
INTERNATIONAL JOURNAL OF CONTROL
https://doi.org/10.1080/00207179.2021.1962980

Event-based discrete PI controllers robustness analysis through sampled describing
function technique

Oscar Miguel-Escrig and Julio-Ariel Romero-Pérez

Department of System Engineering and Design, Universitat Jaume I, Castelló de la Plana, Spain

ABSTRACT
In this work, the robustness of discrete PI controllers when used with a Symmetric-Send-On-Delta (SSOD)
sampling law is addressed. Hitherto, the continuous Describing Function has been employed as a suitable
tool to evaluate the robustness of such systems to limit cycle oscillations induced by the SSOD. How-
ever, due to the discrete implementation of the controllers in most of the actual applications, the Sampled
Describing Function technique is used in this work to provide a more realistic approach, which takes into
account the effect of both the SSOD and sampling period of the discrete controller on inducing such oscil-
lation. A simple measure has been developed to characterise the robustness of these systems and it has
been tested through several examples, showing its validity in predicting the apparition or avoidance of
limit cycles. This measure has been used to evaluate the robustness of some spread tuning rules applied to
a wide batch of systems reflecting the dynamics of most processes in the industry.
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1. Introduction

Event-Based Control (EBC) constitutes a solid alternative to
classical time driven control on distributed control systems
because it reduces the data drop out, decreasing the delays and
minimising the packet losses in the communication networks.
These controllers attain this objective as a consequence of their
data send policy, which only sends new data when significant
changes on the state of the system are produced, instead of
periodically as classical time driven controllers do.

Therefore, this data send policy becomes crucial in EBC,
because it is in charge of generating the events for the execu-
tion of the controller’s algorithm. Among the different event
generation techniques, the ones based on the signal quantifi-
cation have become more important because of their ease of
implementation. That is the case of the well-known Send-On-
Delta (SOD) sampling strategy, which sends data whenever the
signal changes more than a certain value δ from the last sam-
ple. This sampling technique has been used in several works
proving its effectiveness in terms of control performance and
communication reduction (Dormido et al., 2008; Ploennigs
et al., 2010).

Several variations on the SOD sampling strategy have been
presented, most of them considering the thresholds fixed and
no longer depending on the last value taken. Among these vari-
ations, the Regular Quantisation was studied in terms of robust-
ness in Romero Pérez and Sanchis Llopis (2017), and a variation
of this last sampling strategy was presented in Miguel-Escrig
and Romero-Pérez (2020), in which a customisable hysteresis
was added to the sampling to avoid bursts of events due to noise.
However, one of the most known variations of the SOD sam-
pling was presented in Beschi et al. (2012), and it is known
as Symmetric-Send-On-Delta (SSOD). This strategy presents
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fixed thresholds of value δ and introduces a hysteresis of the
same value δ, being its input–output relationship symmetric.
Some guidelines for tuning SSOD based PI controllers have
been provided in Beschi et al. (2014a) and Romero et al. (2014).

One of the main points in the analysis and design of event-
based control systems is the existence and avoidance of limit
cycle oscillations in the closed-loop response. The character-
isation of steady-state oscillations for different types of sys-
tems under an SSOD sampling strategy has been presented in
Chacón et al. (2013). This analysis has been treated in other
works using the Describing Function (DF) technique (Romero
& Sanchis, 2016), in which, in addition, tuning methods for PI
controllers within a control structure with an SSOD sampler
have been obtained. The use of the DF allows extending some
concepts of the classical control theory, as the gain and phase
margins, to the analysis and design of EBC systems. However,
other analysis techniques can be used like the Tsypkin method,
which has been specifically used to analyse the robustness of
SSOD-PID structures in Miguel-Escrig et al. (2020).

In all the theoretical studies about SSOD-based control sys-
tems a continuous approach has been adopted towards the
controller implementation, i.e. the PID is considered to be con-
tinuous and therefore all the results have been obtained under
this assumption. In networked control systems, however, the
controllers are always implemented in microprocessor-based
devices considering a discrete approximation. The aim of this
paper is to study the effect of the sampling time in the robustness
to limit cycle oscillations when a discrete implementation of the
PI controller is used jointly with the SSOD sampling strategy,
as is the cases of the practical applications of the SSOD-PI pre-
sented in Beschi, Pawlowski et al. (2014), Beschi et al. (2014b),
Romero et al. (2015), Rodríguez-Miranda et al. (2019), and
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Rodríguez-Miranda et al. (2019). In neither of those papers, the
influence of this parameter has been addressed.

Tuning methods for continuous PID are applied by the con-
trol practitioners in many industrial settings without bearing in
mind that discrete versions of the controllers are executed in
microprocessor-based systems. In most of these cases, the digi-
tal implementation of the controller does not have a detrimental
effect in the loop because the sampling frequency used by the
control algorithm is high enough to consider the controller as
a continuous one. In this sense, it should be taken into account
that the sampling time required for some common process vari-
ables such as flow, level, pressure or temperature is in the order
of seconds meanwhile the commercial digital controllers have
sampling intervals in the order of tens of milliseconds.

Despite the aforementioned fact, it is well known that the
sampling time plays an important role in discrete time control
systems.High values of sampling time could degrade the control
performance or even produce instability. On the other hand, the
minimum value of the sampling interval is limited by hardware
and software restrictions of the microprocessor-based system
where the control algorithms are executed. Because of the rele-
vance of the sampling time, several criteria have been developed
for selecting this parameter taking into account both the fre-
quency or time response of the control loop (Isermann, 1989).
A general rule of thumb for the PI controllers states the sample
time in the range of 0.1–0.3 of integral time in order to obtain
good performance and acceptable robustness of the control
systems (Astrom &Wittenmark, 1997).

This paper addresses the robustness of SSOD-based con-
trol systems when a discrete PI is used. This consideration
matches with the reality of computer-based implementation of
controllers which are almost executed as a periodic algorithm.
The analysis is based on the Sampled Describing Function
(Kuo, 1963) which takes into account the SSOD quantification
and the execution period of the controller. The main charac-
teristics of this DF have been studied, revealing the influence
of its parameters in the behaviour of this kind of control sys-
tems. Some guidelines are given to evaluate the existence of limit
cycle using a new robustness measure proposed in the paper.
Because of the lack of specific tuning rules for the scheme under
study, the robustness of controllers provided by several classical
and spread tuning rules for continuous PI has been evaluated,
namely, Ziegler-Nichols (Ziegler & Nichols, 1942), AMIGO
(Åström & Hägglund, 2004), One-Third (Hägglund, 2019) and
SIMC (Skogestad, 2003) tuning rules. Thesemethods have been
applied to a batch of models that gather the most common
dynamics in industrial processes, and their robustness in the
studied loop structure has been evaluated using the proposed
measure.

