
Computing
https://doi.org/10.1007/s00607-021-00997-9

SPEC IAL ISSUE ART ICLE

Usingmachine learning to model the training scalability of
convolutional neural networks on clusters of GPUs

Sergio Barrachina1 · Adrián Castelló1 ·Mar Catalán1 ·Manuel F. Dolz1 ·
Jose I. Mestre1

Received: 30 April 2021 / Accepted: 4 August 2021
© The Author(s) 2021

Abstract
In this work, we build a general piece-wise model to analyze data-parallel (DP)
training costs of convolutional neural networks (CNNs) on clusters of GPUs. This
general model is based on i) multi-layer perceptrons (MLPs) in charge of model-
ing the NVIDIA cuDNN/cuBLAS library kernels involved in the training of some
of the state-of-the-art CNNs; and ii) an analytical model in charge of modeling the
NVIDIA NCCL Allreduce collective primitive using the Ring algorithm. The CNN
training scalability study performed using this model in combination with the Roofline
technique on varying batch sizes, node (floating-point) arithmetic performance, node
memory bandwidth, network link bandwidth, and cluster dimension unveil some cru-
cial bottlenecks at both GPU and cluster level. To provide evidence of this analysis, we
validate the accuracy of the proposed model against a Python library for distributed
deep learning training.

Keywords Deep neural networks (DNNs) · Distributed training · Multi-layer
perceptron (MLP) based modeling · Analytical modeling · Clusters · GPUs

Mathematics Subject Classification 65Y20 · 68M20 · 68T07

B Manuel F. Dolz
dolzm@uji.es

Sergio Barrachina
barrachi@uji.es

Adrián Castelló
adcastel@uji.es

Mar Catalán
catalama@uji.es

Jose I. Mestre
jmiravet@uji.es

1 Universitat Jaume I, Castellón, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-021-00997-9&domain=pdf
http://orcid.org/0000-0001-9466-3398

S. Barrachina et al.

1 Introduction

The deep learning hype we are experiencing in the last years is a consequence of new
mathematical and algorithmic advances, the availability of huge amounts of training
data, the deployment of powerful specialized computer hardware, and the development
of user-friendly yet powerful Deep Neural Networks (DNN) training frameworks
[18,21]. Roughly speaking, for supervised training, a DNN is a generic algorithm that
semi-automatically “learns” from a number of problem-solution pairs in order to adapt
itself to produce a solution for future instances of that particular problem class. This
adaptation occurs via an off-line training procedure, especially expensive for complex
DNNs, which often requires the use of large-scale computing platforms [4].

The simplest scheme for extracting parallelism from a batched training process on
a cluster is to replicate the model in all nodes and to distribute the computations across
the “batch” dimension among the nodes. Most parallel DNN frameworks leverage this
approach, referred to as data parallelism (DP), to accelerate the training process, due
to its simplicity and superior scalability [24]. Alternatively, model parallelism (MP)
becomes mandatory when the model is so large that it does not fit into each node
memory. In [5] and [7], we independently analyzed the asymptotic performance of
distributed training based on DP and MP, respectively; while in [6] we performed a
full comparison between both parallel models. The strategy used to model the com-
putational kernels in those studies was based on the Roofline model [23], while the
communication costs were estimated using analytical models from the state-of-the-art
[12].

In this paper, we extend our previous works with a refined piece-wise model con-
sisting of a collection of simple yet accurate multilayer perceptrons (MLPs) in charge
of capturing the behaviour of the individual computational kernels appearing in the
DP training of CNNs on clusters of GPUs. Whereas, the collective communications
appearing in the general model for DP training are modeled via analytical models. In
particular, our work makes the following contributions:

– We validate our MLPs and analytical models using PyDTNN,1 a Python library
for distributed deep learning (DL) that covers DL training for the most common
DNN models: MLPs, CNNs, and residual networks (ResNets). PyDTNN exploits
DP [4], relying on specialized message-passing libraries for communication and
on kernels from high-performance multi-threaded libraries for computation. For
clusters of NVIDIA GPUs, PyDTNN leverages cuDNN and cuBLAS to realize
the major computational kernels appearing in the DNNs layers and NCCL for the
collective operations. In comparison, in [6] we only validated the major compu-
tational kernels using the Roofline-based models for distributed DP training on
clusters of multi-core CPUs.

– As a result of the validation process against PyDTNN, we have refined our per-
formance models to more accurately reproduce the actual computations and data
communication exchanges appearing in the distributed DP training. Specifically,
the next model aspects have been improved:

1 The PyDTNN framework is available at https://github.com/hpca-uji/PyDTNN/, under a GNU General
Public License v3.0.

123

https://github.com/hpca-uji/PyDTNN/

Using machine learning to model the training…

– The Roofline-based analytical models have been extended with a collection of
regression-based MLPs that produce more accurate estimations of the execution
time for the NVIDIA cuDNN/cuBLAS numerical kernels, the NVIDIA CUDA
(host to device) memory copies, and the optimizing functions used on the training
of CNNs.

– The MLP models have been tailored to two state-of-the-art GPUs: NVIDIA Tesla
A100 and V100S.

– An analytical model has been designed to mimic the behavior of the Allreduce
collective communication primitive from the NVIDIA NCCL library required in
DP training. This model has been validated on a small-scale cluster with nodes
equipped with NVIDIA V100 GPUs, interconnected via an Infiniband EDR net-
work.
In summary, the new MLP-based models are considerably more realistic and, as
our experiments demonstrate, provide accurate estimates of the execution costs of
a real distributed framework for DL on clusters of GPUs.

– As a final and major contribution of this work, we perform an extensive analysis
of the DP strategy on three CNN models and two datasets, as a function of five
parameters: batch size, node arithmetic performance, node memory bandwidth,
network link bandwidth, and cluster size.

This paper is organized as follows. In Sect. 2, we offer a short review of distributed
training for supervised DL. Next, in Sect. 3 we present and validate the MLP-based
models for the computational kernels involved in a training step aswell as the analytical
model for the NCCL Allreduce communication primitive. In Sect. 4, we evaluate in
detail the performance of three representative CNNs combined with two datasets.
Finally, in Sects. 5 and 6, respectively, we discuss a number of related works and close
this paper with a few remarks.

2 Distributed training of CNNs

2.1 Overview of training

A neural network (NN) can be viewed as a nonlinear function that performs a mapping
between its inputs and outputs. A NN is organized into L layers, each one consist-
ing of nl neurons and contributing toward the output with a particular intermediate
computation.

The objective of the training process is then to learn from the training data, adapting
the NN model in order to minimize the deviation between the outputs computed
by the NN and the expected outputs (ground truth). Provided the training data is
representative, the trained model can then be used to produce accurate responses when
operating with “unseen” (new) data. The adaptation of the NN is usually performed
via an optimization algorithm such as the stochastic gradient descent (SGD) method;
see, e.g., [13].

123

S. Barrachina et al.

2.2 High-performance batched training

Advanced realizations of the training process perform the forward-backward passes
of SGD for batches of b simultaneous inputs. This formulation converts the memory-
bound kernels of the single-input case into compute-bound operations in the batched
counterpart [21].

