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Abstract 
Understanding the operation of neurons and synapses is essential to reproduce 

biological computation. Building artificial neuromorphic networks opens the door to a 
new generation of faster and low energy consuming electronic circuits for computation. 
The main candidates to imitate the natural biocomputation processes, such as the 
generation of action potentials and spiking, are memristors. Generally, the study of the 
performance of material neuromorphic elements is done by the analysis of time transient 
signals. Here, we present an analysis of neural systems in the frequency domain by the 
technique of the small amplitude ac impedance spectroscopy. We start from the 
constitutive equations for the conductance and memory effect, and we derive and classify 
the impedance spectroscopy spectra. We first provide a general analysis of a memristor 
and demonstrate that this element can be expressed as a combination of simple parts. In 
particular we derive a basic equivalent circuit where the memory effect is represented by 
a RL branch. We show that this ac model is quite general and describes the 
inductive/negative capacitance response in many systems such as halide perovskites and 
organic LEDs. Thereafter we derive the impedance response of the integrate-and-fire 
exponential adaptative neuron model, that introduces a negative differential resistance and 
a richer set of spectra. Based on these insights, we provide an interpretation of the varied 
spectra that appear in the more general Hodgkin-Huxley neuron model. Our work 
provides important criteria to determine the properties that must be found in material 
realizations of neuronal elements. This approach has the great advantage that the analysis 
of highly complex phenomena can be based purely on the shape of experimental 
impedance spectra, avoiding the need for specific modelling of rather involved material 
processes that produce the required response. 
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1. Introduction 

Biological intelligence co-localizes memory and computing, enabling the brain to carry 
out robust and efficient parallel computation with extremely low-power consumption. 
Neuromorphic networks consist of large arrays of nanoscale inorganic and hybrid 
materials components. They can reach high levels of integration density to provide 
compact low power electronic circuits for autonomous intelligence adapted to buildings, 
vehicles, and equipment.1-6 These bioinspired artificial computation networks open the 
opportunity to overcome the “Von-Neumann bottleneck” related to the time and energy 
spent transporting data between memory and processor.7 

Neurons and synapses are the main elements of biological computation. Neurons 
operate by gating mechanisms controlled by voltage-gated ion channels that modify the 
membrane potentials. Voltage-gated sodium channels are proteins which transfer sodium 
ions across the membrane depending on the electrochemical potential gradient controlled 
by the transmembrane difference of ion concentration. Opening of the sodium channel 
results in an increased electrochemical potential inside the membrane and leads to 
depolarization. When the potential exceeds a positive threshold value there is a positive 
feedback of Na+ influx that provokes a large depolarization burst termed the action 
potential. At the same time voltage-gated potassium channels become activated and 
produce an outward flux of K+ that leads to the repolarization completing a negative 
feedback loop. Neurons realize communication with these electrical signals by receiving 
trains of voltage spikes at synapses, integrating these inputs, and firing spikes consisting 
of repetitive action potentials in turn. The synapses are able to change the strength of 
connectivity, what regulates biological learning, memory and analog computation. The 
synchronicity of spike trains produces either potentiation or depression of synaptic 
weights, in the spike-timing dependent plasticity which occurs as a short time plasticity 
or long-time plasticity mechanism, according to the duration of the change. Additional 
mechanisms of learning are the Hebbian correlational learning, reinforcement, 
habituations, and others. 

Understanding the mechanisms of generation of action potentials, spiking, and the 
adjustment of the weights of connections in time-dependent plasticity and learning 
mechanisms are the basic building blocks to realize the neuromorphic computation. For 
the construction of neural networks, it is necessary to build basic material components 
and circuits that emulate the underlying biophysical switching mechanisms of neurons 
and synapses and reproduce their detailed real-time dynamics.2,8-10 The temporal response 
of the electrical signal in terms of the biological structure has been well described by a 
variety of models, from the integrate-and-fire model to the Hodgkin-Huxley model.11-13 
These models provide a fundamental target reference to reproduce the time dynamics with 
material components. There have been intensive efforts to build an electronic device with 
properties similar to the Hodgkin–Huxley axon, such as the neuristor.14 

In order to obtain a fundamental understanding of the dynamic response of neurons 
and synapses, here we propose that important insight can be gained by analyzing the 
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candidate material elements in the frequency domain, as outlined in Figure 1. 
 

 
Figure 1. Scheme for the IS analysis of artificial synaptic devices (right) with respect to 
the response of the natural synapsis (left). 
 

In the next Section we explain important basic aspects of the technique of impedance 
spectroscopy (IS) and lay out the general tasks of the method proposed. Thereafter we 
will follow a ladder of increasing complexity, starting with the analysis of elementary 
memristors, and then addressing the IS response of the models for neurons, first for the 
two variable adaptative integrate-and-fire model, and then for the four-dimensional 
Hodgkin-Huxley model that describes the operation of neuron spiking by the concerted 
actions of the sodium and potassium ion channels. 

 
2. Impedance spectroscopy 

2.1. Introduction to impedance spectroscopy 
The technique of small amplitude IS is widely used in electrochemistry and material 

science to determine the electrical response of a system.15,16 It is an important tool for the 
characterization of emergent solar cells16,17 and perovskite solar cells.18-20 It is also used 
for many applications in biophysics21,22 such as research in cells23, antimicrobials,24 
medicine and healthcare,25,26 and biosensorics.27 The impedance of the intrinsic neuronal 
response determines the cooperation in a network.28  

The impedance is measured by a small perturbation over a steady state at angular 
frequency 𝜔𝜔, and it can be presented in terms of the real and imaginary parts 

𝑍𝑍(𝜔𝜔) = 𝑍𝑍′(𝜔𝜔) + 𝑖𝑖𝑍𝑍″(𝜔𝜔)  (1) 
The complex capacitance 𝐶𝐶(𝜔𝜔) is defined from the impedance as 



  6 

𝐶𝐶(𝜔𝜔) = 1
𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔)

 (2) 

It can be separated into real and imaginary parts as 
𝐶𝐶(𝜔𝜔) = 𝐶𝐶′(𝜔𝜔) − 𝑖𝑖𝐶𝐶″(𝜔𝜔) (3) 

When we study the impedance response of any system, we aim to find the equivalent 
circuit (EC) that best describes the impedance spectra generated by the system, for 
extracting all the information provided by the spectra. Therefore, figuring out which is 
the EC of the system we are studying is key for having a satisfactory analysis and a proper 
interpretation of the measurements. 

The impedance measured in a system is not constant and the spectra evolve as we 
change the applied voltage. This is not a problem since a single EC with variable elements 
is able to reproduce a wide variety of spectra as we will see in Section 2.2. These variable 
elements hold valuable information about the operation of the systems, therefore knowing 
which is the dependence of the elements with voltage is key to uncover internal 
mechanisms. 

In order to clarify this method, we show an example of measured impedance spectra in 
a perovskite solar cell at different applied voltages from a previous work in Figure 2a.29 
This set of spectra are fitted with the EC shown in Figure 2c. It is observed that the 
elements of the circuit are not constant, in fact the vary with the applied voltage. Figure 
2b shows the exponential variation of both resistances and the inductor with voltage, 
which is a common behavior in solar cell devices. 

 
Figure 2. (a) Impedance complex plane plot of a perovskite solar cell at different applied 
voltages fitted with the same EC. (b) Extracted resistances from (a) fitting showing an 
exponential dependence. Adapted from 29. 



  7 

 
When a satisfactory EC model has been found, one has to take into account that there 

are several alternative arrangements that describe the same model.30 The selection of the 
EC needs to be done on the basis of the physical interpretation of the elements and the 
experimentation of a variety of samples with different morphologies and materials 
combinations. 
 

2.2. IS model with capacitor and inductor 
We show a complete analysis of an EC containing a capacitor and an inductor. It will 

be shown later that this model is representative of a simple memristor, and of interest for 
the subsequent analysis of neuron models. In this section, we will see the shape of the 
spectra depending on the values of the elements of the circuit. Later, we will do a further 
analysis considering the parameters of the kinetic models, which govern the elements of 
the circuit. 

The circuit that we are going to use is represented in Figure 3. The impedance generated 
by this circuit is  

𝑍𝑍(𝜔𝜔) = �𝑅𝑅𝑏𝑏−1 + 𝐶𝐶𝑚𝑚𝑠𝑠 + (𝑅𝑅𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑠𝑠)−1�−1 (4) 

 
Figure 3. Equivalent circuit with an inductor and a capacitor, representative of a 
memristor. 
 

The circuit is able to generate a wide variety of spectra, depending on the relation 
between the elements of the circuit. 

