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Abstract. In this paper we study the structure of the set Hom(X,R) of all lattice homo-

morphisms from a Banach lattice X into R. Using the relation among lattice homomor-

phisms and disjoint families, we prove that the topological dual of the free Banach lattice

FBL(A) generated by a set A contains a disjoint family of cardinality 2|A|, answering a

question of B. de Pagter and A. W. Wickstead. We also deal with norm-attaining lattice

homomorphisms. For classical Banach lattices, as c0, Lp-, and C(K)-spaces, every lattice

homomorphism on it attains its norm, which shows, in particular, that there is no James

theorem for this class of functions. We prove that, indeed, every lattice homomorphism

on X and C(K,X) attains its norm whenever X has order continuous norm. On the

other hand, we provide what seems to be the first example in the literature of a lattice

homomorphism which does not attain its norm. In general, we study the existence and

characterization of lattice homomorphisms not attaining their norm in free Banach lat-

tices. As a consequence, it is shown that no Bishop-Phelps type theorem holds true in

the Banach lattice setting, i.e. not every lattice homomorphism can be approximated by

norm-attaining lattice homomorphisms.

1. Introduction

It is well-known that in a Banach space E, the set of all continuous linear functionals

from E into R determines almost totally the structure of E as a Banach space. As a matter

of fact, by the Hahn-Banach Theorem, the norm of any element x ∈ E can be calculated

as the supremum over all continuous functionals in the unit ball BE∗ of the topological

dual space E∗ of E. On the other hand, James theorem [27] states that a Banach space
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is reflexive if and only if every functional in the dual attains its norm. Moreover, Bishop

and Phelps [12] proved that every functional can be approximated by functionals which

attain their norms. In the Banach lattice setting, it is natural to consider that the role of

linear continuous functionals is played by lattice homomorphisms, i.e. the linear continuous

functionals which, in addition, respect lattice operations. In this paper, we wonder what

can be deduced about a Banach lattice from its set of lattice homomorphisms.

Since James and Bishop-Phelps theorems, the theory of norm-attaining functionals were

intensively studied. In fact, this theory has been widely extended to different contexts

besides linear functionals. Indeed, among others, some authors considered it in the context

of linear operators (see [13, 26, 28, 31, 37, 39, 40]); others studied norm-attaining bilin-

ear mappings (see [4, 8, 18]); and more recently several problems on norm-attainment of

homogeneous polynomials and Lipschitz maps were considered (see [5, 9] and [15, 16, 17],

respectively). In the context of homomorphisms on Banach lattices, we should highlight the

recent paper [34], where a James type theorem was proved for positive linear functionals on

some Banach lattices (see [34, §6]). Notice that positive linear functionals are functionals

which respect the order in the Banach lattice, but they do not need to respect the lattice

operations; in this paper we focus on the much more restrictive subclass of the set of positive

linear functionals x∗ on X∗ for which, moreover, both equalities x∗(x ∨ y) = x∗(x) ∨ x∗(y)

and x∗(x ∧ y) = x∗(x) ∧ x∗(y) hold for every x, y ∈ X (i.e. the subclass of lattice homo-

morphisms). Whereas it is simple to provide an example of a positive linear functional not

attaining its norm in a Banach lattice, finding a not norm-attaining lattice homomorphism

becomes a delicate problem. Indeed, as far as we know, we present in this paper the first

examples of such elements.

Let us describe the content of this paper. Section 2 is devoted to present some notation

and necessary background. We will be working with the free Banach lattices FBL(A)

generated by a set A with no extra structure as well as the (more general) Banach lattices

FBL[E] generated by a Banach space E. We prove some elementary results that will be

useful to solve some problems throughout the article.

In Section 3, we provide some general results on the structure of Hom(X,R) and its

relation with disjoint families, which allow us to answer a question posed by B. de Pagter

and A. W. Wickstead in [20]. Moreover, we show that every separable Banach lattice

embeds into a Banach lattice whose set of lattice homomorphisms is trivial, i.e. a Banach

lattice X for which Hom(X,R) = {0}.
In Section 4, motivated by [34], we wonder whether there is a James type theorem

for Hom(X,R). For classical Banach lattices (as c0, Lp(µ)-, and C(K)-spaces), the set

Hom(X,R) is very small, in the sense that, not just a James type theorem does not hold,

but also that every homomorphism attains its norm. Also in this section we prove that

every lattice homomorphism on X and C(K,X) attains its norm whenever X has order

continuous norm.



NORM-ATTAINING LATTICE HOMOMORPHISMS 3

In Section 5, using free Banach lattices we are able to present the first examples of lattice

homomorphisms which do not attain their norm. In particular, we show that if E is an

L1-space, a separable L1-predual or a Lipschitz-free Banach space over a metric space with

cluster points, then Hom(FBL[E],R) contains a lattice homomorphism which does not

attain its norm. Moreover, we characterize lattice homomorphisms attaining their norm

on FBL[E] whenever E is an isometric predual of `1(A) or is isometric to `1(A) for some

infinite set A. These results allow us to show that no Bishop-Phelps theorem holds in

the class of Banach lattices, i.e. that there are lattice homomorphisms which cannot be

approximated in norm by norm-attaining lattice homomorphisms.

2. Background and Notation

Let us present all the necessary background material so that the paper can be fully

accessible. Throughout the paper, all the Banach spaces and Banach lattices are considered

to be real. If X, Y are Banach lattices, we say that T : X −→ Y is a Banach lattice

homomorphism, or simply, a lattice homomorphism, if it is a linear bounded operator

preserving the lattice operations, that is, T (x∧y) = T (x)∧T (y) and T (x∨y) = T (x)∨T (y)

for every x, y ∈ X. By a lattice homomorphism on X we mean a functional in X∗ which

also preserves suprema and infima. We denote by BX the unit ball of X and by SX the

unit sphere of X.

