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Abstract
Let 𝐺 be a finite group and let 𝐾 = 𝑥𝐺 be the conjugacy class of an element 𝑥 of
𝐺. In this paper, it is proved that if 𝑁 is a normal subgroup of 𝐺 such that the
coset 𝑥𝑁 is the union of𝐾 and𝐾−1 (the conjugacy class of the inverse of 𝑥), then
𝑁 and the subgroup ⟨𝐾⟩ are solvable. As an application, we prove that if there
exists a natural number 𝑛 ≥ 2 such that 𝐾𝑛 = 𝐾 ∪ 𝐾−1, then ⟨𝐾⟩ is solvable.
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1 INTRODUCTION

Let 𝐺 be a finite group, let 𝑁 be a normal subgroup of 𝐺, and let 𝑥 ∈ 𝐺. In [3] it was proved, by appealing to the Classifi-
cation of Finite Simple Groups, that whenever all elements of the coset 𝑥𝑁 are conjugate (to 𝑥) in 𝐺 then 𝑁 is solvable.
In fact, the result goes further and, for example, it is shown that if all elements in 𝑥𝑁 are 𝑝-elements for some odd prime
𝑝, then𝑁 is solvable, and if in addition they are conjugate, then𝑁 has normal 𝑝-complement. For 𝑝 = 2, the fact that all
elements in 𝑥𝑁 are 2-elements does not imply the solvability of 𝑁, however, the second assertion remains true. In this
note, we investigate the case in which a coset 𝑥𝑁 is the union of the conjugacy class of 𝑥 and that of its inverse, and our
first objective is to prove the following.

Theorem A. Let 𝐺 be a finite group and let 𝑁 be a normal subgroup of 𝐺. Let 𝐾 = 𝑥𝐺 be the conjugacy class of an element
𝑥 ∈ 𝐺. Suppose that 𝑥𝑁 = 𝐾 ∪ 𝐾−1. Then ⟨𝐾⟩ is solvable, and as a consequence so is𝑁.
Weemploy TheoremA to address a concrete problemonproducts of conjugacy classes.We recall that Arad andFisman’s

conjecture asserts that the product of two non-trivial conjugacy classes cannot be a conjugacy class in a non-abelian
finite simple group. Even though it remains unsolved, this subject is of keen interest for many authors, who have tried to
find solvability conditions related to the product of conjugacy classes. For instance, a specific case of Arad and Fisman’s
conjecture is the following. If 𝐾 is a conjugacy class, then the fact that 𝐾2 is again a conjugacy class implies that ⟨𝐾⟩ is
solvable (Theorem A of [3]), and likewise, when 𝐾𝑛 is a conjugacy class for some 𝑛 ≥ 3 (Theorem A of [1]). We study a
particular case of the following conjecture, which was posed in [1].

Conjecture. Let 𝐺 be a group and let 𝐾 be a conjugacy class of 𝐺. If 𝐾𝑛 = 𝐷 ∪ 𝐷−1 for some 𝑛 ≥ 2 where 𝐷 a conjugacy
class of 𝐺, then ⟨𝐾⟩ is solvable.
The hypotheses in the above conjecture are not unusual and it is not difficult, for instance with the help of [2], to find

numerous examples (see Examples 3 and 4 of [1] for the case 𝑛 = 2 and also see Section 3 for 𝑛 = 3). It turns out that either
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2 BELTRÁN and FELIPE

|𝐾| = |𝐷|∕2 or |𝐾| = |𝐷|. The first case was already solved in [1], and our contribution here concerns the case 𝐾 = 𝐷. We
note that the case 𝑛 = 2 with 𝐾 = 𝐷 was already treated in Theorem D of [1].

Theorem B. Let 𝐺 be a finite group and let 𝐾 = 𝑥𝐺 be a conjugacy class of 𝐺. If 𝐾𝑛 = 𝐾 ∪ 𝐾−1 for some 𝑛 ≥ 2, then ⟨𝐾⟩
is solvable.

2 COSETS AND CHARACTERS

Throughout the paper, we will follow the notation of [5]. We start by stating two preliminary results on products of con-
jugacy classes, whose proofs are based on the Classification of Finite Simple Groups.