The paper is organised as follows. In Section 2, the
loop structure and the general problematic are presented. In
Section 3, the Sampled Describing Function that characterises
the non-linear behaviour of the system is presented and stud-
ied. In Section 4, guidelines about how to perform the stability
analysis are given, offering a systematic approach to evaluate
the robustness and proposing a specific robustness measure. In
Section 5, several tuning methods are used to tune controllers
for a given batch ofmodels and their robustness in the proposed
loop structure is evaluated. Finally, in Section 6 the conclusion
about the work is drawn.

2. Problem statement

Let us consider the networked control system presented in
Figure 1, where C(s) and G(s) are the controller and the pro-
cess transfer functions respectively, yr is the reference signal
to be tracked, y is the controlled output, and p is the distur-
bance input. The controller is assumed to be located near the
actuator and the sensor sends samples of the process output rep-
resented by y (it could also be of the tracking error e) to the
controller through the communication networkwhose commu-
nication delays are modelled by the term exp(−tds). The sensor
unit employs an SSOD strategy for sampling the input signal:
a new value e∗ = iδ, i ∈ Z is sent to the ZOH when e crosses
the iδ levels and ē maintains its value for ±δ variations around
the iδ levels. This behaviour is described by Equation (1). It is
worth remarking that other sampling strategies such as RQH
presented in Miguel-Escrig and Romero-Pérez (2020) or asym-
metric multi-level relays could be used, but SSOD is simpler to
implement, has more literature associated addressing the tun-
ing of controllers under this sampling and has been proved in
several practical environments.

ē(t) =

⎧⎪⎨
⎪⎩

(i + 1)δ if (ē(t−) = iδ)& (e(t) ≥ (i + 1)δ)
(i − 1)δ if (ē(t−) = iδ)& (e(t) ≤ (i − 1)δ)
iδ if e(t) ∈ [(i − 1)δ, (i + 1)δ]

(1)

This schema, and the control problem associated to it, was first
proposed in Beschi et al. (2012) and it has been treated in dif-
ferent ways in the literature. In Beschi et al. (2014a), a tuning
method for this kind of structure based on other tuning rules
such as AMIGO (Hägglund & Åström, 2002) and SIMC (Sko-
gestad, 2003) tuning ruleswas presented. InRomero et al. (2014)
and Romero and Sanchis (2016), the authors rely on the DF
approach to characterise the robustness against limit cycles pro-
duced by the SSOD non-linearity and propose a tuning method
that takes this fact into account. In Miguel-Escrig et al. (2020),
the Tsypkin method has been used to better characterise the

Figure 1. General approach to networked control systems with SSOD sampling strategy.
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Figure 2. Sampled system configuration with SSOD non-linearity.

robustness to limit cycle of this kind of systems without the
restrictions imposed by the DF about the filtering properties
of G(s).

Theworksmentioned above follow the approach of consider-
ing a continuous controller in the loop. However, this approach
can induce to unexpected errors when the controllers are imple-
mented in computer-like devices such as PLCs or other elec-
tronic cards. This fact modifies the approach to the problem
presented in Figure 1, because neither the signal that arrives
to the controller nor the controller is continuous; instead the
signal is periodically sampled by the controller module to recal-
culate the control action, which is kept constant during the
sampling time.

With the considerations already described above, the system
in Figure 1 admits the Hammerstein–Wiener representation
presented in Figure 2, being the block SSOD_ZOH the combi-
nation of the SSOD andZOHblocks, and the implementation of
the discrete PI being modelled by Equation (2), which has been
obtained by applying the bilinear transform. This new block
diagram describes the actual problem behind the networked
control systems under study more accurately.

C(z) = Kp + Kp

Ti

Ts

2
z + 1
z − 1

. (2)

One of the main issues when dealing with this kind of systems
is the apparition of limit cycle oscillations, which are induced
by the SSOD non-linear behaviour and sampling. In Figure 3,
a typical limit cycle oscillation is shown. As it can be seen, the
error signal e is not only quantified by the SSOD non-linearity,
which results in ē, but it is also sampled afterwards, obtaining
the samples ē∗, which constitute the input to the controller to
compute and actualise the control action.

This quantification and posterior sampling constitute the
source of limit cycle oscillations apparition. Therefore, to eval-
uate the robustness of a given system, an analysis methodol-
ogy which takes into account the peculiarities of this kind of
sampled system is presented.

3. Sampled describing function

To study non-linear systems with sampling elements, as that
shown in Figure 2, there exist several methods, some of them
exact as the one presented in McNamara and Atherton (1984),
but very complicated for practical uses. Other methods like the
ones based on the Describing Function offer an approximate
estimation of the robustness, which is precise when a filtering
linear part is present, while being easier to develop. Two vari-
ations on the original Describing Function technique can be

Figure 3. Sine wave in black, quantified by the SSOD_ZOH block in dashed blue,
and sampled according to a given sampling period in red (sampling time indicated
with red arrows).

used in this case, namely, the z-transform Describing Function
(Kuo, 1960) and the Sampled Describing Function (Kuo, 1963),
whichwill be used in this paper due to its simplicity (Gelb&Van
der Velde, 1968).