Given a non-empty set A with no extra structure, the free Banach lattice generated by

the set A is a Banach lattice F together with a bounded map φ : A −→ F with the property

that for every Banach lattice X and every bounded map T : A −→ X, there is a unique

Banach lattice homomorphism T̂ : F −→ X such that T = T̂ ◦ φ and ‖T̂‖ = ‖T‖. In other

words, the following diagram commutes:

A

φ
��

T // X

F
T̂

88

Let us clarify here that the norm of T is given by sup {‖T (a)‖ : a ∈ A} while the norm

of T̂ is the usual one for Banach spaces. We refer the reader to the seminal paper [20]

for more background on free Banach lattices generated by a set. On the other hand,

the concept of a Banach lattice freely generated by a given Banach space E was recently

introduced by A. Avilés, J. Rodŕıguez, and P. Tradacete in [11]. This provides a new tool

for better understanding the relation between Banach spaces and Banach lattices. The

free Banach lattice generated by a Banach space E is a Banach lattice F together with

a bounded operator φ : E −→ F with the property that for every Banach lattice X and

every bounded operator T : E −→ X, there is a unique Banach lattice homomorphism

T̂ : F −→ X such that T = T̂ ◦ φ and ‖T̂‖ = ‖T‖. In other words, the following diagram
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commutes:

E

φ
��

T // X

F
T̂

88

This definition generalizes the notion of a free Banach lattice generated by a set A. Indeed,

the free Banach lattice generated by a set A can be naturally identified with the free Banach

lattice generated by the Banach space `1(A) (see Corollary 2.9 in [11]).

It is possible, though, to give an explicit description of the free Banach lattice FBL(A)

as a space of functions. Indeed, for a ∈ A, let δa : [−1, 1]A −→ R be the evaluation function

given by δa(x
∗) = x∗(a) for every x∗ ∈ [−1, 1]A. For f : [−1, 1]A −→ R, define the norm

‖f‖FBL(A) = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ [−1, 1]A, sup
a∈A

n∑
i=1

|x∗i (a)| ≤ 1

}
.

Then, the free Banach lattice generated by A is the Banach lattice generated by the set

{δa : a ∈ A} inside the Banach lattice of the functions in R[−1,1]A with finite norm ‖·‖FBL(A),

endowed with the norm ‖ · ‖FBL(A), the pointwise order and the pointwise operations. The

natural identification of A in FBL(A) is given by the map φ : A −→ FBL(A) defined by

φ(a) = δa for every a ∈ A. Since every function in FBL(A) is a uniform limit of such

functions, they are all continuous (in the product topology) and positively homogeneous

(i.e. f(λx∗) = λf(x∗) for every x∗ ∈ [−1, 1]A and every 0 ≤ λ ≤ 1).

Analogously, for the free Banach lattice FBL[E], it is also possible to give an explicit

description of it. For x ∈ E, let δx : E∗ −→ R be the evaluation function given by δx(x
∗) =

x∗(x) for every x∗ ∈ E∗. For a function f : E∗ −→ R, define

‖f‖FBL[E] = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ E∗, sup
x∈BE

n∑
i=1

|x∗i (x)| ≤ 1

}
.

Then, the free Banach lattice generated by E is the Banach lattice generated by the set

{δx : x ∈ E} inside the Banach lattice of the positively homogeneous functions in RE∗ with

finite norm ‖ · ‖FBL[E], endowed with the norm ‖ · ‖FBL[E], the pointwise order and the

pointwise operations. Here, positively homogeneous means that f(λx∗) = λf(x∗) for every

x∗ ∈ E∗ and every λ ≥ 0. The natural identification of E in FBL[E] is given by the map

φ : E −→ FBL[E] defined by φ(x) = δx for every x ∈ E (let us notice that it is a linear

isometry between E and its image in FBL[E]). Moreover, all the functions in FBL[E] are

w∗-continuous when restricted to the closed unit ball of BE∗ (see [11, Lemma 4.10]).

We will need the following definition.

Definition 2.1. Let E be a Banach space and f : E∗ −→ R be a function in FBL[E]. We

will say that f depends on finitely many coordinates if there exists a finite subset E0 ⊆ E

such that f(x∗) = f(y∗) whenever x∗|E0 = y∗|E0 .
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Let us notice that each δx depends only on one coordinate, namely the element x itself.

Since every function in FBL[E] can be approximated by a finite lattice linear combination

of δx’s, we can highlight the following remark.

Remark 2.2. Every function in FBL[E] can be approximated by a function which de-

pends on finitely many coordinates. Consequently, every function in FBL[E] depends on

countably many coordinates.

We will be working with the set of all lattice homomorphisms on a Banach lattice X de-

noted by Hom(X,R). Let us notice that this subset is not a linear subspace of X∗; indeed, in

general, the sum of two lattice homomorphisms is no longer a lattice homomorphism, which

gives us a big difference between the category of Banach lattices and lattice homomorphisms

and the category of Banach spaces and linear functionals. Moreover, the set Hom(X,R) is

a w∗-closed subset of X∗. If E is a normed space, we say that x∗ ∈ E∗ attains its norm or

it is norm-attaining, if there is x0 ∈ SE such that |x∗(x0)| = ‖x∗‖ = supx∈SE
|x∗(x)|. We

denote by NA(E,R) the set of all norm-attaining functionals on E∗.

Let us finish this section by presenting some basic definitions and results on almost

isometric ideals in Banach spaces. We will be using these tools intensively in Section 5.

Let E be a Banach space. A subspace Z of E is said to be an almost isometric ideal

(ai-ideal, for short) in E if for each ε > 0 and for each finite-dimensional subspace F ⊆ E

there exists a linear operator T : F −→ Z satisfying

(1) T (x) = x for each x ∈ F ∩ Z, and

(2) (1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖ for each x ∈ F .

If T satisfies only (1) and the right-hand side of (2), we say that Z is an ideal in E (see

[24]). Let us notice that, in the context of almost isometric ideals, the Principle of Local

Reflexivity means exactly that E is an ai-ideal in E∗∗ for every Banach space E. We will

need the following result.