The dc resistance of the circuit, which is a key parameter for the shape of the spectra 
can be calculated as 

𝑅𝑅𝑑𝑑𝑑𝑑 = � 1
𝑅𝑅𝑎𝑎

+ 1
𝑅𝑅𝑏𝑏
�
−1

 (5) 

First of all, we consider the case where both resistances in the EC are positive. 
Therefore,  𝑅𝑅𝑑𝑑𝑑𝑑 will be positive. In this case we have two possibilities depending on 
whether the spectra cross the real axis or not. These spectra are shown in Figure 4 
indicating the relation between some of the elements and the time constant 𝜏𝜏𝑘𝑘, 
characteristic of the RL branch and defined as 

𝜏𝜏𝑘𝑘 = 𝐿𝐿𝑎𝑎
𝑅𝑅𝑎𝑎

 (6) 

 When 𝜏𝜏𝑘𝑘 is greater than the product 𝑅𝑅𝑎𝑎𝐶𝐶𝑚𝑚 we get a spectrum of the type of Figure 4a, 
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i.e. an arc in the first quadrant that loops into the fourth quadrant. Otherwise, we obtain 
the spectrum in Figure 4b, an arc in the first quadrant that can loop or not, but never goes 
into the fourth quadrant. 

 
Figure 4. Complex plane impedance spectra for EC in Figure 3. (a) 𝑅𝑅𝑎𝑎= 2, 𝑅𝑅𝑏𝑏 = 10, 𝐶𝐶𝑚𝑚= 
10, 𝐿𝐿𝑎𝑎= 200. (b) 𝑅𝑅𝑎𝑎= 10, 𝑅𝑅𝑏𝑏 = 10, 𝐶𝐶𝑚𝑚= 10, 𝐿𝐿𝑎𝑎= 1000. The arrow indicates the direction 
of increasing frequency. 

 
We now look at the conditions for having a positive dc resistance but a spectrum that 

crosses the imaginary axis. This means that there will be a region where the real part of 
the impedance is negative, although the total resistance of the circuit 𝑅𝑅𝑑𝑑𝑑𝑑 is positive. The 
condition for the impedance to cross the imaginary axis is: 

−𝑅𝑅𝑎𝑎 > 𝑅𝑅𝑏𝑏 (7) 
This means that one or both the resistances must be negative. However, to maintain the 

condition that the dc resistance is positive, we need one of the resistances to be positive. 
This kind of spectra have a part of the real impedance in the real negative side, although 
the impedance at zero frequency is positive. This is defined by Koper as the “hidden 
negative impedance”31-33 and it is a condition for the generation of spiking signals. 
Therefore, we show three examples of this kind of spectra in Figure 5 since the 
observation of a spectrum of this kind is key to build artificial synaptic devices.  
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Figure 5. Complex plane impedance spectra for EC in Figure 3, where the dc resistance 
is 𝑅𝑅𝑑𝑑𝑑𝑑 > 0, and the condition for “hidden negative impedance” is satisfied. (a) 𝑅𝑅𝑎𝑎= 0.8, 
𝑅𝑅𝑏𝑏 = -9, 𝑅𝑅𝑑𝑑𝑑𝑑  = 7.2, 𝐶𝐶𝑚𝑚= 10, 𝐿𝐿𝑎𝑎= 80. (b) 𝑅𝑅𝑎𝑎= 0.2, 𝑅𝑅𝑏𝑏 = -5, 𝑅𝑅𝑑𝑑𝑑𝑑 = 0.2083, 𝐶𝐶𝑚𝑚= 10, 𝐿𝐿𝑎𝑎= 20. 
(c) 𝑅𝑅𝑎𝑎= 0.5, 𝑅𝑅𝑏𝑏 = -1.3, 𝑅𝑅𝑑𝑑𝑑𝑑  = 0.81, 𝐶𝐶𝑚𝑚= 100, 𝐿𝐿𝑎𝑎= 50. The arrow indicates the direction of 
increasing frequency. 

 
Finally, we show two examples of spectra with negative 𝑅𝑅𝑑𝑑𝑑𝑑, which means that the 

impedance at zero frequency will be negative. As we can see in Figure 6, this can be 
achieved with only one of the resistances being negative. As in Figure 4, when 𝜏𝜏𝑘𝑘 > 𝑅𝑅𝑎𝑎𝐶𝐶𝑚𝑚 
(Figure 6a) the real axis is crossed, otherwise (Figure 6b) it is not. 

 

 
Figure 6. Complex plane impedance spectra for EC in Figure 3, with 𝑅𝑅𝑑𝑑𝑑𝑑 < 0. (a) 𝑅𝑅𝑎𝑎= 

2, 𝑅𝑅𝑏𝑏 = -1, 𝑅𝑅𝑑𝑑𝑑𝑑  = -2, 𝐶𝐶𝑚𝑚= 10, 𝐿𝐿𝑎𝑎= 200. (b) 𝑅𝑅𝐼𝐼 = 1, 𝑅𝑅𝑎𝑎= 2, 𝑅𝑅𝑏𝑏 = -1, 𝑅𝑅𝑑𝑑𝑑𝑑  = -2, 𝜏𝜏𝑚𝑚= 100, 𝜏𝜏𝑘𝑘= 
10. The arrow indicates the direction of increasing frequency. 
 

As we have seen in the different figures, the spectral features generated by the circuit 
in Figure 3 are diverse. The model takes different possible shapes according to the 
impedance parameters. The classification of patterns depending on physical parameters 
will be made in Section 3 where we attach specific meaning to the EC elements based on 
a physical model.  
 

2.3. Impedance spectroscopy as a tool to emulate natural neural elements  
The principal feature of the technique of IS is that the frequency is scanned over many 

decades and the consequent spectral response of the impedance provides specific 
information about the dominant resistive-capacitive processes in the sample. Traditionally 
IS gives insight about physical properties: given a type of spectra and EC model, what 
can we learn from the system that generated it? 

In this paper we aim to establish the dominant IS characteristics of biological neural 
elements for computation, learning and artificial intelligence. The identification of 
impedance behavior provides a benchmark for the construction of material devices with 
the dynamical properties akin to natural neurons. In particular here we find inspiration in 
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the theory of electrochemical oscillations based on impedance criteria that has been 
developed by Koper, using the methods of electrical control engineering.31,34 It is 
remarkable that from the shape of experimental impedance spectra one may analyze 
extremely complex phenomena without the need for specific modelling of highly involved 
material processes that produce the physical response of interest.  

Based on the operational understanding at the EC level we can ensure that an artificial 
system delivers the same operation as the natural system to copy. Then, for the 
construction of a device that can perform an artificial neuron we need a system that 
reproduces the frequency domain behavior of the target application. We can measure the 
impedance of the device and identify the possible similarities with the impedance 
response of the natural system, finding responses with similar ECs. We can adjust the 
different internal kinetic elements until we obtain the specific desired outcome.  

At the single device level, we can obtain deep insight about the required responses. At 
present extensive data on IS of neurons is not available but the desired frequency domain 
response can be obtained by the analysis of the models that reproduce the natural neuron 
response in the time domain, such as the adaptative integrate-and-fire model and the 
Hodgkin-Huxley model.  

A scheme of the method that is to be followed for the analysis of artificial synaptic 
devices is shown in Figure 1. Here, in the left we have represented the natural presynaptic 
neurons and a synapse with the spiking postsynaptic responses. Below, we represent the 
catalogue of spectra produced by the EC generated by the Hodgkin-Huxley model as well 
as the values of the variable resistances of the model. Knowing the possible shapes of the 
spectra, we need to measure impedances in our pretended neuronal devices and just 
identify the shapes found in the natural systems. Furthermore, we need to find an EC 
similar to that of the natural system and get similar dependences. 

In the case of electrochemical oscillations and similar systems, the impedance response 
is associated to negative differential resistance (NDR) elements and also negative 
capacitance and inductive features. The pioneering work of Chua and coworkers35,36 
showed that the spiking of neurons operates in unstable regions according to the 
bifurcation theory that can be visualized by the stability criteria of impedance and 
admittance (“the edge of chaos”). A better comprehension of the dynamic role of these 
unfamiliar negative elements may form an important tool for the rapid diagnostic and 
assessment of the properties of materials systems that are candidate to artificial neurons. 
Our method relies on a classification of ECs associated to neuron models.  

In an artificial spiking neural networks, the analog signals collected from the 
environment need to be converted into spiking signals with dynamic oscillation 
frequencies.8 In synapses the input frequency of the signal modulates the conductivity.37 
In neurons the spike frequency increases with increased stimulus strength.9 The 
connection between the output spiking frequency and the internal characteristic 
frequencies in the equivalent circuit of the neuron must hold a deep connection. The 
dynamic spiking behavior under various input signals, such as rectangular, triangular, and 
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sinusoidal pulses, needs to be investigated based on EC properties. One expects to find 
universality close to a critical point of the dynamical system, but not close to a fixed point. 
This topic is left for future investigations. 

