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Abstract

Endowing convolutional neural networks (CNNs) with the rotation-invariant capability is important

for characterizing the semantic contents of remote sensing (RS) images, since they do not have typical

orientations. Most of the existing deep methods for learning rotation-invariant CNN models are based

on the design of proper convolutional or pooling layers, which aim at predicting the correct category

labels of the rotated RS images equivalently. However, few works have focused on learning rotation-

invariant embeddings in the framework of deep metric learning for modeling the fine-grained semantic

relationships among RS images in the embedding space. To fill this gap, we first propose a rule that

the deep embeddings of rotated images should be closer to each other than those of any other images

(including the images belonging to the same class). Then, we propose to maximize the joint probability

of the leave-one-out image classification and rotational image identification. With the assumption of

independence, such optimization leads to the minimization of a novel loss function composed of two
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embedding space

Fig. 1. A simplified illustration of the motivation of this work. To achieve rotation-invariant deep embedding, we aim at generating

a hierarchical structure in the deep embedding space, which satisfies the following conditions: 1) the intraclass embeddings are

grouped, and the interclass ones are separated; and 2) given the embedding of a source image, its nearest neighbors should be

the embeddings from its rotated images.

terms: 1) a class-discrimination term, and 2) a rotation-invariant term. Further, we introduce a penalty

parameter that balances these two terms, and further propose a final loss to learn Rotation invariant Deep

embedding for RS images, termed as RiDe. Extensive experiments conducted on two benchmark RS

datasets validate the effectiveness of the proposed approach and demonstrate its superior performance

when compared to other state-of-the-art methods. The codes of this paper will be publicly available

from https://github.com/jiankang1991/TGRS RiDe.

Index Terms

Rotation invariant, convolutional neural networks (CNNs), scene classification, image retrieval, deep

learning, deep metric learning, remote sensing (RS).

I. INTRODUCTION

Remote sensing (RS) images have been widely used in multiple applications related to earth

observation, such as object detection and recognition [1]–[5], land-use or land-cover classification

[6]–[12], disaster monitoring and management of natural resources [13], [14], among others. All

these tasks require an accurate characterization of RS scenes, from which semantic concepts

should be precisely captured. Therefore, extensive methods for RS scene interpretation have

been developed in recent years [15]–[17].

Generally, existing RS scene characterization methods can be categorized into two main

groups: 1) handcrafted feature-based methods [18], [19], and 2) data-driven feature-based meth-
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ods [20]. Compared to the data-driven ones, handcrafted features are mainly constructed by

applying color, texture or histograms of oriented gradients (HOG) descriptors on the RS images

[21]–[24]. Although they demonstrate prominent performance in scene interpretation tasks (e.g.,

classification), it is still possible to improve their performance, especially for RS scenes with

complex semantic contents. Data-driven feature-based methods aim at automatically learning or

discovering the image descriptors by optimizing certain objective functions based on the training

data, e.g., sparse coding [25], [26]. With the rapid development of deep learning methods, convo-

lutional neural networks (CNNs) have been widely exploited for capturing the high-level semantic

information of RS scenes in an end-to-end manner [27]. By enforcing intraclass compactness and

interclass separation, deep metric learning has been recently adopted for accurately capturing

the complex semantics of RS scenes into low-dimensional vectors, termed embeddings [28]–

[31]. This approach has been used successfully for RS scene classification and image retrieval

tasks. In order to train CNN models under deep metric learning assumptions, most deep metric

learning methods require supervised information (such as image annotations) for constructing

image pairs or triplets with semantic relationships, where the images sharing the same label

are semantically similar and dissimilar images have different labels. Then, loss functions are

designed to pull together the intraclass deep embeddings and separate away the ones from

different classes. Similar ideas of deep embedding even succeed in 3D point cloud processing

via a dimensionality reduction of point features that originally encoded by a neural network

[32]. However, these methods may not discover a fine-grained embedding space for RS scene

characterization, since grouping intraclass deep embeddings may not be beneficial for accurately

modeling their local relationships. Consequently, these may lead to image retrieval systems that

cannot accurately rank the retrieved images based on their actual visual semantics with respect

to the query. Moreover, unlike other kinds of images, RS scenes do not have typical orientations,

because they are captured by airborne and spaceborne sensors. That is, the same semantic scene

may appear at different geo-locations, being the only difference the orientations.

In the context of characterizing RS scenes via deep metric learning, all the images belonging

to the same category are expected to produce similar representations (no matter whether they

have been rotated or not). Therefore, the possibility of robustly learning the corresponding

deep embeddings is highly beneficial to efficiently exploit these RS image characterizations

in different downstream applications (e.g., classification, retrieval, etc.). Although equivariance

and invariance are certainly two important aspects in this type of representation learning [33],
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the rotation-invariant alternative is more convenient to guarantee the locality structure among RS

images in the metric space. Therefore, CNN models trained based on deep metric losses should

be rotation-invariant. In order to solve the above issues, we introduce a novel loss function for

learning a hierarchical structure of the deep embedding space (as shown in Figure 1), which

satisfies the following conditions:

• Rotational invariance: given the embedding of a source image, its nearest neighbors should

be the embeddings from its rotated images.

• Class discrimination: the intraclass embeddings are grouped together and the interclass ones

are separated away.