The condition to avoid limit cycle oscillations is defined by

Gol(jω) �= − 1
N ; ∀ ω, (3)

where Gol(jω) represents the open-loop transfer function of all
the linear elements, i.e. network delay, controller, ZOH and sys-
tem.N is the Describing Function of the non-linear part, which
in this case characterises the SSOD_ZOHblock and the sampler.
It can be proven (see Appendix A) that the Describing Function
N is given by the following equation:

N (δ/A, r, τ ,Ts)

= 2δ
πTsA

∞∑
k=−∞

e−jk2πτ/Ts

rk − 1

×

⎡
⎢⎣m−1∑

i=1

⎧⎪⎨
⎪⎩
⎛
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√
1 −

(
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+ j
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rk−1
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(
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rk−1
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−
⎛
⎝
√
1 −

(
mδ

A

)2
+ j

mδ

A

⎞
⎠

rk−1

+ (−1)rk−1

⎤
⎥⎦ , (4)

where m = ⌊A
δ

⌋
is the number of levels crossed, τ is the lag

between the zero-crossing of the signal and the first sample
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Figure 4. Sampled DF for different values of r, all of them considering Ts = 1: (a) r = 10, (b) r = 20, (c) r = 50, (d) r = 100.

taken (see Figure 3) and r is the ratio between the oscillation
period To and the sampling period Ts.

From expression (4) it can be observed that, as in the case of
the continuous DF of the SSOD quantisation (Romero & San-
chis, 2016), the shape of the sampled DF does not depend on
the specific value of δ, but on its relationship with the amplitude
A of the induced oscillation, which is expressed by the quotient
δ/A. Therefore, the robustness does not depend on the quanti-
sation level since varying δ will alsomodify the amplitude of the
oscillation proportionally, resulting in the same ratio A/δ and,
consequently, in the same points on the Nyquist diagram.

According to Gelb and Van der Velde (1968), r must be an
integer value, otherwise the oscillation may contain harmonic
components with frequencies lower than the fundamental fre-
quency, which cannot be discardedwith the filtering hypothesis.
In addition, in those cases where r is considered to be odd, the
samples taken in each semi-period of the oscillation are differ-
ent, this leads to an asymmetry which can be relevant for those
cases where a low number of samples per period are taken; in
the other cases this difference is irrelevant.

Figure 4 depicts the shapes of −1/N for different values
of r. The locus of −1/N is composed of several branches,
one for each value of m, and each of them has been rep-
resented with a different colour. Bigger values of m tend to
approximate the traces of the DF to the point (−Ts, 0) and
as the value of m is reduced the branches expand towards
the third quadrant. The clearer case is the one presented in
Figure 4(d) where each branch is visibly well defined and it
reassembles the DF of the SSOD (without sampling) (Romero
& Sanchis, 2016). This happens because for that Sampled DF
the ratio r is big enough to consider the effect of the sampling
negligible. Nevertheless, for the other cases it can be seen how
decreasing that ratio tends to widen the size of the branches,
deforming them and making them unintelligible from one
another.

In Gelb and Van der Velde (1968), the concept of oscillation
mode is presented for a relay non-linearity. In that case, a n, n
mode is defined as a cycle in which n positive drive pulses are
followed by n negative drive pulses. This concept can be appli-
cable to the oscillations produced by the non-linear structure
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Figure 5. Sine wave quantified by an SSOD and sampled resulting in two different oscillation modes: (a) ē∗(kTs) = 0, 0, δ and (b) ē∗(kTs) = 0, δ, δ.

studied in this paper introducing a slight difference due to the
non-linearity characteristics.

Consider a one-levelled oscillation (m = 1), sampled in such
a way that r = To/Ts = 6. With this sampling rate, six samples
are taken in an oscillation period. In a semi-period, the val-
ues that these samples can have are either ē∗(kTs) = 0, 0, δ or
ē∗(kTs) = 0, δ, δ for k = 1, 2, 3. Both examples are shown in
Figure 5( a and b) respectively. Note that on the other semi-
period, the samples for k = 4, 5, 6 would be the same but with
opposite sign. These two combinations are the only two pos-
sible modes for the considered sampling rate maintaining the
amplitude of the oscillation.

Focusing on the simpler mode type, which are those where
m = 1, the number of modes for a given value of r can be char-
acterised as follows. As it has been shown, the modes in SSOD
sampled oscillations are characterised by samples in a lower
level ē∗ = 0 and samples in a high level ē∗ = δ and its symmetric
in the second semiperiod. In addition, as the amplitude of the
oscillation increases the temporal frame before ē commutates
to a high level is reduced. Therefore, the number of modes can
be obtained as the difference between the maximum and min-
imum number of samples that fit in the temporal frame before
commutation. Then, considering the two extreme cases for the
amplitude in the casem = 1, which are A = δ and A = 2δ, and
as e is a sinusoid, the time in which the switch is produced (e =
δ) can be obtained, which is t1 = To/4 and t2 = To/12. The
number of samples that fit in that temporal frame is obtained
dividing by Ts, and then, just counting the difference between
the maximum and minimum number of samples that fit in that
temporal frame, the number of modes for a given r inm = 1 is
obtained as

n◦modes =
⌈ r
4

⌉
−
⌊ r
12

⌋
+ 1. (5)

From this expression, it can be observed that the number of
possible modes increases with the sampling ratio r, intuitively,
decreasing the sampling period increases the number of sam-
ples in that temporal frame, being the difference between the
extreme cases greater.

The influence of the ratio r on the oscillation modes is
reflected in the DF traces. In Figure 6, it has been represented
the branch that corresponds to m = 1 of the Sampled DF with
r = 50. It can be seen some overlapping rhomboid regions
(one of them surrounded in red), which are crossed by several
straight lines. Each of those rhomboid regions corresponds to
a different oscillatory mode, i.e. the oscillations obtained when
intersecting those regions have a certain number of samples in
each level.

Figure 6. Detail of the branchm = 1 of the Sampled DF with Ts = 1 and r = 50
with a mode region highlighted.

Within the rhomboid regions, some straight lines appear.
Each of these series of traces corresponds to a different initial lag
τ when evaluating the DF swapping the ratio δ/A. This implies
that multiple combinations of ratios δ/A and initial lags τ can
generate the same limit cycle oscillation. This can be easily seen
from the oscillation mode shown in Figure 5, where the repre-
sented modes can be obtained for different combinations of the
sine amplitude A and initial sampling delay τ .