Theorem 2.3 ([2, Theorem 1.4]). Let E be a Banach space and Z an almost isometric

ideal in E. Then, there is a linear isometry ϕ : Z∗ −→ E∗ such that

ϕ(z∗)(z) = z∗(z)

holds for every z ∈ Z and z∗ ∈ Z∗ and satisfying that, for every ε > 0, every finite-

dimensional subspace F0 of E and every finite-dimensional subspace F1 of Z∗, we can find

an operator T : F0 −→ Z satisfying

(1) T (x) = x for every x ∈ F0 ∩ Z,

(2) (1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖ for every x ∈ F0, and

(3) f(T (x)) = ϕ(f)(x) for every x ∈ F0 and every f ∈ F1.

Following the terminology of [1], the isometry ϕ is called an almost isometric Hahn-Banach

extension operator. Notice that if ϕ : Z∗ −→ E∗ is an almost isometric Hahn-Banach
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extension operator, then ϕ∗ : E∗∗ −→ Z∗∗ is a norm-one projection (see e.g. [29, Theorem

3.5]). Finally, we use the following theorem, whose proof follows the lines of the main

theorem of [38], in the proof of Theorem 5.6.

Theorem 2.4 ([1, Theorem 1.5]). Let E be a Banach space, Y ⊆ E a separable subspace

of E, and W ⊆ E∗ a separable subspace of E∗. Then there exist a separable almost isomet-

ric ideal Z in E containing Y and an almost isometric Hahn-Banach extension operator

ϕ : Z∗ −→ E∗ such that ϕ(Z∗) ⊃ W .

3. The structure of Hom(X,R) and disjoint families

We start this section by giving some structural results on the set Hom(X,R), where X

is a Banach lattice. In particular, we focus on the relation between lattice homomorphisms

and disjoint families. This relation will appear in a natural way through the concept of

atoms. In particular, we will have that linearly independent lattice homomorphisms are

disjoint. One of the consequences of this fact will be the failure of the lattice analogue of

Bishop-Phelps theorem (see Theorem 5.12 in Section 5).

For an element x∗ in the Banach lattice X∗, it is worth mentioning, although straightfor-

ward, that in general we have that x∗(x∨ y) 6= x∗(x)∨ x∗(y). For example, on the Banach

lattice c0 with its natural order structure, we have that

(e∗1 + e∗2)(e1 ∨ e2) = 2 6= 1 = (e∗1 + e∗2)(e1) ∨ (e∗1 + e∗2)(e2),

where (ei, e
∗
i ) is the biorthogonal system of c0. Analogously, it is possible to show that

x∗(x ∧ y) = x∗(x) ∧ x∗(y) does not hold in general. Indeed, it follows from the Riesz-

Kantorovich formulae that

x∗(x ∧ y) = inf{y∗(x) + (x∗ − y∗)(y) : 0 ≤ y∗ ≤ x∗}

and

x∗(x ∨ y) = sup{y∗(x) + (x∗ − y∗)(y) : 0 ≤ y∗ ≤ x∗},
whenever x∗ is a positive element in X∗.

As we have already mentioned in the previous section, we will be interested in the set

Hom(X,R), where the identities x∗(x ∨ y) = x∗(x) ∨ x∗(y) and x∗(x ∧ y) = x∗(x) ∧ x∗(y)

hold to be true. We refer the reader to [33, Section 1.3] for a detailed background on lattice

homomorphisms.

It is clear that any lattice homomorphism x∗ on a Banach lattice X is positive (i.e.

x∗(x) ≥ 0 for every positive x ∈ X). In fact, an element x∗ ∈ X∗ with x∗ > 0 (i.e. x∗

is positive and x∗ 6= 0) is a lattice homomorphism if and only if x∗ is an atom in X∗ (see

[3, Section 2.3, Exercise 6]). Recall that an element x > 0 in a Banach lattice X is an

atom if and only if x ≥ u ≥ 0 implies that u = ax for some scalar a ≥ 0. Due to this

characterization, we have the following result, which will be used in Proposition 3.6 later

on. Let us recall that x and y are said to be disjoint whenever |x| ∧ |y| = 0.
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Lemma 3.1. Let X be a Banach lattice and x∗, y∗ ∈ Hom(X,R). Then, x∗ and y∗ are

linearly dependent or disjoint.

Proof. Since x∗ and y∗ are lattice homomorphisms, we have x∗, y∗ ≥ 0. We can suppose

that x∗ and y∗ are non-null. Set z∗ = |x∗| ∧ |y∗| = x∗ ∧ y∗. Since 0 ≤ z∗ ≤ x∗ and x∗ is

an atom, we have that there exists a1 ∈ R such that z∗ = a1x
∗. Analogously, there exists

a2 ∈ R such that z∗ = a2y
∗. Thus, |x∗| ∧ |y∗| = a1x

∗ = a2y
∗ and the conclusion follows. �

Corollary 3.2. Let X be a Banach lattice and x∗, y∗ ∈ Hom(X,R) be linearly independent.

Then ‖x∗ − y∗‖ ≥ max{‖x∗‖, ‖y∗‖}.

Proof. By the previous lemma, both elements are disjoint (and positive). In particular, the

positive part of x∗−y∗ is x∗ and the negative part is y∗. Thus, we have that |x∗−y∗| = x∗+y∗

and, therefore,

‖x∗ − y∗‖ = ‖|x∗ − y∗|‖ = ‖x∗ + y∗‖ ≥ max{‖x∗‖, ‖y∗‖},

where in the last inequality we have used that both x∗ and y∗ are smaller than x∗+ y∗. �

For classical Banach lattices X with their usual order and norm, we have that Hom(X,R)

is very small as described in Example 1. In what follows, δx : C(K) −→ R is the evaluation

function on x in a C(K)-space. Item (i) can be easily computed using the equivalence

between non-null lattice homomorphisms and atoms, item (ii) is proved in [3, Lemma

4.23], and item (iii) follows from the fact that the dual of every atomless Banach lattice

with order continuous norm is also atomless (see [3, Lemma 2.31]).

Example 1. Let X be c0 or `p, K a compact Hausdorff topological space, and 1 ≤ p <∞.