 
3. Memristors 

3.1. Fundamental properties of memristors 
At the present time the main resource for building neuromorphic networks are 

memristors.38-40 A memristive device is a two-terminal structure that undergoes a voltage-
controlled conductance change.41 When the memristor is adapted as a neuron it has to 
integrate a pulse train and generate a voltage spike when a certain voltage is exceeded. 
On the other hand, for the use of a memristor as a synapse, it has to be programmed at 
distinct non-volatile resistive states to support spike timing dependent plasticity.42-44 45  

There is a wide variety of types of memristor suitable for bioinspired computation 
networks including silicon oxides,46 silicon nitrides47 and metal oxides.48,49 The hybrid 
and organic electronics materials provide mechanical flexibility and bio-compatibility, 
enabling the formation of neuromorphic systems that can be smoothly interfaced to 
biological networks.4,50,51 The metal halide perovskites52-57 is an emergent class of 
photovoltaic materials that have the advantage of easy fabrication and the property of 
mixed ionic-electronic conductor, with strong hysteresis effects induced by the slow ion 
motions. This ionic adaptation to external stimulus opens a significant opportunity to 
replicate the switching responses occurring in ionic channels of biological neural units. In 
practice, however, emulating the neurons, synapses, and their networks using ionic-
electronic elements is extraordinarily challenging, due to the involved structure and 
multifunctionality of the biological elements, with highly complex responses that are 
usually studied in the time domain.  

 
3.2. Basic kinetic equations of a general memristor 
The memristor is a resistive element where the resistance depends on the history of one 

or more of the state variables of the system. The state variables are those variables 
necessary to determine the future behaviour of a system when the present state of the 
system and the inputs are known.58 In the context of memristors a state variable is 
associated with the device material internal elements and its operation. The state variables 
must not be influenced independently by external variables such as a voltage or current 
applied to a third terminal.59 

In terms of voltage 𝑢𝑢, current 𝐼𝐼, and the internal variable 𝑤𝑤, the current-voltage 
characteristic is therefore determined by two constitutive equations of the type41 

𝐼𝐼 = 𝐺𝐺(𝑤𝑤,𝑢𝑢)𝑢𝑢  (8) 

𝜏𝜏𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑤𝑤,𝑢𝑢) (9) 

Here, 𝜏𝜏𝑘𝑘 is a time constant for the relaxation of state variable 𝑤𝑤 to an equilibrium 
dictated by the value of 𝑢𝑢. In the standard definition of a memristor the characteristic 
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current-voltage shape when excited by a bipolar periodic stimulus (that goes from positive 
to negative voltage) is a pinched hysteresis loop that occurs in the first and the third 
quadrants of the I-u plane, passing through the origin since 𝐼𝐼 = 0 at 𝑢𝑢 = 0.  

Often in the literature the denomination of an ideal memristor (in which the state 
variable is the voltage flux) is applied only to systems that have the only equilibrium point 
𝑤̇𝑤 = 0 at the origin at 𝑢𝑢 = 0,59 as in Eq. (22) below. In order to investigate the IS 
characteristics here we take the more general denomination associated to memristors, in 
which 𝑔𝑔(𝑤𝑤,𝑢𝑢) = 0 allows other operation points along the current-voltage curve.  

When the system is left to a steady state (a stable point) we obtain a curve 𝐼𝐼 ̅ = 𝐺𝐺(𝑢𝑢�)𝑢𝑢� 
according to the applied voltage, where the overbar denotes the value at steady state. An 
example is shown later in Eq. (29). Now we investigate the dynamics at a specific point.  

To calculate the impedance response of the general model in Eqs. (8) and (9) we expand 
the terms for a small perturbation at steady state, indicating the small perturbation value 
by a tilde. We also take the Laplace transform of Eq. (9), 𝑑𝑑/𝑑𝑑𝑑𝑑 → 𝑠𝑠, where 𝑠𝑠 = 𝑖𝑖𝑖𝑖 in 
terms of the angular frequency 𝜔𝜔 of the small perturbation. We get a set of linear equations 
that contain the local information of the system: 

𝐼𝐼  = 𝐺𝐺𝑤𝑤𝑢𝑢 �𝑤𝑤� + (𝐺̅𝐺 + 𝐺𝐺𝑢𝑢𝑢𝑢�)𝑢𝑢�  (10) 

𝜏𝜏𝑘𝑘𝑠𝑠𝑤𝑤� = 𝑔𝑔𝑤𝑤𝑤𝑤� + 𝑔𝑔𝑢𝑢𝑢𝑢�  (11) 
The subscript denotes the partial derivative. The Eqs. (10) and (11) are also used in 

bifurcation theory to find the stability properties of the fixed points, as we comment on 
later in Eq. (35).  

In order to obtain an EC representation of the dynamic of the system, let us define the 
following electrical elements, two resistances 

𝑅𝑅𝑏𝑏 = (𝐺̅𝐺 + 𝐺𝐺𝑢𝑢𝑢𝑢�)−1 (12) 

𝑅𝑅𝑎𝑎 = − 𝑔𝑔𝑤𝑤
𝐺𝐺𝑤𝑤𝑔𝑔𝑢𝑢𝑢𝑢 �

 (13) 

and an inductor 

𝐿𝐿𝑎𝑎 = 𝜏𝜏𝑘𝑘
𝐺𝐺𝑤𝑤𝑔𝑔𝑢𝑢𝑢𝑢 �

 (14) 

We obtain the impedance 

𝑍𝑍(𝜔𝜔) = 𝑢𝑢�
𝐼𝐼 

= �𝑅𝑅𝑏𝑏−1 + (𝑅𝑅𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑠𝑠)−1�−1 (15) 

The EC formed by a resistive branch and RL branch is indicated in Figure 7A. 
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Figure 7. Equivalent circuits for general memristor models. 
 

Now we introduce another factor to the constitutive equations. This is not included in 
the canonical definition of the memristor; however, it is very relevant for IS studies since 
in many material systems the variation of voltage is influenced by the charging of 
capacitors in addition to the conduction currents.  

We extend the previous model as follows 

𝜏𝜏𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝐼𝐼[𝐼𝐼 − 𝐺𝐺(𝑤𝑤,𝑢𝑢)𝑢𝑢]  (16) 

𝜏𝜏𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑤𝑤,𝑢𝑢) (17) 

The charging capacitance is  

𝐶𝐶𝑚𝑚 = 𝜏𝜏𝑚𝑚
𝑅𝑅𝐼𝐼

 (18) 

and the impedance becomes  

𝑍𝑍(𝜔𝜔) = �𝑅𝑅𝑏𝑏−1 + 𝐶𝐶𝑚𝑚𝑠𝑠 + (𝑅𝑅𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑠𝑠)−1�−1 (19) 

The charging feature adds the capacitive line in the EC, as shown in Figure 7B.  
We suggest the EC of Figure 7B as the reference behaviour for memristor dynamics, 

which is of the same type as the one in Figure 3. In the literature we find that this circuit 
was first described for a model of hydrogen oscillations on a platinum electrode,31 what 
indicates that the model in Eqs. (16) and (17) is quite general and has been expressed in 
electrochemistry. We will see another version of this model corresponding perfectly to an 
integrate-and-fire neuron in the next section. If the charging is extremely fast (𝜏𝜏𝑚𝑚 → 0) 
then the model returns to Eq. (8) and the capacitor effect vanishes.  

Our analysis of the small ac perturbation shows that the memristor can be represented 
by a combination of standard circuit elements. In contrast to the original suggestion,38 the 
memristor cannot be considered a fundamental circuit element in equal footing to 
resistance, capacitor and inductor, at least for the small ac impedance response. This 
problem has been discussed before.60 

It is important to emphasize the dynamic response associated to the memory effect in 
this model, that can be seen in Figure 4. In principle the model indicates a single regular 
relaxation with a resistance 𝑅𝑅𝑏𝑏. However, it is clear that the dc resistance is smaller, since 
the parallel branch  𝑅𝑅𝑎𝑎 reduces the final resistance. The memory effect associated to the 
𝑤𝑤-equation in the memristor is indicated by the inductor. At high frequency the 
impedance of the inductor is very large and 𝑅𝑅𝑎𝑎 does not contribute to the response. 
However, when the frequency is reduced, this branch becomes active and reduces the 
overall resistance of the system, by the loop in the fourth quadrant. A full analysis of 
hysteresis in current-voltage curves in this model has been presented recently.61 

 
3.3. Lead halide perovskite memristor and other material systems with inductive 
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memristor behaviour 
An example of the characteristic action of a perovskite memristor is shown in Figure 

8. When the voltage is scanned over a certain threshold there is a transition to a lower 
resistance state, while the initial high conductance resistance can be recovered by a 
reverse scan.  

 

 
 

Figure 8. (a) Current-voltage curve of a FTO / PEDOT:PSS / 2D Ruddlesden-Popper 
perovskite/Ag (15 nm)/Au (85 nm) memristor device showing the transition from High 
Resistance State to Low Resistance State. (b) IS spectra evolution of the memristor at 
representative voltages. Reproduced from 33. 
 