The oscillation modes depend on the sampling rate, but also
on the ratio δ/A, which propitiates the existence of modes in
which several levels are crossed (m> 1). This kind of modes
involves an additional complexity for its analysis due to the
apparition of a curious phenomena: if the sampling rate is not
sufficient, a level may not have any sample on it, resulting in
more overlapping regions. As the main goal of this contribution
is to avoid any type of oscillation modes, we will not focus on
their study, however, it is important to notice that the dispersion
of the DF traces with r can be explained with the understand-
ing of the concept of modes. With low ratios of r fewer number
of modes are possible andmore combinations of parameters are
possible to obtain them, generating a great dispersion of the DF
traces. On the other hand, with higher ratios of r more modes
(rhomboid regions) appear, but they are smaller because the
parameters admit less variation to maintain the mode.
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4. Stability analysis

One of the main considerations when studying the networked
control systems presented in this paper is the avoidance of
limit cycle oscillations induced by SSOD sampling law. These
oscillations can be prevented if the condition described by
Equation (3) is fulfilled, which relates the non-linear part, char-
acterised by the DFN , and the linear part of the system.

Considering first the linear part of the system in Figure 2,
the open-loop transfer function Gol(s) that includes the dis-
crete controller C(z), the ZOH, the time delay introduced by
the network and the systemG(s)must be obtained. The transfer
function of the ZOH is

ZOH(s) = 1 − e−sTs

s
.

Then, the transformation z = esTs is applied to the transfer func-
tion of the discrete controller, given by Equation (2), to obtain
the starred transform of the controller C∗(s), obtaining

Gol(s) = C∗(s)ZOH(s)G(s). (6)

To facilitate the stability analysis, condition (3) has been
rewritten as

Gol(s)
Ts

�= −1
N ′ ; ∀ ω, (7)

where

N ′(δ/A, r, θs)

= 2δ
πA

∞∑
k=−∞

e−jkθs

rk − 1

×
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⎢⎣m−1∑

i=1

⎧⎪⎨
⎪⎩
⎛
⎝−

√
1 −

(
iδ
A

)2
+ j

iδ
A

⎞
⎠

rk−1

−
⎛
⎝
√
1 −

(
iδ
A

)2
+ j

iδ
A

⎞
⎠

rk−1
⎫⎪⎬
⎪⎭

−
⎛
⎝
√
1 −

(
mδ

A

)2
+ j

mδ

A

⎞
⎠

rk−1

+ (−1)rk−1

⎤
⎥⎦ , (8)

which essentially is the same expression that (4) without Ts in
the denominator because it has been moved to the left term of
Equation (7). Additionally, the expression 2πτ/Ts in the expo-
nential of N has been substituted by θs. As τ ∈ [0,Ts[, then
θs ∈ [0, 2π[. These small changes make N ′ dimensionless and
prevent it from being scaled by Ts. Therefore, similar to the
continuous DF for SSOD, N ′ tends to (−1, 0) as m increases,
regardless of the sampling period. Additionally, to homogenise
the notation in the stability condition (7), let us express the
frequency ω in terms of r and the sampling frequency ωs:

Gol

(
j
ωs

r

)
Ts

�= −1
N ′(δ/A, r, θs)

; ∀ r ∈ Z, rmin < r < rmax

(9)
Even though the frequency ω does not appear explicitly in
Equation (9), it is hidden within the ratio r = To/Ts = ωs/ωo

because each evaluated frequency ω is a candidate to become
the oscillation frequency ωo. Therefore, as both sides of the
Equation (9) depend on the evaluated frequency it is important
to know the range of ω where this condition must be evaluated
to check the existence of limit cycles. In this sense, it is worth
noting that the traces of the negative inverse of the presented
DF lie in the third quadrant of the polar plot, see Figure 4, thus
the frequencies to be evaluated must be those for which Gol(jω)

lies in this quadrant too. Even if the range of frequencies placed
in the third quadrant is very wide, it is not necessary to check all
of them. In the lines below, the guidelines about the calculation
of this range and the stability analysis are given.

As it has been commented before, the DF traces lie in the
third quadrant. Thus, considering a given sampling frequency
ωs, the frequencies in this quadrant that make r an integer
should be evaluated. The minimum value of r will provide the
highest frequency placed within the third quadrant. It is known
that the crossover phase frequencyωcp corresponds to a point of
Gol over the real axis between the second and third quadrants,
therefore, using this frequency, the minimum value of r can be
easily determined by

rmin =
⌈

ωs

ωcp

⌉
. (10)

The maximum value of r can be also established by analysing
the shape of the DF traces under study. It is worth noting that,
for a given sampling frequency, higher values of r correspond to
lower frequencies ω. The increment of r also results in traces of
N ′ more and more similar to the continuous DF traces for the
SSOD, which lie in a well-defined zone in the third quadrant.
To study the possible intersection between −1/N ′ and Gol/Ts,
there is no need to evaluate points beyond the extension of these
traces, whose further point from the origin in the Nyquist dia-
gram is at a distance of 1.62 units. Then, the point of Gol(s)/Ts
with modulus equal to 1.62 determines the lowest frequency
that must be evaluated to check intersection.

The previous ideas are illustrated in Figure 7. The negative
inverse of the Sampled DF with a high value of r is represented
in red, which is very similar to the continuous DF of the SSOD,
represented in black. This shows that the Sampled DF asymp-
totically tends to the continuous DF as r increases, and conse-
quently the range of r to study intersection can be bounded as
commented before. It can also be seen how the further point
of −1/N ′ defines the point of Gol with lowest frequency that
could intercept the negative inverse of DF: |Gol(s)/Ts| = 1.62.
This point determines the maximum value of r. The range of
frequencies that need to be evaluated to check intersection has
been highlighted in green.

Analytically, the maximum value for r can be easily obtained
with

rmax =
⌈

ωs

ω′
cg

⌉
, (11)

where ω′
cg is the frequency where the open-loop transfer func-

tion has the maximum modulus of the DF trace:∥∥∥∥∥
Gol(jω′

cg)

Ts

∥∥∥∥∥ = 1.62. (12)
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Figure 7. Graphical representation of the evaluated range of frequencies.

To clarify the use of the stability condition (9) and the estimation
of the minimum and maximum values of r let us introduce the
following example.

Example 4.1: Consider a process with transfer function:

G(s) = 1
(s + 1)3

.

