of months 1 (January) to 12 (December) used for

creating profiles
m_4 data of month 4 (April) used for creating profiles
d_1-7 data of days 1 (Sunday) to 7 (Saturday) used for creating

profiles
d_3;4 data of days 3 (Tuesday) and 4 (Wednesday) used for

creating profiles
m_1_d_1;7 data of days 1 (Sunday) and 7 (Saturday) from month

1 (January) is used for creating profiles
DHW domestic hot water

Latin letters with different subscripts
d(pn,pm) Euclidean distance between the nth and mth profile

examined [-]
N number of data points in the profile type chosen (N = 97

for daily profiles with sampling time 15 min and N = 12
for monthly profiles) [-]

MD(n,k) membership degree of profile n related to cluster k [-]

b fuzziness parameter (here 1.5 is used) [-]
ai cohesion of profile examined (def. as the average dis-

tance between profile and other profiles in the same
cluster) [-]

bi separation of profile examined (def. as the average dis-
tance between profile and other profiles in the kth clus-
ter, K-1 pieces can be calculated from it, and the
minimum values are chosen) [-]

Si silhouette score (or width) calculated for the profile [-]
Pa,st average of electric power consumption for sampling

time [kW]
Pya,st whole year average of electric power consumption for

the sampling time [kW]
Ce,da daily electricity consumption averaged for the month

[kWh]
Ce,y daily average electricity consumption for the year

[kWh]
subscript a average -
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1.2. Consumption profiles

Electricity consumption profiles follow daily, weekly and sea-
sonal trends. Their shape is strongly influenced by the presence
and activity of the consumer and the characteristics of the equip-
ment used.

Detailed energy consumption profiles can be utilised by energy
supply and utility companies to forecast their energy (annual,
monthly, weekly and daily) production and supply. Comparative
analysis of electric production daily trends and demand-side pro-
files can provide essential information for electric grid operators
giving peak-shifting opportunities, decreasing operating hours of
peak power plants.

Characteristic consumer profiles can be recognised purely from
the database using clustering procedures. Such methods were also
used in the present research [5–7].

With the help of more accurate and up-to-date consumer pro-
files, more accurate calculations can be made with dynamic build-
ing simulation. Therefore, we’ve also aimed to develop profiles that
can be used for simulation practice.
1.3. Research question

Based on the preliminary data filtering, we narrowed our
research to 649 residential units (60.2% of them are family houses).
For this population, we determined daily electricity consumption
profiles and examined how the following factors influence the
shape of the profiles:

- type of meter and electric circuit in the housing unit (e.g. peak,
off-peak meter);

- day of the week (e.g. weekend, weekday);
- effect of seasonality on daily profiles;
- geographical location, type of settlement;
- type of building unit (single-family house, flat, age class of the
building).

The limited information available on the building units and the
measured data narrowed the research possibilities to the listed
factors.
2

We also examined the evolution of the annual profiles to see
which months can be characterised by higher consumption during
the year.

Finally, we proposed electrical profiles for dynamic simulation
modelling considering the specific data requirements of the simu-
lation. Although representativity was not a criteria when the
meters were installed (authors had no impact on the site selec-
tion), we proved that the analysis can provide statistically accept-
able results for Hungary (see table 4 and related text).

The paper is organised as follows: in Section 2 the theoretical
and calculation background is presented. This includes analysed
smart meter data and the building surveys made during the evalu-
ation. During the research the k-means, fuzzy k-means and hierar-
chical clustering techniques were tested and evaluated by using
the elbow and the silhouette methods and calculating the Dunn
index. In Section 3 the main results are presented based on the
analysis, which include daily and yearly electricity load profiles
and their evaluation. In Section 4 the main conclusions are pre-
sented along with proposed electric load profiles for residential
buildings, which can be used for modelling household equipment
heat load for heating and cooling system sizing and yearly building
energy simulation.
2. Theory/calculation

2.1. Smart meter data

2.1.1. Background
In December 2018, the European Union (EU) revised the Renew-

able Energy Directive. They targeted to 32% the overall Renewable
Energy Sources consumption by 2030 [8]. There, contrary to the
first approved Renewable Energy Directive [9], the relevance of
the Smart Cities and Smart Communities was highlighted to stim-
ulate the development of renewable energy and energy efficiency.
Similarly, the same year, the Amendment [10] to the Energy Perfor-
mance of Buildings Directive [11] considered integrating renew-
ables to smart grids and the smart readiness indicator part of the
digitalisation of the building sector. According to this Directive,
smart-ready systems can save energy by providing more accurate
information about consumers’ consumption patterns and enabling
a more effectively grid management and highlighting the relevance
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of interoperability between their systems, including smart meters.
These points were also highlighted by Aubel and Poll [12], who
added that the cost and hassle of the meter readings are reduced,
and the possibility of fraud is reduced.

Mainly, smart meters could increase renewable power in new
niche energy markets [13]. Therefore, smart meters represent a
key factor for energy saving in the EU buildings, responsible for
approximately 40% of energy consumption and 36% of CO2 emis-
sions. According to the European Commission’s report from 2014,
close to 200 million smart meters for electricity and 45 million
for gas would have been present by 2020 in the Member States.
By 2020, it was expected that almost 72% of European consumers
should have a smart meter for electricity, while 40% will have
one for gas [14]. However, the EU aimed to replace at least 80%
of electricity meters with smart meters in households and com-
mercial buildings by 2020, wherever it is cost-effective to do so
[15]. Currently, one can find significant differences in the progress
of the smart meter deployment in the Member States, the roll-out
of smart meters in Spain, Italy, Sweden, Estonia, and Finland is
above 80% whereas, for Germany, Ireland, Croatia, Greece, and
the Czech Republic, no smart meters are introduced [16].

All in all, the EU is considered a reference in the smart meter
roll-out by other non-EU countries, like Brazil [17]. Zhou and
Brown performed a comparative study of five European countries.
They proved that government interventions highly influence smart
meter deployment and that these systems do not necessarily dif-
fuse more rapidly in countries with a more robust manufacturing
capability [18]. Similarly, Hielscher and Kivimaa confirmed that
the smart meter evolution is strongly connected to UK energy poli-
cies [19].

Information gathered by smart meters and other advanced
metering infrastructures can be used in several ways. According
to the review of Kabalci, most of the current studies about smart
metering aim to increase energy efficiency, demand management,
utility planning, cost control, and constructions [20]. For instance,
Razavi et al. used electricity consumption data from more than
5 000 households to predict the present and future home-
occupancy status. They correlated the results with various house-
hold and building characteristics [21]. Kiguchi et al. based their
research on 646 Irish households for predicting the intra-day load
profiles. They developed a statistical model that can forecast the
impact of a Time-of-use tariff considering lifestyle constraints
[22]. Furthermore, smart sensing systems could also enable new
opportunities for making real-time decisions [23].