The spectrum of Figure 4a traces an arc in the fourth quadrant related to the action of 
the positive inductor element. This feature is very characteristic of lead halide perovskite 
solar cell impedance results, and has been reported in many publications.62,63 The 
impedance patterns for a metal halide perovskite memristor around the transition state are 
shown in Figure 8b.33 Before the onset of the high conduction state the impedance plot 
displays the typical two RC arcs of the perovskite solar cells.64 Near the threshold voltage 
the memristive behaviour dominates the impedance, the former low frequency arc is 
transformed to the arc in the fourth quadrant by the action of the inductive element, that 
is associated to the effect of vacancies arriving to the electrode surface.54 Finally at higher 
voltage when the transition is completed, the resistance decays to a very low value and 
the impedance cannot be measured reliably.  

More generally, the inductive loop is also observed in a variety of material platforms 
that have the common property of a memory effect in current-potential curves due to 
internal ion motion, associated to polarization within the film. This behaviour has been 
observed in metal oxides65 and in LiNbO2 memristors.66  
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Figure 9. Left column. Results of the measurement of an 

ITO/PEDOT/superyellow/Ba/Al organic LED device. (a) Impedance plots for different 
bias voltages. (b) and (c) show a magnification of the observed inductive behavior at 2.9 
V and 2.7 V, respectively. (d) Capacitance versus frequency for various bias voltages 
indicating a region of negative capacitance. Reproduced from 67. Right column. 
Impedance spectra for a CdS/CdTe solar cell. (a−c) Complex plane plot of the impedance 
at two different forward bias in dark conditions. The frequency range employed in the 
measurement was 1 MHz to 0.1 Hz. (d) Absolute value of capacitance vs frequency at 
forward bias. Reproduced from 68. 

 
It is interesting to remark that the inductor features shown in Figures 4 and 8 are not 

related to any magnetic properties. The behaviour of Figure 4a appears in a general type 
of “internal relaxation model”, in which the externally measured variable is coupled to a 
state variable, which relaxes to a pseudo-equilibrium state determined by the external 
variable. The first analysis of the relaxation impedance is due to Göhr and Schiller in a 
model for electrochemical reaction in which the rate constant k obeys a relaxation 
equation.69  

A recent model was described in Ref. 70 to explain the inductive behaviour of lead 
halide perovskites.62,63,71,72 In that model the external voltage 𝑉𝑉 applied to the solar cell 
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reaches equilibrium influenced by the relaxation of an internal surface voltage that is 
slowed down by ionic motion. It generates an EC including the RL branch of Figure 3. 
This model gives important insights to the hysteresis of current-voltage curves observed 
in perovskite solar cells.73,74 In this system the inductor branch is associated to deleterious 
surface recombination that becomes active at low frequency, reducing the efficiency of 
the solar cell.63 Additional examples of the general EC with inductor associated to 
interfacial electronic phenomena are sown in Figure 9 for the measurements of an OLED 
device67 and a CdS/CdTe solar cell.68  

The denomination of “negative capacitance” requires clarification, since it is a general 
feature, widely observed in emerging solar cells and other electronic devices.62,63,68,74 The 
responses of Figure 4, and the experimental observations in Figures 8 and 9, contain a 
positive inductor, not a negative capacitor. However, in the impedance analysis it is useful 
to plot the capacitance (Eq. 2) vs. the frequency, according to the above definitions 
𝐶𝐶′(𝜔𝜔) = Re[1/𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔)], as shown in Figure 9. In this plot the positive inductor RL line 
certainly displays a negative capacitance effect, Figure 9d, which is the reason to the 
denomination of “negative capacitance”. 

On the other hand the memristors are often associated with a negative resistance.60 The 
analysis of Figure 4 is restricted to positive circuit elements while the effect of a NDR 
will be discussed below in relation with the neuron models. 

 
3.4.  Capacitive memristor 
The EC in Figure 7B is quite general, based on a broad definition of kinetic equations 

in the time domain. But it is not the only possible dynamical behaviour of a memristor in 
the frequency domain. In fact, there is a variety of mechanisms under the denomination 
of memristive devices that require different characterization techniques.40,75  

We analyze the famous HP titanium-dioxide memristor,39,40 where the memristive 
property is the variation of dopants concentration in a semiconductor film. The model is 
defined by the following equations including materials constants 𝑅𝑅𝑜𝑜𝑜𝑜, 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜, 𝐷𝐷, 𝜇𝜇  

𝑢𝑢 = 𝑅𝑅0(𝑤𝑤)𝐼𝐼  (20) 

𝑅𝑅0(𝑤𝑤) = (𝑅𝑅𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜)𝑤𝑤
𝐷𝐷

+ 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜  (21) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇 𝑅𝑅𝑜𝑜𝑜𝑜
𝐷𝐷
𝐼𝐼 (22) 

Eq. (21) defines the function 𝐺𝐺(𝑤𝑤) = 𝑅𝑅0−1 in Eq. (8). For the small signal ac 
perturbation, we obtain Eq. (10) and 

𝑠𝑠𝑤𝑤� = 𝜇𝜇 𝑅𝑅𝑜𝑜𝑜𝑜
𝐷𝐷
𝐼𝐼 (23) 

Therefore, the impedance is  

𝑍𝑍(𝜔𝜔) = 𝑅𝑅0 + 1
𝐶𝐶1𝑠𝑠

 (24) 

where the capacitor has the value 
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𝐶𝐶1 = 𝐷𝐷
𝐼𝐼𝐺̅𝐺𝑤𝑤𝜇𝜇𝑅𝑅𝑜𝑜𝑜𝑜

 (25) 

The EC is shown in Figure 7C. The difference with respect to the initial model B is 
that the relaxation of the internal variable in Eq. (22) depends on current rather than on 
voltage, which causes a capacitive rather than inductive response for the internal variable. 
Therefore, there is a contrast between voltage- and current-controlled memristor 
according to the fundamental EC response. At the present time the generality of such 
classification is not known, and it appears an important topic for future investigations. 

 
4. Adaptative exponential integrate-and fire model 

4.1. Kinetic model 
In the integrate-and-fire models the membrane capacitor of the neuron is charged by 

external stimulus. When the voltage reaches a certain threshold, the capacitor is 
discharged, producing an action potential and then the voltage is reset to the rest value.  

This type of models has the advantage that they can be solved mathematically, and they 
have been used to analyse the emergent states in networks of neurons. The simplest model 
is formed by charging an RC circuit and subsequent voltage reset. The dynamics can be 
enriched by features approaching the more complete multichannel Hodgkin-Huxley 
model, that will be discussed in the next section. In particular, an action potential produces 
a refractory period in which the neuron cannot be stimulated. These delays influence the 
neuron firing patterns. They can be described by an adaptation current that is fed back to 
the voltage with time constant 𝜏𝜏𝑘𝑘 and a resistance 𝑅𝑅𝑎𝑎.12 These models can successfully 
emulate spatiotemporal integration of input signals and the firing functions of biological 
neurons. 

Here we analyze the impedance response of the integrate-and-fire Adaptative 
Exponential model (AdEx)76-82 that is able to reproduce many electrophysiological 
features seen in real neurons with a few parameters that have a physiological 
interpretation. This model neuron has been realized using perovskite memristors.37 

The voltage in the membrane 𝑢𝑢 changes with time by a conductance function 𝑓𝑓(𝑢𝑢), a 
resistor 𝑅𝑅𝐼𝐼 and a response time 𝜏𝜏𝑚𝑚, with charging capacitance in Eq. (18).  The current 𝐼𝐼 
is coupled to an internal adaptation current 𝑤𝑤 that is driven by the departure from the rest 
potential 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The model equations are  

𝜏𝜏𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑢𝑢) − 𝑅𝑅𝐼𝐼𝑤𝑤 + 𝑅𝑅𝐼𝐼𝐼𝐼(𝑡𝑡)  (26) 

𝜏𝜏𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑅𝑅𝑎𝑎 

(𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) − 𝑤𝑤 (27) 

The model consists of a dynamical system formed by two equations with the general 
structure of the memristor in Eqs. (16) and (17). The mechanism of adaptation current is 
the state variable of the memristor. On the other hand, Eqs. (26) and (27) have a direct 
relation to a number of models for bursting oscillations in electrochemical cells.83,84  

The function 𝑓𝑓(𝑢𝑢) can be found experimentally from the measurement of neuron 
discharges.12 It is 𝑓𝑓(𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 0  and increases rapidly after a threshold voltage 𝜃𝜃𝑡𝑡ℎ that 
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launches an action potential. In particular the adaptative exponential (AdEx) integrate-
and-fire model uses the expression85 shown in Figure 10a 

𝑓𝑓(𝑢𝑢) = −(𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) +  Δ𝑇𝑇 exp �𝑢𝑢−𝜃𝜃𝑡𝑡ℎ
 Δ𝑇𝑇

�  (28) 

where Δ𝑇𝑇 is a “sharpness parameter”. The exponential term approximates the operation 
of sodium channel, that launches the action potential. The model is composed of two 
currents in parallel, the passive current associated to the function 𝑓𝑓(𝑢𝑢), and the adaptation 
current 𝑤𝑤. The Eqs. (26) and (28) establish the subthreshold dynamics of the model. Once 
the vertical voltage rise is achieved, the spike is obtained by a reset of the voltage 𝑢𝑢 →
𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and an increase of the adaptation current 𝑤𝑤 → 𝑤𝑤 + 𝑏𝑏. 