2.2.1 High performance GEMM

Fully-connected (FC) layers in (multilayer perceptrons, or MLPs, and) CNNs can be
simply cast in terms of a general matrix multiplication (gemm). This computation
can be performed by invoking a multi-threaded highly tuned instance of BLAS, such
as that in Intel MKL, OpenBLAS, GotoBLAS2, and BLIS for multicore processors.
For GPUs from NVIDIA, it is possible to rely on the cuBLAS library to perform the
corresponding gemm.

Similarly, convolutional (Conv) layers in CNNs can also be mapped into a gemm
through a transformation of the input operand I via the im2col operation [9], which
generates an augmented version of I (re-organizing and partially replicating its ele-
ments). InNVIDIAGPUs, theConv layers can be efficiently processed using cuDNN,
a library of primitives for DNNs that provides highly tuned implementations of the
most frequent DNN kernels. This library includes support for forward and backward
convolutions, including cross-correlation, using two primary methods: gemm-based
and transform-based. The former approach provides three different variants: i) the
gemm variant constructs the augmented im2col-relatedmatrix required for the gemm;
ii) the Implicit gemm variant avoids explicitly forming the whole augmented matrix;
and iii) the Implicit Precompute gemm is similar to i) but precomputes some indices
that facilitate the construction of the augmented matrix.

2.3 Distributed data-parallel training

During the training process, the activations are propagated between adjacent layers,
from “left” to “right” of the DNN, for the FP stage. Afterwards, in the backward
pass (BP), the gradients are computed and the weights are updated (WU) following
the opposite direction. In both cases, there exist strict inter-layer data dependencies
between consecutive layers,which impedes an inter-layer parallelization of the training
process.

In the DP scheme, the gemm kernels are parallelized by partitioning the problem
data (and distributing the workload) across the batch size b among the P “processes”,
which may correspond, e.g., to the number of GPU accelerators in a cluster platform.
Since the number of samples that are usually employed to train a NN is quite high,
provided some algorithmic parameters which could affect the convergence of the
training process are conveniently adjusted, it is possible to increase the batch size b
proportionally to P up to a certain dimension [25]. Also, the weights/filter tensors
are replicated so that each process maintains a local copy while the input batch tensor
involved in a training step is distributed among the P processes,whichwill thus process

123

Using machine learning to model the training…

only b/P samples of the batch. Therefore, in DP there is no need for inter-process
communications during the FP and BP computations. In contrast, for the WU stage,
an Allreduce [8] is required to aggregate the partially computed gradients related to
the weights/filters in each layer across all P processes prior to updating the weights.

In clusters of NVIDIA GPUs, the Allreduce operation can be realized using any
of the high-performance MPI libraries, such as MPICH, MVAPICH2, OpenMPI, etc.
CUDA supports Remote Direct Memory Access, which allows buffers to be directly
transferred from the GPU memory to a network adapter without staging through host
memory [1]. Alternatively, the NVIDIA Collective Communication Library (NCCL)
implements highly-efficient communication primitives for NVIDIA GPUs on PCIe
and NVLink interconnects within a node as well as over NVIDIAMellanox networks
across nodes [17].

3 Performancemodeling of CNNs

In this section, we detail the methodology employed to build the performance piece-
wise models based on MLP and analytical models that account for the training costs
of CNNs using the DP training scheme on clusters of GPUs.

3.1 Modeling the computations usingMLPs

Training CNNs involves the processing of the FP and BP for all the batches in the
dataset during a given number of epochs. Given that the number of training epochs
depends on the desired final accuracy, which in turn depends on the combination of
the CNNmodel and the training dataset being used, in this work we focus onmodeling
the performance of a single step (FP+BP+WU) of the target CNN model.

In a previous work [6], we modeled the CNN computational training costs as the
sum of the gemm and im2col transformations involved in each FC and Conv layer
of a CNN using the so-called Roofline model. Recall that this model receives, as
inputs, the kernel arithmetic intensity in flops/byte, the peak performance, and the
memory bandwidth of the processor to perform an estimation of the upper bound of
flops/s that can be attained in a given processing unit. However, tuning the Roofline
model to perform accurate predictions of a specific kernel is not straightforward and
presents the following drawbacks: i) a deep knowledge of thef memory hierarchy
of the processor is necessary to set the right memory bandwidth; ii) for the case of
GPUs, it is difficult to account for the different capabilities of recent accelerators (e.g.,
streaming multiprocessors and tensor cores); and iii) the model cannot fully capture
the internal algorithmic implementation details.

Although the Roofline model is still a valid solution to calculate the general asymp-
totic costs, in this workwe extend our basic approach in [6] to accuratelymodel each of
the cuDNN/cuBLAS kernels involved in the CNN training on GPUs using regression-
basedMLPmodels. Apart from that, we also useMLPs to account for the costs related

123

S. Barrachina et al.

Table 1 Specification of the regression-basedMLPs used formodeling each of the cuDNN/cuBLASkernels
in Table 2. The number of input neurons in layer 0 corresponds to cardinality of the tuple I nputs appearing
in the last column of Table 2

Id. Layer type #Neurons

0 Input #Inputs

1–10
FC
ReLU

}
× 5 50

11 FC 1

to the SGD optimizing function2 and the per-training-step batch (host to device) mem-
ory copy. The main advantage of this approach is that the MLP models are capable of
learning the complex nonlinear behaviors inherent to the execution of these kernels on
different input operand sizes and related parameters, abstracting them from the pro-
cessor/accelerator parameters. With such models, the behavior of these kernels can be
easily learned by eachMLP from a collection of previous executions performed on the
selected GPUs in order to achieve accurate execution time predictions. However, we
also recognize the limitations of theMLPs as, once trained, they can only perform exe-
cution time estimations for a concrete GPU model, being the FLOPS and the memory
bandwidth fixed parameters. For these reasons, the scalability study performed later in
this paper stills uses the Roofline model when varying the floating-point and memory
bandwidth performance.

3.1.1 Network design

We first designed a simple regression-based MLP architecture comprised of an input
FC layer followed by 5× FC+ReLU blocks of 50 neurons each, and a final FC layer
consisting of a single neuron in charge of performing the execution time prediction;
see Table 1. The inputs of the MLP models correspond to the sizes of the input
operands and parameters of the modeled kernel. For instance, the MLP inputs corre-
sponding to the cublasSgemm kernel responsible for realizing the FP in a FC layer
l, O(l) = I (l) · W (l), are b, nl−1, and nl , where b denotes the number of rows of the
input/output matrices I (l) and O(l); nl−1 the number of columns of I (l) and rows of
the weights matrix W (l); and nl stands for the number of columns of W (l). Table 2
lists the cuDNN/cuBLAS kernels that have been modeled via a MLP for each type of
layer and stage. The table also includes the MLPs for the SGD optimizing function as
well as for the cudaMemcpy CUDA kernel.

3.1.2 Obtaining the datasets

To generate the necessary data to train the proposed MLP models, we developed a
series of micro-benchmarks for the kernels in Table 2, using all the combinations of
the operand sizes and input parameters specified in Table 3. Each micro-benchmark

2 For the SGD optimizer we used the PyCUDA kernel implementation from our PyDTNN training frame-
work, as optimizing functions are not available in cuDNN.