(i) Hom(X,R) = {λe∗n : λ ≥ 0, n ∈ N}.
(ii) Hom(C(K),R) = {λδx : λ ≥ 0, x ∈ K}.

(iii) Hom(Lp[0, 1],R) = {0}.

Let K be a compact Hausdorff topological space and X a Banach lattice. The Banach

space of all continuous functions from K into X, denoted by C(K,X), is a Banach lattice

when endowed with the pointwise order, that is, f ≤ g if and only if f(x) ≤ g(x) for every

x ∈ K. These spaces play an important role in the theory of Banach lattices. Notice

that, although every separable Banach space embeds into C([0, 1]), this result is no longer

true when we restrict to the class of separable Banach lattices and lattice embeddings.

Instead, it was proved in [30] that the Banach lattice C(∆, L1[0, 1]) is injectively universal

for the class of separable Banach lattices, i.e. any separable Banach lattice embeds lattice

isometrically into C(∆, L1[0, 1]), where ∆ is the Cantor set. The following lemma is a

consequence of [14, Theorem 2.2].

Lemma 3.3. Let X be a Banach lattice and K a compact Hausdorff topological space.

Then, for every non-null ϕ ∈ Hom(C(K,X),R), there exist a unique a ∈ K and x∗ ∈
Hom(X,R) such that ϕ(f) = x∗(f(a)) for every f ∈ C(K,X).
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Proof. It follows from [14, Theorem 2.2] that there exists a unique a ∈ K such that ϕ(f) =

ϕ(1⊗ f(a)) for every function f ∈ C(K,X), where 1⊗ f(a) denotes the constant function

equal to f(a). Notice that X̂ = {1⊗ x ∈ C(K,X) : x ∈ X} is a sublattice isometric to X.

Indeed, i : X −→ X̂ defined by i(x) = 1 ⊗ x is a lattice isometry. Thus, x∗ := ϕ|X̂ ◦ i ∈
Hom(X,R) and

ϕ(f) = ϕ(1⊗ f(a)) = ϕ(i(f(a))) = x∗(f(a))

for every f ∈ C(K,X). �

The next corollary shows the drastic failure of the lattice version of the Hahn-Banach

Theorem; every separable Banach lattice X can be embedded into a Banach lattice Y

in which no non-null lattice homomorphism in Hom(X,R) can be extended to a lattice

homomorphism in Hom(Y,R):

Corollary 3.4. Let X be a Banach lattice such that Hom(X,R) = {0}. Then,

Hom(C(K,X),R) = {0}.

In particular, every separable Banach lattice embeds lattice isometrically into a Banach

lattice on which there are no nontrivial homomorphisms.

Proof. The first part follows from the previous lemma, whereas the second part follows

from the fact that Hom(L1[0, 1],R) = {0} and [30, Theorem 1.1]. �

We finish this section considering free Banach lattices. Let E be a Banach space. For

x∗ ∈ E∗, we denote by δx∗ : FBL[E] −→ R the evaluation function on FBL[E] given

by δx∗(f) = f(x∗) for every f ∈ FBL[E]. Analogously, if A is a non-empty set and

x∗ ∈ [−1, 1]A, δx∗ : FBL(A) −→ R is the evaluation function on FBL(A).

Proposition 3.5. Let E be a Banach space and A be a non-empty set.

(i) Hom(FBL(A),R) = {λδx∗ : λ ≥ 0, x∗ ∈ [−1, 1]A} (see [20, Theorem 5.5]).

(ii) Hom(FBL[E],R) = {δx∗ : x∗ ∈ E∗} (see [11, Corollary 2.7]).

Let us now use Lemma 3.1 to deal with disjoint families in FBL(A)∗ and FBL[E]∗.

Motivated by the study of free and projective objects, disjoint families in free Banach

lattices were studied in [20] and, more recently, in [10]. It was proved in [20] that disjoint

families in FBL(A) can only be at most countable (this was proved in a more general

way in [10], where the authors showed that the free Banach lattice FBL[E] satisfies the

σ-bounded chain condition (see [10, Theorem 1.2])), although FBL(A)∗ always contains

a disjoint family of cardinality |A|. Question 12.8 in [20] asks how large disjoint families

in FBL(A)∗ can be. Thanks to the advances made on the understanding of free Banach

lattices during the past few years and the relation between lattice homomorphisms and

disjoint families, we will easily show that, indeed, there are disjoint families of cardinality

2|A|.
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Let E be a Banach space. Then, it is immediate that δx∗ , δy∗ ∈ FBL[E]∗ are linearly

independent whenever x∗, y∗ ∈ E∗ are linearly independent. Moreover, if 0 6= x∗ = −ay∗
with a > 0, then δx∗ and δy∗ are also linearly independent, since both are nonzero and if

x ∈ E is any element for which x∗(x) > 0, we have that δx∗(δx ∨ 0) = x∗(x) > 0 but

δy∗(δx ∨ 0) = y∗(x) ∨ 0 =

(
−1

a
x∗(x)

)
∨ 0 = 0.

Thus, by Lemma 3.1, the set {δx∗ : x∗ ∈ SE∗} is a disjoint family of cardinality |SE∗ | and

the next proposition follows:

Proposition 3.6. Let E be a Banach space. Then, FBL[E]∗ contains a disjoint family of

cardinality |SE∗|.

We use Proposition 3.6 to answer [20, Question 12.8].

Theorem 3.7. If A is an infinite set, then FBL(A)∗ contains a disjoint family of cardi-

nality 2|A|. Moreover, there is no disjoint family of cardinality larger than 2|A|.

Proof. We have that FBL(A) = FBL[`1(A)] (see [11, Corollary 2.9]). By Proposition

3.6, FBL(A)∗ contains a disjoint family of cardinality |S`∞(A)| = 2|A|. Let us prove now

that |FBL(A)∗| ≤ 2|A|. Indeed, let Â be the smallest subset of FBL(A) containing A,

and closed under the operations ∧ and ∨ and finite linear combinations with coefficients

in Q. Let R : FBL(A)∗ −→ RÂ be the restriction map given by R(f ∗) = f ∗|Â for every

f ∗ ∈ FBL(A)∗. Since Â is dense in FBL(A), we have that R is injective. Thus, we have

that

|FBL(A)∗| ≤ |RÂ| = |(2N)Â| = |2N×Â| = 2|Â| = 2|A|.