A PI controller is tuned according to Romero and San-
chis (2016), where a tuningmethod is presented to prevent limit
cycle oscillations in the control scheme in Figure 1. To achieve
that, the method avoids the intersection between the open-loop
transfer function and the negative inverse of the continuous DF
of the SSOD sampler by assuring a minimum phase margin
between Gol(jω) and the critical point of −1/N , which is set to
�m,SSOD = 10◦, while fulfilling aminimumgainmargin restric-
tion, which is fixed to γcp ≥ 6 dB. The obtained parameters for
the controller are Kp = 1.35 and Ti = 2.38 and the representa-
tion of the open-loop transfer function with the traces of the
inverse negative of the continuous DF in the Nyquist diagram
that validates this controller in the continuous case is presented
in Figure 8.

It is worth remarking that the continuous PI with the previ-
ous parameters assures the avoidance of limit cycle oscillations
in the control scheme in Figure 1. Our goal, however, is to anal-
yse the existence of limit cycles when using these parameters in
a discrete PI controller C(z) in the control scheme in Figure 2.
Let us consider the trapezoidal form of the PI with a sampling
period Ts = 0.5 s.

The minimum value of r has been obtained according to
Equation (10) for which the crossover phase frequency of
Gol(s)/Ts was calculated (ωcp = 1.11 rad/s) and the minimum
value of r results in rmin = ⌈

ωs/ωcp
⌉ = �12.57/1.11� = 12.

Analogously, the crossover gain frequency ofGol(s)/1.62/Ts has
been obtained (ω′

cg = 0.38 rad/s) and Equation (11) has been

Figure 8. Gol(jω) and −1/N for the continuous case. The presented PI avoids
limit cycle oscillations in this case.

used to calculate the maximum bound of r, which results in
rmax =

⌈
ωs/ω

′
cp

⌉
= �12.57/0.38� = 33.

Figure 9(a) shows the Nyquist diagram of Gol(s)/Ts and the
traces of the negative inverse of the Sampled DF for the level
m = 1.The points corresponding to several values of r between
the bounds obtained above and their respective normalised
Sampled DF traces, given by −1/N ′(r), have been highlighted
each in a different colour. Then, according to condition (9), a
limit cycle takes place if some point and trace highlighted with
the same colour intersect. Due to the complex shape of the
traces, which overlap one to another, the previous condition is
difficult to be evaluated from Figure 9(a). A more clear repre-
sentation is obtained by substituting the traces by their convex
hull as in Figure 9(b). Now the verification of the stability con-
dition is easier: if Gol(jωs/r)/Ts lies within the convex hull that
contains−1/N ′(r), the system could present limit cycle oscilla-
tions. In this case, Gol(jωs/20) is placed within the convex hull
of −1/N ′(20), therefore, a limit cycle oscillation could exist for
r = 20. The system has been tested in simulation with an SSOD
sampler with δ = 0.1. The results from the simulation are pre-
sented in Figure 10, where the controlled output and the control
action temporal responses to a unitary step change in the refer-
ence and disturbance inputs are depicted considering both the
discrete and continuous controllers. As can be seen, no oscilla-
tions are observed in the response of the continuous controller
since the limit cycles are avoided by the tuning method. On the
other hand, the response with the discrete controller presents
limit cycle oscillations, whose frequency has been measured
to be ωs/20, which corresponds to the point of the open-loop
transfer function placed within its convex hull in Figure 9(b).
This example shows how the discrete version of a stable continu-
ous controller could induce limit cycle oscillations in the control
loop. This fact stress the importance of the analysis presented in
this paper.

4.1 Robustnessmeasure

In Example 4.1, it can be noted that only branches with m = 1
have been considered. As can be seen in Figure 4, no matter the
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Figure 9. Sampled DF form = 1with Ts = 0.5 considering different values of r: (a) original−1/N ′ representation and (b)−1/N ′ replaced by its respective convex hull.

Figure 10. Controlled output and control action temporal response to a unitary step change in the reference and disturbance inputs with the discrete (green) and
continuous (red) controller. The limit cycle predicted from the Sampled DF analysis can be observed.

value of r, the branches of −1/N ′(r) shrink and move near to
the real axis as m increases. Taking this into account, the shape
of Gol(s)/Ts obtained with a PI controller for most of the pro-
cess models is such that the distance between Gol(s)/Ts and
−1/N ′ increases with m. Therefore, the nonintersection with
the branches of m = 1 guarantees no intersections for m> 1.
This fact was pointed out in Romero and Sanchis (2016) for
the case of continuous PI and it would be demonstrated exper-
imentally in the next section that this affirmation also holds for
the sampled case. Consequently, only the branches of m = 1
need to be considered to define a robust margin to avoid limit
cycles.

Under the previous assumption, and considering the stability
condition given by Equation (9), a very simple robustness mea-
sure can be defined as the minimum distance between a point
of Nyquist diagram and its respective convex hull containing the
traces for a given value of r. We will refer to this measure asDch,
and it can be formally defined as

Dch = min
rmin≤r≤rmax

(
dist

(
Gol(jωs/r)/Ts,CH(−1/N ′(r))

))
(13)

where dist(·) denotes the Euclidean distance andCH(·) refers to
the convex hull.

The following example illustrates the use of the proposed
margin to measure the robustness to limit cycle oscillation.

Example 4.2: Consider a process whose transfer function is
defined by

G(s) = 1
(s + 1)5

.

A PI controller has been tuned using AMIGO tuning rule
(Åström & Hägglund, 2004) obtaining Kp = 0.2564 and Ti =
2.891. This method has been chosen because it has been proven
that provides good robustness capabilities against limit cycle
oscillations induced by the SSOD quantification (Miguel-Escrig
et al., 2020). A sampling period Ts = 1.9 has been selected
for the discrete implementation of the controller, which corre-
sponds to a tenth of the rise time of the continuous response.

Once the discrete controller has been implemented in its
trapezoidal form, the robustness analysis as described previ-
ously has been performed. The convex hulls and the evaluated
frequency points for different values of r have been represented
in Figure 11(a). Circles representing the minimum distances
from each frequency point to its respective convex hull are also
shown in the figure. From those distances the minimum, which
we have named Dch, is the one that corresponds to r = 31.
As distinguishing it from all the convex hulls and circles from
Figure 11(a) is not quite clear, it has been highlighted in Figure
11(b). In this case, the convex hull and the frequency in which
Dch is obtained have been highlighted while the other distances,
which are greater than Dch, have been represented in gray.
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Figure 11. Representation of the distances from the evaluated points to their respective convex hull and detail ofDch for the studied system: (a) all the distances to convex
hull and (b) Dch highlighted.