To simultaneously achieve these two conditions, we maximize the joint probability of the leave-

one-out image classification and rotational image identification. With the assumption of inde-

pendence, we develop a new loss function composed of two terms: 1) class-discrimination,

and 2) rotation-invariance. To balance these terms, we introduce a penalty parameter and further

propose a final loss function to learn Rotation invariant Deep embeddings for RS images, termed

as RiDe. To this end, the main contributions of this paper can be summarized as follows:

1) To our best knowledge, this work is the first one that focuses on analyzing the rotation-

invariant capability of CNN models when extracting deep embeddings for RS images.

2) We introduce a novel metric learning loss function, RiDe, which can endow CNN models

with both rotation-invariant and class-discrimination capabilities.

3) Our newly developed RiDe can be adapted to guide the training of any CNN model in a

plug&play manner.

4) Based on our extensive experiments, we conclude that RiDe exhibits prominent perfor-

mance in the generation of rotation-invariant deep embeddings as compared to other state-

of-the-art losses.

The remainder of this paper is organized as follows. Section II introduces some related works.

Section III thoroughly describes the proposed rotation-invariant deep embedding for RS images.

Section IV presents the conducted experiments and discusses the obtained results. Section V

concludes the paper with some remarks and hints at plausible future research lines.
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II. RELATED WORK

A. Deep Learning-based RS Scene Classification and Retrieval

Recently, deep learning techniques have drawn significant attention in the RS field, and

extensive research has been carried out with the goal of characterizing the semantic contents of

RS scenes. For example, Zheng et al. exploited pretrained CNN features, multi-scale pooling

and Fisher vectors to generate invariant CNN features while enhancing their discriminative

capability, and proposed a new deep scene classification method in [34]. Li et al. presented

a multi-layer feature fusion method based on different pretrained CNN models for RS scene

characterization [35]. To classify complex RS scenes, spatial pyramid pooling (combined with

multi-scale CNN features) was exploited in [36]. Aiming at modeling the semantic relationships

among RS images in the embedding space, deep metric learning has become an important trend

to effectively capture the semantic contents of RS scenes. Cheng et al. exploited a pairwise loss as

a regularizer, together with the cross-entropy loss to improve the class-discrimination capability

of CNN models [29]. Yan et al. adopted a deep metric learning strategy for reducing the data

distribution bias in the embedding space, and further proposed a domain-adaptation method for

RS scene classification [30]. In order to obtain a robust image retrieval system against variations

of RS images, Yun et al. introduced a novel triangular loss function within a coarse-to-fine

training framework in [37]. Xu et al. developed a sketch-based RS image retrieval (SBRSIR)

[38] framework for searching images in a scalable RS database based on hand-drawn sketches.

Li et al. proposed a meta learning-based method for few-shot RS scene classification, where

the balanced loss (which maximizes the distance between different categories) was developed in

[39]. For more details about deep learning-based RS scene characterization methods, we refer

readers to the comprehensive reviews in [16], [40], [41].

B. Rotation-invariant CNNs

Rotation-invariant CNN models aim at equivalently categorizing the original images and their

rotated versions. In other words, the inference of the labels based on those models are not

sensitive to image rotations. An efficient approach to learn such transformation-equivalent CNNs

is data augmentation [42]. Its basic principle is to improve the rotation-invariant capability of

CNN models by generating abundant rotated training images. Marcos et al. presented a shallow

CNN where the rotational invariance is directly encoded by tying the weights of groups of
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filters to several rotated versions of the canonical filter in the group [43]. Cheng et al. proposed

an effective method to train rotation-invariant and Fisher discriminative CNN models for object

detection purposes [44]. Laptev et al. introduced a transformation-invariant pooling operator (Ti-

pooling), where a siamese network is first employed to extract features (from multiple rotated

images) which are then fed through a pooling to the first fully-connected layer [45]. Chen et al.

developed a recurrent transformer network (RTN) for learning transformation-invariant regions

based on a so-called ”transformer mechanism,” so that the semantic gap of the subordinate level

feature representations could be reduced [46]. Yang et al. introduced a novel object detection

method, termed SCRDet, for effectively detecting small, cluttered and rotated objects in RS

images [47]. In [48], He et al. presented the skip-connected covariance network (SCCov), which

jointly exploits skip connections and covariance pooling to achieve highly representative feature

learning. By applying channel attention into group convolution, Chung et al. proposed a rotation-

invariant RS scene image retrieval method with group convolutional metric learning [49]. To learn

discriminative and invariant features of RS images, Wang et al. adopted a siamese network to

transfer the input images (using a finite transformation group, consisting of multiple confounding

orthogonal matrices) into a representation space, where an invariant representation can be derived

[50].

C. Novelty and Advantages of the Proposed Method

From data augmentation techniques [42] to transformed convolutional and pooling layers [43],

[45], different rotation-invariant CNN-based models have shown to be effective to relieve the

large-scale variance problem inherent to the presence of rotated images. However, many of these

methods rely on regular CNN classification schemes, where transformed images are projected

onto their corresponding label spaces without accounting for the structure of the generated deep

embeddings. In this way, rotated RS images belonging to the same class may have different

internal characterizations, which eventually constrains the usability of such data representations

to down-stream applications beyond classification. Although some authors have been able to

extend this rotation-invariant scheme to other tasks, e.g. retrieval [49], the invariance process is

often implemented as part of the CNN design, which may still limit the model generality due

to the need for some sort of pre-training and arbitrary weight sharing schemes, that eventually

undermine the end-to-end nature of the models.
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Fig. 2. Graphical illustration of the proposed rotation-invariant deep embedding method for RS images. Based on the proposed

RiDe loss, optimized CNN models can capture the embedding space for RS images with a hierarchical structure. Not only the

intraclass compactness and interclass separability can be preserved, but also the embeddings of the rotated RS images are closer

to the embedding of the source image than any other images in the embedding space.