�

4. Banach lattices on which every lattice homomorphism attains its norm

In this section, we give some sufficient conditions so that the set Hom(X,R) is a subset of

NA(X,R), that is, every lattice homomorphism onX attains its norm. From the description

given in Section 3 (see Example 1), we have that every lattice homomorphism defined on a

classical Banach lattice attains its norm. The examples of items (i) and (iii) are all examples

of Banach lattices with order continuous norm. The norm of a Banach lattice X is said to

be order continuous if inf{‖x‖ : x ∈ A} = 0 whenever A ⊂ X is a downward directed set

such that inf(A) = 0. We refer the reader to [33, Section 2.4] for a detailed background

on Banach lattices with order continuous norm. In particular, we will use that a Banach

lattice has order continuous norm if and only if every monotone order bounded sequence

is convergent (see [33, Theorem 2.4.2]). Recall that a sequence (xn)n∈N in a Banach lattice

X is order bounded if there are x, y ∈ X such that x ≤ xn ≤ y for every n ∈ N. In the

next theorem we show that every lattice homomorphism on a Banach lattice with order

continuous norm attains its norm.
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Theorem 4.1. Let X be a Banach lattice with order continuous norm. Then, Hom(X,R) ⊆
NA(X,R).

Proof. Let x∗ : X −→ R be a lattice homomorphism different from zero. Take any sequence

(xn)n∈N ⊆ BX such that x∗(xn) converges to ‖x∗‖. Changing xn to |xn| if it is necessary, we

can assume that each xn is positive and x∗(xn) > 0 for every n ∈ N. Consider the sequence

(yn)n∈N given by the formula

yn =
∧
k≤n

(
‖x∗‖
x∗(xk)

xk

)
for every n ∈ N.

Notice that (yn)n∈N is a positive decreasing sequence, so it is order bounded (by y1 and

the vector zero). By [33, Theorem 2.4.2], it converges to some y ∈ X. Moreover, it follows

from the monotonicity of the norm that

‖y‖ ≤
∥∥∥∥ ‖x∗‖x∗(xn)

xn

∥∥∥∥ =
‖x∗‖
x∗(xn)

‖xn‖ ≤
‖x∗‖
x∗(xn)

for every n ∈ N. Since ‖x∗‖
x∗(xn)

converges to 1, we conclude that y ∈ BX . We claim that

|x∗(y)| = ‖x∗‖. Indeed, this is immediate since

x∗(yn) = x∗

(∧
k≤n

(
‖x∗‖
x∗(xk)

xk

))
=
∧
k≤n

(
‖x∗‖
x∗(xk)

x∗(xk)

)
= ‖x∗‖

for every n ∈ N and y is the limit of (yn)n∈N. Thus, x∗ ∈ NA(X,R), as desired. �

A natural class of Banach lattices generalizing the class of Banach lattices with order

continuous norm is the class of σ-Dedekind complete Banach lattices. Recall that a Banach

lattice is said to be σ-Dedekind complete if every order bounded sequence in it has a

supremum or an infimum. We do not know whether the previous theorem can be extended

to σ-Dedekind complete Banach lattices. The main difficulty is that, although lattice

homomorphisms respect lattice operations, they might not respect infinite suprema and

infima, as we can see in the next example.

Example 2. Take K = N ∪ {∞} the one point compactification of the natural numbers

with the discrete topology. Then, δ∞ ∈ C(K)∗ is a lattice homomorphism by Example

1. Take fn = χ{1,...,n} the characteristic function of the set {1, . . . , n}. Then, (fn)n∈N is

an increasing sequence. Moreover, the supremum
∨
n∈N fn exists and it is the constant

function 1. Nevertheless,∨
n∈N

δ∞(fn) = 0 6= 1 = δ∞(1) = δ∞

(∨
n∈N

fn

)
.

Notice that every σ-Dedekind complete Banach lattice without order continuous norm

contains a subspace isomorphic to `∞ (see [32, Proposition 1.a.7]). In particular, every

separable σ-Dedekind complete Banach lattice has order continuous norm. Now, bearing
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in mind that every dual Banach lattice is σ-Dedekind complete (see the comment below

[32, Definition 1.a.3]), we get the following:

Corollary 4.2. Hom(X,R) ⊆ NA(X,R) whenever X is a separable dual Banach lattice

or, in general, a dual Banach lattice not containing a subspace isomorphic to `∞.

On the other hand, the class of Banach lattices with order continuous norm generalizes

the class of Kantorovich-Banach spaces (KB-space, for short). These are the Banach lattices

in which every norm bounded monotone sequence is norm convergent. This class of Banach

lattices coincides with the class of Banach lattices not containing a sublattice isomorphic to

c0 (see [33, Theorem 2.4.12]) or, equivalently, a subspace isomorphic to c0 (see the Remark

in page 35 of [32]). Thus, the class of KB-spaces generalizes in turn the class of reflexive

Banach lattices.

The most natural examples of Banach lattices without order continuous norm are C(K)-

spaces. In order to show that Theorem 4.1 also holds for this class, we consider the more

general class of Banach lattices of the form C(K,X), where K is a compact Hausdorff

topological space and X is a Banach lattice. The following characterization follows from

Lemma 3.3.

Proposition 4.3. Let X be a Banach lattice and K a compact Hausdorff topological space.

Then, Hom(C(K,X),R) ⊆ NA(C(K,X),R) if and only if Hom(X,R) ⊆ NA(X,R).

Proof. Suppose first that there exists x∗ ∈ Hom(X,R) not attaining its norm. Take any

a ∈ K. Then, the formula ϕx∗(f) = x∗(f(a)) for every f ∈ C(K,X) defines a lattice

homomorphism. Since ϕx∗(1 ⊗ x) = x∗(x) for every x ∈ X, it follows that ‖ϕx∗‖ = ‖x∗‖.
Moreover, since f(K) ⊂ BX for every function f , it is immediate that ϕx∗ does not attain

its norm.