Therefore, as for this example we have obtained Dch = 0.45
the system avoids limit cycle oscillations. To prove that, the sys-
tem has been tested in simulation with a step change in the
reference and disturbance inputs. The SSOD sampler used has
a quantisation level δ = 0.1. In Figure 12, the controlled output
and control action temporal responses to a unitary step change
in the reference and disturbance have been presented consider-
ing a continuous controller (in red) and a discrete controller (in
green). As it can be seen, the system presents a smooth response
and does not present limit cycle oscillations, as predicted by
the robustness analysis, while not degrading significantly the
performance provided by the continuous controller.

5. Robustness of continuous tuning rules

To illustrate the usefulness of the presented margin, it has been
applied to study the robustness against limit cycle oscillations
induced by the quantification and sampling of the SSOD. The
discrete controller is implemented in its trapezoidal form as
shown in Figure 2. The tuning methods for this study are
Ziegler–Nichols (Ziegler & Nichols, 1942), AMIGO (Åström
& Hägglund, 2004), One-Third rule (Hägglund, 2019) and
SIMC (Skogestad, 2003). PI controllers have been tuned for the
batch of models presented in (14), which describe a wide range
of behaviours that can be found in real systems. The dynamic
responses of the models in the batch have been approximated
by First-Order Plus Time Delay (FOPTD) models to obtain the
parameters of their respective controller.

G(s) = e−s

(Ts + 1)2
,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,

1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

G(s) = 1
(s + 1)(Ts + 1)2

,

T = 0.05, 0.1, 0.2, 0.5, 2, 5, 10

G(s) = 1
(s + 1)n

,

n = 3, 4, 5, 6, 7, 8

G(s) = 1
(s + 1)(αs + 1)(α2s + 1)(α3s + 1)

, (14)

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

G(s) = Te−L1s

(T1s + 1)(Ts + 1)
,

T1 + L1 = 1, T = 1, 2, 5, 10

L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1

G(s) = 1 − αs
(s + 1)3

,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1

G(s) = 1
(s + 1)((sT)2 + 1.4sT + 1)

,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

To obtain the sampling period for each controller a simple pro-
cedure has been followed. The closed-loop response of each
system with its controller in continuous has been obtained and
its rise time Tr has been measured. Then, the sampling period
Ts has been obtained as Ts = Tr/10. With all the parameters
obtained for the implementation of the discrete controller the
robustness analysis as shown in the previous section has been
done, obtaining the minimum distance to the convex hull Dch



10 O. MIGUEL-ESCRIG AND JULIO-ARIEL ROMERO-PÉREZ

Figure 12. Controlled output and control action temporal response to a unitary step change in the reference and disturbance inputs with the discrete (green) and
continuous (red) controller. The absence of limit cycle oscillations predicted by the Sampled DF analysis can be observed.

Figure 13. Dch for the batch of processes with different controllers considering Ts = Tr/10.

for each system and controller in the batch. The results are
presented in Figure 13.

The first result that can be observed in this figure is that
Ziegler–Nichols controllers struggle to avoid limit cycle oscil-
lations. On the other hand, the other tuning methods offer
different degrees of robustness but in general they manage to
avoid limit cycle oscillations.

Regarding the methods that consistently avoid these oscil-
lations, it can be seen that AMIGO and SIMC offer an uni-
form level of robustness while One-Third rule presents several
bumps. These bumps are caused because the closest convex
hull, with respect to which the Dch is measured changes. For
example, for process 60 the closest convex hull is the one that
encloses −1/N ′(21), but for the process 62 the closest convex
hull is −1/N ′(3). The case of the process 62 is illustrated in
Figure 14, where it can be seen how the convex hull of−1/N ′(3)
is larger than the rest, overtaking all of them and, therefore,
definingDch. However, this situation is not desirable in practice
since having only three samples per period could be insuffi-
cient for control purposes. Nevertheless, despite the presence
of these extreme cases, One-Third rule consistently avoids limit
cycle oscillations and it provides some of the highest robustness
measures.

A second robustness analysis has been performed with
a more conservative approach considering Ts = Tr/20. The
obtained results are presented in Figure 15. As in the prece-
dent case study, controllers tuned with Ziegler–Nichols method
offer the lowest robustness in general lines, conducing most
controllers to limit cycle oscillations. The other methods under
study offer similar characteristics than with the previous sam-
pling frequency. AMIGO and SIMC offer a more uniform level
of robustness than the One-Third rule, which still presents
some bumps in the measure Dch even if the total amount has
diminished.

Figure 14. Some convex hull plots for process 62. The convex hull of −1/N ′(3)
overtakes the rest, defining Dch .

In Figure 16, the difference in the robustness measure Dch
produced by the increase of the sampling frequency is pre-
sented. In this figure, it can be seen a behaviour that matches
with the general principles of the discrete control, the robust-
ness increases with the sampling frequency. In all the studied
processes and methods in the batch, the robustness increases
with the sampling frequency, being this rise greater for the
One-Third rule. This tuning rule also presents a boost in the
robustness for some processes, which are produced by avoiding
some of the bumps in the robustness presented in Figure 13.
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Figure 15. Dch for the batch of processes with different controllers considering Ts = Tr/20.

As a consequence of increasing the sampling frequency, the
value rmin has risen, avoiding large convex hull of undesirable
situations, as the presented in Figure 14. The Ziegler–Nichols
tuning rule also presents some bumps produced by a situation
similar to the previously described.

This evaluation of some of the most used tuning rules
designed for continuous processes reveals that Ziegler–Nichols
tuning rule with the sampling criteria followed is not recom-
mendable. In addition, it can be noted that the rest of tuning
rules provide some degree of robustness against limit cycle
oscillations and some interesting casuistic as the robustness
bumps.

Remark 5.1: In general, a universally valid value of Dch that
assures good behaviour of the closed loop response is not
known.However, values ofDch in the order of 0.2−0.6 have been
obtained from the previous study for the batch of processes with
different tuning methods. Because some considered methods
for tuning the PI provide acceptable temporal responses, even
in a quasi-optimal sense as in the case of AMIGOmethod, then
values of Dch in this range could be considered reasonable to
obtain good close loop performances.