Notable efforts have been made in the use of energy meter daily
profiles in commercial building simulation. Roach proposed a mul-
timodel inference approach to prove the influence of tenant and
equipment behaviour in 129 commercial buildings’ seasonal elec-
tricity demand [24]. Li et al. carried out time-domain and
frequency-domain analyses on smart meter data of 188 commer-
cial office buildings to extract and quantify distributions of key
load profile parameters and periodic fluctuations and load variabil-
ity, respectively [25]. Najafi et al. reduced from 290 to 29 the fea-
tures utilized for estimating the buildings’ use type and improved
accuracy from 71% to 74%. Then, when reduced from 224 to 17 fea-
tures, the performance class classification accuracy increased from
56% to 62% [26].

Zhu et al. applied an effective framework based on three steps:
simple and efficient algorithms preprocess the high-frequency
building load time series into a set of meaningful daily profiles,
then, selecting appropriate data mining algorithms for appropriate
prediction models, and finally, their residuals are analyzed by sta-
tistical quality control theory. For each load profile, a control chart
with upper control limit is created.[27]. Gunay et al. developed an
electricity end-use disaggregation method and tested it using data
from an academic office building with six different load disaggre-
3

gation scenarios. This method utilizes building automation system
data to disaggregate low-frequency electricity data into major
commercial building end-uses. Low-frequency meter data was dis-
aggregated at a reasonable accuracy with the contextual informa-
tion provided by the data [28]. Samadi and Fattahi quantify
Energy Use Intensity for different load categories through a energy
disaggregation model for institutional buildings. This model, that
analises the relation between load categories and dependency fac-
tors, is able to distinguish daily-used devices and common loads
deploying their dependency on workdays and occupancy factors
[29].

Apart from the previous examples, in recent years, smart meter
measurements are being used for detailed analysis and forecasting
of household loads, clustering methods and classifying of different
types of load profiles [30]. In this sense, Yildiz et al. provided
guidelines to enable more objective comparisons between differ-
ent models and studies [30]. Moreover, Torriti stated that electric-
ity loads depend predominantly on the timing of human activities
rather than prices and are easily predictable in offices than in res-
idential buildings. Therefore, occupants and appliances character-
istics will be a key factor, together with dwelling characteristics
[31].

Ndiaye and Gabriel used data gathered from energy audits,
phone surveys, and smart meter readings in a principal component
analysis to generate household electricity consumption regression
models [32]. They have reduced the number of variables from 59 to
9 to avoid multi-collinearities: the number of occupants, owner-
ship, number of weeks of vacation per year, type of fuel used in
the pool and domestic hot water heater, and heating system, the
existence of air conditioning system and its typology, and number
of air changes per hour (at 50 Pa). McLoughlin et al. obtained that
household composition, number of bedrooms, water heating, and
cooking type were the most influential variables on maximum
household electricity consumption [33]. Kavousian et al. classified
factors that influence household electricity consumption in major
groups: external conditions, physical characteristics of dwellings,
appliance, electronics stock, and occupants; being the first and sec-
ond groups the most influential on the resulting hourly value [34].
Beckel et al. have designed and developed a system that classifies
private households according to pre-specified properties [35].
The evaluation of 3 488 households proved that this system could
classify with good accuracy eight properties: marital status, age of
the building, members in the family, number of children, type of
cooking facility, retirement, and employment of chief income
earner. Tong et al. used smart meter readings from more than
5 000 Irish households to identify energy behaviour indicators
through a cross-domain feature selection and coding approach
[36]. Their results show that employment status and internet
usage are highly correlated with household energy behaviour.
Huebner et al. used data from 845 households have found that
appliance ownership, and usage and household size are the most
influential variables in understanding electricity consumption in
natural gas-fuelled, centrally heated buildings [37].

Viegas et al. combined smart metering and survey data to clas-
sify new residential electricity customers using model-based fea-
ture selection [38]. They have proved that survey data increases
up to 20% the accuracy of the classification. Using one week of
metering data, more than 50% of the customers are correctly clas-
sified into four consumption groups. In the same way, Gouveia and
Seixas used socio-economic characterisation of the household
members (mainly number of occupants and monthly income),
dwellings physical characteristics (year of construction and total
floor area) and electrical heating/cooling equipment and fireplaces
information (municipality of Évora, Portugal) to reduce the initial
proposal of 10 clusters to 4, following 77% of them the U shape
electricity annual profile [39]. Then, Gouveia and Seixas state that
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hourly electricity consumption deviations from average for differ-
ent maximum and minimum daily temperatures can be used to
cluster households with comparable space heating and cooling
behaviour [40]. Laicane et al. have classified households into 7
groups according to heating used in households [41]. After elimi-
nating predictors with low significance, they saw that it is possible
to explain part of the variability of electricity use and that the most
statistically significant factors affecting household electricity use
are the number of appliances and household floor area, followed
by net income, year of construction and temperature set during
winter. Dane and Swan have included domestic hot water and
compared two smart meter electricity datasets [42]. The seasonal
and daily observations prove that appliances, lighting, and plug-
loads mainly drive other consumption profiles, but they recom-
mend shorter time steps (5 min) to identify shorter duration loads.

McLoughlin et al. have continued their previous work and eval-
uated k-means, k-medoid, and SOM clustering methods, being the
last one the most suitable [43]. Hache et al. have identified the
transparent and straightforward set of socio-economic, dwelling
and regional characteristics as critical drivers of the different levels
of French households’ energy consumption using the CHAID (Chi-
Square Automatic Interaction Detection) clustering methodology
[44]. Income is crucial, but the age of the household’s representa-
tive, the family type and the tenure are factors that should be
accounted for in determining the households’ energy consumption.
Azaza and Wallin used the electricity consumption variance to
identify consumer groups (behaviour variability or customers’
behaviour changes) with higher contribution to utility system
peak, based on hierarchical and SOM clustering techniques [45].
They distinguished five clusters with marked characteristics. Khan
et al. have proposed a clustering algorithm for big-data analysis of
highly non-linear smart meter data profiles using a set of weighted
linear profiles, considering different clustering scenarios [46]. The
method extracts patterns with high intra-cluster pattern similarity,
among other benefits. Funde et al. have developed and tested (on
two smart meter datasets) a motif-based association rule mining
procedure to determine the energy usage daily profile and to iden-
tify the association between the energy-consuming appliances
[47].

Using a different kind of clustering methods to analyse the
energy consumption data is a generally applied solution. No best
clustering technique exists; their practicability depends on the
input parameters. Therefore, several types of them have applied
in energy consumption related studies. For example, in the work
of Wang et al. GMM clustering method is used to identify the
groups of district heating users based on their consumption pat-
tern features [48]. Yilmaz et al. have applied the commonly used
k-means clustering technique to analyse the electricity consump-
tion data of Swiss households [49]. The electricity consumption
profile of Chinese residential users was examined by the fuzzy c-
means clustering method by Zhou et al. [50]. Li et al. have a new
strategy proposed, which combines agglomerative hierarchical
clustering technique with other methods to forecast the electricity
consumption [51].