123

Using machine learning to model the training…

Ta
bl
e
2

T
ra
in
ed

M
L
Ps

fo
re
ac
h
of

th
e
cu
D
N
N
,c
uB

L
A
S,

SG
D
,C

o
py

ke
rn
el
s
an
d
al
go
ri
th
m
s/
m
od
es

ap
pe
ar
in
g
in
a
tr
ai
ni
ng

st
ep

th
e
se
le
ct
ed

C
N
N
s.
Fo

rs
im

pl
ic
ity

w
e
as
su
m
e

th
at
th
e
ve
rt
ic
al
an
d
ho
ri
zo
nt
al
st
ri
de
s
(s
l
=

sv l
=

sh l
)
an
d
pa
dd

in
gs

(p
l
=

pv l
=

ph l
)
ar
e
eq
ua
l

L
ay
er
/K
er
ne
l

St
ag
e

M
od
el
ed

ke
rn
el

A
lg
or
ith

m
s/
M
od
es

In
pu

ts

C
o
n
v

FP
c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

A
u
to

,g
em

m
,I
m
pl
.
G
em

m
,

Im
pl
.
Pr

ec
o
m
p.

G
em

m
{b,

c l
−1

,
h l
−1

,
w
l−

1
,
c l

,
kh l

,

kw l
,
h l

,
w
l,
s l

,
p l
}

B
P

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

A
u
to

,A
lg

o
0,
A
lg

o
1

B
P

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

A
u
to

,A
lg

o
0,
A
lg

o
1

FP
c
u
d
n
n
A
d
d
T
e
n
s
o
r
(a
dd

bi
as
es
)

-
{b,

c l
,
h l

,
w
l}

B
P

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
B
i
a
s

FC
FP

c
u
b
l
a
s
S
g
e
m
m

-
{b,

n l
−1

,
n l
}

B
P

c
u
b
l
a
s
S
g
e
m
m
(w

ei
gh
ts
+
da
ta
gr
ad
ie
nt
s)

FP
c
u
d
n
n
A
d
d
T
e
n
s
o
r
(a
dd

bi
as
es
)

-
{b,

n l
}

B
P

c
u
b
l
a
s
S
g
e
m
v
(b
ia
se
s
gr
ad
ie
nt
)

B
a
tc

h
N
o
rm

FP
c
u
d
n
n
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
F
o
r
w
a
r
d
T
r
a
i
n
i
n
g

Sp
a
ti
a
l

{b,
c l

,
h l

,
w
l}

B
P

c
u
d
n
n
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
B
a
c
k
w
a
r
d

M
a
x
Po

o
l

FP
c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

Po
o
li
n
g

M
a
x

{b,
c l

,
h l

,
w
l,
kh l

,
kw l

,
s l

,
p l
}

B
P

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

A
v
g
Po

o
l

FP
c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

Po
o
li
n
g

A
v
er

a
g
e
C
o
u
n
t

{b,
c l

,
h l

,
w
l,
kh l

,
kw l

,
s l

,
p l
}

B
P

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

R
eL

U
FP

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

A
ct

iv
a
ti
o
n

R
el
u

{b,
c l

,
h l

,
w
l}

B
P

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

So
ft
m
a
x

FP
c
u
d
n
n
S
o
f
t
m
a
x
F
o
r
w
a
r
d

M
o
d
e
in
st
a
n
ce

,A
cc

u
ra

te
{b,

c l
,
h l

,
w
l}

B
P

c
u
d
n
n
S
o
f
t
m
a
x
B
a
c
k
w
a
r
d

SG
D

W
U

p
y
d
t
n
n
S
g
d
K
e
r
n
e
l

-
{b,

c l
,
h l

,
w
l},

{b,
n l
−1

,
n l
}

C
o
py

FP
c
u
d
a
M
e
m
c
p
y

-
{b,

c l
,
h l

,
w
l}

123

S. Barrachina et al.

Table 3 Ranges of input sizes operands selected for the generation of the training/testing dataset of the
MLP models

Description Parameter Range of values

#Inputs, #outputs of layer l nl−1, nl {128, 256, 512, . . . , 1280× 103}
#Channels of layer l cl−1 {3, 4, 8, 16, 32, 64, 128, 256, 512}
Input/Output height of layer l hl−1, wl−1 {8, 14, 16, 28, 32, 56, 112, 224}
Filter width/height of layer l khl , k

v
l {1, 3, 5, 7, 9}

Vertical/Horizontal stride of layer l svl , s
h
l {1, 2, 4}

Vertical/Horizontal padding of layer l pv
l , p

h
l {1, 3, 5, 7, 9}

Batch size b {16, 32, 64, 128, 256}

generates the dataset for a single MLP, the samples being the tuples that contain the
input operand sizes/parameters and their corresponding measured execution time. To
tackle the system noise, we executed each kernel 100 times and reported the aver-
age execution time. The datasets associated with each kernel were obtained on two
NVIDIAGPUs: a TeslaA100 and a TeslaV100 PCIewith cuDNNv8.0.4 and cuBLAS
v11.3.0.106. The server used to execute these experiments comprises 2× Intel Xeon
6126 processors (24 cores in total at 2.60GHz), 64GiB of DDR4 RAM, and the two
afore-mentioned NVIDIA Tesla GPUs.

3.1.3 Training the MLPmodels

Once the datasets are obtained, the models can be trained using the Tensorflow v2.2.0
framework. To permit the MLPs learning, we normalize the inputs and outputs using
the log function to narrow the range of values of the operand sizes/parameters and the
measured execution times. Next, we partition the datasets, leaving 80% for training
and the remaining 20% for testing. Analogously, 80% of the training dataset is utilized
only for training, while the remaining 20% is used for validation, to prevent overfitting
and to guide the training process. All the MLP models are trained using the Adam
optimizer on the Minimum Square Error (MSE) loss function. In this process, the
initial learning rate was set to 10−3 and multiplied by 0.1 each time that the validation
loss did not improve for 15 consecutive epochs. Additionally, the training stopping
criteria terminated the training process when the validationMSE did not improve after
20 epochs.

Once the models are trained, the next step is to evaluate them using the testing
dataset. For that purpose, we use the relative error (RE) as the metric to account for the
differences between the predicted and measured kernel execution times. Concretely,
the RE for the run time of a kernel k is defined as:

REk = T estimated
k − Tmeasured

k

T measured
k

.

123

Using machine learning to model the training…

0

10

20

30

40

50

60

CONV FC BATCHNORM MAXPOOL AVGPOOL RELU SOFTMAX SGD COPY

R
el
at
iv
e
er
ro
r
(%

)

MLP model

13
.0
0%

9.
24

%

11
.4
0%

16
.5
4%

3.
12

%

13
.3
0%

8.
44

%

17
.8
0%

13
.9
7%

6.
51

%

20
.2
6%

8.
40

%

4.
04

% 7.
25

%

1.
91

%

3.
86

%

3.
68

%

13
.4
9%

11
.4
4%

5.
72

%

6.
93

%

5.
03

% 8.
13

%

4.
97

%

5.
61

%

5.
16

%

3.
93

%

5.
47

%

6.
14

%

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
a
u
t
o
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
g
e
m
m
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
i
m
p
l
i
c
i
t

g
e
m
m
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
i
m
p
l
i
c
i
t

p
r
e
c
o
m
p

g
e
m
m
)

c
u
d
n
n
A
d
d
T
e
n
s
o
r

(
f
o
r
w
a
r
d

b
i
a
s
e
s
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

(
a
u
t
o
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

(
a
l
g
o

0
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

(
a
l
g
o

1
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

(
a
u
t
o
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

(
a
l
g
o

0
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

(
a
l
g
o

1
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
B
i
a
s

c
u
b
l
a
s
S
g
e
m
m

(
f
o
r
w
a
r
d
)

c
u
d
n
n
A
d
d
T
e
n
s
o
r

(
f
o
r
w
a
r
d

b
i
a
s
e
s
)

c
u
b
l
a
s
S
g
e
m
m

(
b
a
c
k
w
a
r
d

w
e
i
g
h
t
s
)

c
u
b
l
a
s
S
g
e
m
m

(
b
a
c
k
w
a
r
d

d
a
t
a
)

c
u
b
l
a
s
S
g
e
m
v

(
b
a
c
k
w
a
r
d

b
i
a
s
e
s
)

c
u
d
n
n
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
F
o
r
w
a
r
d
T
r
a
i
n
i
n
g