5.1 Effect of sampling period on the performance

In general, discrete controllers have inferior performance over
continuous control systems. This is sometimes explained due to
the fact that sampled signals have less information than contin-
uous signals. In order to study the effect of the sampling time on
the performance of the discrete event-based control loop under
study, the index IAE∗ has been used, which is defined as

IAE∗ = IAE
IAEc

,

where IAE and IAEc are the IAE indexes of the system response
to a step-like disturbance with the discrete event-based con-
troller and the continuous controller respectively. The study
has been conducted for the controllers obtained in the pre-
vious section considering three different sampling rates: Ts =
Tr/20, Ts = Tr/10 and Ts = Tr/3. The results are presented in
Figure 17.

It can be seen that it does not exist a great difference in
performance between the sampling periods Ts = Tr/10 and
Ts = Tr/20, despite the fact that in those cases a significant dif-
ference in robustness was observed in Figure 16. In addition,

for a sampling period Ts = Tr/3 the performance decreases
in almost every case with regard to the other sampling rates.
This downgrade of the sampling frequency not only worsens
the performance of the system, but it has also been observed
a significant loss of robustness. In fact, in Figure 17 most of the
values of IAE∗ for this sampling rate have been omitted since
their respective Dch values were 0.

The robustness measure for the sampling rate Ts = Tr/3 is
presented in Figure 18, where it can be seen that most of the
controllers operating under this sampling rate will present an
oscillatory behaviour since Dch = 0. For those controllers that
avoid limit cycle oscillations, it can be observed a significant
loss of robustness comparing the values ofDch presented in this
figure with the values obtained for Ts = Tr/10 and Ts = Tr/20,
which were presented in Figures 13 and 15 respectively. In sum-
mary, it can be concluded that the sampling rate has a strong
influence in both the robustness and the performance which are
improved as the sampling rate rise.

5.2 Influence ofmodel uncertainties on Dch

Regarding the uncertainties in parameters of the plants, it is
clear the higher the value ofDch the more admissible modelling
error or variations in the parameters before limit cycle oscilla-
tion take place. In general, the uncertainties in the model can
effect both the module and the phase of the Gol. The uncertain-
ties affecting the modules of Gol, e.g. those in the process gain,
only produce a radial displacement in Gol(s)/Ts which expands
or shrinks as the gain increases or decreases respectively. There-
fore, as convex hulls obtained for the calculation of Dch remain
invariant in this case, an increment in the process gain implies
a reduction on Dch because the critical points are getting closer
to its respective convex hull.

The uncertainties that affect the phase of the process will
modify the crossover phase frequency, modifying the value of
rmin. In addition, this will produce a turn of Gol(s)/Ts in the
Nyquist diagram, approaching or separating the critical points
from their respective convex hull. Phase increment could take
place if the time delay rises, which would addωL radiants to the
phase ofGol(s)/Ts, where L is the delay. In that case, the robust-
nessmeasureDchwould decrease since the values of r to evaluate
would be lower, increasing the dispersion of the Sampled DF
traces, and the turn on Gol(s)/Ts would approach the critical
points to those convex hulls. Other variations on the open-loop
transfer function could be induced by fluctuations on model
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Figure 16. Variation of Dch produced by an increase in the sampling frequency.

Figure 17. IAE∗ for the batch of processes with different controllers (circles: Ts = Tr/3, squares: Ts = Tr/10, triangles: Ts = Tr/20 ).

Figure 18. Dch for the batch of processes with different controllers considering Ts = Tr/3.



INTERNATIONAL JOURNAL OF CONTROL 13

Figure 19. Difference between the robustness against oscillations of typem = 2 and of typem = 1.

parameters such as zeros and poles. Beyond the general consid-
erations aforementioned, the admissible uncertainties in each
parameter for a concrete model must be studied by an ad-hoc
analysis.

5.3 Multi-levelled oscillations

The presented robustness study based on the proposed mea-
sure Dch is substantiated on the assumption that by avoiding
single-levelled oscillations (those with m = 1), multi-levelled
oscillations (m> 1) will also be avoided. This fact was pointed
out in Romero and Sanchis (2016) for the continuous case, but
for the sampled case this study has not been addressed yet.

The definition of Dch can be adapted to contemplate multi-
levelled oscillations by considering only the traces of −1/N ′ of
the level under study in Equation (13). Therefore, the robustness
against, for instance, oscillations of two levels, can be deter-
mined by considering the cases where m = 2 in Equation (8)
and obtaining their convex hulls, which will then be used to cal-
culate the minimum distance to their respective critical point as
explained in previous sections.

This variation ofDch has been used to evaluate the robustness
against two-levelled oscillations of processes in the batch pre-
sented in (14) with the controllers tuned with Ziegler–Nichols,
AMIGO, One-Third and SIMC tuning rules. The difference
between the robustness against limit cycle oscillations of
two levels Dch(2) and single-levelled Dch(1) is presented in
Figure 19. The measure Dch(1) is the same that presented in
Figure 13.

From Figure 19, it can be observed an increase in the robust-
ness in all cases. The unique cases where there is not an
increase is on the first five processes tuned with Ziegler–Nichols
method, which presented an oscillatory behaviour, and would
also present it for m = 2. In the other cases, a generalised
increase in the robustness margin is observed, proving that by
avoiding single-levelled oscillations, multi-levelled oscillations
are also avoided.

6. Conclusion

In this work, an approach to study the robustness of discrete
event-based systems has been presented. The event generator
under study is the Symmetric-Send-On-Delta quantifier and the
controller has been implemented in a discrete fashion, which
represents more accurately the current implementation of this
kind of systems.

To perform the robustness analysis the Describing Function
technique has been used, obtaining the Sampling Describing
Function of the studied non-linearity. The characteristics of
this Sampled DF have been studied, which ultimately presents
characteristics similar to the continuous DF.

From the obtained Sampled DF and the stability condition
several modifications have been made to facilitate the robust-
ness analysis. First, the range to evaluate both the Sampled DF
and the system under study have been bounded. Second, the
scattered points resulting from the study have been grouped in a
convex hull. Finally, a robustness measure has been established
as the minimum of the distances to a convex hull. The validity
of the approach has been tested through several examples.