Using clustering techniques, several types of energy data could
and were examined effectively. For example, in the work of Wang
et al., the spatial hierarchical clustering method was applied to
explore the geographical characteristics of the final energy con-
sumption in China [52]. Pieri et al. have used the k-means cluster-
ing method to cluster Attica hotels based on energy consumption
data and physical parameters [53]. This way the energy efficiency
of the hotels could be compared with others with similar charac-
teristics. The focus of Gianniou et al. was the daily heating con-
sumption analysation of Danish single-family houses [54]. The k-
means clustering method was used to determine the heating con-
sumption profiles of district heating users, and the effect of build-
4

ing and occupant related characteristics was also examined. In
addition, clustering techniques were applied to analyse the natural
gas consumption in Algeria [55], water consumption in Greece [56]
and occupancy data in UK [57].

The exact knowledge of electricity load patterns is important for
many reasons. Various Demand Side Management (DSM) tech-
niques can ensure the required energy needs economically and
environmentally-friendly [58]. Applying these techniques, the
knowledge of the energy consumption profile is required to
develop the proper DSM method and ensure a balance between
energy production and energy consumption. The energy consump-
tion profiles are also essential input parameters for dynamic
energy simulation models, and they are necessary for technical
building system planning.

In this research, the electricity consumption data of residential
buildings were analysed. In the literature, several examples could
be found for similar investigations. For example, Stre-Meloy has
examined the residential electricity usage of weekdays during
the evening peak period [59]. As a result, the consumption profiles
were sorted into two clusters, and the key influencing activity fac-
tors of classification were determined. Another example is from
China [60]. In this research, an improved fuzzy c-means clustering
method was used to determine characteristic monthly electricity
consumption profiles based on December 2014. Wen et al. have
developed an improved k-means clustering technique, and a
shape-based method was suggested for examining residential elec-
tricity consumption data [61]. The improved k-means clustering
technique was tested on two different datasets (from Ireland and
China), the shape-based method was tested in the Irish dataset.
Bourdeau et al. have investigated the electricity consumption data
of higher education buildings [7]. For this analysis, three different
k-means clustering techniques were examined and compared
while the timeframes and time-steps of input data were modified.

2.1.2. Smart meter dataset and building survey
In a national demonstration project conducted by KOM Ltd.,

128 634 smart meters were installed in different regions of Hun-
gary (Fig. 1) [62]. The main goal of the demonstration project
was to install meters in as many buildings as possible of different
types (residential, public, commercial, and industrial) and different
settlements (capital, cities, towns, and villages). However, statisti-
cal representativeness was not targeted. Meters were primarily
installed in Central Hungary and the Southern Great Plains. While
there were many smart meters installed in Northern Hungary and
the Northern Great Plains, they were only in two cities (Nyíre-
gyháza and Miskolc). Altogether 28 993 m measured electricity
consumption, of which 24 917 were installed in residential build-
ings (Table 1).

KOM Ltd. provided us the anonymised data for research pur-
poses within the framework of a bilateral cooperation agreement.
Authors are not allowed to make the data publicly available Cur-
rently the dataset is managed by MVM ESCO Ltd. company, legal
successor of KOM Ltd.

One of our research goals was to analyse the possible differ-
ences between building types and settlement types, so further
elaboration of the datasets was necessary (Table 2). The electricity
supplier provided us with the exact address only for 9 237 m. In
the next step, preliminary filtering was applied to remove unreli-
able datasets (see 2.1.3), which resulted in 4 454 useful datasets.
The buildings corresponding to these addresses were then sur-
veyed with the help of a GIS mapping tool to gather qualitative
information that may be relevant for further analysis. An expert
identified the building and assessed the building function, building
type, covered area, number of stories, general condition of the
building, visible retrofit measures (change of windows, additional
insulation on façade), type of roof (flat roof, pitched roof occupied



Fig. 1. The geographical distribution of the installed smart meters.

Table 1
Number of meters deployed in the KOM project for the different consumption types.

Consumption
type

Total no. meters deployed Residential meters
deployed

Natural gas 22,079 7368
Heat 53,447 53,432
Electricity 28,993 24,917
Water 24,115 22,231
R 128,634 107,948
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or unoccupied) and the presence of solar panels/collectors. In this
paper, only the information on the size of the building, the building
type and condition was used. The three main building categories
applied in this paper are single-family homes before and after
1990 and multi-family buildings. Although the survey process
involved some manual work, it generally worked well and fast
enough. However, in some cases, the building could not be identi-
fied, streetview images were missing or blocked by external
objects such as trees. In some instances, the house number was
unrecognisable. Finally, 1 282 datasets were selected for analysis
where both metered data quality was high, and further informa-
tion on the building was available. Some meters were excluded
in a later processing phase due to further irregularities, and 1186
datasets were included in the cluster analysis. For these meters
raw data is available from January of 2017 to December of 2018.
Table 2
Number of electricity meter datasets analysed after filtering and survey.

Address available Pre-filtered data Surveyed addres

Electricity 9237 4454 4090

5

For some meters, this timespan is shorter, but for all meters
included in the investigations the analysed dataset is at least 1 year
long. The sampling time for all meters is 15 min.

Out of the 1186 m, 649 were regular meters without photo-
voltaic grid feed and 370 with photovoltaic feed. 167 m measured
only off-peak energy consumption. Out of the 649 regular meters,
158 were paired with an off-peak meter at the same address
(Table 3).

The buildings having the 10 lowest and the 10 highest annual
electricity consumption were compared separately for single-
family and multi-family buildings. In the case of single-family
homes, there were significant differences. The houses with shallow
energy consumption are usually in poor visible condition (e.g. not
renovated old buildings), have smaller floor areas and have bad
building envelope characteristics (old windows, uninsulated walls
etc.). On the contrary, houses with very high energy consumption
usually seem to be recently renovated or newly built. They are big-
ger buildings and have good building envelope characteristics (in-
sulating windows, insulated walls etc.). The higher number of
occupants can explain the higher consumption of renovated/new
buildings – e.g. the building has a family in it with at least 4 people
– and more household appliances. In old buildings, especially in
the countryside, older adults mostly live alone or in couples with-
out children due to the urbanisation effect. In the case of multi-
family homes, this kind of conclusions could not be drawn. The
flats in the same building have very different electricity demand.
s Surveyed buildings Analysed meters Clustered meters

2595 1282 1186



Table 3
Types of the analysed electric meters.

Clustering results – analysed electric meters

1. without photovoltaic grid feed
(Group A)

2. off-peak (Group
B)

1. + 2. 3. peak meters (off-peak meter also in the unit)
(Group C)

4. with photovoltaicgrid
feed

1. + 2. + 4.

649 167 816 158 370 1186
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In this case, the flats probably have similar properties, the beha-
viour of the occupants causes the differences.

Regarding the representativeness of the sample analysed in
terms of the Hungarian residential building stock, it can be stated
that the analysis of 1186 m can provide statistically relevant
results with 3% error besides 95% confidence interval [63]. This is
considered to be a good representation of the total number of
4 439 959 residential units found at the 2018 local census [64].