(
s
p
a
t
i
a
l
)

c
u
d
n
n
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
B
a
c
k
w
a
r
d

(
s
p
a
t
i
a
l
)

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
S
o
f
t
m
a
x
F
o
r
w
a
r
d

c
u
d
n
n
S
o
f
t
m
a
x
B
a
c
k
w
a
r
d

p
y
d
t
n
n
S
g
d
K
e
r
n
e
l

c
u
d
a
M
e
m
c
p
y

NVIDIATeslaA100 GPU

0

10

20

30

40

50

60

CONV FC BATCHNORM MAXPOOL AVGPOOL RELU SOFTMAX SGD COPY

R
el
at
iv
e
er
ro
r
(%

)

MLP model

21
.5
0%

15
.5
5%

13
.3
8%

21
.1
1%

5.
40

%

17
.3
1%

8.
45

%

22
.8
9%

17
.0
5%

7.
13

%

23
.7
2%

9.
80

%

4.
26

%

2.
59

%

2.
05

%

4.
46

%

2.
95

%

13
.5
6% 16
.2
2%

5.
95

%

7.
08

%

6.
94

%

8.
77

%

2.
99

%

3.
32

%

2.
62

%

4.
94

%

6.
24

%

4.
65

%

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
a
u
t
o
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
g
e
m
m
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
i
m
p
l
i
c
i
t

g
e
m
m
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

(
i
m
p
l
i
c
i
t

p
r
e
c
o
m
p

g
e
m
m
)

c
u
d
n
n
A
d
d
T
e
n
s
o
r

(
f
o
r
w
a
r
d

b
i
a
s
e
s
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

(
a
u
t
o
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

(
a
l
g
o

0
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
F
i
l
t
e
r

(
a
l
g
o

1
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

(
a
u
t
o
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

(
a
l
g
o

0
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
D
a
t
a

(
a
l
g
o

1
)

c
u
d
n
n
C
o
n
v
o
l
u
t
i
o
n
B
a
c
k
w
a
r
d
B
i
a
s

c
u
b
l
a
s
S
g
e
m
m

(
f
o
r
w
a
r
d
)

c
u
d
n
n
A
d
d
T
e
n
s
o
r

(
f
o
r
w
a
r
d

b
i
a
s
e
s
)

c
u
b
l
a
s
S
g
e
m
m

(
b
a
c
k
w
a
r
d

w
e
i
g
h
t
s
)

c
u
b
l
a
s
S
g
e
m
m

(
b
a
c
k
w
a
r
d

d
a
t
a
)

c
u
b
l
a
s
S
g
e
m
v

(
b
a
c
k
w
a
r
d

b
i
a
s
e
s
)

c
u
d
n
n
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
F
o
r
w
a
r
d
T
r
a
i
n
i
n
g

(
s
p
a
t
i
a
l
)

c
u
d
n
n
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
B
a
c
k
w
a
r
d

(
s
p
a
t
i
a
l
)

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
S
o
f
t
m
a
x
F
o
r
w
a
r
d

c
u
d
n
n
S
o
f
t
m
a
x
B
a
c
k
w
a
r
d

p
y
d
t
n
n
S
g
d
K
e
r
n
e
l

c
u
d
a
M
e
m
c
p
y

NVIDIATeslaV100 GPU

Fig. 1 Histogram and box-plots for the relative estimation errors obtained by the MLP models for the
cuDNN and cuBLAS libraries as well as the SGD optimizing function and memory copies on the testing
datasets and the NVIDIA Tesla A100/V100 GPUs

Figure 1 displays the histograms, boxplots, and average REs (blue diamonds) obtained
for the MLP modeling the cuDNN/cuBLAS kernels on the testing dataset for both
GPUs, A100 and V100. In general, we observe that the prediction error for Conv
layers is around 15%, with the gemm and Implicit gemm algorithmic variants for FP
and Algo 0 for BP, providing very accurate estimations. The RE for FC layers is in
general around 5%, similar to that incurred for the MaxPool/AvgPool, ReLU, and
Softmax layers. The RE for BatchNorm layers is, in general, around 14%. Finally,
the RE for the SGD and the cudaMemcpy was on average, 5% and 7% for both
GPUmodels, respectively. From these results, we can conclude that the trained MLPs
provide fairly good estimations, and therefore they can be used as part of the global
piece-wise model to predict the cost of a CNN training step.

3.2 Modeling the communications

To complete our piece-wise model, we need to estimate the communication exchanges
appearing in CNNs trainable layers (Conv, FC, and BatchNorm). As previously
mentioned, to estimate the communication costs we leverage an analytical model
to predict Allreduce exchanges performed by the NCCL implementation among the

123

S. Barrachina et al.

GPUs.3 From the cluster perspective, we consider a single MPI rank mapped onto a
GPU and an interconnection network among the P nodes with a star topology.4 In
such a realization, a single link connects each node to a central switch that provides
simultaneous full bandwidth between any two nodes.

NCCL supports different algorithmic schemes to perform the Allreduce collective,
with a throughput that depends on the message size n, the number of GPUs, and
the network topology. Nonetheless, we focus on the Ring algorithm [22], which is
competitive for large messages, as those which typically arise when training CNNs
[17]. Following the implementation in NCCL, the Allreduce operation realized on P
GPUs via the Ring scheme has a cost of:

2(P − 1)α + 2
P − 1

P
nβ + P − 1

P

n

δ
γ, (1)

where α and β respectively represent the link latency and bandwidth, γ corresponds
to the peak arithmetic performance, and n stands for the message size.

3.3 Building the general model

To build our general model, we leverage the MLP models to account for the compu-
tational costs of the layers and the analytical model to estimate the communication
exchange run times according to the modelled CNN architecture. For that, we devel-
oped a simulator mimicking the FP and BP stages, which is responsible to call the
individual MLP/analytical models according to: i) the CNN structure, as a collec-
tion of layer parameters; ii) the architectural cluster parameters, such as the number
of nodes/GPUs (processes), the GPU type, and the network configuration; and iii)
the algorithmic parameters, i.e., the batch size and the computer floating-point format
(specifically, the number of bytes per floating-point element), e.g. FP32. The complete
list of parameters that can be adjusted in our general model is displayed in Table 4.