Using this robustness measure, some well-known tuning
rules have been evaluated, namely, Ziegler–Nichols, AMIGO,
One-Third rule and SIMC. These tuning rules have been used
to obtain the controllers for a wide batch of systems. To per-
form the discrete implementation, the sampling period has
been chosen based on the rise time of the continuous system
response. The obtained results reveal that Ziegler–Nichols tun-
ing method struggles to offer controllers that avoid limit cycle
oscillations. The other rules offer controllers with different lev-
els of robustness, but they avoid consistently the apparition of
limit cycle oscillations. In addition, it has been proved that
the robustness of the controllers increases with the sampling
frequency, behaviour that matches with the sampled control
theory.

Despite the fact that some of the aforementioned tuning
methods, e.g. AMIGO, avoid the limit cycles oscillation formost
of the systems included in the studied batch, thesemethods does
not take into account the condition to avoid limit cycles and
it must be checked a posteriori. The robustness measure pre-
sented in this paper can be useful to define new tuningmethods
which consider the restriction on Dch as a design requirement:
Dch > Dchr whereDchr > 0 represents the required value of this
robustness margin. Obviously, these new methods must also
guarantee a good overall performance of the control systems.

Although the study presented in this paper considers the
SSOD sampler, the sampled DF approach could be also applied
for analysing the robustness to limit cycles when more general
sampling strategies such as RQH are used, or even in the case of
asymmetric multi-level relays.
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Appendix. Sampled DF calculation
The SampledDescribing Functionwhich relates the input and output of the
non-linear element in the system can be computed in the following way:

N (δ,A,Ts) = Phasor representation of fundamental component of ē∗

Phasor representation of e
.

First, the phasor representation of e can be easily obtained since for the DF
calculations:

e(t) = A sin(ωot) = A cos
(

ωot + 3π
2

)
= 

{
Aej

(
ωot+ 3π

2
)}

.

For the phasor representation of the fundamental component of ē∗, an
harmonic analysis using Fourier series has been done. Expressing ē∗(t) as

ē∗(t) = ē(t) · δPT(t),

where the pulse train δPT is defined as

δPT(t) =
∞∑

k=−∞
δD(t − τ − kTs),

where δD is the Dirac delta function, Ts is the sampling period and τ the
time lag between the initial zero-crossing of e(t) and the first sample (which
is bounded between 0 and Ts).

To obtain the fundamental component of ē∗(t), first we obtain the
Fourier series representing ē(t):

ˆ̄e(t) = − δ

jπ

∞∑
n=−∞

1
n

{ m∑
i=1

i
[
e−jnωoti+1 − e−jnωoti

]

+
2m−1∑
i=m+1

(2m − i)
[
e−jnωoti+1 − e−jnωoti

]}
ejnωot ,
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where tn are the times where level switches are produced. And second, we
obtain the Fourier series representation of δPT is:

δ̂PT(t) = 1
Ts

∞∑
k=−∞

ejkωs(t−τ).

Multiplying both:

ˆ̄e∗(t) = − δ

jπTs

∞∑
k=−∞

∞∑
n=−∞

1
n

{ m∑
i=1

i
[
e−jnωoti+1 − e−jnωoti

]

+
2m−1∑
i=m+1

(2m − i)
[
e−jnωoti+1 − e−jnωoti

]}
ejnωotejkωs(t−τ).

To obtain the fundamental harmonic from this expression we have to pay
attention to the exponents that imply the variable t, which can be grouped
in a single expression:

j(nωo + kωs)t − jkωsτ .

Then, the part that multiplies t has to be the fundamental frequency, i.e.
either +ωo or −ωo. Taking r as the ratio between the oscillation and sam-
pling period (r = To/Ts) we can obtain the relation between the harmonics
of the sampling (k) and of the signal ē(t) (n) to obtain the fundamental
frequency of ē∗(t):

nωo + kωs = ωo nωo + kωs = −ωo

n + k
ωs

ωo
= 1 n + k

ωs

ωo
= −1

n = 1 − kr n = −1 − kr

Thus the relation of harmonics to consider are both n = 1−kr and
n = −1−kr. The expression of the fundamental harmonic of ē∗(t) is

ˆ̄e∗(t) = − δ

jπTs

∞∑
k=−∞

{
1

1 − rk

{ m∑
i=1

i
[
e−j(1−rk)ωoti+1 − e−j(1−rk)ωoti

]

+
2m−1∑
i=m+1

(2m − i)
[
e−j(1−rk)ωoti+1 − e−j(1−rk)ωoti

]}
ejωot

+ 1
−1 − rk

{ m∑
i=1

i
[
e−j(−1−rk)ωoti+1 − e−j(−1−rk)ωoti

]

+
2m−1∑
i=m+1

(2m − i)
[
e−j(−1−rk)ωoti+1 − e−j(−1−rk)ωoti

]}
e−jωot

}

× e−jkωsτ .

Taking into account that:

e−j(1−rk)ωoti = (
ejωoti

)rk−1 = (
cos(ωti) + j sin(ωoti)

)rk−1

and

sin(ωoti) =

⎧⎪⎨
⎪⎩
iδ
A

if i = 1, 2, . . . ,m

(2m − i)
δ

A
if i = m + 1,m + 2, . . . , 2m

cos(ωoti) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+
√
1 −

(
iδ
A

)2
if i = 1, 2, . . . ,m

−
√
1 −

(
(2m − i)

δ

A

)2
if i = m + 1,m + 2, . . . , 2m

the expression of ˆ̄e∗(t) can be simplified and its phasor representa-
tion obtained after some straightforward algebra calculus. Then the ratio
between the phasor of ˆ̄e∗(t) and the phasor of e(t) resulting in the
Sampled DF:

N (δ/A, r, τ ,Ts)

= 2δ
πTsA

∞∑
k=−∞

e−jk2πτ/Ts

rk − 1

×

⎡
⎢⎣m−1∑

i=1

⎧⎪⎨
⎪⎩
⎛
⎝−

√
1 −

(
iδ
A

)2
+ j

iδ
A

⎞
⎠

rk−1

−
⎛
⎝
√
1 −

(
iδ
A

)2
+ j

iδ
A

⎞
⎠

rk−1
⎫⎪⎬
⎪⎭

−
⎛
⎝
√
1 −

(
mδ

A

)2
+ j

mδ

A

⎞
⎠

rk−1

+ (−1)rk−1

⎤
⎥⎦ .