In our analyses conducted on settlement types and building
types, the error exceeds these levels because, for some categories,
the number of meters with appropriate data quality decreased sig-
nificantly. Only 52% and 54% of meters could be assigned to settle-
ment or building type categories respectively. The error of the
statistical representativeness can be seen in Table 4 for the cate-
gories mentioned above:

2.1.3. Preliminary data filtering
For the data assessment, we used MATLAB software [65]. Con-

sidering the large amount of data, automatic algorithms were
developed to facilitate data filtering and processing.

The smart meter data available was filtered first to remove
meters with unreliable data (e.g., too many interruptions in col-
lected data, irregular values, or trends). For the filtering process,
an algorithm was developed. For this filtering, the meter readings
were used, the electricity used from the first data point sampled
to the actual point. The most important filtering aspects were as
follows:

1. Removal of meters with long interruption periods:
a. A criterion was established to remove meters with interrup-

tions of longer than 48 h for more than 3% of the data points.
b. The sampling time calculated was summed for all points.

Also, the times lower than 48 h were summed as well. The
ratio of these two sums was calculated, and it should be
higher than 0.95.

2. Removal of meters with zero or negligible consumption: For fil-
tering out such meters, the mean electric power demand
between two measured points was calculated. Meters with
electric power equal to zero for more than 99% of the measured
points were excluded from further investigations.

3. The number of adjacent days for which at least in one of the
points the electric power demand was not zero was calculated.
The number of such days had to be higher than 365.

In addition to these steps, the profiles were further filtered dur-
ing the clustering process.
Table 4
Statistical errors in the categories applied besides 95% confidence interval.

Village 9% Single home built before 1990 5%
Town 8% Single home built after 1990
City 5.5% Multi-family building 6.5%
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2.2. Clustering methods

In this chapter, the used clustering methods are described. In
our investigation, three different clustering methods were applied
to examine the energy consumption data in MATLAB. The models
were built in MATLAB based on our codes, while the existing func-
tions were not used. First, the k-means clustering method was
selected because it is commonly used in studies in this field. Sec-
ond, the fuzzy k-means clustering method was applied, a modified
version of the k-means clustering technique. Third, the agglomer-
ative hierarchical clustering technique was used. The hierarchical
clustering methods work with a different logic and without itera-
tion, contrary to k-means techniques. Applying the clustering
methods, the distance metric for the calculation has to be given.
The determination of this metric has a significant impact on the
result. For our analysis, the Euclidean distance metric was used
based on the literature, which is the most used solution and appro-
priate for our research. This assumption is reinforced by Li et al
[66]. The used distance calculation method was set on the basis
of the work of Chicco et al [67]:

d p1;p2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

pn:i � pm;i

� �2
vuut ð1Þ

where pn and pm are the examined profiles, N is the number of sam-
ples in the examined time period.

K-means clustering method is a hard clustering technique. It
means that every data is ordered into only one cluster. This tech-
nique works in iteration steps [68]. First, the number of clusters
(k) must be determined, and ‘‘k” random initial data has to be cho-
sen as the centroid of the clusters. At the next step, the distance
between each data and the cluster centroids must be calculated.
Each data is ordered into the cluster from which its distance is
minimal. After that, the new cluster centroids must be calculated
based on the data belonging to the clusters. The centroid profiles
of the clusters were calculated as the mean value of the profiles
belongs to the same cluster every 15 min. Then the distances have
to be recalculated, and the steps have to be repeated until the given
criterion is fulfilled. The results of this method depend on the first
random initial cluster centroids. To avoid this problem, basic pro-
files were chosen based on the consumption data and the agglom-
erative hierarchical technique, and the results were compared. The
final result was chosen based on the cluster validity indexes,
described in the next Section. Applying the k-means clustering
method, the iteration lasted until no data is ordered into another
cluster, but a maximum of 1000 iteration were allowed.

The fuzzy k-means clustering method works similarly to the k-
means clustering technique [67]. The difference is that the fuzzy k-
means method is a soft clustering technique. It means that every
data are ordered not only into one cluster but into every cluster
with different probability, given by the membership degree. The
membership degree is calculated based on the distances between
the data and cluster centroids [60,69]:
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m¼1
d pn ;ckð Þ
d pn ;cmð Þ

� � 2
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where p(n) are the consumption profiles, c(m) are the cluster cen-
troids, b is the fuzziness parameter.

The value of the cluster centroids was calculated, taking into
account the membership degree. Calculating the membership
degree, the fuzziness parameter has to be given, which determines
the fuzziness of the clustering method. When higher parameters
applied, all data have a stronger influence on the value of all cluster
centroids. Even though the recommended and most commonly
used value is 2 [69], 1.5 was set in our research as the fuzziness
parameter. When the value 2 was used in our investigation, the
final cluster centroids were too similar. The clustering became
meaningless, and therefore the reduction of this value was neces-
sary. Similarly to the k-means technique, the number of clusters
has to be given in the first step. The method results also depend
on the first random initial cluster centroids; therefore, the basic
profile combinations were selected the same way as in the k-
means technique. During the iteration, the maximum distance
between cluster centroids was divided by an average value of the
cluster centroids for every 15 min of data. An average value of
them was determined. The iteration lasted until the changes of
the cluster centroids dropped below 0.5%.

The third applied technique is the agglomerative hierarchical
clustering method. This method works in steps, and there is no
need for iteration [68]. In the first step, every data belong to sepa-
rate clusters. The distance between each cluster centroids – which
are the first step – is calculated, and the two nearest clusters are
merged. In this research, the cluster centroids were calculated as
the mean value of all data merged into the same cluster. This
method could be continued until every profile is merged into one
cluster; therefore, the number of clusters does not have to be
determined beforehand. Because of its working method, the results
of this clustering method are always the same; just the final num-
ber of clusters have to be determined manually.
2.3. Clustering results evaluation

Several cluster validity indexes could be used to determine
how well a clustering method works on our data and the optimal
number of clusters [70]. Three different techniques were applied
in our work: the elbow and the silhouette methods and the Dunn
index.

The usage of the elbow method is prevalent, even though the
number of clusters could not be determined based on objectively
calculated values. To apply this technique, the sum or the average
of the distances between the cluster centroids and cluster profiles
have to be calculated and plotted according to the number of clus-
ters. The ‘‘elbow” of this diagram indicates the optimal number of
clusters. In our investigation, the sum of distances was calculated
and plotted for 1–10 clusters. Due to its empirical features, the
determination of the optimal number couldn’t have been
automated.

To apply the silhouette method, the silhouette score has to be
calculated on the basis of distances. The value of this score shows
the goodness of clustering, the optimal number of clusters is at the
maximum silhouette score. The silhouette score was calculated for
every profile. The cohesion (ai) was determined as the average dis-
tance between the examined profile and the other profiles in the
same cluster. To determine the separation (bi), the average dis-
tances between the examined profile and the profiles in other clus-
ters were calculated. Therefore k-1 values were obtained, and the
minimum value was chosen to represent the separation. The sil-
houette score was calculated as in [68]:
7

Si ¼ ðbi � aiÞ
maxfai; big ð3Þ

The silhouette score of the clustering method was determined
as the average of the silhouette values of each profile.