Lemma 2.1. Let 𝐺 be a group and let 𝐾, 𝐿 and 𝐷 be non-trivial conjugacy classes of 𝐺 such that 𝐾𝐿 = 𝐷 with |𝐷| = |𝐾|.
Then ⟨𝐿⟩ is solvable.
Proof. See Lemma 2 of [1]. □

The original statement of the above lemma includes some more result but just ensuring solvability needs the Classifi-
cation of Finite Simple Groups. We also need the following extension of Theorem A of [3]. The original result also gives a
characterization by means of characters, however just the following statement requires the Classification.

Theorem 2.2. Let𝐾 be a conjugacy class of a group𝐺. If there is 𝑛 ≥ 2 such that𝐾𝑛 is a conjugacy class, then ⟨𝐾⟩ is solvable.
Proof. See Theorem A of [1]. □

Next we study some properties of the character values for the conjugacy classes that we are dealing with.

Lemma 2.3. Let 𝐺 be a finite group and let 𝑁 be a normal subgroup of 𝐺. Let 𝐾 = 𝑥𝐺 be the conjugacy class of an element
𝑥 ∈ 𝐺. Suppose that 𝑥𝑁 ⊆ 𝐾 ∪ 𝐾−1. If 𝜒 ∈ Irr(𝐺) does not contain𝑁 in its kernel, then 𝜒(𝑥) is a purely imaginary number.

Proof. The proof is reminiscent of the proof of Lemma 3.1 of [3]. Let 𝔛 be a representation of 𝐺 that affords 𝜒. We know
that𝔛 can be linearly extended to ℂ[𝐺] and for every conjugacy class of 𝐺, say 𝑇, we denote by 𝑇 the sum of all elements
in 𝑇 in the group algebra ℂ[𝐺]. Since 𝑁 is a disjoint union of conjugacy classes of 𝐺, the sum

𝑁̂ =
∑
𝑛∈𝑁

𝑛 ∈ 𝐙(ℂ[𝐺])

and, by Schur’s lemma, 𝔛
(
𝑁̂
)
is a scalar matrix. The trace of 𝔛

(
𝑁̂
)
is

∑
𝑛∈𝑁

𝜒(𝑛) = |𝑁|[𝜒𝑁, 1𝑁] = 0,

so 𝔛
(
𝑁̂
)
= 𝑂, where 𝑂 denotes the zero matrix, and 𝔛

(
𝑧𝑁

)
= 𝔛(𝑧)𝔛

(
𝑁̂
)
= 𝑂, for every 𝑧 ∈ 𝐺.

Observe that, by hypothesis, 𝐾𝑁 ⊆ 𝐾 ∪ 𝐾−1, and since 𝐾𝑁 is a union of conjugacy classes then 𝐾𝑁 = 𝐾 or 𝐾𝑁 =
𝐾 ∪ 𝐾−1. Also, we know that𝔛

(
𝐾𝑁̂

)
=
∑
𝑥∈𝐾

𝔛
(
𝑥𝑁

)
= 𝑂 and, analogously,𝔛

(
𝐾−1𝑁̂

)
= 𝑂. On the other hand, we write

𝐾𝑁̂ = 𝑚1𝐾 +𝑚2𝐾−1 with𝑚1,𝑚2 ∈ ℕ, where we allow𝑚2 = 0 for the case𝐾𝑁 = 𝐾. By taking inverses, we have𝐾−1𝑁̂ =
𝑚2𝐾 +𝑚1𝐾−1. By taking traces, we have

Trace
(
𝔛
(
𝐾𝑁̂ + 𝐾−1𝑁̂

))
= (𝑚1 + 𝑚2)|𝐾|𝜒(𝑥) + (𝑚1 + 𝑚2)|𝐾|𝜒(𝑥−1)
= (𝑚1 + 𝑚2)|𝐾|(𝜒(𝑥) + 𝜒(𝑥−1)) = 0.

Thus, 𝜒(𝑥) = −𝜒
(
𝑥−1

)
= −𝜒(𝑥), so the lemma is proved. □
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BELTRÁN and FELIPE 3

We are ready to prove Theorem A, which we state again.