 
Figure 10. Voltage dependence of quantities in the AdEx model with 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟= 0. (a) The 
function 𝑓𝑓(𝑢𝑢). (b) The stationary current-voltage curve. (c) Resistance 𝑅𝑅𝑏𝑏, the inset shows 
the negative values at 𝑢𝑢 > 𝜃𝜃𝑡𝑡ℎ. 
 

The fixed points are obtained setting time-derivatives 𝑢̇𝑢 = 0 and 𝑤̇𝑤 = 0 at an external 
current 𝐼𝐼0. The steady-state current-voltage corresponds to the set of fixed points: 

𝐼𝐼0 = � 1
𝑅𝑅𝑎𝑎

+ 1
𝑅𝑅𝐼𝐼
� (𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) −

Δ𝑇𝑇
𝑅𝑅𝐼𝐼

 exp �𝑢𝑢−𝜃𝜃𝑡𝑡ℎ
 Δ𝑇𝑇

�  (29) 
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The result is shown in Figure 10b. The plot displays a clear NDR feature at 𝑢𝑢 > 𝜃𝜃𝑡𝑡ℎ, 
corresponding to the initiation of the neuron spike.   

 
4.2. Impedance response 
We now calculate the ac impedance response. The small perturbation of Eqs. (26) and 

(27) at a voltage point 𝑢𝑢� gives the equations 
𝜏𝜏𝑚𝑚𝑠𝑠𝑢𝑢� = 𝑓𝑓′𝑢𝑢� − 𝑅𝑅𝐼𝐼𝑤𝑤� + 𝑅𝑅𝐼𝐼𝐼𝐼  (30) 

𝜏𝜏𝑘𝑘𝑠𝑠𝑤𝑤� = 1
𝑅𝑅𝑎𝑎 
𝑢𝑢� − 𝑤𝑤�  (31) 

where 

𝑓𝑓′(𝑢𝑢�) = −1 +  exp �𝑢𝑢�−𝜃𝜃𝑡𝑡ℎ
 Δ𝑇𝑇

�  (32) 

The solution to the impedance is given in Eq. (19). The EC parameters have the values  

𝑅𝑅𝑏𝑏(𝑢𝑢�) = −𝑅𝑅𝐼𝐼
𝑓𝑓′

= 𝑅𝑅𝐼𝐼
1− exp�𝑢𝑢

�−𝜃𝜃𝑡𝑡ℎ
 Δ𝑇𝑇

�
 (33) 

𝐿𝐿𝑎𝑎 = 𝑅𝑅𝑎𝑎𝜏𝜏𝑘𝑘 (34) 
Importantly, according to Eq. (33), the resistance 𝑅𝑅𝑏𝑏 makes a transition from positive 

to negative values close to 𝑢𝑢 = 𝜃𝜃𝑡𝑡ℎ, which originates the NDR in Figure 10c.  
The fixed points of the system are given in Eq. (29). To study their stability, we 

calculate the Jacobian matrix for a small perturbation around the fixed point at 𝑢𝑢�: 

� 𝑓𝑓′/𝜏𝜏𝑚𝑚 −𝑅𝑅𝐼𝐼/𝜏𝜏𝑚𝑚
1/(𝑅𝑅𝑎𝑎𝜏𝜏𝑘𝑘) −1/𝜏𝜏𝑘𝑘

� (35) 

Obtaining the eigenvectors, we find the two necessary and sufficient conditions for 
stability 

𝜆𝜆+ + 𝜆𝜆− = − 1
𝑅𝑅𝑏𝑏𝐶𝐶𝑚𝑚

− 𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎

< 0 (36) 

and 

𝜆𝜆+𝜆𝜆− = 𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎𝐶𝐶𝑚𝑚

1
𝑅𝑅𝑑𝑑𝑑𝑑

> 0  (37) 

These can also be expressed, respectively, as  
𝜏𝜏𝑚𝑚
𝜏𝜏𝑘𝑘

> 𝑓𝑓′(𝑢𝑢�)  (38) 

𝑅𝑅𝐼𝐼
𝑅𝑅𝑎𝑎

> 𝑓𝑓′(𝑢𝑢�) (39) 

The low frequency dc resistance is 

𝑅𝑅𝑑𝑑𝑑𝑑 = � 1
𝑅𝑅𝑎𝑎

+ 1
𝑅𝑅𝑏𝑏
�
−1

 (40) 

The second condition of stability (39) corresponds to 
𝑅𝑅𝑑𝑑𝑑𝑑 > 0 (41) 

The impedance model corresponds to the EC in Figure 7B. Since 𝑓𝑓′ = −1 for most of 
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the subthreshold region, the stability is warranted by Eqs. (38) and (39) and the impedance 
spectra correspond to those in Figure 4.  

Let us analyze in more detail the inductive feature in Figure 4a. The resistance at the 
intercept 𝑍𝑍′′ = 0 has the value 

𝑅𝑅𝑍𝑍′′=0 = 𝑅𝑅𝑏𝑏
1+𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏𝐶𝐶𝑚𝑚/𝐿𝐿𝑎𝑎

= 𝑅𝑅𝑏𝑏
1+𝑅𝑅𝑏𝑏𝑅𝑅𝐼𝐼

𝜏𝜏𝑚𝑚
𝜏𝜏𝑘𝑘

 (42) 

The spectrum in Figure 4a reflects the two-step relaxation in the model. Normally 𝑢𝑢 is 
the fast variable and 𝑤𝑤 shows a slow relaxation associated to the memory effect. Then 
assuming 𝜏𝜏𝑚𝑚 ≪ 𝜏𝜏𝑘𝑘, the impedance response of the system shows a fast relaxation in the 
high frequency arc and the real part of the impedance reaches 𝑅𝑅𝑏𝑏. Then, the slow variable 
sets in and reduces the dc resistance to the lower 𝑅𝑅𝑑𝑑𝑑𝑑 value, as commented previously. 
More rigorously, the condition that 𝑅𝑅𝑍𝑍′′=0 > 𝑅𝑅𝑑𝑑𝑑𝑑 is given by 

𝑅𝑅𝐼𝐼
𝑅𝑅𝑎𝑎

> 𝜏𝜏𝑚𝑚
𝜏𝜏𝑘𝑘

 (43) 

which corresponds to the condition expressed in figure 4 for the AdExp model 
specifically. This expression indicates the transition from Figure 4a to Figure 4b when the 
negative capacitance feature in the fourth quadrant disappears. The condition (43) also 
indicates the appearance of a Hopf bifurcation when the current is increased, whereas in 
the opposite case the system undergoes a saddle-node bifurcation.77 The impedance 
spectra in the transition zone are shown in the experimental examples of Figure 9. 

 
4.3. The impedance spectra for negative resistance values 
The classification of characteristic impedance spectra for negative 𝑅𝑅𝑏𝑏 has been shown 

in Figure 5. The condition in Eq. (43) also indicates which of the conditions of stability 
(38) and (39) is broken first. If (43) is satisfied, then there is a region where the two 
parallel currents compete, being 𝑅𝑅𝑏𝑏 negative but 𝑅𝑅𝑑𝑑𝑑𝑑 still positive, in the potential range 
determined by the condition 

𝑅𝑅𝐼𝐼
𝑅𝑅𝑎𝑎

> 𝑓𝑓′(𝑢𝑢�) = − 𝑅𝑅𝐼𝐼
𝑅𝑅𝑏𝑏

> 𝜏𝜏𝑚𝑚
𝜏𝜏𝑘𝑘

 (44) 

This region produces the impedance pattern of Figure 5 defined before as a “hidden 
negative impedance”.31 Here the complex 𝑍𝑍(𝜔𝜔) encircles the origin and the imaginary 
part of the impedance has a zero value at finite frequency of negative real part. This is a 
signal of the Hopf instability, as mentioned earlier. 

Figure 5 shows the impedance spectra in the presence of a true NDR. These patterns 
are well documented in the literature of electrochemical oscillations, in the case of 
oscillations induced by a Hopf bifurcation under potentiostatic control.86,87 Different 
examples of the spectra for formaldehyde oxidation are shown in Figure 11. These 
impedance patterns are also very typical for electrochemical passivation and 
corrosion.88,89  

 
 



  21 

 
Figure 11. a) Voltammogram of 0.1 M HCHO in 0.1 M NaOH for a 0, 1000 and 1500 

Ω external resistance (internal cell resistance ca. 95 Ω). Scan rate 10 mV s-1, 3000 rev 
min-1. Amperogram taken at 0.01 mA s-1. (b) Impedance diagrams taken at -0.50 V (■), -
0.45 V (○), -0.35 V (Δ). Indicated frequencies in Hz. Reproduced from 87. 