To calculate the Dunn index, the optimal number of clusters is
indicated by the maximum value. For this analysis, different dis-
tance values could be applied [70]. For each clustering result, one
Dunn index value was determined in our research. First, the dis-
tances between the cluster centroids were calculated, and the min-
imum value was chosen. Second, the maximal distances between
profiles in the same clusters were determined, and the highest
value of them was chosen. The Dunn index was calculated as the
ratio of the minimal distance between cluster centroids and max-
imal distance between profiles in the same cluster.

In our previous work, educational building gas consumption
data were analysed, and different examination options were com-
pared [71]. Three different measurement profile types were used:
normal, simplified and integral. We found the normal profile type
as the most appropriate. Therefore, in this research, only this pro-
file type was examined. In our previous paper, k-means, fuzzy k-
means and agglomerative hierarchical clustering methods were
used as well. The above-mentioned indices were applied to deter-
mine the optimal number of clusters: elbow method, silhouette
index, and Dunn index. In conclusion, the fuzzy k-means clustering
technique proved to be the most suitable method, and the number
of clusters was determined the best by the elbow method.
2.4. Workflow and methodology

The methodology of our work is presented in Fig. 2. It shows the
different steps of data processing and evaluation.

The meters used for this paper were residential electricity
meters. Among this broader group, five subgroups were estab-
lished for the clustering process according to the sub-metering
principle: A) regular electricity meters; B) off-peak meters only;
C) regular meters only (in these housing units there is also an
off-peak meter); D) regular meters and accompanying off-peak
meters summed up (sum of B and C meters); E) merge of group
A) and D), which includes all investigated apartments. Further
groups could also be defined, but they were excluded from this
research (for example, housing units with significant photovoltaic
feed to the grid, as apparently photovoltaic panels were installed
for these locations).

Group A covers the most widespread case, but the available
information is not purpose-specific as it can cover any form of elec-
tric use, including electric DHW production (DHW not connected
to the off-peak meter in this case) or not. However, this is the most
representative dataset among all.

Group B was set up for meters with off-peak controlled electric-
ity. These meters were installed alongside regular electricity
meters. Off-peak electricity is used mainly for DHW production
in Hungary. These profiles are influenced by the load of the grid
and the operational scheme of the grid operator. Group B can give
valuable information about the hot water production schedule and
off-peak times of the operator.

Results of group C can provide the most reliable information on
electricity use without hot water production. It is the most valu-
able information for building simulation models as profiles for
housing appliances and lighting energy demand inputs can be
given independently from the hot water demand. Therefore, we
focused on this group the most.

Group D is a synthetic group created for investigating the
impact of DHW production on the total electricity consumption
profile.



Fig. 2. Workflow for creating the different groups for further analysis of data.
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And finally, group E includes the total consumption of all hous-
ing units.

In addition to these groups, the regular meters (Group A) were
studied in groups based on the location and the building type they
were installed in. The number of meters in each group is shown in
Fig. 3. In Group E, Group A and Group D are both included.

For each group, ‘‘annual profiles” were created. The annual
profile represents the monthly mean values of the daily electricity
consumptions of the month. It is better than monthly consump-
tions since it eliminates the different length of the months.

Daily profiles were created from the hourly mean electric
power (hourly average of the 15 min samples). For each day, one
profile can be determined. As occupancy profiles change during
the week, we analysed separately Tuesdays and Wednesdays (rep-
8

resenting typical weekdays), Saturdays and Sundays (weekends),
and Friday as a transient day before the weekend. Daily profiles
can be influenced by the seasons (e.g. cooling energy demand in
summer, electric heating in winter); therefore, the daily profiles
were checked for other characteristic months (mainly January,
April and August, depending on the purpose of the analysis). The
coldest month was January, and the hottest one was August in
the analysed period. The applied day and month combinations
are presented in Table 5.

Our main focus was to determine the time dependence of daily
fluctuations rather than absolute consumption values. No informa-
tion was available about apartments’ size and number or composi-
tion of occupants. Therefore, specific dimensionless values were
calculated for each meter, dividing the hourly values by the annual



Fig. 3. Number of meters in each group.

Table 5
Days investigated for different months of the year.

Months All days Wednesday Friday Saturday and
Sunday

Tuesday and
Wednesday

All year X X X X X
January X X
April X X
June X
August X X X
October X X
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mean value of the corresponding meter. For the annual profile, the
monthly values were divided by the annual monthly average.

2.5. Selection between clustering methods

The selection between the different clustering methods can be
achieved in two different ways. No uniform recommended solution
or cluster validity indexes were found to determine the optimal
Fig. 4. The maximum value of the Dunn index versus the c
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clustering method in the literature. Therefore, the following two
techniques were applied for our examination.
2.5.1. Selection on basis of cluster validity indexes
The cluster assessment metrics, like the total within the sum of

distances (for using the elbow method), the silhouette and the
Dunn index, can be used for selecting the optimal number of clus-
ters, but for selecting the optimal clustering method as well. Fig. 4
presents the Dunn index metric for clustering, performed on data
of group A. The results of the other metrics performed on the same
group of data could be found in Annex 1. For this investigation, k-
means clustering was performed in two different ways: on the reg-
ular way and by applying a constraint on the minimal number of
profiles in one cluster; for this case, it was 10. From the figures,
it can be seen that regular k-means and hierarchical clustering out-
perform the modified k-means and fuzzy k-means techniques.
However, in the latter two cases, the total sum of distances is much
smaller; therefore, from this point of view, they proved to be better
methods for this database.
2.5.2. Selection on basis of cluster centroids
The cluster centroids are basically the average profiles of all

profiles belonging to the same cluster for the k-means and hierar-
chical clustering methods. In contrast, in the case of fuzzy k-means
clustering, other profiles are used to calculate the centroids. These
centroids can be visually assessed, and the clustering method pro-
viding the most realistic results can be selected. Examples can be
seen in Fig. 5 and Fig. 6 and in Annex 2, which present all daily pro-
files of the year from group A. The title of the figures indicates the
examined time periods: m_i represents the months (1: January, . . .,
12: December), d_j represents the days (1: Sunday, . . ., 7: Satur-
day). The clusters acquired for the max silhouette were selected
for interpreting this selection method. The hierarchical and k-
means clustering methods created clusters with a low number of
irregular, outlying profiles (Fig. 5). The other two methods pro-
duced more representative results in each cluster (Fig. 6). The fig-
ures in Annex 2 (Figure A.3 – Figure A.5) show very similar trends:
lustering method for the cases investigated in group A.



Fig. 5. Cluster centroids and profiles in group A, m_1-12_d_1-7 for two clusters determined with A.: the k-means method with no constraint, B.: the hierarchical method.

Fig. 6. Cluster centroids and profiles in group A, m_1-12_d_1-7 for two clusters determined with A.: the fuzzy k-means method, B.: the k-means method with constraint of
having 10 profiles minimally in a cluster.
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while the hierarchical clustering sorts the irregular profiles into
small clusters, the modified k-means and fuzzy k-means clustering
techniques create larger clusters with similar cluster centroid
profiles.
Fig. 7. Clustering metric for k-means method with constraint of having 10 profiles
minimally in a cluster for group A, m_1-12_d_1-7.