With the objective of generating more meaningful RS image representations (with higher

discrimination and generalization ability), we propose dealing with the rotation-invariant problem

from a novel deep metric learning perspective. That is, instead of modifying the CNN model

design, we aim at developing a new deep metric learning loss to produce rotation-invariant RS

image characterizations, regardless of the considered feature extraction architecture. In this way,

our newly developed RiDe pursues to advance the development of rotation-invariant RS scene

representations from a loss function perspective.

III. RIDE

The proposed RS image characterization method consists of two main components: 1) a

backbone CNN model for extracting the deep embeddings; and 2) a new deep metric learning

loss for training such model in a rotation-invariant way. Figure 2 provides a graphical illustration

of the proposed framework. As it is possible to see, the backbone architecture is independent from

the proposed loss, since it is only used as feature extractor. Besides, a memory bank mechanism

is employed to compute all the elements required by the proposed loss. In the following, we

describe all these components in detail.

A. Notations

Let X = {x1, · · · ,xN} denote a RS image dataset containing N images, along with their

category labels YC = {yC1 , · · · , yCN}, where yCi ∈ {1, · · · , C}. To achieve the rotation-invariant
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Fig. 3. The original NWPU-RESISC45 dataset and its rotation-augmented dataset (NWPU-RESISC45-R).

capability of CNN models, we create a rotation-augmented dataset X̃ based on X , where each

image in X̃ is a rotated version of the original image in X , i.e.,

X̃ =


x1, rot90(x1), rot180(x1), rot270(x1)

...
...

...
...

xN , rot90(xN), rot180(xN), rot270(xN)


= {x̃1, · · · , x̃4N}.

(1)

Here, rot90(·) refers to the clockwise 90 degree rotation operator. Taking the NWPU-RESISC45

[15] dataset as an example, we show some images from the original dataset and their rotation-

augmented ones in Figure 3. As an extension, the category label set of X̃ is symbolized as ỸC .

In addition, we denote another label set ỸR, termed as image label set, indicating the original

image index that generates the rotated versions in X̃ , i.e., ỸR = {1, 1, 1, 1, · · · , N,N,N,N}.

fi ∈ RD is the normalized deep embedding (i.e., ‖fi‖2 = 1) of image xi, generated via a CNN

model F(·), i.e., F(xi) = fi.

B. Neighborhood Component Analysis (NCA)

NCA [51] is a supervised dimension reduction method that maximizes the performance

of K-nearest neighbour (KNN) classification in the embedding space. Given a training set:

{(x1, y
C
1 ), · · · , (xN , y

C
N)}, the purpose of NCA is to learn a linear function A which maps

the input data into a new embedding space such that each point is more likely to select the ones
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sharing the same class as its neighbors. To achieve this, the probability that xi selects xj as its

neighbor is defined as:

pij =
exp(−‖Axi −Axj‖2)∑
k 6=i exp(−‖Axi −Axk‖2)

, pii = 0. (2)

Based on this, the probability that xi can be correctly classified is:

pCi =
∑
j∈Ωi

pij, (3)

where Ωi = {j|yCi = yCj } is the index set of the training images sharing the same class with xi.

The goal of NCA is to maximize the log-likelihood that all images can be correctly classified,

where the log-likelihood is defined as:

l(A) =
∑
i

log(pCi ). (4)

Owing to its prominent capability for feature modeling, the embedding space can be better

characterized by a CNN model than by a linear projection. Therefore, NCA can be extended to a

deep version, the scalable neighborhood components analysis (SNCA) in [52], where the linear

mapping A is replaced by a nonlinear mapping based on a CNN model F(·). Moreover, the

similarity measurement in the embedding space is realized by the cosine between the normalized

embeddings of images xi and xj , i.e., sij = fTi fj . Thus, pij is formulated as:

pij =
exp(fTi fj/σ

)∑
k 6=i exp(fTi fk/σ)

, pii = 0. (5)

Then, SNCA aims at minimizing the following loss:

LSNCA = −
∑
i

log(pCi )

= −
∑
i

log
(∑
j∈Ωi

exp(fTi fj/σ
)∑

k 6=i exp(fTi fk/σ)

)
.

(6)

In order to stochastically minimize the SNCA loss, a memory bank B is introduced to store the

normalized embeddings of the training set serving for such contrastive learning.

C. RiDe Loss

1) Limitations of the SNCA loss: From Equation (6), it can be observed that an optimal

solution can be reached when all the embeddings from the same class are the same, i.e., fTi fj =

1, ∀j ∈ Ωi. In other words, the normalized embeddings from the same class are perfectly aligned

with each other in the embedding space. However, such ideal case is hard to be achieved in
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practice due to the complex semantics of RS scenes. It indicates that there may be local structures

in a set of images belonging to the same class that are represented by more than one point in the

embedding space. On the other hand, as opposed to other kinds of images, RS scenes captured by

earth observation sensors have no typical orientations, which means that any rotated RS image is

meaningful in reality. The same scene may exhibit different locations while the only difference

between them is their orientations. Therefore, an embedding space for characterizing RS images

should satisfy the following structural condition: given an anchor image in the embedding space,

the distances between this image and its rotated versions should be closer than any other images,

including the ones belonging to the same class.

Since the SNCA loss only aims at grouping all the images that belong to the same class together

in the embedding space, it cannot guarantee such a fine-grained structural condition. This means

that the trained CNN models do not possess rotation-invariant capabilities for generating deep

embeddings. To address this issue, we develop a new loss function which is rotation invariant

and preserves the class-discrimination capability.