3.4 Validation of the performancemodel

Before applying our general performance models to analyze the scalability of the
distributed DP scheme, we first assess the accuracy of MLP computation models and
the Allreduce model. For this purpose, we contrast the cost estimations obtained from
the individual models with the actual execution times measured for PyDTNN, a Python
library for distributed CNN training on clusters of CPUs and GPUs that is competitive
with current state-of-the-art frameworks, such as TensorFlow [2,3]. 5

3 We did not consider an MLP model for estimating the Allreduce communication costs as we find it
time-consuming to generate a training dataset including a wide range of input real parameters for link
bandwidth, latencies and number of nodes. Without this dataset, we cannot expect an MLP to perform
accurate estimations.
4 In this work, for simplicity, we consider nodes equipped with a single GPU only.
5 Weused PyDTNN to validate the experiments as this framework can be easily configured to leverage a data-
parallel scheme using synchronous communications. Other frameworks, such as TensorFlow+Horovod,

123

Using machine learning to model the training…

Table 4 Parameters of the
performance model

(a) CNN model

l #Layers id

T Layer type

nl−1, nl #Inputs, #outputs of layer l

hl−1, hl Input/Output height of layer l

wl−1, wl Input/Output width of layer l

kw
l , khl Filter width/height of layer l

svl , s
h
l Vertical/Horizontal stride of layer l

pv
l , p

h
l Vertical/Horizontal padding of layer l

cl #Channels of layer l

b Batch size

δ Bytes per floating-point number

(b) Cluster

A Processor/accelerator type

P #Nodes in the cluster

α Link latency (in s)

β Link bandwidth (in bits/s)

3.4.1 Hardware setup and calibration

The validation of the performance models was carried out on our Altec cluster. This
platform consists of 8 nodes, each equipped with an Intel Xeon Gold 5120 processor
(14 cores with a nominal frequency of 2.20GHz), 187GiB of DDR4 RAM, and an
NVIDIA Tesla V100 PCIe with 32GiB of HBM2. The nodes are interconnected via
an Infiniband EDR network with a bandwidth of 100Gbps. Regarding the software
layer, we use Intel Python 3.7.4 to run PyDTNN on top of cuDNN v8.0.4 and cuBLAS
v11.3.0.106. The communication layer is provided by NCCL v2.8.3 configured to use
the Infiniband network. It is important to remark that, since we do not have access to
a cluster equipped with A100 GPUs, we can only carry out the validation using the
Altec cluster, consisting of V100 GPUs. In any case, considering that the relative
estimation errors for A100 GPU are slightly smaller than those for the V100 GPU (as
shown in Fig. 1), we can expect that a validation carried out on a A100 GPU would
lead to similar prediction errors.

Table 5 displays the main characteristics of the cluster configuration. (Besides, it
also shows the parameters of an hypothetical cluster, Ampere, used for the perfor-
mance analysis described in the next subsection.) For the validation, we adapted the
models for IEEE 32-bit arithmetic by considering δ (bytes per floating-point num-
ber) and γ (theoretical peak performance, in FLOPS) to match the baseline 32-bit
floating-point datatype used by PyDTNN.

also exploit data parallelism, but use auxiliary communication threads that aim to overlap computation with
communications, which makes more difficult the modeling task.

123

S. Barrachina et al.

Table 5 Cluster architectures employed in the validation and analysis

Parameters Altec Ampere

#Cluster nodes 8 100

CPU model (Intel Xeon) 5120 8180M

Frequency (GHz) 2.2 2.5

#Cores 14 28

RAM memory (GBytes) 187 256

GPU model (NVIDIA Tesla) V100 A100

HBM2 memory (GBytes) 32 40

GPU tensor core peak FP32/TF32 (TFLOPS) 133 156

GPU memory bandwidth (GBytes/s) 900 1555

Network (Infiniband) EDR HDR

Link bandwidth (Gbps) 200 400

Maximum link latency (μs) 0.5 0.5

We calibrated the Altec cluster network parameters α and β (see Table 4) via the
NCCL test benchmark, which reported a practical link bandwidth of β = 12.24Gbps
and a link latency of α = 30μs [16].

3.4.2 Validation

The general model validation on PyDTNNwas performed with oneMPI rank (process)
per cluster node, each mapped to a V100 GPU of the Altec cluster. For that, we
obtained a full profile of the cuBLAS, cuDNN, memory copies, and SGD kernels
realized in a training step of the VGG11 network [20]. Figure 2 shows the actual
(i.e., measured) execution time per layer of VGG11 executed using a batch size of
b = 128, along with the corresponding estimations obtained with MLP models for
each of the kernels. The plots also offer the RE of the time predictions per kernel, and
an alternative “weighted” relative error,WRE , that is explained below. In general, we
observe that the relative errors for most kernels are moderate, remaining in the range
[−20%,+20%], with a good fraction of those being considerably lower, around±5%.
The relative error is large for a few kernels only (related to FC and ReLU layers at
the end of the VGG11 in the FP, some of the MaxPool layers in the BP, and the FC
in the WU stage). Nevertheless, the contribution of these to the total execution time is
small. As a result, the effect of these deviations on the total error remain small, around
±5% only.

The low relative error is partially due to cancellations between underestimations and
overestimations. In order to obtain a more representative metric, we have calculated
the error with respect to the average execution time, as:

WREk = T estimated
k − Tmeasured

k

T average
, (2)

123

Using machine learning to model the training…

10-5

10-4

10-3

10-2

10-1

100

101

-60

-40

-20

0

20

40

60

Layer

1-
C
on
v2
D

2-
R
eL

U

3-
M
ax
Po

ol
2D

4-
C
on
v2
D

5-
R
eL

U

6-
M
ax
Po

ol
2D

7-
C
on
v2
D

8-
R
eL

U

9-
C
on
v2
D

10
-R

eL
U

11
-M

ax
Po

ol
2D

12
-C

on
v2
D

13
-R

eL
U

14
-C

on
v2
D

15
-R

eL
U

16
-M

ax
Po

ol
2D

17
-C

on
v2
D

18
-R

eL
U

19
-C

on
v2
D

20
-R

eL
U

21
-M

ax
Po

ol
2D

23
-F
C

24
-R

eL
U

25
-F
C

26
-R

eL
U

27
-F
C

28
-S
of
tm

ax

A
ve
ra
ge

E
xe
cu
tio

n
tim

e
(s
)

R
el
at
iv
e
er
ro
r
(%

)

Measured
Estimated

Relative error
Weighted error

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
n
n
C
o
n
v
o
l
u
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
d
n
n
P
o
o
l
i
n
g
F
o
r
w
a
r
d

c
u
b
l
a
s
S
g
e
m
m

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
b
l
a
s
S
g
e
m
m

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
F
o
r
w
a
r
d

c
u
b
l
a
s
S
g
e
m
m

c
u
d
n
n
A
d
d
T
e
n
s
o
r

c
u
d
n
n
S
o
f
t
m
a
x
F
o
r
w
a
r
d

10-5

10-4

10-3

10-2

10-1

100

101

-60

-40

-20

0

20

40

60

Layer

28
-S
of
tm

ax

27
-F
C

26
-R

eL
U

25
-F
C

24
-R

eL
U

23
-F
C

21
-M

ax
Po

ol
2D

20
-R

eL
U

19
-C

on
v2
D

18
-R

eL
U

17
-C

on
v2
D

16
-M

ax
Po

ol
2D

15
-R

eL
U

14
-C

on
v2
D

13
-R

eL
U

12
-C

on
v2
D

11
-M

ax
Po

ol
2D

10
-R

eL
U

9-
C
on
v2
D

8-
R
eL

U

7-
C
on
v2
D

6-
M
ax
Po

ol
2D

5-
R
eL

U

4-
C
on
v2
D

3-
M
ax
Po

ol
2D

2-
R
eL

U

1-
C
on
v2
D

A
ve
ra
ge

E
xe
cu
tio

n
tim

e
(s
)