 
Figure 12 indicates the impedance spectrum when the RL elements are both negative. 

This is not a case that emanates from the AdEx model, but it is also interesting since it 
occurs naturally in the sodium channel of the Hodgkin-Huxley model discussed below.  
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Figure 12. Complex plane impedance spectra of the AdEx model, 𝑅𝑅𝑎𝑎 < 0 and 𝐿𝐿𝑎𝑎 < 0. 

(a) 𝑅𝑅𝐼𝐼 = 1, 𝑅𝑅𝑎𝑎= -5, 𝑅𝑅𝑏𝑏 = 3, 𝑅𝑅𝑑𝑑𝑑𝑑  = 7.5, 𝜏𝜏𝑚𝑚= 10, 𝜏𝜏𝑘𝑘= 100, 𝐿𝐿𝑎𝑎= -500. (b) 𝑅𝑅𝐼𝐼 = 10, 𝑅𝑅𝑎𝑎= -2, 𝑅𝑅𝑏𝑏 
= 10, 𝑅𝑅𝑑𝑑𝑑𝑑 = -2.5, 𝜏𝜏𝑚𝑚= 10, 𝜏𝜏𝑘𝑘= 100, 𝐿𝐿𝑎𝑎= -200. The arrow indicates the direction of 
increasing frequency. 

 
The transient response to a current step in the time domain is represented in Figure 13. 

Figure 13a shows a damped oscillation, while Figure 13b corresponding to the hidden 
negative resistance shows a periodic amplification correspondent to negative damping.  

A complete study of the oscillations, spiking dynamics and bifurcations of the AdEx 
model depending on the external current 𝐼𝐼 is presented by Touboul et al.77   

 
 
Figure 13. Transient voltage in the AdEx model after a small perturbation constant 

current onset at 𝑡𝑡 = 0. (a) 𝑅𝑅𝐼𝐼 = 5, 𝑅𝑅𝑎𝑎= 1, 𝑅𝑅𝑏𝑏 = 10, 𝜏𝜏𝑚𝑚= 10, 𝜏𝜏𝑘𝑘= 100. (b) 𝑅𝑅𝐼𝐼 = 1, 𝑅𝑅𝑎𝑎= 0.2, 
𝑅𝑅𝑏𝑏 = -5, 𝑅𝑅𝑑𝑑𝑑𝑑  = 0.2083, 𝜏𝜏𝑚𝑚= 10, 𝜏𝜏𝑘𝑘= 100.  
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5. Hodgkin-Huxley squid giant axon model 
5.1. Kinetic model 
Finally, we aim to calculate the impedance response from the Hodgkin-Huxley 

dynamical model for the squid giant axon membrane.11 This is a landmark model that is 
extremely accurate for describing neuron dynamics. A development of the small 
perturbation ac model was presented by Chua and coworkers in order to investigate the 
stability conditions.35,36 Here we aim to understand the main impedance responses and 
provide an interpretation based on the simpler models that have been analyzed earlier in 
this paper, namely the memristor and the adaptative integrate-and-fire neuron. 

The original H-H model follows different current and voltage references from those 
usually adopted in the literature.90,91 Therefore, we rewrite the H-H equations such that 
they comply with this convention, i.e., current direction from inside to outside the 
membrane and voltage polarity positive inside and negative outside, as shown in Figure 
14a. Moreover, we consider the membrane potential as it is, and we do not use the original 
transformation, where the origin is taken at the resting potential of the membrane (𝑉𝑉𝑀𝑀 =
𝑉𝑉𝑟𝑟). 

 
Figure 14. a) Hodgkin-Huxley electrical model for the squid giant axon membrane 
consisting of variable resistances in the ion channels as defined in the original publication. 
b) Equivalent circuit for the Hodgkin-Huxley model for small ac voltage perturbations. 
The potassium channel components are indicated in blue, and the sodium elements in red. 
 

The electrical circuit of the membrane, shown in Figure 14a, has four different 
branches that correspond to the membrane capacitance, the potassium ions channel, the 
sodium ions channel, and the leakage current, respectively. As noted in Figure 14a, the 
resistances across the potassium (𝑅𝑅𝐾𝐾) and sodium (𝑅𝑅𝑁𝑁𝑁𝑁) channels are not constant, but 
they depend both on time and voltage, reflecting the complex dynamics in response to 
external inputs. The model provides complete kinetic equations for the different channels, 
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therefore we will be able to develop the small ac EC elements at a fixed point, using the 
same method applied in the previous examples. 

The current through the membrane can be written as the addition of the four 
contributions in Figure 14a 

𝐼𝐼𝑀𝑀 = 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝐾𝐾 + 𝐼𝐼𝑁𝑁𝑁𝑁 + 𝐼𝐼𝑙𝑙 (45) 
The currents obey the expressions: 

𝐼𝐼𝐶𝐶 = 𝐶𝐶𝑀𝑀
𝑑𝑑𝑉𝑉𝑀𝑀
𝑑𝑑𝑑𝑑

 (46) 

𝐼𝐼𝐾𝐾 = 1
𝑅𝑅𝐾𝐾

(𝑉𝑉𝑀𝑀 − 𝑉𝑉𝐾𝐾) (47) 

𝐼𝐼𝑁𝑁𝑁𝑁 = 1
𝑅𝑅𝑁𝑁𝑁𝑁

(𝑉𝑉𝑀𝑀 − 𝑉𝑉𝑁𝑁𝑁𝑁) (48) 

𝐼𝐼𝑙𝑙 = 1
𝑅𝑅𝑙𝑙

(𝑉𝑉𝑀𝑀 − 𝑉𝑉𝑙𝑙) (49) 

Here, the membrane voltage 𝑉𝑉𝑀𝑀 is defined as 
𝑉𝑉𝑀𝑀 = 𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 (50) 

and the other voltages follow the polarity indicated in Figure 14a, and they have the values 
𝑉𝑉𝐾𝐾 = −77 mV, 𝑉𝑉𝑁𝑁𝑁𝑁 = 50 mV and 𝑉𝑉𝑙𝑙 = −54.387 mV. Each of these voltages relate to the 
membrane voltages that cancel the current in each channel. We consider a resting potential 
of 𝑉𝑉𝑟𝑟 = −65 mV, which corresponds to the resting potential at a temperature of 𝑇𝑇 =
6.3 °C.11 The resting potential is the voltage at which there is no current through the 
membrane. The membrane capacitance 𝐶𝐶𝑀𝑀 has a value of 1 μFcm-2 and the leakage 
resistance is 3.33 kΩcm2. 

The potassium resistance is described by the following expression  
1
𝑅𝑅𝐾𝐾

= 1
𝑅𝑅𝐾𝐾0

𝑛𝑛4 (51) 

where 𝑅𝑅𝐾𝐾0 = 27.78 Ωcm2 is the minimum value of the resistance and 𝑛𝑛 is a dimensionless 
potassium gate-activation variable that takes values from 0 to 1, and satisfies the following 
equation: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑛𝑛(1 − 𝑛𝑛) − 𝛽𝛽𝑛𝑛𝑛𝑛 (52) 

Here, the transfer rate coefficients 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛 are time independent and voltage 
dependent by: 

𝛼𝛼𝑛𝑛 = 0.01(10−𝑉𝑉′)

𝑒𝑒
10−𝑉𝑉′
10 −1

 (53) 

𝛽𝛽𝑛𝑛 = 0.125

𝑒𝑒
𝑉𝑉′
80

 (54) 

where 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛 are in ms-1 and 𝑉𝑉′ = 𝑉𝑉𝑀𝑀 − 𝑉𝑉𝑟𝑟 is in mV. 
The sodium resistance is described by a similar expression: 

1
𝑅𝑅𝑁𝑁𝑁𝑁

= 1
𝑅𝑅𝑁𝑁𝑁𝑁0

𝑚𝑚3ℎ (55) 
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In the same way as before, 𝑅𝑅𝑁𝑁𝑁𝑁0 = 8.33 Ωcm2 is the minimum value of the sodium 
resistance. However, the sodium channel has two gate-activation variables 𝑚𝑚 and ℎ. They 
both are dimensionless and take values from 0 to 1, and similarly to the variable 𝑛𝑛, they 
are described by the equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑚𝑚(1 −𝑚𝑚) − 𝛽𝛽𝑚𝑚𝑚𝑚 (56) 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 𝛼𝛼ℎ(1 − ℎ) − 𝛽𝛽ℎℎ (57) 

Again, 𝛼𝛼𝑚𝑚 and 𝛽𝛽𝑚𝑚 are time independent and voltage dependent. Their voltage 
dependence is given by: 

𝛼𝛼𝑚𝑚 = 0.1(25−𝑉𝑉′)

𝑒𝑒
25−𝑉𝑉′
10 −1

 (58) 