Now suppose that there is ϕ ∈ Hom(C(K,X),R) which does not attain its norm. By

Lemma 3.3, there exists x∗ ∈ Hom(X,R) and a ∈ K such that ϕ(f) = x∗(f(a)) for every

function f ∈ C(K,X). By a similar argument, ‖ϕ‖ = ‖x∗‖ and x∗ does not attain its

norm. �

We summarize the main results obtained in this section in the following corollary.

Corollary 4.4. Hom(X,R) ⊆ NA(X,R) and Hom(C(K,X),R) ⊆ NA(C(K,X),R) in the

following cases:

(a) X is a KB-space or, equivalently, X does not contain a subspace isomorphic to c0.

(b) X is lattice isometric to c0(Γ) for some set Γ or, more generally, whenever X has

order continuous norm.

(c) X is a dual lattice not containing `∞.
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Remark 4.5. Notice that the examples of the previous corollary include the case when X

is reflexive. For the sake of completeness, we recall the reader that the following assertions

for a Banach lattice X are equivalent (see [33, Theorem 2.4.15 and Proposition 5.4.13] and

[7, Theorem 4.71 and Theorem 5.29]):

(1) X is reflexive;

(2) X and X∗ are KB-spaces;

(3) X does not contain any subspace isomorphic to c0 or to `1;

(4) X does not contain any sublattice isomorphic to c0 or to `1;

(5) X and X∗ have the Radon-Nikodým property;

(6) X∗∗ has the Radon-Nikodým property;

(7) `1 is not lattice embeddable in either X or X∗;

(8) Every positive operator from `1 to X is weakly compact.

Let us finish this section by making a simple but interesting remark about a phenomenon

that happens to be true in both categories. It is well-known that every compact operator

defined on a reflexive Banach space attains its norm and that reflexive Banach spaces are

exactly those Banach spaces in which every functional attains its norm. We wonder if the

same happens in the Banach lattice setting. Namely, we wonder whether every compact

lattice homomorphism T : X −→ Y attains its norm whenever X and Y are Banach lattices

such that Hom(X,R) ⊆ NA(X,R). We prove that this is the case, at least, when Y is an

abstract M space or, equivalently, Y is lattice isometric to a sublattice of a C(K)-space

(see, for instance, [32, Theorem 1.b.6]).

Theorem 4.6. Let X be a Banach lattice such that Hom(X,R) ⊆ NA(X,R) and Y an

abstract M space. Then, every compact lattice homomorphism T : X −→ Y attains its

norm.

Proof. Take (xn)n∈N a sequence in BX such that (‖Txn‖)n∈N converges to ‖T‖. Moreover,

since T is compact, we can suppose that (Txn)n∈N is norm convergent to some y ∈ Y .

Notice that ‖y‖ = ‖T‖.
Now, notice that in any C(K)-space we have that, for every f ∈ C(K), there is x∗ ∈

Hom(C(K),R) such that ‖x∗‖ = 1 and x∗(f) = ‖f‖ (just take x∗ to be any evaluation

functional δa with a ∈ K an arbitrary point where f attains its maximum). Since Y can

be seen as a sublattice of a C(K)-space, this property is inherited by Y . Thus, there

is y∗ ∈ Hom(C(K),R) such that ‖y∗‖ = 1 and y∗(y) = ‖y‖ = ‖T‖. Now, notice that

x∗ = y∗ ◦ T ∈ Hom(X,R) ⊆ NA(X,R), so there exists x ∈ BX such that x∗(x) = ‖x∗‖.
Notice that x∗(xn) = y∗(Txn) converges to y∗(y) = ‖T‖ and, since y∗ ∈ SY ∗ , it follows that

‖x∗‖ = ‖T‖. Thus, x∗(x) = y∗(Tx) = ‖T‖ and T attains its norm at x. �

The next example shows that, in general, the condition that Y is an abstract M space

cannot be dropped.
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Example 3. Let T : c0 −→ `1 be the compact lattice homomorphism defined by the formula

T (
∑∞

n=1 λnen) =
∑∞

n=1
λn
2n
en. Then, although Hom(c0,R) ⊆ NA(c0,R) and T is a compact

lattice homomorphism, it does not attain its norm.

5. Lattice homomorphisms which do not attain their norms

Every lattice homomorphism we have been working with so far attains its norm (see

Section 4 and, in particular, Corollary 4.4). Notice that these cases include all classical

Banach lattices. One may wonder whether, in general, every lattice homomorphism attains

its norm. The class of free Banach lattices, which has arised during the past few years as

an important source of counterexamples when comparing properties of Banach spaces and

Banach lattices, provides a suitable setting to answer negatively this question.

Let us recall that if E is a Banach space and x∗ ∈ E∗, then the evaluation function

δx∗ : FBL[E] −→ R is defined by δx∗(f) := f(x∗) for every f ∈ FBL[E]. The aims of

this section are threefold. First, we will be interested in answering whether the inclusion

Hom(X,R) ⊆ NA(X,R) holds for an arbitrary Banach lattice X. We will see next that this

is not the case and we give several concrete examples of Banach spaces E such that there

exists a lattice homomorphism on FBL[E] which does not attain its norm (see Corollary

5.2). On the other hand, we try to characterize those lattice homomorphisms on FBL[E]

which attain their norm. Namely, we wonder whether x∗ ∈ NA(E,R) if and only if δx∗ ∈
NA(FBL[E],R) holds true. Finally, as an application, we show that the natural lattice

version of the Bishop-Phelps theorem fails in a drastic way.

We start with the main theorem of the section. This will follow by a combination of

Proposition 5.9, Theorem 5.10, and Theorem 5.11 below.

Theorem 5.1. If E is a Banach space which contains a 1-complemented copy of

(1) `1(A) for some infinite set A, or

(2) an isometric predual of `1(A) for some infinite set A,

then there exists x∗ ∈ E∗ such that δx∗ /∈ NA(FBL[E],R).