Theorem 2.4. Let 𝐺 be a finite group and let𝑁 be a normal subgroup of 𝐺. Let 𝐾 = 𝑥𝐺 be the conjugacy class of an element
𝑥 ∈ 𝐺. Suppose that 𝑥𝑁 = 𝐾 ∪ 𝐾−1. Then ⟨𝐾⟩ is solvable, and as a consequence so is𝑁.
Proof. The proof is reminiscent of the proof of Theorem 3.2(c) of [3]. The case in which 𝐾 is a real class is just a particular
case of the mentioned theorem although we will include this case in our proof.
It is clear that 𝑥𝑁 = 𝑥−1𝑁 and then 𝑥2𝑁 = 𝑁 =

(
𝐾 ∪ 𝐾−1

)(
𝐾 ∪ 𝐾−1

)
, so in particular 𝐾2 ⊆ 𝑁. Consequently,

⟨
𝐾2

⟩
≤

𝑁. Moreover, we have𝐾3 ⊆ 𝑁𝐾 = 𝐾 ∪ 𝐾−1. If𝐾3 = 𝐾 or𝐾3 = 𝐾−1, it follows that ⟨𝐾⟩ is solvable by Theorem 2.2 and then
𝑁 is solvable as well because obviously𝑁 ≤ ⟨𝐾⟩. Thus we can assume that 𝐾3 = 𝐾 ∪ 𝐾−1. Further, it can also be assumed
that 𝐾2𝑛+1 = 𝐾3 for every 𝑛 ≥ 1. Indeed,

(
𝐾2

)𝑛
⊆ 𝑁 for every 𝑛 ≥ 1, so 𝐾2𝑛+1 ⊆ 𝐾𝑁 = 𝐾 ∪ 𝐾−1, and in fact, the equality

can be assumed to hold again by Theorem 2.2, as wanted. As a consequence, 𝑥must be a 2-element. Let 𝐶 = 𝐂𝐺(𝑥) be the
centralizer of 𝑥 in 𝐺. We have

|𝐺 ∶ 𝐶| = |𝐺 ∶ 𝑁𝐶||𝑁𝐶 ∶ 𝐶| = |𝐾|.
Moreover, we have |𝐾| = |𝑁| or |𝑁|∕2, depending on whether 𝐾 = 𝐾−1 or not. Also, if 𝑛 ∈ 𝐂𝑁(𝑥), then as 𝑥𝑛 has the
same order as 𝑥, we have that 𝑛 must be a 2-element too. Accordingly, C𝑁(𝑥) is a 2-group and it follows that either |𝐺 ∶
𝑁𝐶| = |𝐂𝑁(𝑥)|∕2 or |𝐂𝑁(𝑥)| is a 2-power. As a consequence, we obtain 𝐺 = 𝑁𝑃𝐶, for every Sylow 2-subgroup 𝑃 of 𝐺.
Moreover, if we choose 𝑃 such that 𝑥 ∈ 𝑃, then we can replace 𝐺 by the subgroup𝐻 = 𝑁𝑃, since the conjugacy class of 𝑥
in𝐻 coincides with 𝐾. Therefore, we can assume that the index |𝐺 ∶ 𝑁| is a power of 2.
On the other hand, as 𝑥 is a 2-element, it is well-known that

𝜒(𝑥)|𝑥| ≡ 𝜒(1) mod 2

(in the ring of algebraic integers), for every 𝜒 ∈ Irr(𝐺). Now, since 𝐺∕𝑁 is a 2-group, the degree of every non-linear irre-
ducible character of 𝐺 containing𝑁 in its kernel is a power of 2. Also, if 𝜒 ∈ Irr(𝐺) does not contain𝑁 in its kernel and it
is real-valued, necessarily 𝜒(𝑥) = 0 by Lemma 2.3, and hence, by the above congruence, 𝜒(1) is even. Therefore, we con-
clude that all non-linear real-valued irreducible characters of 𝐺 have even degree. By Theorem A of [6], this is equivalent
to the fact that 𝐺 has normal 2-complement, so in particular, 𝐺 is solvable. Then 𝑁 and ⟨𝐾⟩ are solvable as well. □

We wonder whether Theorem A will still be true when the hypothesis 𝑥𝑁 = 𝐾 ∪ 𝐾−1 is weakened to 𝑥𝑁 ⊆ 𝐾 ∪ 𝐾−1 as
is the case with Lemma 2.3, however, we have not been able to prove it by using similar methods.