𝛽𝛽𝑚𝑚 = 4

𝑒𝑒
𝑉𝑉′
18

 (59) 

𝛼𝛼ℎ and 𝛽𝛽ℎ are voltage dependent, too, by the equations: 

𝛼𝛼ℎ = 0.07

𝑒𝑒
𝑉𝑉′
20

 (60) 

𝛽𝛽ℎ = 1

𝑒𝑒
30−𝑉𝑉′
10 +1

 (61) 

All the transfer rate coefficients are in ms-1 and 𝑉𝑉′ = 𝑉𝑉𝑀𝑀 − 𝑉𝑉𝑟𝑟 is in mV. 
We can rewrite the equations (47) and (48) of the currents across the two ion channels 

as 

𝐼𝐼𝐾𝐾 = 1
𝑅𝑅𝐾𝐾0

𝑛𝑛4(𝑉𝑉𝑀𝑀 − 𝑉𝑉𝐾𝐾) (62) 

𝐼𝐼𝑁𝑁𝑁𝑁 = 1
𝑅𝑅𝑁𝑁𝑁𝑁0

𝑚𝑚3ℎ(𝑉𝑉𝑀𝑀 − 𝑉𝑉𝑁𝑁𝑁𝑁) (63) 

 
5.2. Impedance response 
From these equations we can calculate the ac impedance response of the H-H model 

across each branch. The small perturbation and Laplace transform of equations (46), (62), 
(63) and (49) give the equations: 

𝐼𝐼𝐶𝐶 = 𝑠𝑠𝐶𝐶𝑀𝑀𝑉𝑉�𝑀𝑀 (64) 

𝐼𝐼𝐾𝐾 = 1
𝑅𝑅𝐾𝐾0

4𝑛𝑛�3(𝑉𝑉�𝑀𝑀 − 𝑉𝑉𝐾𝐾)𝑛𝑛� + 1
𝑅𝑅𝐾𝐾0

𝑛𝑛�4𝑉𝑉�𝑀𝑀 (65) 

𝐼𝐼𝑁𝑁𝑁𝑁 = 1
𝑅𝑅𝑁𝑁𝑁𝑁0

3𝑚𝑚�2ℎ�(𝑉𝑉�𝑀𝑀 − 𝑉𝑉𝑁𝑁𝑁𝑁)𝑚𝑚� + 1
𝑅𝑅𝑁𝑁𝑁𝑁0

𝑚𝑚�3(𝑉𝑉�𝑀𝑀 − 𝑉𝑉𝑁𝑁𝑁𝑁)ℎ� + 1
𝑅𝑅𝑁𝑁𝑁𝑁0

𝑚𝑚�3ℎ�𝑉𝑉�𝑀𝑀 (66) 

𝐼𝐼𝑙𝑙 = 1
𝑅𝑅𝑙𝑙
𝑉𝑉�𝑀𝑀 (67) 

Here, in equations (65) and (66), the perturbed variables 𝑛𝑛�, 𝑚𝑚�  and ℎ� appear. We can 
calculate them from the small perturbation and Laplace transform from equations (52), 
(56) and (57): 
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𝑠𝑠𝑛𝑛� = �𝜕𝜕𝛼𝛼�𝑛𝑛
𝜕𝜕𝑉𝑉𝑀𝑀

(1 − 𝑛𝑛�) − 𝜕𝜕𝛽𝛽�𝑛𝑛
𝜕𝜕𝑉𝑉𝑀𝑀

𝑛𝑛�� 𝑉𝑉�𝑀𝑀 − �𝛼𝛼�𝑛𝑛 + 𝛽̅𝛽𝑛𝑛�𝑛𝑛� (68) 

𝑠𝑠𝑚𝑚� = �𝜕𝜕𝛼𝛼�𝑚𝑚
𝜕𝜕𝑉𝑉𝑀𝑀

(1 −𝑚𝑚�) − 𝜕𝜕𝛽𝛽�𝑚𝑚
𝜕𝜕𝑉𝑉𝑀𝑀

𝑚𝑚��𝑉𝑉�𝑀𝑀 − �𝛼𝛼�𝑚𝑚 + 𝛽̅𝛽𝑚𝑚�𝑚𝑚�  (69) 

𝑠𝑠ℎ� = �𝜕𝜕𝛼𝛼�ℎ
𝜕𝜕𝑉𝑉𝑀𝑀

�1 − ℎ�� − 𝜕𝜕𝛽𝛽�ℎ
𝜕𝜕𝑉𝑉𝑀𝑀

ℎ�� 𝑉𝑉�𝑀𝑀 − �𝛼𝛼�ℎ + 𝛽̅𝛽ℎ�ℎ� (70) 

From the combination of equations (64-70), we derive the impedance given by 

𝑍𝑍 = 𝑉𝑉�𝑀𝑀
𝐼𝐼𝑀𝑀

= 𝑉𝑉�𝑀𝑀
𝐼𝐼𝐶𝐶+𝐼𝐼𝐾𝐾+𝐼𝐼𝑁𝑁𝑁𝑁+𝐼𝐼𝑙𝑙

 (71) 

Rearranging all the terms obtained, we can get an expression for impedance with the 
following elements: 

𝑍𝑍 = 𝑉𝑉�𝑀𝑀
𝐼𝐼𝑀𝑀

= �𝑠𝑠𝐶𝐶𝑀𝑀 + 1
𝑅𝑅𝐾𝐾,1

+ 1
𝑅𝑅𝑛𝑛+𝑠𝑠𝐿𝐿𝑛𝑛

+ 1
𝑅𝑅𝑁𝑁𝑁𝑁,1

+ 1
𝑅𝑅𝑚𝑚+𝑠𝑠𝐿𝐿𝑚𝑚

+ 1
𝑅𝑅ℎ+𝑠𝑠𝐿𝐿ℎ

+ 1
𝑅𝑅𝑙𝑙
�
−1

 (72) 

The EC generated by this impedance is shown in Figure 14b, and the values of the 
voltage-dependent elements are detailed as follows: 

𝑅𝑅𝐾𝐾,1(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝐾𝐾0
𝑛𝑛�4

 (73) 

𝑅𝑅𝑛𝑛(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝐾𝐾0

4𝑛𝑛�3(𝑉𝑉�𝑀𝑀−𝑉𝑉𝐾𝐾)𝜏𝜏𝑛𝑛�
𝜕𝜕𝛼𝛼�𝑛𝑛
𝜕𝜕𝑉𝑉𝑀𝑀

(1−𝑛𝑛�)−𝜕𝜕𝛽𝛽�𝑛𝑛
𝜕𝜕𝑉𝑉𝑀𝑀

𝑛𝑛��
 (74) 

𝐿𝐿𝑛𝑛(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝑛𝑛𝜏𝜏𝑛𝑛 (75) 

𝑅𝑅𝑁𝑁𝑁𝑁,1(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝑁𝑁𝑁𝑁0
𝑚𝑚�3ℎ�

 (76) 

𝑅𝑅𝑚𝑚(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝑁𝑁𝑁𝑁0

3𝑚𝑚�2ℎ�(𝑉𝑉�𝑀𝑀−𝑉𝑉𝑁𝑁𝑁𝑁)𝜏𝜏𝑚𝑚�
𝜕𝜕𝛼𝛼�𝑚𝑚
𝜕𝜕𝑉𝑉𝑀𝑀

(1−𝑚𝑚� )−𝜕𝜕𝛽𝛽
�𝑚𝑚

𝜕𝜕𝑉𝑉𝑀𝑀
𝑚𝑚��

 (77) 

𝐿𝐿𝑚𝑚(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝑚𝑚𝜏𝜏𝑚𝑚 (78) 

𝑅𝑅ℎ(𝑉𝑉�𝑀𝑀) = 𝑅𝑅𝑁𝑁𝑁𝑁0

𝑚𝑚�3(𝑉𝑉�𝑀𝑀−𝑉𝑉𝑁𝑁𝑁𝑁)𝜏𝜏ℎ�
𝜕𝜕𝛼𝛼�ℎ
𝜕𝜕𝑉𝑉𝑀𝑀

(1−ℎ�)−𝜕𝜕𝛽𝛽�ℎ
𝜕𝜕𝑉𝑉𝑀𝑀

ℎ��
 (79) 

𝐿𝐿ℎ(𝑉𝑉�𝑀𝑀) = 𝑅𝑅ℎ𝜏𝜏ℎ (80) 
The different relaxation time constants 𝜏𝜏𝑖𝑖 of each activation-gate variable are defined 

as 

𝜏𝜏𝑖𝑖 = 1
𝛼𝛼𝑖𝑖+𝛽𝛽𝑖𝑖

 (81) 

These results correspond to those obtained by Chua et al.35 with a different voltage 
reference.  