Fig. 8. Cluster centroids and profiles in group A, m_1-12_d_1-7 for three clusters
determined with the k-means method with constraint of having minimum 10
profiles in a cluster.
2.5.3. Selecting the number of clusters
Once the clustering method is selected, the number of clusters

has to be decided. The optimal number of clusters varies from case
to case and has to be decided individually. The following two
examples explain how the optimal number of clusters was decided.

The first example shows how the optimal number of clusters
was selected for group A, including all daily profiles of the year.
As a first step, the total within the sum of distances and the Dunn
index and silhouette score values have to be determined for differ-
ent cluster numbers (Fig. 7). It is worth specifying a maximal num-
ber of clusters as a second step because small, non-representative
clusters appear above a certain number of clusters. In addition, the
high number of clusters is difficult to manage, and its usefulness is
questionable. In our example, the optimal number of clusters
seemed to be 3 or 4. Results for the two cases are presented in
Fig. 8 and Fig. 9. The third step is a visual inspection. Looking at
the diagrams, it is easy to conclude that the four clusters case does
not provide any additional information than the three clusters
case, as obviously two of the four have very similar characteristics.
Thus, the three clusters case should be selected in this example.

The second example shows how the optimal number of clusters
was selected for group B (off-peak meters), including all daily pro-
files of the year. In this case, after checking the metrics (Figure A.6)
the optimal number of clusters seemed to be 4 or 6 on the basis of
the total within the sum of distances. However, for the other two
metrics, it was clearly 2, which seemed to be too few after analys-
ing the results manually. Results for the 6 clusters are presented in
Figure A.7. By visual inspection, it can be easily recognised that the
last cluster contains only meters with zero consumption. Obvi-
ously, in these apartments, no appliances are connected to the
10



Fig. 9. Cluster centroids and profiles in group A, m_1-12_d_1-7 for four clusters determined with the k-means method with constraint of having minimum 10 profiles in a
cluster.
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off-peak meter, so they should be removed from the group. After
removal, the optimal number of clusters proved to be four, and this
clustering result is presented in Figure A.8.

In the visual inspection phase, the most frequent reasons to
select the lower number of clusters are: a) too low number of
meters are in one cluster, b) two clusters show very similar charac-
teristic or c) irregular meters are in a cluster that should be
removed from the population.

3. Results and discussion

3.1. Analysis of daily profiles

In this chapter, results of daily profiles are presented to identify
peak and low demand periods during the day and determine typi-
Fig. 10. Cluster centroids and profiles in group A and C, m_1-12_d_1-7 for three cluster
minimally in a cluster, respectively.

Fig. 11. Cluster centroids and profiles in group B, m_1-12_d_1-7 for four clusters determ
cluster.
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cal occupant profiles. Our goal was to investigate the impact of the
following parameters on energy profiles: group class (A, B, C, D, E),
day of the week (mainly weekdays/weekends), season, settlement
type and building type. Average profiles were determined for each
group and parameter to illustrate the daily evolution of electric
energy consumption. All diagrams are dimensionless: in the daily
diagrams, the measured values are divided by the annual daily
average consumption; in the annual diagrams, they are divided
by the annual monthly average value. Thus, the detection of fluctu-
ations and amplitudes within the period is not disturbed by the dif-
ferences between consumption magnitudes.

3.1.1. Comparison of results per group
Results per group are presented in Fig. 10-Fig. 12. The tables

under the figures show the number of profiles used to create the
s determined with the k-means method with constraint of having 10 and 5 profiles

ined with the k-means method with constraint of having 1 profiles minimally in a



Fig. 13. Cluster centroids and profiles in group A, m_1-1_d_1;7 for three clusters
determined with the k-means method with constraint of having 10 profiles
minimally in a cluster.
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cluster centroids presented in the figures. Group A and Group C
show up nearly identical performance (Fig. 10), meaning that those
apartments, which are not equipped with an off-peak meter, use
similar electric appliances as those in Group C. Therefore, it means
that apartments without off-peak meters are mostly not using
electricity for DHW production. Otherwise, their profile should
be different. Out of the three clusters, two show similar trends with
an evening peak. The difference is the magnitude of the peak; eve-
ning consumption is significantly higher for one cluster, which
might be caused by more people arriving home after office hours
and also which was found to be a characteristic of one-person
households and two-bedroom apartments by our earlier review
[72]. The third cluster shows a more balanced consumption during
the day, which is likely to be caused by users staying at home all
day.

Fig. 11 presents clustering results for off-peak meters only
(Group B). Here, consumption is not determined only by the
demand but by the supply as DHW tanks are heated when the util-
ity company provider feeds electricity into the off-peak circuit. In
fact, according to the graphs, in terms of the shape of the profiles,
the feed is the determinant, not the demand. Thus, it is not possible
to assign characteristic consumer behaviour to different clusters.
The shift between load and demand is due to the tanks. In order
to determine the demand profile for DHW, it would be more ben-
eficial to analyse water consumption trends in future research.

Taking a look at Fig. 12, we can conclude that the impact of
DHW production connected to the off-peak circuit is dominant
on the total consumption. Consequently, the problem described
in Figure B is inherited by groups D and E. Therefore, the power
supply of the utility company takes the dominant impact on con-
sumption, and the profile of the demand cannot be clearly sepa-
rated due to the time shifts caused by the buffer tank. It would
be more appropriate to determine the DHW demand profile based
on the water consumption data, which is out of the current work
scope.

It can be concluded that the analysis of group C is the most
expedient for determining the daily electrical consumer demand
profiles. Nearly the same results can be expected from the analysis
of Group A, which has a higher sample number, therefore in the
next sub-chapters, we focused on the results of Group A. However,
as we will see later, the situation is different when examining
annual profiles.
Fig. 14. Cluster centroids and profiles in group A, m_1-1_d_3-4 for three clusters
determined with the k-means method with constraint of having 10 profiles
minimally in a cluster.
3.1.2. Day of the week
As occupancy is significantly different in many residential

buildings between weekdays and weekends, we performed sepa-
Fig. 12. Cluster centroids and profiles in group D and E, m_1-12_d_1-7 for five clusters
minimally in a cluster, respectively.
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rate clustering analysis for weekends (Saturdays and Sundays,
Fig. 13) and weekdays (Tuesdays and Wednesdays, Fig. 14). The
weekday analysis was restricted to two days so that the same sam-
ple number could be achieved for the two cases. Furthermore, the
impact of particularities of the start and the end of the working
period (Monday and Friday) could be eliminated in such a way.

Fig. 15 merges results for both cases and the ‘‘all days of the
week” as well. To find the different groups’ similar profiles, we
compared them one by one by calculating the minimum distance
to the average profile using iteration. Additionally, the number of
buildings belonging to the cluster centroid is shown in the table
below the graph.