2) Definition of the RiDe loss: In order to achieve the aforementioned goals, we make use

of a rotation-augmented dataset X̃ . Note that the use of an augmented dataset logically brings

some computational burden to the training stage. However, it is important to highlight that

the asymptotic cost of processing X̃ remains the same (compared with the original dataset)

since the increase of the number of samples is limited by the amount of considered rotations,

which is a constant value that does not depend on the database size. This situation is not

exclusive to the proposed approach, but to any other method using augmented data. Besides,

it does not affect the operational exploitation of the proposed model. Given a training set

{(x̃1, ỹ
C
1 , ỹ

R
1 ), · · · , (x̃4N , ỹ

C
4N , ỹ

R
4N)}, pij denotes the probability that image xi selects xj as its

neighbor, as defined in Equation (5). Likewise, pCi measures the probability that xi is correctly

classified:

pCi =
∑
j∈Ω̃i

pij, (7)

where Ω̃i = {j|ỹCi = ỹCj }. In addition, we define another probability pRi calculating the likelihood

of its rotated counterparts lying nearby in the embedding space:

pRi =
∑
j∈R̃i

pij, (8)
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where R̃i = {j|ỹRi = ỹRj } is the index set of the rotated training images coming from the

same source image. As discussed above, we aim at achieving both class discrimination and rota-

tional invariance when extracting deep embeddings from RS images. Hereby, a joint probability

pi(C,R) is introduced, which not only represents the likelihood that the image xi is correctly

classified, but also that its rotated images are located nearest to itself in the embedding space.

To simplify the calculation of such joint probability, we assume that both cases are independent.

Therefore, it can be formulated as follows:

pi(C,R) = pCi p
R
i =

(∑
j∈Ω̃i

pij

)(∑
j∈R̃i

pij

)
. (9)

To maximize such joint probability over the whole training set, we equally minimize the following

negative log-likelihood:

L = −
∑
i

log
(
pi(C,R)

)
. (10)

According to the properties of logarithms, Equation (10) can be further expanded as:

L =−
∑
i

log(pCi )−
∑
i

log(pRi )

=−
∑
i

log
(∑
j∈Ω̃i

exp(fTi fj/σ
)∑

k 6=i exp(fTi fk/σ)

)
︸ ︷︷ ︸

class discrimination

−
∑
i

log
(∑
j∈R̃i

exp(fTi fj/σ
)∑

k 6=i exp(fTi fk/σ)

)
︸ ︷︷ ︸

rotational invariance

. (11)

From a loss function perspective, there are two different terms in Equation (11): 1) class

discrimination, which is optimized for pulling intraclass embeddings together while pushing

interclass embeddings away; 2) rotational invariance, which is optimized for grouping together the

embeddings of the rotated images obtained from the same source image. In order to better balance

these two terms, a penalty parameter λ is introduced, and the final RiDe loss is formulated as:

LRiDe = −
∑
i

log(pCi )− λ
∑
i

log(pRi ). (12)

In fact, RiDe can be considered as a rotation-invariant generalization of SNCA. When λ = 0,

RiDe turns into SNCA.
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D. Optimization

Based on the back-propagation technique, the gradients of LRiDe with respect to the parameters

in CNN models can be obtained. To stochastically minimize LRiDe, we exploit the memory bank

B to store all the normalized embeddings of the training images. After each training iteration,

B is updated in an empirical weighted averaging manner:

f
(t+1)
i ← mf

(t)
i + (1−m)fi, (13)

where m is a parameter controlling the balance between the two embeddings. The associated

optimization scheme is described in Algorithm 1.

Algorithm 1 RiDe

Require: X̃ , ỸC and ỸR

1: Initialize CNN parameters and B (randomly), along with σ, λ, D and m.

2: for t = 0 to maxEpoch do

3: Sample a mini-batch.

4: Obtain f
(t)
i based on F(·).

5: Calculate the similarities sij based on the extracted mini-batch embeddings and those in

B.

6: Index the similarities based on ỸC and ỸR.

7: Calculate the RiDe loss in Equation (12).

8: Back-propagate the gradients.

9: Update B via (13).

10: end for

Ensure: F(·)

E. Complexity Analysis

With an embedding size of D and a whole number of rotated images 4N , the memory bank B

requires O(DN) of memory. Suppose that the batch size is B. In this case, the similarity metric

and the probability density require O(BN) of memory, and the other intermediate variables

occupy O(BN) of memory.
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IV. EXPERIMENTS

A. Experimental Setup

1) Dataset configuration: In our experiments, we use two RS scene benchmark datasets: 1)

Aerial Image Dataset (AID) [40] and 2) NWPU-RESISC45 [15]. For additional details about

the datasets, we refer the readers to the associated papers. As introduced above, the proposed

method exploits rotation-augmented datasets. Thus, we expand the original datasets by adding

the rotated versions of each image with 90, 180 and 270 degrees, and create rotation-augmented

(AID-R and NWPU-RESISC45-R) versions of the original datasets. From the original datasets,

we first randomly select 70%, 10% and 20% of the available images for training, validation

and testing, respectively. Then, we associate the rotated versions of each source image into the

corresponding sets to construct the splitting of AID-R and NWPU-RESISC45-R. In order to

evaluate the effectiveness of the proposed method, we carry out KNN classification and image

retrieval tasks based on the extracted deep embeddings.

1) KNN classification aims at classifying the input image based on its k nearest neighbors

in the embedding space, whose class is dependent on its neighbors’ classes via a majority

voting. To evaluate the classification performance, we adopt the overall accuracy and

confusion matrix.