In particular, we have the following concrete examples of Banach spaces E such that

there exists a lattice homomorphism in Hom(FBL[E],R) which does not attain its norm.

Corollary 5.2. There exists x∗ ∈ E∗ such that δx∗ /∈ NA(FBL[E],R) whenever E is

(1) an infinite-dimensional L1-space for some measure µ (e.g. E = `1);

(2) a separable infinite-dimensional isometric predual of an L1-space. In particular,

when E is a C(K)-space with K metrizable;

(3) if E = X ⊕a Y and there exists x∗ ∈ X∗ such that δx∗ /∈ NA(FBL[X],R), where

⊕a denotes an arbitrary absolute sum;

(4) If E = X⊗̂αY and there exists x∗ ∈ X∗ such that δx∗ /∈ NA(FBL[X],R), where α

is any uniform cross norm in X ⊗ Y ;
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(5) E is the Lipschitz-free space F(M) for a complete metric space M such that M ′ 6= ∅
or M contains an infinite ultrametric subspace.

Proof. (1) follows from the fact that `1 is 1-complemented in any infinite-dimensional L1(µ)

space for every µ (see [6, Lemma 5.1.1]).

(2) follows from the fact that every separable infinite-dimensional isometric predual of

an L1-space contains a 1-complemented subspace isometric to c0 (see [23, Corollary 1.5]).

(3) follows because, if E = X ⊕a Y then X is 1-complemented in E (see e.g. [25] and

references therein for background in absolute sums), so the result follows by Theorem 5.11.

(4) follows because, if E = X⊗̂αY then X is 1-complemented in E (see e.g. [36, Chapter

6] and references therein for background on cross norms in tensor products), so the result

follows by Theorem 5.11.

Finally (5) follows by [19, Theorem 1] and Theorem 5.11. �

In order to prove Theorem 5.1, we need some preliminary results. We will be using the

following lemma with no explicit reference from now on.

Lemma 5.3. Let E be a Banach space. If x∗ ∈ E∗, then ‖δx∗‖ = ‖x∗‖.

Proof. If x∗ = 0, then for every f ∈ FBL[E], we have that δx∗(f) = f(0) = 0, and in

consequence δx∗ = 0.

Let x∗ 6= 0 and f ∈ FBL[E]. It follows from the definition of the norm in FBL[E] and

the fact that every f ∈ FBL[E] is positively homogeneous that, since

(
x∗

‖x∗‖

)
(x) ≤ 1 for

every x ∈ BE,

‖f‖FBL[E] ≥
∣∣∣∣f ( x∗

‖x∗‖

)∣∣∣∣ =
1

‖x∗‖
|f(x∗)|,

which implies that |f(x∗)| ≤ ‖x∗‖‖f‖FBL[E]. So,

‖δx∗‖ = sup
f∈BFBL[E]

|δx∗(f)| = sup
f∈BFBL[E]

|f(x∗)| ≤ ‖x∗‖.

On the other hand, for every x ∈ BE, we have

‖δx∗‖ ≥ |δx∗(δx)| = |δx(x∗)| = |x∗(x)|,

which implies that ‖δx∗‖ ≥ ‖x∗‖. �

From the proof of Lemma 5.3 we can extract the following consequence.

Proposition 5.4. Let E be a Banach space. If x∗ ∈ NA(E,R), then δx∗ ∈ NA(FBL[E],R).

In particular, if E is reflexive, then every lattice homomorphism on FBL[E] attains its

norm.

As we have mentioned before, we are interested in the converse of Proposition 5.4, which

we do not know if it holds true for every Banach space E. Let us highlight it as a conjecture:
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Conjecture 5.5. Let E be a Banach space. Then, x∗ ∈ NA(E,R) if and only if δx∗ ∈
NA(FBL[E],R).

First, we prove that Conjecture 5.5 is separably determined, that is, if it holds for every

separable Banach space, then it does for every Banach space. For the better understanding

of the proof of it, we send the reader to the very last part of Section 2.

Theorem 5.6. Let E be a Banach space such that Conjecture 5.5 does not hold. Then,

there exists a separable ai-ideal Z in E such that Conjecture 5.5 does not hold.

Proof. Let us assume that Conjecture 5.5 does not hold. Then, there exists x∗ /∈ NA(E,R)

with ‖x∗‖ = 1 and f ∈ SFBL[E] such that δx∗(f) = f(x∗) = 1. We will prove that there

exist a separable ai-ideal Z in E, z∗ ∈ Z∗, and g ∈ FBL[Z] such that z∗ 6∈ NA(Z,R) and

δz∗(g) = ‖δz∗‖. This is a combination of Steps 1, 2, and 3 below.

Step 1: There exists a separable ai-ideal Z in E and z∗ ∈ SZ∗ such that z∗ 6∈ NA(Z,R).

By Remark 2.2, there exists a separable subspace Y ⊆ E such that f(x∗) = f(y∗)

whenever x∗|Y = y∗|Y . Now, using the notation of Theorem 2.4, let us set W := {x∗} ⊆ E∗.

Then, we can find a separable ai-ideal Z in E with Y ⊆ Z ⊆ E and an almost isometric

Hahn-Banach extension operator ϕ : Z∗ −→ E∗ with x∗ ∈ ϕ(Z∗). Therefore, we have that

x∗ = ϕ(z∗) for some z∗ ∈ Z∗. In particular, ‖z∗‖ ≥ ‖ϕ(z∗)‖ = ‖x∗‖ = 1. On the other

hand, since ϕ(z∗)(z) = z∗(z) for every z ∈ Z and z∗ ∈ Z∗, and ϕ is an isometry, for every

z ∈ BZ , we get that

z∗(z) = ϕ(z∗)(z) = x∗(z) < ‖x∗‖ = ‖z∗‖.
This gives that ‖z∗‖ ≤ 1 and it cannot attain its norm.

Step 2: There exists g : Z∗ −→ R with ‖g‖FBL[Z] = 1 such that δz∗(g) = ‖δz∗‖ = 1.