R
el
at
iv
e
er
ro
r
(%

)

Measured
Estimated

Relative error
Weighted error

c
u
d
n
n
S
o
f
t
m
a
x
B
a
c
k
w
a
r
d

c
u
b
l
a
s
S
g
e
m
m

(
W
e
i
g
h
t
s
)

c
u
b
l
a
s
S
g
e
m
v

(
B
i
a
s
e
s
)

c
u
b
l
a
s
S
g
e
m
m

(
D
a
t
a
)

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
b
l
a
s
S
g
e
m
m

(
W
e
i
g
h
t
s
)

c
u
b
l
a
s
S
g
e
m
v

(
B
i
a
s
e
s
)

c
u
b
l
a
s
S
g
e
m
m

(
D
a
t
a
)

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
b
l
a
s
S
g
e
m
m

(
W
e
i
g
h
t
s
)

c
u
b
l
a
s
S
g
e
m
v

(
B
i
a
s
) c
u
b
l
a
s
S
g
e
m
m

(
D
a
t
a
)

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
D
a
t
a

c
u
d
n
n
P
o
o
l
i
n
g
B
a
c
k
w
a
r
d

c
u
d
n
n
A
c
t
i
v
a
t
i
o
n
B
a
c
k
w
a
r
d

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
F
i
l
t
e
r

c
u
d
n
n
C
o
n
v
B
a
c
k
w
a
r
d
B
i
a
s

10-5

10-4

10-3

10-2

-60

-40

-20

0

20

40

60

Layer

27
-F
C

25
-F
C

23
-F
C

19
-C
on
v2
D

17
-C
on
v2
D

14
-C
on
v2
D

12
-C
on
v2
D

9-
C
on
v2
D

7-
C
on
v2
D

4-
C
on
v2
D

1-
C
on
v2
D

A
ve
ra
ge

E
xe
cu
tio

n
tim

e
(s
)

R
el
at
iv
e
er
ro
r
(%

)

Measured
Estimated

Relative error
Weighted error

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

W
e
i
g
h
t
s

B
i
a
s
e
s

Fig. 2 Execution time (FP+BP+WU) prediction error for the VGG11 model on the V100 GPU using a
batch size of 128

where the “average cost per kernel” is given as T average = ∑K
k=0 T

measured
k /K , with K

denoting the total number of kernels in a stage (FP, BP or WU). With that, the total
WRE for a stage S is defined as:

WRET
S =

∑K
k=0|WREk |

K
. (3)

When this metric is applied to the modeling of VGG11, the average weighted errors
are WRET

FP = 1.6%, WRET
BP = 3.2%, and WRET

WU = 3.1%. In a separate

123

S. Barrachina et al.

0

0.2

0.4

0.6

0.8

1

1.2

0 1x108 2x108 3x108 4x108 5x108 6x108 7x108 8x108 9x108 1x109
-100

-50

0

50

100
E
xe
cu
tio

n
tim

e
(s
)

R
el
at
iv
e
er
ro
r
(%

)

Message size (bytes)

6 procs - Measured
6 procs - Predicted

Relative error

0

0.2

0.4

0.6

0.8

1

1.2

0 1x108 2x108 3x108 4x108 5x108 6x108 7x108 8x108 9x108 1x109
-100

-50

0

50

100

E
xe
cu
tio

n
tim

e
(s
)

R
el
at
iv
e
er
ro
r
(%

)

Message size (bytes)

8 procs - Measured
8 procs - Predicted

Relative error

Fig. 3 Measured vs predicted execution times and relative error for the NCCL Allreduce collective com-
munication using 6 and 8 processes, each mapped onto a V100 GPU (node) of the Altec cluster

experiment, we validated the general model using the same VGG11 architecture on a
smaller batch size of 64. Therewe observed that the relative errors formost kernels also
remained in the range [−20%,+20%], withWRET

FP = 3.2% andWRET
BP = 2.5%.

Note that theWUvalidation is independent to the batch size, so it has not been repeated.
Finally, the validation of the analytical model for the NCCL Allreduce commu-

nication primitive is performed on a separate benchmark that realizes and measures
the collective communication costs by exchanging a message of various sizes, from
500KiB to 1GiB on a different number of GPUs. Figure 3 shows the measured and
predicted run times with their corresponding relative error for the NCCL Allreduce
primitive using 6 (left) and 8 (right) MPI ranks, each mapped onto a single V100 GPU
(node) of the Altec cluster. The results confirm that the analytical model delivers
fairly good estimations, with a relative error that is on average below 10% in message
sizes above 80MiB.

In the light of these results, we consider that the piece-wise performance model,
comprised of a collection of MLPs models and an analytical model, provides reason-
able predictions of the training costs on the Altec cluster, so it seems reasonable to
leverage it in the following section to assess the parallel scalability of the training
phase on other configurations.

4 Performance analysis

In this section, we study the DP training scalability of three popular CNNs, VGG16,
ResNet-50, and DenseNet-121, tailored for two datasets, CIFAR-10 and ImageNet.
The inputs for the former dataset are RGB images of size 32×32, while for ImageNet,
the RGB images are of size 224× 224. Also, the classification task of a given image
into one out of 10 classes for CIFAR-10 is extended to a total of 1,000 classes in
ImageNet. The CNN models specifications have been gathered from the Tensorflow
benchmark suite [11].

Hardware setup To analyze the performance and DP training scalability of the three
CNNs on the two datasets, we employ a parameterized hypothetical cluster Ampere;
see Table 5 formore details. In general, theAmpere cluster setup configures a state-of-
the-art prototypical supercomputer. Concretely, the number of nodes selection reflects
a mid-size cluster, while the processor and GPUmodels respectively correspond to the
Intel Xeon Skylake and NVIDIA A100 leading families. Also, the chosen Infiniband

123

Using machine learning to model the training…

HDR network conforms with a recent interconnection technologies available from
NVIDIA/Mellanox.

Configuration of experiments In all experiments, we employ our general perfor-
mance models based on MLPs for the computations and the analytical model for the
communication, to estimate the total execution time of a training step for the selected
CNNs and datasets, on theAmpere cluster. For each experiment we vary the following
parameters: node performance or accelerator performance (floating-point operations
per second, or FLOPS, and memory bandwidth); cluster configuration (number of
nodes and link bandwidth); and algorithmic batch size. Recall that, given the nature
of the MLPs, it is not possible to vary the FLOPS nor the memory bandwidth parame-
ters, as these models were trained for an specific accelerator. Thus, when varying these
parameters, the estimations in the following analysis rely on the Roofline models, as
done in [6].

For the Ampere cluster, we set the “baseline” values for γ , μ, α and β to the
corresponding theoretical peak thresholds listed in Table 5.

Moreover, in the baseline configuration, the cluster is assumed to consist of P=100
nodes, and the batch size b per process (GPU) is fixed to 128. Then, for each plot, we
vary a single experimental parameter while setting the remaining ones to the baseline
values. The black vertical line in each plot indicates the “position” of this reference
configuration according to these experimentation parameters.