2) Image retrieval aims at effectively finding the most semantically similar images in a

database given a query image, ranking them based on the similarities measured in the

embedding space. The evaluation is based on mean average precision (MAP) and Recall@k

(R@k). MAP is defined with the form:

AP =
1

Q

R∑
r=1

P (r)δ(r), (14)

where Q is the number of ground-truth RS images in the database that are relevant with

respect to the query image, P (r) denotes the precision for the top r retrieved images, and

δ(r) is an indicator function to specify whether the rth relevant image is truly relevant to

the query. R@k is defined as the percentage of queries having at least one relevant image

retrieved among the top k results.

Since RiDe aims to generate deep embeddings of images with rotational invariance and class-

discrimination, we design two different scenarios for our experimental evaluation:
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/image retrieval database
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/image retrieval query
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AID/NWPU-RESISC45

Fig. 4. A simplified graphical illustration describing the configuration of datasets in our experiments

1) Rotated image identification: Given the test sets of AID-R and NWPU-RESISC45-R, we

utilize the associated image label set ỸR to obtain the ground-truth labels. Based on the

deep embedding of each test image, we check whether it can retrieve those of the other

rotated images as its nearest neighbors in the embedding space and evaluate the associated

performance. This scenario is designed for validating the rotation-invariant capability of

the trained CNN models. For KNN classification, we split the deep embeddings of the test

sets with 5 folds, where the training-to-test ratio is 3/1. For image retrieval, each image

from the test set is used for query purposes, and the other ones are used as the database.

2) Class-wise image discrimination: Given the test sets of AID and NWPU-RESISC45, we

utilize the associated category label set YC to obtain the ground-truth labels. Based on the

deep embedding of each test image, we evaluate whether its neighbors in the embedding

space belong to the same class. This scenario is designed for testing the class-discrimination

power of the trained CNN models. For KNN classification, the training sets are utilized

for training the KNN classifier and the test sets are exploited for the prediction. For image

retrieval, each image from the test set is used for query purposes, and the images in the

training set are used as the database.

A simplified graphical illustration describing the configuration of datasets in our experiments is

displayed in Figure 4.

2) Implementation details: We utilize ResNet34 and ResNet50 [53] as the CNN backbones to

extract the deep embeddings of the input images. The spatial size of the input images is 256×256,

and they are augmented by 1) RandomGrayscale; 2) ColorJitter; and 3) RandomHorizontalFlip.
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The parameters D, σ, λ and m are set to 128, 0.1, 0.1 and 0.5, respectively. We utilize the

Stochastic Gradient Descent (SGD) optimizer to train the CNN models with an initial learning

rate of 0.1 and a decay rate of 0.5 every 30 epochs. We train the networks for a total of 100 epochs.

Due to the limitations of memory in the graphical processing unit (GPU) used in experiments,

the batch size is 256 for ResNet34 and 128 for ResNet50. To validate the effectiveness of the

proposed method, we compare it to several state-of-the-art deep embedding methods from two

perspectives:

1) Rotated image identification: for evaluating the rotation-invariant capability, we compare

RiDe to 1) SNCA [52], 2) SNCA-aug, where rotation-based data augmentation is used

for training the CNN models, and 3) SCCov [48].

2) Class-wise image discrimination: for validating the preservation of the class-discrimination

capability, we compare RiDe to 1) Triplet [54], 2) Normalized Softmax Loss (NSL) [55],

3) ArcFace [56] , 4) SCCov [48] and 5) TI-POOLING [45].

All the experiments are implemented in PyTorch [57] and carried out on an NVIDIA RTX3090

GPU.

B. Experimental Results

1) Rotated image identification: Table I presents the KNN classification results for the rotated

images based on the deep embeddings extracted from the test sets. Since one source image

generates four rotated versions, we report KNN classification results with K = 1, 2, 3. This

experiment is intended to analyze whether all the deep embeddings of rotated images are located

close to each other in the embedding space. From Table I, it can be observed that with the

vanilla ResNets, RiDe achieves the best performance (with a value near 100%) on the two

considered benchmark datasets. Compared to SNCA, the inclusion of the proposed rotation-

invariant term in RiDe can significantly improve the rotation-invariant capability of the trained

CNN models in the generation of deep embeddings. Without this term, the KNN classification

performance drops more than 10% in SNCA. Although data augmentation is an efficient approach

to improve the rotation-invariant capability, RiDe generally outperforms SNCA-aug by more

than 5% in the KNN classification results. With the state-of-the-art CNN architecture (SCCov)

for scene classification, the use of RiDe can greatly improve the performance of rotated image

identification compared with the Cross Entropy (CE) loss utilized in [48]. It is worth noting

that TI-POOLING is not considered in this experiment since all the rotated images have the
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same embedding produced by TI-POOLING. Thus, the accuracy of TI-POOLING will be 100%.

Moreover, TI-POOLING is a kind of rotation-invariant CNN architecture, while the proposed

RiDe is a novel loss targeted at learning the embeddings invariant to the rotation of the input

images which can be combined with any CNN architecture. However, one disadvantage of

TI-POOLING is that the computational cost will be increased due to the feature aggregation

from multiple input images. As shown in Table II, we illustrate the computational cost study of

both RiDe and TI-POOLING for both training and inference phases. It can be observed that

TI-POOLING will spend more time for learning and extracting deep embeddings than RiDe.