3 PROOF OF THEOREM B

We employ the results of Section 2 to solve a specific case of the conjecture of the Introduction. For that purpose, we need
to work with the complex group algebra ℂ[𝐺]. Let 𝐿1, … , 𝐿𝑘 be the conjugacy classes of a finite group 𝐺 and let 𝑆 be a
𝐺-invariant set of 𝐺, then we can write the sum 𝑆 =

∑𝑘

𝑖=1
𝑛𝑖𝐿𝑖 with 𝑛𝑖 ∈ ℕ for 1 ≤ 𝑖 ≤ 𝑘. We write

(
𝑆, 𝐿𝑖

)
= 𝑛𝑖 . We will

use the following well-known properties.

Lemma 3.1. If 𝐿1, 𝐿2 and 𝐿3 are conjugacy classes of a finite group 𝐺, then

1.
(
𝐿1𝐿2, 𝐿3

)
=
(
𝐿−1
1
𝐿−1
2
, 𝐿−1
3

)
;

2.
(
𝐿1𝐿2, 𝐿3

)
= |𝐿2||𝐿3|−1

(
𝐿1𝐿

−1
3
, 𝐿−1
2

)
.

Proof. This easily follows, for instance, from Theorem 4.6 of [4]. □

We are ready to give the proof of Theorem B.
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4 BELTRÁN and FELIPE

Proof of Theorem B. We can assume that 𝐾 is non-real, since the real case is a particular case of Theorem 2.2. Also, as we
pointed out in the Introduction, the case 𝑛 = 2 is already proved in Theorem D of [1]. Henceforth, we will assume that
𝑛 ≥ 3 and argue by induction on |𝐺|. Since 𝐾𝑛−1 is a 𝐺-invariant set, we write 𝐾𝑛−1 = 𝐿1 ∪⋯ ∪ 𝐿𝑠 where 𝐿𝑖 are distinct
conjugacy classes of 𝐺 (the trivial class may be included) for every 1 ≤ 𝑖 ≤ 𝑠. Then

𝐾𝑛 = 𝐾𝐾𝑛−1 = 𝐾(𝐿1 ∪⋯ ∪ 𝐿𝑠) = 𝐾 ∪ 𝐾
−1.

Suppose that 𝐿𝑖 is a non-trivial conjugacy class. If either 𝐾𝐿𝑖 = 𝐾 or 𝐾𝐿𝑖 = 𝐾−1, by Lemma 2.1, we know that ⟨𝐿𝑖⟩ is solv-
able. Consider now 𝐺 = 𝐺∕⟨𝐿𝑖⟩ and observe from the hypothesis that 𝐾𝑛 = 𝐾 ∪ 𝐾−1. Then

⟨
𝐾
⟩
is solvable by induction.

Notice that if 𝐾 = 𝐾−1, then 𝐾𝑛 = 𝐾 and
⟨
𝐾
⟩
is solvable again by Theorem 2.2. Consequently, ⟨𝐾⟩ is solvable.

Therefore, we can assume that 𝐾𝐿𝑖 = 𝐾 ∪ 𝐾−1 for every non-trivial class 𝐿𝑖 . By Lemma 3.1(2) and (1), we know that

0 ≠
(
𝐾𝐿𝑖, 𝐾−1

)
=

|𝐿𝑖||𝐾|
(
𝐾2, 𝐿−1

𝑖

)
=

|𝐿𝑖||𝐾|
(
𝐾−2, 𝐿𝑖

)
,

and thus 𝐿𝑖 ⊆ 𝐾−2. We deduce that 𝐾𝑛−1 ⊆ 𝐾−2 ∪ {1}. On the other hand, ||𝐾2|| = ||𝐾−2|| ≤ ||𝐾𝑛−1|| ≤ ||𝐾2|| + 1 (in the first
inequality we are using that 𝑛 ≥ 3), thus either 𝐾𝑛−1 = 𝐾−2 or 𝐾𝑛−1 = 𝐾−2 ∪ {1}. In both cases, 𝐾−2 ⊆ 𝐾𝑛−1. Moreover, if
𝐿𝑖 is a non-trivial conjugacy class, again by applying Lemma 3.1(2) and (1), we have

0 ≠
(
𝐾𝐿𝑖, 𝐾

)
=

|𝐿𝑖||𝐾|
(
𝐾𝐾−1, 𝐿−1

𝑖

)
=

|𝐿𝑖||𝐾|
(
𝐾𝐾−1, 𝐿𝑖

)
.