Interestingly, there is only a moderate difference between the
shapes of the weekdays (Wednesday-Thursday) and weekend
determined with the k-means method with constraint of having 10 and 5 profiles



Fig. 15. Cluster centroids compared in group A for m_1-12 with numbers of profiles in each cluster, determined with the k-means method with constraint of having 10
profiles minimally in a cluster.
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(Saturday-Sunday) profiles. Still, there is a significant shift in the
number of dwellings in each cluster. From this, we can conclude
that some consumers are switching to another profile when the
weekend comes. Between Wednesdays and Fridays, no remarkable
difference could be found (Fig. 16).

Results for the off-peak profiles are presented in Annex 4,
and one can see even less difference between weekdays and
weekends.

3.1.3. Seasonal
To examine the effect of seasonality on the daily profile, a sep-

arate cluster analysis was performed for the average days of Jan-
uary, April, August, and October, where August was the warmest
period and January was the coldest period. The results for the
weekends are shown in Fig. 17 (including the annual mean profiles
as well). The peaks in January and August are slightly higher than
in the other two months, but this is not significant. However, there
is an outstanding cluster with exceptionally high consumption in
August, which includes 52 flats. Indeed, air conditioning systems
were used in these apartments, the effect of which is therefore
clearly visible.

Further results can be found in Annex 5. It can be stated that the
weekday results are similar to the weekend ones.

3.1.4. Geographical location, settlement types
We investigated if the settlement type influences the user pro-

file. Three settlement types were analysed: villages, towns and
cities. We used the Hungarian Central Statistical Office database
Fig. 16. Cluster centroids compared for Wednesdays and Fridays (in group A for m_1-12 w
constraint of having 10 profiles minimally in a cluster.
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to check the type of settlement [73]. Fig. 18 shows the yearly pro-
files for the weekends divided into three clusters. The profiles are
somewhat similar except for villages in the second cluster (5 hous-
ing units), which shows an afternoon peak occurring earlier than in
towns and cities. In the first cluster, the relative morning peak is
the highest in villages, followed by towns and cities. However, it
should be noted that the number of meters in the first cluster is
very low for villages. In general, the consumption data do not sup-
port the belief that people would rise significantly earlier in vil-
lages to towns and cities.

Fig. 19 shows two weekdays, Tuesday and Wednesday. The sec-
ond and third clusters show similar profiles, but in the first cluster,
significant differences can be observed when the peak time is dif-
ferent for each settlement type.

Fig. 20 shows the cluster centroids for all days of the year.
Here no significant differences can be observed between the set-
tlement types which conflicts the findings of our previous
review [72].
3.1.5. Building type
Different building types might result in different user beha-

viour, or different user types might choose different buildings to
live in. Therefore, the impact of building type was investigated
for three subgroups: old (built before 1990) and new (built in
1990 or later) single-family homes and multi-family dwellings.
The creation of additional subgroups was discarded because the
number of meters in at least one subgroup would have been too
small.
ith numbers) of profiles in each cluster, determined with the k-means method with



Fig. 17. Cluster centroids compared in group A for d_1;7 with numbers of profiles in each cluster, determined with the k-means method with constraint of having 10 profiles
minimally in a cluster.

Fig. 18. Cluster centroids compared in group A for different settlement types for m_1-12_d_1;7 with numbers of profiles in each cluster, determined with the k-means
method with constraint of having 5 profiles minimally in a cluster.

Fig. 19. Cluster centroids compared in group A for different settlement types for m_1-12_d_3-4 with numbers of profiles in each cluster, determined with the k-means
method with constraint of having 5 profiles minimally in a cluster.
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Fig. 21 and Fig. 22 show the profiles for these subgroups of resi-
dential buildings divided into three clusters for weekends and all
week. The profiles in each subfigurewere grouped so that the small-
est difference occurs between them using the same distance metric
as in the clustering process. Apparently, the profileswere almost the
same for the weekends, except the second profile for the single-
14
homes before 1990 for weekends, which characterises only 8
buildings.

Fig. 22 shows the cluster centroids for the resulting profiles of
all days of the year. On this basis, there is no difference between
the different building types.



Fig. 20. Cluster centroids compared in group A for different settlement types for m_1-12_d_1-7 with numbers of profiles in each cluster, determined with the k-means
method with constraint of having 5 profiles minimally in a cluster.

Fig. 21. Cluster centroids compared in group A for different building types for m_1-12_d_1;7 with numbers of profiles in each cluster, determined with the k-means method
with constraint of having 5 profiles minimally in a cluster.

Fig. 22. Cluster centroids compared in group A for different building types for m_1-12_d_1-7 with numbers of profiles in each cluster, determined with the k-means method
with constraint of having 5 profiles minimally in a cluster.
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3.1.6. Generalisability of results
As discussed in chapter 2.1.2 the dataset can provide statistically

relevant results with 3% error besides 95% confidence interval for
Hungarian building stock. Aswe could see here in chapter 3, the set-
tlement type and building type does not have a significant influence
15
on the results. Thereforewe can assume that resultsmight be gener-
alised for other countries and regions, although a validity checkwas
notpossiblewithin theproject due to capacity limits. Thehypothesis
could be justified if cross-checkswere performed ondata fromother
countries according to the methodology outlined in the article.
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3.2. Analysis of annual profiles

3.2.1. Group a
User demands change throughout the year, for example, due to

the use of air conditioners in summer and possibly electric heating
in winter. Occupancy rates also show seasonal changes due to hol-
idays and school breaks. The annual profile reflects in which
months higher and lower consumption occurs.

Fig. 23 and Fig. 24 show the clustering results for group A,
applying the modified k-means clustering technique. The figures
represent the annual electricity consumption profiles. Three typi-
cal clusters and, therefore, three typical usage patterns could be
separated. The users belonging to the first cluster in Fig. 23 are
supposed to have air conditioning systems to reduce the heat loads
during the summer period. The energy consumption of this equip-
ment could increase the electricity demand in summer. The users
belonging to the second cluster on the same figure are supposed
to have electric heaters. The usage of them could increase the
energy demand during the colder months essentially. The users
belonging to the third cluster are supposed to have no electric air
cooling or heating equipment or they are applied only occasionally.

Fig. 24 contains the annual cluster centroids for different time
periods: black lines indicate the whole week, orange lines repre-
sent the weekends (Saturday, Sunday), green lines represent the
weekdays (Tuesday, Wednesday). Therefore, the differences caused
by the different occupancy could be analysed. Only a slight devia-
tion could be observed between the cluster centroids in the case of
second and third clusters. In the case of the first cluster, the profiles
are slightly different: during the weekends, a smaller amplitude
occurs.
Fig. 23. Monthly cluster centroids and profiles in group A, m_1-12_d_1-7 for three
clusters determined with the k-means method with constraint of having 10 profiles
minimally in a cluster.

Fig. 24. Monthly cluster centroids compared in group A for m_1-12 with numbers
of profiles in each cluster, determined with the k-means method with constraint of
having 10 profiles minimally in a cluster.