Table III displays the image retrieval results evaluated by both MAP and R@k when R =

1, 2, 3 and k = 1, 2, 3. Consistently with the KNN classification results, RiDe exhibits superior

performance when compared to other methods. It can be seen from the obtained results that all

the deep embeddings of the rotated images are located close to each other in the embedding

space generated using the proposed method. To visually verify such observation, given some

query images, we display their three nearest neighbors retrieved from the test sets of AID-R

and NWPU-RESISC45-R in Figure 5. Without the penalty on learning rotation-invariant deep

embeddings, the nearest neighbors retrieved by the SNCA are not always from the same source

image (images marked in red color in Figure 5). Although their class labels are the same, their

semantics may exhibit large divergences (this can be seen, for instance, in the first row of

Figure 5). By utilizing a data augmentation strategy, SNCA-aug indeed increases the semantic

similarities of the nearest neighbors associated to the query as compared to SNCA. However,

SNCA-aug cannot perfectly retrieve all the rotated images from the test sets (marked in green

color in Figure 5), given the query. In this regard, RiDe ranks all the rotated images with the

highest similarity in the database with respect to the input query image. Similar performances

can be also observed when SCCov is utilized as the CNN architecture. Therefore, we conclude

that RiDe not only guides CNN models to learn rotation-invariant deep embeddings, but also

models better the semantic similarities among the images.

2) Class-wise image discrimination: Table IV presents the KNN classification results for

class-wise image discrimination based on the extracted deep embeddings from the test sets of

AID and NWPU-RESISC45, when K = 1, 5, 10. Compared to the other losses, RiDe achieves

the best accuracies with different values of K. When the CNN backbone changes from ResNet34

to a more powerful network, i.e., ResNet50, the other methods improve their classification

performance on the NWPU-RESISC45 dataset. For example, Triplet, NSL and ArcFace exhibit
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TABLE I

KNN-BASED CLASSIFICATION RESULTS FOR ROTATED IMAGE IDENTIFICATION, BASED ON THE EXTRACTED DEEP

EMBEDDINGS OF THE TEST SETS WITH 5 FOLDS. (K = 1, 2, 3)

AID-R NWPU-RESISC45-R

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

ResNet34

SNCA [52] 87.72± 0.60 78.23± 0.16 78.17± 0.54 81.15± 0.41 71.04± 0.41 70.77± 0.64

SNCA-aug 94.58± 0.19 88.16± 0.45 88.16± 0.41 90.85± 0.14 84.08± 0.26 83.87± 0.34

RiDe 99.54± 0.10 99.66± 0.06 99.67± 0.10 99.81± 0.04 99.55± 0.05 99.67± 0.06

ResNet50

SNCA [52] 95.58± 0.22 91.56± 0.41 91.32± 0.18 94.13± 0.17 88.91± 0.22 88.38± 0.16

SNCA-aug 98.65± 0.18 96.75± 0.24 96.76± 0.24 98.06± 0.08 95.51± 0.14 95.21± 0.14

RiDe 99.83± 0.06 99.86± 0.04 99.93± 0.05 99.90± 0.02 99.83± 0.03 99.91± 0.04

SCCov[ResNet34]
CE [48] 54.45± 0.98 46.71± 1.29 46.50± 0.67 58.48± 0.24 49.99± 0.38 50.39± 0.46

RiDe 99.72± 0.06 99.78± 0.05 99.82± 0.05 99.93± 0.02 99.89± 0.02 99.96± 0.02

SCCov[ResNet50]
CE [48] 42.99± 0.91 36.54± 0.62 36.63± 1.13 57.20± 0.25 49.65± 0.22 49.75± 0.34

RiDe 99.98± 0.02 99.95± 0.03 100± 0.00 99.98± 0.02 99.56± 0.08 99.68± 0.05

TABLE II

THE COMPUTATIONAL COST STUDY OF RIDE AND TI-POOLING FOR BOTH THE TRAINING AND INFERENCE PHASES

(SECOND PER IMAGE).

Train Inference

ResNet34
RiDe 2.25× 10−3 2.00× 10−3

TI-POOLING 8.43× 10−3 5.15× 10−3

ResNet50
RiDe 3.29× 10−3 2.15× 10−3

TI-POOLING 13.87× 10−3 6.72× 10−3

about 1%− 3% increase in accuracy when the network is changed from ResNet34 to ResNet50.

On the contrary, the associated accuracy differences for RiDe are less than 1%. This suggests that

RiDe can generate high-quality deep embeddings based on both light-weight and powerful CNN

architectures. Compared to the state-of-the-art deep embedding method, i.e., ArcFace, RiDe can

better uncover the local neighborhood structure of the input images for class discrimination

purposes. Compared with the CE loss exploited in SCCov [48] and TI-POOLING [45], the
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TABLE III

IMAGE RETRIEVAL METRICS (MAP AND R@k) FOR ROTATED IMAGE IDENTIFICATION BASED ON THE EXTRACTED DEEP

EMBEDDINGS OF THE TEST SETS (R = 1, 2, 3 FOR MAP AND k = 1, 2, 3 FOR R@k).