Hence 𝐿𝑖 ⊆ 𝐾𝐾−1. In addition, 𝐾−1𝐿𝑖 ⊆ 𝐾−1𝐾−1𝐾 ⊆ 𝐾𝑛−1𝐾 = 𝐾𝑛 and consequently, 𝐾−1𝐿𝑖 ⊆ 𝐾 ∪ 𝐾−1. If 𝐾−1𝐿𝑖 = 𝐾 or
𝐾−1𝐿𝑖 = 𝐾

−1, then ⟨𝐾⟩ is solvable by arguing as before. We can assume then that 𝐾−1𝐿𝑖 = 𝐾 ∪ 𝐾−1 for every non-trivial
𝐿𝑖 . In particular, by applying Lemma 3.1(1) and (2)

0 ≠
(
𝐾−1𝐿𝑖, 𝐾

)
=
(
𝐾𝐿−1

𝑖
, 𝐾−1

)
=

|𝐿𝑖||𝐾|
(
𝐾2, 𝐿𝑖

)
,

which means that 𝐿𝑖 ⊆ 𝐾2. Therefore, 𝐾𝑛−1 ⊆ 𝐾2 ∪ {1}. Analogously as above, taking cardinalities we obtain that either
𝐾𝑛−1 = 𝐾2 or 𝐾𝑛−1 = 𝐾2 ∪ {1}. In both cases, 𝐾2 ⊆ 𝐾𝑛−1. Hence 𝐾3 ⊆ 𝐾𝑛 = 𝐾 ∪ 𝐾−1. By applying Theorem 2.2, it can be
assumed that 𝐾3 = 𝐾 ∪ 𝐾−1. Taking into account that 𝐾2 = 𝐾−2, we obtain

𝐾5 = 𝐾2𝐾3 = 𝐾2
(
𝐾 ∪ 𝐾−1

)
= 𝐾3 ∪ 𝐾−2𝐾−1 = 𝐾3 ∪ 𝐾−3 = 𝐾 ∪ 𝐾−1.

Inductively, we easily get 𝐾2𝑘+1 = 𝐾 ∪ 𝐾−1 for every 𝑘 ≥ 1, and as a consequence, 𝐾
⟨
𝐾2

⟩
= 𝐾 ∪ 𝐾−1. The fact that 𝐾 ∪

𝐾−1 is a union of cosets of the normal subgroup ⟨𝐾2⟩ shows that ||⟨𝐾2⟩|| divides 2|𝐾|. Now, note that |𝐾| ≤ ||𝐾2|| < 1 +||𝐾2|| ≤ ||⟨𝐾2⟩||, so we conclude that ||⟨𝐾2⟩|| = 2|𝐾|. By cardinalities, it follows that 𝑥⟨𝐾2⟩ = 𝐾 ∪ 𝐾−1, and then, we apply
Theorem A to get that

⟨
𝐾2

⟩
is solvable. Now, notice that if 𝑥, 𝑦 ∈ 𝐾, then 𝑥

⟨
𝐾2

⟩
= 𝑦

⟨
𝐾2

⟩
. This implies that ⟨𝐾⟩∕⟨𝐾2⟩

is cyclic of order 2, so ⟨𝐾⟩ is solvable as well. □

Example 3.2. We give an example of a group satisfying the hypotheses of Theorem B with 𝑛 = 3, in which the order of
the elements in 𝐾 is not a prime. Let 𝐺 =

⟨
𝑎, 𝑥 | 𝑎8 = 𝑥2 = 1, 𝑎𝑥 = 𝑎3⟩ the semidihedral group of order 16 and 𝐾 = 𝑎𝐺 ,

which satisfies 𝐾3 = 𝐾 ∪ 𝐾−1.
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