 
5.3. Interpretation of the impedance spectra 
We aim to analyse impedance spectra in the region where the real part of the impedance 

takes negative values, since this is the requirement for inducing oscillations and spiking. 
This occurs between 𝑉𝑉𝑀𝑀 = −42.99 mV and 𝑉𝑉𝑀𝑀 = −60.25 mV. In Figure 15, we show a 
set of impedance complex plots of the full model of Figure 14b for representative voltage 
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values above this range (Figure 15a,b), in this range (Figure 15b,c,d) and below it (Figure 
15d).  

The negative value of the real part of the impedance is clearly observed at frequencies 
different from zero, it is therefore a “hidden negative impedance”. The values close to the 
voltage range limit have only a small region in the negative area, while the intermediate 
values have most of the spectrum at the negative part, Figure 15c. 

 

 
Figure 15. Impedance complex plane plots for voltages a) above the upper limit of the 
negative impedance region, b) around the upper limit 𝑉𝑉𝑀𝑀 = −42.99 𝑚𝑚𝑚𝑚, c) in the 
negative impedance region and d) around the lower limit 𝑉𝑉𝑀𝑀 = −60.25 𝑚𝑚𝑚𝑚. 

 
In order to better understand the EC and the wide diversity of characteristic impedance 

spectra obtained for the Hodgkin-Huxley model, and compare it with other systems with 
similar ECs, we now analyze the impedance response of the individual K and Na channels 
that compose the model. 

We first look at the spectra generated by the potassium channel with the constant 
elements 𝐶𝐶𝑀𝑀 and 𝑅𝑅𝑙𝑙. The partial EC is represented in Figure 16a, and it is equivalent to 
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the general memristor EC previously described in Figure 7B. Figures 16b and 16c show 
the values of the circuit elements generated by the potassium channel for the voltage range 
spanning from 𝑉𝑉𝐾𝐾 to 𝑉𝑉𝑁𝑁𝑁𝑁. The graphs show that the resistances have relatively low values 
compared to the leakage resistance (3.33 kΩ) for voltages above the resting potential 𝑉𝑉𝑟𝑟. 
Below this value, both resistances start to increase until they take huge values. The same 
happens in the case of the inductor in Figure 16c. 

 
Figure 16. Impedance details of the K channel. (a) EC used for (d). (b) and (c) values of 
the elements for the range of membrane voltages. (d) impedance complex plane plot for 
different values. 

 
In Figure 16d, we can see the impedance complex plane plots for a variety of membrane 

voltages. The spectra generated by this circuit and the evolution of these elements 
generally shows an arc at the first quadrant at high frequency and another arc in the fourth 
quadrant at low frequency. This behaviour has been described above in Figure 4. The arcs 
are relatively small at voltages above 𝑉𝑉𝑀𝑀 = −20 mV, where the values of all the 
potassium channel resistances and inductor have small values. Below these values, the 
arcs start to increase, until the fourth quadrant arc disappears, and the spectrum is 
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dominated by the constant elements. This means that the potassium channel closes as we 
get closer to the voltage 𝑉𝑉𝐾𝐾. 

If we calculate the Jacobian and apply the stability conditions in the same way we did 
before but for this EC, we get the following conditions: 

−� 1
𝑅𝑅𝑘𝑘,1

+ 1
𝑅𝑅𝑙𝑙
� < 𝐶𝐶𝑀𝑀

𝜏𝜏𝑛𝑛
 (82) 

−� 1
𝑅𝑅𝑘𝑘,1

+ 1
𝑅𝑅𝑙𝑙
� < 1

𝑅𝑅𝑛𝑛
 (83) 

Moreover, if we apply the condition 𝑅𝑅𝑍𝑍′′=0 > 𝑅𝑅𝑑𝑑𝑑𝑑 for the appearance of inductive 
loops, we get: 

−� 1
𝑅𝑅𝑘𝑘,1

+ 1
𝑅𝑅𝑙𝑙
� < 𝐶𝐶𝑀𝑀

𝜏𝜏𝑛𝑛
< 1

𝑅𝑅𝑛𝑛
 (84) 

Since the values of all these elements and parameters are fixed for any given membrane 
voltage, we can predict the appearance of the inductive loops, as well as the stable voltage 
values. For this aim, we plot the three factors in Figure 17, to find those voltages. In this 
Figure, we have defined the resistance 𝑅𝑅𝑐𝑐−1 = 𝑅𝑅𝑘𝑘,1

−1 + 𝑅𝑅𝑙𝑙−1. 

 
Figure 17. Factors for the conditions of stability and inductive loops appearance. 
 

From Figure 17, we can conclude that the potassium channel circuit is stable in the 
whole range of voltages. Moreover, we see a wide range of voltages in which the inductive 
loop will appear, and we can estimate the voltage where it disappears. This is below a 
voltage around 𝑉𝑉𝑀𝑀 = −70 mV, which agrees with the spectra plotted in Figure 16d. 

Looking at the sodium channel, we build in Figure 18a a partial EC including the 
elements of the membrane, therefore, we can again see when the channel closes and these 
elements dominate. As we can see, this channel is richer in the number of elements. From 
Figures 18b and 18c, we find elements that take negative values. These are the elements 
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𝑅𝑅𝑚𝑚 and 𝐿𝐿𝑚𝑚 and they make the spectra generated from this channel even richer, with 
spectra appearing in any of the four quadrants of the complex plane representation, as 
previously demonstrated in Section 2.3. 

 
Figure 18. Impedance details of the Na channel. (a) EC used of the Na channel. (b) and 
(c) values of the resistances and inductors for the range of membrane voltages, 
respectively. 

 
As in the case of the potassium channel, the elements have low values in a certain range 

of voltages, while they take huge values outside this range. This is clearly seen in Figures 
18b and 18c and it relates with the fact that at voltages 20 mV < 𝑉𝑉𝑀𝑀 < −65 mV the 
sodium channel is mainly closed, and we again see a single arc corresponding to the 
constant membrane elements in Figure 19. However, inside this range we again see the 
memristive inductive loop into the fourth quadrant at 𝑉𝑉𝑀𝑀 = −20 mV. More interestingly, 
we see the hidden negative resistance at 𝑉𝑉𝑀𝑀 = −30 mV, and a clear negative resistance 
from approximately 𝑉𝑉𝑀𝑀 = −40 mV to 𝑉𝑉𝑀𝑀 = −65 mV. Therefore, it looks evident that the 
channel causing the negative impedance in the whole membrane is the sodium channel. 
However, the full membrane will not show a negative impedance at zero frequency. 
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Figure 19. Impedance complex plane plots for the sodium channel EC. (a) is for spectra 
with smaller impedance values and (b) is for spectra with bigger impedance values. 

 
6. Conclusion 

The method we have developed in this paper consists on the determination of the small 
perturbation ac IS response of highly nonlinear systems, related to memristors and 
neuromorphic response, starting from the time domain constitutive equations of each 
model. We showed the connection of impedance response and the shape of the spectra to 
the physical interpretation of memory effects and stability, following previous insights in 
stability theory and electrochemical oscillations.  

Firstly, we presented a frequency domain analysis of memristors. We showed that the 
memristor can be decomposed into a simple equivalent circuit, and it cannot be regarded 
as an additional fundamental element for small signal response. This is because the 
mechanism of memory is well represented by a resistor-inductor line. The basic structure 
of the impedance model is obtained across different material platforms and independent 
fields of study. There is possibly a universal behaviour related to the suggested kinetic 
memory effect that needs further investigation. Nevertheless, the model is not unique to 
describe memristor systems. There is indeed a very broad type of responses under the 
label of memristive systems, based on different mechanisms and physical effects. 

The impedance response of the adaptative exponential integrate-and-fire model for the 
neuron membrane shows a similar response to that of the memristor, thus confirming them 
as good candidates for neuromorphic computations. We have made a classification of the 
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spectra generated by this model, and we have established the required conditions for the 
stability of the impedance response. A variety of criteria consisting of relations among the 
model parameters have been given in order to clarify which conditions generate each kind 
of spectra. 

The same has been made for the Hodgkin-Huxley model for the squid giant axon. We 
made an extended calculation of the full impedance model, showing the full equivalent 
circuit that governs the operation of these membranes. We have presented the spectra 
generated by this model for a wide range of voltages, finding a wide variety of shapes, 
including the hidden negative resistance. With respect to the previously described simple 
models, this model has the additional complexity of consisting of different channels that 
cause positive and negative feedback loops. To obtain better insight about the concerted 
action that produces the diverse impedance spectra responses, we investigated separately 
the individual ion channels responses. Interestingly, we have found that the potassium 
channel fulfills the stability conditions in all the voltage range and the condition for 
inductive loops is satisfied. However, the sodium channel is more complex, and its 
equivalent circuit includes a branch with negative elements (a resistance and an inductor) 
that produce all kind of spectra going through the four quadrants. This feature is 
responsible for the positive feedback that causes depolarization including the hidden 
negative resistance in the full model. 

In summary we have suggested a method to analyze the response of a required 
dynamical system in the frequency domain as a tool to construct material systems with a 
similar functionality. 
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