MAP

AID-R NWPU-RESISC45-R

R = 1 R = 2 R = 3 R = 1 R = 2 R = 3

ResNet34

SNCA [52] 86.62 89.06 88.73 79.29 82.30 82.24

SNCA-aug 93.94 95.06 94.62 89.73 91.63 91.31

RiDe 99.58 99.75 99.75 99.72 99.83 99.78

ResNet50

SNCA [52] 95.17 95.99 95.69 93.72 94.62 94.31

SNCA-aug 98.56 98.91 98.74 97.73 98.13 97.93

RiDe 99.85 99.92 99.93 99.90 99.94 99.92

SCCov[ResNet34]
CE [48] 51.25 56.74 58.06 55.11 60.43 61.50

RiDe 99.73 99.85 99.85 99.92 99.96 99.95

SCCov[ResNet50]
CE [48] 39.22 45.10 46.80 53.94 59.75 60.98

RiDe 99.99 99.99 99.98 99.76 99.85 99.81

R@k

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

ResNet34

SNCA [52] 86.62 91.51 93.41 79.29 85.31 88.30

SNCA-aug 93.94 96.17 97.34 89.73 93.53 95.09

RiDe 99.58 99.91 100.00 99.72 99.93 99.97

ResNet50

SNCA [52] 95.17 96.82 97.59 93.72 95.52 96.33

SNCA-aug 98.56 99.27 99.54 97.73 98.53 98.88

RiDe 99.85 99.99 100.00 99.90 99.97 99.99

SCCov[ResNet34]
CE [48] 51.25 62.23 68.72 55.12 65.76 71.86

RiDe 99.73 99.98 99.99 99.92 100 100

SCCov[ResNet50]
CE [48] 39.22 45.10 46.80 53.94 59.75 60.99

RiDe 99.99 99.99 99.98 99.76 99.85 99.81
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SNCA SNCA-aug RiDequery

Fig. 5. For different query images, we display the three nearest neighbors retrieved from the test sets of AID-R (first two

rows) and NWPU-RESISC45-R (last two rows), based on the deep embeddings extracted from the trained ResNet50 via SNCA,

SNCA-aug and RiDe. The images not rotated from the same source image are marked in red color, while the images rotated

from the same source image are marked in green color.

adoption of RiDe can lead to higher KNN-based classification accuracy. Moreover, we display

the normalized confusion matrices obtained for the KNN classification via RiDe on the two test

sets in Figure 8. It can be observed that most classes can be correctly discriminated in the two

considered datasets. Nevertheless, there are several classes that are misclassified, e.g., Resort

and Park in AID. In order to evaluate the image retrieval performance, we calculated the MAP

scores based on the deep embeddings extracted from the test sets when R = 20, 50, 100 and

display them in Table V. It can be observed that the semantic relations among the images can

be best captured through RiDe, regardless of the exploited CNN architectures, and the retrieval

performance can be still preserved as the number of retrieved images increases. Therefore, we

conclude that our newly proposed method can be applied for accurately indexing large RS

databases.

3) Other rotational angles: We conduct the previous experiments on the datasets which

totally include four rotational angles, i.e., [0◦, 90◦, 180◦, 270◦]. In order to verify the perfor-

mance of RiDe on other rotational angles, we rotate the original images by the angles of

[0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦] and construct the associated datasets. Figure 6 illus-

trates the KNN-based classification results for rotated image identification when K = 1, 2, 3, 4, 5, 6, 7, 8.
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TABLE IV

KNN RESULTS FOR CLASS-WISE IMAGE DISCRIMINATION BASED ON THE DEEP EMBEDDINGS EXTRACTED FROM THE TEST

SETS (K = 1, 5, 10).

AID NWPU-RESISC45

K = 1 K = 5 K = 10 K = 1 K = 5 K = 10

ResNet34

Triplet [54] 94.24 94.24 94.49 92.79 93.02 92.79

NSL [55] 92.70 92.50 92.65 92.37 92.17 92.25

ArcFace [56] 95.63 95.53 95.58 92.94 92.97 92.92

RiDe 96.08 96.22 96.52 95.22 95.33 95.32

ResNet50

Triplet [54] 94.68 94.83 94.93 93.68 94.05 93.97

NSL [55] 94.98 95.18 95.08 94.63 94.49 94.43

ArcFace [56] 95.98 95.78 95.88 95.46 95.46 95.43

RiDe 96.42 96.67 96.57 96.11 96.08 95.98

SCCov[ResNet34]
CE [48] 94.24 94.49 94.39 94.13 94.33 94.32

RiDe 95.88 96.13 96.17 95.35 95.35 95.30

SCCov[ResNet50]
CE [48] 94.09 94.34 94.44 95.14 95.11 95.05

RiDe 96.17 96.08 96.03 95.83 95.86 95.84

TI-POOLING[ResNet34]
CE [45] 96.92 96.92 97.17 95.38 95.29 95.32

RiDe 97.02 97.07 97.07 96.02 96.05 96.05

TI-POOLING[ResNet50]
CE [45] 97.42 97.47 97.47 96.05 96.06 96.11

RiDe 97.32 97.32 97.42 96.35 96.38 96.41

It is observed that RiDe can be generalized to more rotational angles and the nearest neighbor

performance is well preserved.

4) Hyperparameter analysis: Two parameters: λ and σ should be carefully tuned for achieving

good performance using RiDe. λ controls the balance between the class-discrimination and

rotation-invariant terms in RiDe, and 1/σ represents the radius of the hypersphere on which the

embeddings are projected. With a larger value of 1/σ, the embedding hyperspace can be more

appropriate for class discrimination [58], [59]. Taking [52], [60] into account, we empirically

set it as a small number, e.g., σ = 0.1, and keep it constant in our experiments. In order to
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TABLE V

MAP FOR CLASS-WISE IMAGE DISCRIMINATION BASED ON THE DEEP EMBEDDINGS EXTRACTED FROM THE TEST SETS

(R = 20, 50, 100).