4.1 Scalability analysis

Our scalability experiments in Figs. 4 and 5 respectively report the cost for the dis-
tributed DP training of the selected models on the CIFAR-10 and ImageNet datasets
using the Roofline model (RFL) and the MLP models for the total computation time.
The plots also show the communication costs, estimated using the analytical model
(AM) for the Allreduce collective.

The first observation from those results is that, for the baseline configuration, the
total execution time is mildly dictated by the node computational performance of the
GPU (as a combination of peak FLOPS andmemory bandwidth). This can be identified
in all the figure plots by looking into the component that has a higher contribution
to the total execution time in the reference point of the x-axis marked by the black
vertical line.

We next analyze the effects of varying the selected parameters, grouping them into
the node, cluster, and algorithmic components. Recall that, in the DP scheme, the
volume of communication is proportional to the number of trainable parameters of the
CNNs and the number of nodes. Also, while scaling the number of nodes, the batch
size processed by each GPU is fixed to 128.

GPU performance As shown in the first and second rows of plots, increasing the
GPUperformance reduces the execution time for all models, but only to a certain point,
e.g. γ = 50 for DenseNet-121. From there, increasing the FLOPS reaches a plateau on
the total time, meaning that the costs are dominated by the memory accesses. For the
VGG16model onCIFAR-10, there appears a crossover point around γ = 30TFLOPS:
below that threshold, the communications represent a bottleneck. Conversely, varying

123

S. Barrachina et al.

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180

E
xe
cu
tio

n
tim

e
(s
)

Performance (TFLOPS)

VGG16

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180
Performance (TFLOPS)

ResNet-50

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180
Performance (TFLOPS)

DenseNet-121

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
xe
cu
tio

n
tim

e
(s
)

Memory bandwidth (TB/s)

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Memory bandwidth (TB/s)

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Memory bandwidth (TB/s)

0.001

0.01

0.1

1

10

100

0.1 1 10 100 1000

E
xe
cu
tio

n
tim

e
(s
)

Link bandwidth (Gbps)

0.01

0.1

1

10

100

0.1 1 10 100 1000
Link bandwidth (Gbps)

0.01

0.1

1

10

0.1 1 10 100 1000
Link bandwidth (Gbps)

0.001

0.01

0.1

1 10 100 1000

E
xe
cu
tio

n
tim

e
(s
)

Cluster size (nodes)

0.001

0.01

0.1

1

1 10 100 1000
Cluster size (nodes)

0.001

0.01

0.1

1

1 10 100 1000
Cluster size (nodes)

0.0001

0.001

0.01

0.1

1

16 32 64 12
8

25
6

51
2

10
24

20
48

E
xe
cu
tio

n
tim

e
(s
)

Batch size

0.001

0.01

0.1

1

16 32 64 12
8

25
6

51
2

10
24

20
48

Batch size

0.001

0.01

0.1

1

16 32 64 12
8

25
6

51
2

10
24

20
48

Batch size

Total (RFL+AM)
Total (MLP+AM)

Computation (RFL)
Computation (MLP)

Communication (AM)

Fig. 4 CNNmodels execution time (FP+BP+WU) per batch on varying batch sizes, performance, memory
bandwidth, link bandwidth and cluster sizes (rows 1–5, respectively) for the CIFAR-10 dataset

the memory bandwidth considerably reduces the costs, showing that all the CNNs for
ImageNet, and ResNet-50/DenseNet-121 for CIFAR-10, are mainly memory-bound.

Cluster configuration The experiments at this level (see third and fourth rows of
plots) show the relative importance of network communication in the training process.
In particular, even for an ideal topology such as a star, a reduction from the nominal
β = 200Gbps to 10Gbps transforms the link bandwidth into a bottleneck. This effect
is more exacerbated on the CIFAR-10 dataset. This offers little hope for networks
slower than Infiniband EDR/HDR such as, e.g, Gigabit Ethernet. Also, increasing the
cluster dimension (#nodes, P) and, as a consequence the global batch size, the total
costs remain constant up to roughly P = 100, where the communications become
the bottleneck. This is due to the adoption of the Ring algorithm for the Allreduce
exchanges, which entails a communication cost that is linear on (P − 1)/P .

Algorithmic batch In the DP scheme, the dimension of the local “problem” is
proportional to the ratio between the batch size and the number of nodes. A low value

123

Using machine learning to model the training…

0.01

0.1

1

10

0 20 40 60 80 100 120 140 160 180

E
xe
cu
tio

n
tim

e
(s
)

Performance (TFLOPS)

VGG16

0.01

0.1

1

10

0 20 40 60 80 100 120 140 160 180
Performance (TFLOPS)

ResNet-50

0.01

0.1

1

10

0 20 40 60 80 100 120 140 160 180
Performance (TFLOPS)

DenseNet-121

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
xe
cu
tio

n
tim

e
(s
)

Memory bandwidth (TB/s)

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Memory bandwidth (TB/s)

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Memory bandwidth (TB/s)

0.01

0.1

1

10

100

0.1 1 10 100 1000

E
xe
cu
tio

n
tim

e
(s
)

Link bandwidth (Gbps)

0.01

0.1

1

10

100

0.1 1 10 100 1000
Link bandwidth (Gbps)

0.01

0.1

1

10

0.1 1 10 100 1000
Link bandwidth (Gbps)

0.01

0.1

1

10

1 10 100 1000

E
xe
cu
tio

n
tim

e
(s
)

Cluster size (nodes)

0.001

0.01

0.1

1

1 10 100 1000
Cluster size (nodes)

0.001

0.01

0.1

1

1 10 100 1000
Cluster size (nodes)

0.01

0.1

1

10

16 32 64 12
8

25
6

51
2

10
24

20
48

E
xe
cu
tio

n
tim

e
(s
)

Batch size

0.01

0.1

1

10

16 32 64 12
8

25
6

51
2

10
24

20
48

Batch size

0.01

0.1

1

10

16 32 64 12
8

25
6

51
2

10
24

20
48

Batch size

Total (RFL+AM)
Total (MLP+AM)

Computation (RFL)
Computation (MLP)

Communication (AM)

Fig. 5 CNNmodels execution time (FP+BP+WU) per batch on varying batch sizes, performance, memory
bandwidth, link bandwidth and cluster sizes (rows 1–5, respectively) for the ImageNet dataset

for b/P can turn the problem into memory-bound at the node level or communication-
bound at the cluster level. The last row of plots shows the memory/communication
boundness effect for the smallest batch size, b = 16, and CIFAR-10. Scaling further
the batch size, shifts the bottleneck to the peak GPU performance. Note that the costs
predicted by the MLPs are only represented until b = 256, as the correctness of the
predictions above that value has not been validated because we could not generate
training data above that limit, due to the kernels workspace exceeding the available
GPU memory.

As a general remark, we observe that the costs obtained using the MLP models
compared with those obtained using the Roofline are slightly different, but follow a
similar trend which, according to our previous validation, guarantees a higher estima-
tion accuracy.

123

S. Barrachina et al.

5 Related work

There are a few recent theoretical analyses on the performance of distributed data par-
allelism andmodel parallelism. In [10], the authors propose hybrid data-model-domain
strategies to parallelize the training process of DNNs and study their performance via
analytical models. Similarly, in [14] the authors present a DL system that automati-
cally finds parallelization strategies for DNNs across different dimensions via hybrid
(data+model) parallelism.