16
3.2.2. Group B
In the figures in Annex 6, the clustering results of group B

annual data can be seen when k-means clustering was applied. It
is evident that the second cluster contains the meters, which are
connected to devices with no or minimal electricity consumption.
Removing these profiles from the database, the clustering could
give more detailed results (Figure A.14). In general, the off-peak
consumption of these buildings increases in colder months. It
could be related to the fact that these meters measure mainly
the electricity demand of DHW devices and that the DHW con-
sumption is larger in winter. These tendencies can be seen in
Fig. 25. Monthly average daily consumption compared to the daily
average calculated from annual consumption based on the cluster
centroid belonging to the highest number of profiles in Figure A.14
from Annex 6.
3.3. Typical profiles

One of our objectives was to provide input data for dynamic
building simulation software for a typical daily electrical profile.
The simulation calculates the heating and cooling demand based
on the building’s physical model and the building services systems,
and the modelled equipment significantly influences the DHW
consumption (particularly buffering). Then, we considered it
appropriate to use a profile that is independent of these needs
and purely reflects the other consumption (mainly household
appliances and lighting). The April data of group C is the most suit-
able for this purpose.

For simulation purposes, we only present results that reflect all
days of the week.The average profile is not suitable for a typical
profile because averaging attenuates the amplitudes of the fluctu-
ations. We used two methods to determine the simulation profile;
both have advantages and disadvantages.

In the first method (Method A, see Fig. 26), we aimed to ensure
that the result faithfully reflected daily maximal values and the
daily averages. The former is important for sizing; the latter is
essential for modelling energy consumption. To do this, we shifted
the average profile to the x-axis, magnified the values so that the
maximal value coincided with the average of the maximal values,
and then shifted the curve back to the mean value. The disadvan-
tage of this method is that the minimal values thus do not reflect
the average minimal values. A negative value also occurred in a
few cases, in which case the negative values were considered zero.
Thus, the mean value deviated slightly from the original mean; the
resulting error is not significant (4% error in the case of the third
cluster of Fig. 26, no error for the other two clusters) and is indi-
cated in the caption.

In the second case (Method B, see Fig. 27), we aimed to specify a
90 % probability band in which the vast majority of the occurring
values fall. Thus, a minimal and a maximal curve has been deter-
mined. Depending on the purpose of the simulation, it can be
Fig. 25. Monthly average daily consumption compared to the daily average
calculated from annual consumption.



Fig. 26. Simulation profiles using Method A (group A for three cluster for m_4-
4_d_1-7, month April).

Fig. 27. Simulation profiles using Method B (group A for three cluster for m_4-
4_d_1-7, month April).
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decided whether it is appropriate to use the minimal or maximal
curve. For example, if we intend to use electricity consumption
to affect summer internal heat loads, choosing the maximal value
guarantees a mistake favouring safety. The same is recommended
for safe modelling of total energy consumption. However, to
account for winter heat gains for modelling heating demand, the
minimal curve is the safe choice. In this case, a statistical approach
was applied. This method was developed by assuming that data of
profiles belonging to the same cluster can be used to construct the
Student’s t distribution for each time sampled. This means that for
each time sampled, the mean value (which is the value of the clus-
ter centroid for the time) and the standard deviation is calculated.
For each time, using the inverse cumulative distribution function,
the percentile belonging to the 5% and 95% probability is calcu-
lated. If the data is of the Student t distribution, 90% of the data
is within these two values, so a higher and a lower bound is con-
structed for the cluster centroid.
4. Conclusions

In the paper, electricity consumption data of single-family
houses and flats were analysed, and consumer profiles were deter-
mined by applying clustering techniques. Although we had much
more data sets available, we narrowed our findings to 816 residen-
tial units because building type information and high-quality data-
sets were available for those units only. Daily and annual energy
consumption profiles were determined; thus, different consumer
groups could be distinguished.

In the investigation, MATLAB software was used to analyse the
energy consumption of residential buildings. Three different clus-
tering methods (k-means, fuzzy k-means, agglomerative hierarchi-
cal) and three different cluster validity indices (elbow method,
silhouette method, Dunn index) were applied. To determine the
similarity of the energy profiles, the Euclidean distance metric
was used. The optimal clustering method and the optimal number
17
of clusters were determined based on cluster validity indices and
the shape of the cluster centroids. The best clustering method for
our examination proved to be the k-means clustering technique.
Analysing the annual and daily consumption data, the optimal
number of the clusters was 3 in most cases.

We examined the effect of specific parameters on profiles, such
as meter type (regular, off-peak), day of the week, seasonality, set-
tlement type or building type. As little information was available
about buildings outside the data sets, this limited the range of
parameters that could be examined. The main findings are as
follows:

- Concerning the daily profiles, three types of definite profiles can
be distinguished, which can be justified by the different occu-
pancy schedules and behavioural habits. One of these can be
characterised by a more even consumption throughout the
day; the two others had definitive peaks in the morning or/
and in the evening. However, the shape of the latter two profiles
did not develop in the same way in all cases.

- In the case of off-peak meters, it was impossible to explain the
differences between the profiles by demand-side drivers.
Instead, it can be read from the profiles during which periods
the service providers intervene to supply electricity. This is
helpful information to consider when modelling DHW systems
with storage.

- In terms of seasonality, the summer-day profiles clearly sepa-
rated the units using mechanical cooling. Still, where there
was no mechanical cooling, the profiles showed a similar course
as in the rest of the year.

- There was only a moderate difference between the types of set-
tlements (village, town, city).

- Similarly, there was only a slight difference between the pro-
files of condominiums, old single-family houses and new
single-family houses.

In the annual analysis, three distinct profiles could be distin-
guished as well. A more balanced consumption can characterise
one with a summer peak (presumably due to mechanical cooling),
one with a winter peak (presumably electric heating or somewhat
heating assistance).

Based on the annual off-peak consumption profile, the hot
water consumption is lower than average in summer and higher
than average in winter. The average can be best characterised by
consumption in April, followed by October. The determined
numerical data can be well used for the monthly distribution of
consumption when only annual data is available.

Finally, we proposed electrical profiles for dynamic simulation
after finding that the April data were most suitable for this pur-
pose. There have been fours profile types determined, which can
be used for building energy demand simulation, summer heat load
and winter heating demand calculations. The profiles are pre-
sented in Figure A.14, and the values can be found in Table A. 1.
The yearly profile variability factors are shown in Fig. 24, and the
values are given in Table A. 2.

There are several opportunities to continue the research, of
which the following would be highlighted:

- Our examination was narrowed to the meters where the type of
building was known in the current research. This information
was not always necessary during the parameter analysis, so
some of the results of the research can be extended to about
4000–5000 housing units, which would strengthen the repre-
sentativeness of some of our findings.

- Questionnaire surveys could clarify the reasons influencing the
development of individual profiles; however, questionnaire sur-
veys are greatly hampered by the GDPR requirements.
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- The calculation model could be applied for other countries and
regions even for smaller datasets to see whether electric con-
sumption habits are similar or different. Our hypothesis is that
the achieved results can be generalised for other countries as
well, at least in the region, because not significant difference
could be detected between different building and settlement
types.”

- The profile analysis can be implemented for residential units
with solar meters in the future, for which we have a large num-
ber of measurement data.

- We plan similar research on gas consumption, water consump-
tion and heat consumption data and extend the investigation to
non-residential buildings.
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