AID NWPU-RESISC45

R = 20 R = 50 R = 100 R = 20 R = 50 R = 100

ResNet34

Triplet [54] 94.36 93.99 93.63 92.83 92.19 91.74

NSL [55] 92.42 91.29 90.18 92.47 91.69 91.05

ArcFace [56] 95.58 95.51 95.48 93.13 93.09 93.07

RiDe 96.34 96.02 95.62 95.42 95.22 95.06

ResNet50

Triplet [54] 95.21 94.79 94.43 93.92 93.40 93.06

NSL [55] 94.96 94.37 93.74 94.53 94.06 93.66

ArcFace [56] 96.01 95.93 95.88 95.50 95.47 95.45

RiDe 96.57 96.31 96.04 96.22 96.00 95.84

SCCov[ResNet34]
CE [48] 94.65 94.36 94.11 94.38 94.14 93.96

RiDe 96.18 95.92 95.59 95.46 95.19 95.03

SCCov[ResNet50]
CE [48] 94.46 94.24 94.07 95.24 95.09 94.99

RiDe 96.17 95.93 95.68 95.90 95.70 95.54

TI-POOLING[ResNet34]
CE [45] 96.91 96.55 96.21 95.51 95.15 94.90

RiDe 97.11 97.10 97.07 96.07 96.04 96.03

TI-POOLING[ResNet50]
CE [45] 97.49 97.28 97.10 96.15 95.92 95.75

RiDe 97.43 97.42 97.41 96.41 96.40 96.38

analyze the influence of different values of λ on the performance of RiDe, we conduct KNN

classification for both rotated image identification and class-wise image discrimination when λ

is in the range [0.05, 0.1, 0.5, 1]. We adopt the ResNet50 architecture and plot the classification

results in Figure 7. As λ increases, the performance of rotated image identification also improves,

since a larger penalty is on the rotation-invariant term of RiDe. On the contrary, when λ

decreases, more emphasis is given to the class-discrimination term of RiDe, so the performance

for class-wise image discrimination gets better. Therefore, to achieve a balanced performance in

terms of both rotational invariance and class discrimination, λ should not be too small or too
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Fig. 6. KNN-based classification of rotated image identification when K = 1, 2, 3, 4, 5, 6, 7, 8 on the two rotation-augmented

datasets with the angles of [0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦].
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Fig. 7. Sensitivity analysis of parameter λ based on KNN classification of both rotated image identification and class-wise

image discrimination, when λ = 0.05, 0.1, 0.5, 1.

large. In our experiments, we empirically set λ to 0.1 and achieve good performance.

5) Discussion: We conducted extensive experiments from two perspectives (including ro-

tated image identification and class-wise image discrimination) to validate the performance of

RiDe. Our experiments are specifically designed to test the performance of the rotation-invariant

and class-discrimination capabilities of the trained CNN models, respectively. Based on our

experimental results, we can observe that RiDe significantly improves the rotation-invariant

capability of the trained CNN models, since all the rotated images are located nearby each

other in the embedding space. Moreover, differently to other rotation-invariant deep learning

methods (e.g., TI-POOLING), RiDe is a loss function designed for learning rotation-invariant

image embeddings, which can be applied to any CNN architectures. The experiments also
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indicate that RiDe can be applied with any rotation angles. Moreover, RiDe also achieves better

class-discrimination results than the other losses. This indicates that the class-discrimination

capability of the CNN models trained by RiDe can be also preserved. Therefore, RiDe can

actually discover the hierarchical structure of the embedding space for RS images, where the

nearest neighbors of query images are their rotated versions, the next nearest neighbors are

the images from the same class, and the images in different classes are well separated. Such

hierarchical structure of the semantic relationships among the RS images is very important for the

downstream task. For example, an image retrieval system requires to accurately and effectively

find the most semantically similar images within the database given the query images. However,

sometimes semantic similarities cannot be precisely modeled by category labels. Without the fine-

grained semantic information required to categorize the images in the same class, the retrieved

ranking order with respect to the input query image may not reflect the actual order of semantic

similarities. In this case, by better modeling the similarities of rotated images, RiDe exploits an

auxiliary task to model the fine-grained structure of the embedding space, which better fulfills

the requirement of image retrieval systems.

V. CONCLUSIONS

In this paper, we introduce a new loss function for learning rotation-invariant deep embeddings

of RS images. Specifically, we first review the limitations of the SNCA loss function when

constructing the hierarchical structure of the images in the embedding space. Instead of just

maximizing the leave-one-out classification probability, we introduce a joint probability for

correctly classifying each image based on its neighbors and identifying its rotated images as

the nearest ones. To maximize such probability, we assume that both cases are independent,

which further leads to a loss function composed of two terms: 1) class-discrimination term,

and 2) rotation-invariant term. To balance these two terms, we introduce a penalty parameter

and finally propose the new RiDe loss function. We carry out extensive experiments on two

RS benchmark datasets and compare RiDe to other state-of-the-art losses. Our experimental

results validate the effectiveness of RiDe in the task of ensuring that CNN models exhibit both

rotation-invariant and class-discrimination capabilities. As future work, we plan to reconsider the

maximization of joint probabilities into a Bayesian framework, as well to extend the proposed

approach to other kinds of transformations and data modalities.
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(a) (b)

Fig. 8. Normalized confusion matrices for the KNN classification (K = 10) of the test sets of (a) AID and (b) NWPU-RESISC45,

based on the deep embeddings obtained by RiDe.
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APPENDIX

In Figure 8, we demonstrate the normalized confusion matrices for the KNN classification

(K = 10) of the test sets of the two benchmark datasets, based on the deep embeddings obtained

by RiDe.
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