There also exist other works proposing analytical models for DL. For instance, Qi
et al. [19] present PALEO, a tool for building analytical performance models. This
tool considers a number of representative DL workloads that run operations on the
target platform in order to estimate relative inefficiencies compared to the theoretical
platform peak. Alternatively, Justus et al. [15] proposed an analytical model based on
measured data utilizing several DL models on different target platforms. Afterward,
the analytical models are constructed upon a combination of the measured individual
layers, though they do not consider distributed DL training on clusters.

6 Concluding remarks

In this work, we have proposed accurate performance models that reproduce the main
computation and communication stages appearing in the distributed training of CNNs
via DP. In particular, the general performance model is composed of two parts: i) a
collection of MLPs in charge of individually modeling the related cuDNN/cuBLAS,
memory copies, SGD kernels involved in a training step; and ii) an analytical model
to estimate the cost of the Allreduce collective performed via the NCCL library using
the Ring algorithm. Our analysis showed that the relative error of the MLP models on
the testing datasets is, at maximum, 15%, while the validation of the models against
PyDTNN shows that RE and the WRE are, on average, 5% and 3%, respectively.

Next, we leveraged the models to assess the performance of three representative
CNNs on the two datasets along five dimensions. Concerning the GPU performance,
we observed that, due to the selected baseline batch size of 128, the layer processing
for the CNNs is in general memory-bound. From the cluster point of view, we can
conclude that the link bandwidth plays an important role and becomes a limiting
factor when it is below 10–30Gbps. Also, the cost of the Allreduce collective on a
large number of GPUs starts exerting some pressure on the total execution time when
P > 100. Finally, we detect that the execution time is mostly proportional to the
batch size (b). Note, however, that increasing b by a certain factor leads to a reduction
in the number of FP+BP passes required to complete an epoch in the same factor.
Also increasing the b entails a larger local problem per node, improving the arithmetic
intensity, and potentially eliminating some of the memory access constraints.

123

Using machine learning to model the training…

Declarations

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
research was partially sponsored by projects TIN2017-82972-R of Ministerio de Ciencia, Innovación y
Universidades and Prometeo/2019/109 of the Generalitat Valenciana. Manuel F. Dolz was also supported
by the Plan GenT project CDEIGENT/2018/014 of the Generalitat Valenciana.

Conflicts of interest Not applicable

Availability of data andmaterial Not applicable

Code availability Not applicable

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Awan AA, Manian KV, Chu CH, Subramoni H, Panda DK (2019) Optimized large-message broadcast
for deep learning workloads: MPI, MPI+ NCCL, or NCCL2? Parallel Comput 85:141–152

2. Barrachina S, Castelló A, CatalánM,DolzMF,Mestre J (2021)A flexible research-oriented framework
for distributed training of deep neural networks. In: 2021 IEEE international symposium on parallel
distributed processing, workshops and Phd Forum, pp 730–739

3. Barrachina S, Castelló A, Catalán M, Dolz MF, Mestre J (2021) Pydtnn: a user-friendly and extensible
framework for distributed deep learning. J Supercomput 77(9):9971–9987

4. Ben-Nun T, Hoefler T (2019) Demystifying parallel and distributed deep learning: an in-depth con-
currency analysis. ACM Comput Surv 52(4):65:1-65:43

5. Castelló A, Dolz MF, Quintana-Ortí ES, Duato J (2019) Analysis of model parallelism for distributed
neural networks. In: EuroMPI ’19. Association for Computing Machinery, New York, NY, Article 7,
pp 1–10

6. Castelló A, Catalán M, Dolz MF, Mestre JI, Quintana-Ortí ES, Duato J (2021) Performance model-
ing for distributed training of convolutional neural networks. In: 2021 29th Euromicro international
conference on parallel, distributed and network-based processing (PDP), pp 99–108

7. Castelló A, Dolz MF, Quintana-Ortí ES, Duato J (2019) Theoretical scalability analysis of distributed
deep convolutional neural networks. In: 2019 19th IEEE/ACM international symposium on cluster,
cloud and grid computing (CCGRID), pp 534–541

8. ChanE,HeimlichM,PurkayasthaA, van deGeijnR (2007)Collective communication: theory, practice,
and experience: research articles. Concurr Comput Pract Exper 19(13):1749–1783

9. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document
processing. In: International workshop on frontiers in handwriting recognition

10. Gholami A, Azad A, Jin P, Keutzer K, Buluc A (2018) Integrated model, batch, and domain parallelism
in training neural networks, pp 77–86

11. Google Inc. Tensorflow benchmarks
12. Hasanov K, Lastovetsky A (2017) Hierarchical redesign of classic MPI reduction algorithms. J Super-

comput 73(2):713–725
13. Higham CF, Higham DJ (2018) Deep learning: an introduction for applied mathematicians.

arXiv:1801.05894
14. Jia Z, ZahariaM, Aiken A (2018) Beyond data and model parallelism for deep neural networks. CoRR,

arXiv:1807.05358

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1801.05894
http://arxiv.org/abs/1807.05358

S. Barrachina et al.

15. Justus D, Brennan J, Bonner S,McGoughAS (2018) Predicting the computational cost of deep learning
models. In: IEEE international conference on big data, Big Data 2018, Seattle, WA, USA, December
10–13. pp 3873–3882. IEEE

16. NVIDIA (2021) NCCL Tests. https://github.com/NVIDIA/nccl-tests
17. NVIDIA (2021) The NVIDIA Collective Communication Library (NCCL). https://developer.nvidia.

com/nccl
18. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu M-L, Chen S-C, Iyengar SS (2018)

A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv 51(5):92:1-
92:36

19. Qi H, Sparks ER, Talwalkar A (2017) Paleo: a performance model for deep neural networks. In:
Proceedings of the international conference on learning representations

20. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition
21. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial

and survey. Proc IEEE 105(12):2295–2329
22. Thakur R, Rabenseifner R, Gropp W (2005) Optimization of collective communication operations in

MPICH. Int J High Perform Comput Appl 19(1):49–66
23. Williams S, Patterson D, Oliker L, Shalf J, Yelick K (2008) The roofline model: a pedagogical tool for

program analysis and optimization. In: 2008 IEEE hot chips 20 symposium (HCS), pp 1–71
24. You Y, Demmel J, Keutzer K, Hsieh C-J, Ying C, Hseu J (2018) Large-batch training for LSTM

and beyond. Technical Report UCB/EECS-2018-138, Electrical Engineering and Computer Sciences,
University of California at Berkeley

25. You Y, Gitman I, Ginsburg B (2017) Scaling SGD batch size to 32k for ImageNet training.
arXiv:1708.03888

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://github.com/NVIDIA/nccl-tests
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
http://arxiv.org/abs/1708.03888

	Using machine learning to model the training scalability of convolutional neural networks on clusters of GPUs
	Abstract
	1 Introduction
	2 Distributed training of CNNs
	2.1 Overview of training
	2.2 High-performance batched training
	2.2.1 High performance gemm

	2.3 Distributed data-parallel training

	3 Performance modeling of CNNs
	3.1 Modeling the computations using MLPs
	3.1.1 Network design
	3.1.2 Obtaining the datasets
	3.1.3 Training the MLP models

	3.2 Modeling the communications
	3.3 Building the general model
	3.4 Validation of the performance model
	3.4.1 Hardware setup and calibration
	3.4.2 Validation

	4 Performance analysis
	4.1 Scalability analysis

	5 Related work
	6 Concluding remarks
	References