Define g := f ◦ ϕ : Z∗ −→ R. Let us prove that ‖g‖FBL[Z] = ‖f‖FBL[E] = 1 and that g

attains its norm at z∗. Indeed, let z∗1 , . . . , z
∗
n ∈ Z∗ be such that supz∈BZ

∑n
i=1 |z∗i (z)| ≤ 1.

This is equivalent to the fact that ‖
∑n

i=1 ξiz
∗
i ‖Z∗ ≤ 1 holds for every choice of signs ξi ∈

{−1, 1}. Given any choice of signs ξ1, . . . , ξn ∈ {−1, 1}, we get that∥∥∥∥∥
n∑
i=1

ξiϕ(z∗i )

∥∥∥∥∥
E∗

=

∥∥∥∥∥ϕ
(

n∑
i=1

ξiz
∗
i

)∥∥∥∥∥
E∗

≤ ‖ϕ‖

∥∥∥∥∥
n∑
i=1

ξiz
∗
i

∥∥∥∥∥
Z∗

≤ 1.

Since ξ1, . . . , ξn are arbitrary, we deduce that supx∈BE

∑n
i=1 |ϕ(z∗i )(x)| ≤ 1. Now,

n∑
i=1

|g(z∗i )| =
n∑
i=1

|f(ϕ(z∗i ))| ≤ ‖f‖FBL[E] = 1.

This proves that ‖g‖FBL[Z] ≤ 1. On the other hand,

δz∗(g) = g(z∗) = f(ϕ(z∗)) = f(x∗) = 1.

Step 3: The function g in Step 2 belongs to FBL[Z].
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We will prove that g is in the closed vector lattice generated by the δz’s with z ∈ Z.

First, let us notice that for every z ∈ Z and z∗ ∈ Z∗, we have that

(5.1) (δz ◦ ϕ)(z∗) = ϕ(z∗)(z) = z∗(z) = δz(z
∗).

This means that the function φ : RE∗ −→ RZ∗ given by

φ(h) = h ◦ ϕ

satisfies that if ‖h‖FBL[E] < ∞, then ‖φ(h)‖FBL[Z] ≤ ‖h‖FBL[E]. Also, by using (5.1), we

have that φ(δz) = δz ◦ϕ = δz ∈ FBL[Z] holds for every z ∈ Z. Furthermore, by definition,

φ is linear and preserves suprema and infima. This implies that if h is an element in the

vector lattice generated by {δz : z ∈ Z}, then φ(h) = h ◦ ϕ ∈ FBL[Z].

Now, since f depends on the coordinates of Y ⊆ Z, we can take a sequence (fn)n∈N
in the vector lattice generated by {δy : y ∈ Y } such that fn → f in FBL[E]. Since,

for every n ∈ N, fn is in the vector lattice generated by {δz : z ∈ Z}, we get that

φ(fn) = fn ◦ ϕ ∈ FBL[Z] holds for every n ∈ N. Let us notice that fn ◦ ϕ is a Cauchy

sequence in FBL[Z]. Indeed, given n, k ∈ N, we get that

‖(fn ◦ ϕ)− (fk ◦ ϕ)‖FBL[Z] = ‖(fn − fk) ◦ ϕ‖FBL[Z] ≤ ‖fn − fk‖FBL[E],

from where the Cauchy condition follows since (fn)n∈N ⊆ FBL[E] is Cauchy. By complete-

ness, fn ◦ ϕ → g̃ for some g̃ ∈ FBL[Z]. To finish the proof, we prove that g = g̃. To this

end, let us see that g(z∗) = g̃(z∗) holds for every z∗ ∈ Z∗. Given z∗ ∈ Z∗, we get that

g̃(z∗) = lim
n

(fn ◦ ϕ)(z∗) = lim
n
fn(ϕ(z∗)) = f(ϕ(z∗)) = (f ◦ ϕ)(z∗),

where we have used both that fn ◦ϕ→ g̃ in FBL[Z] and that fn → f in FBL[E]. Hence,

g = f ◦ ϕ = g̃ ∈ FBL[Z], as desired. �

In what follows, we are giving a wide list of Banach spaces that satisfy Conjecture 5.5.

In fact, we are presenting Banach spaces which have the following property.

Definition 5.7. A Banach space E has property (P) if for every x∗ 6∈ NA(E,R), the set

C := {y∗ ∈ E∗ : |x∗(x)|+ |y∗(x)| ≤ ‖x∗‖ for every x ∈ BE}

satisfies that x∗ is in the w∗-closure of R+C := {λy∗ : λ > 0, y∗ ∈ C}.

Although artificial at a first sight, it turns out that Banach spaces with property (P )

satisfy Conjecture 5.5.

Lemma 5.8. Let E be a Banach space with property (P ). Then, x∗ ∈ NA(E,R) if and

only if δx∗ ∈ NA(FBL[E],R).
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Proof. By Proposition 5.4, we just need to prove that if x∗ 6∈ NA(E,R), then δx∗ 6∈
NA(FBL[E],R). Indeed, let x∗ 6∈ NA(E,R). Suppose, without loss of generality, that

‖x∗‖ = 1. Consider the set

C := {y∗ ∈ E∗ : |x∗(x)|+ |y∗(x)| ≤ ‖x∗‖ for every x ∈ BE}.

If δx∗ is norm-attaining, then there is f ∈ FBL[E] with ‖f‖FBL[E] = 1 such that δx∗(f) =

f(x∗) = ‖δx∗‖ = ‖x∗‖ = 1. Since f(x∗) = 1, f is w∗-continuous on BE∗ , and E has property

(P ), there is y∗ ∈ C such that f(y∗) > 0. Thus, for every x ∈ BE, |x∗(x)|+ |y∗(x)| ≤ 1 and

it follows from the definition of the norm ‖ · ‖FBL[E] that

‖f‖FBL[E] ≥ |f(y∗)|+ |f(x∗)| > |f(x∗)| = 1,

which is a contradiction. �

Let us remark that any separable non-reflexive Banach space can be renormed to fail

property (P ). Indeed, if E is separable, it can be endowed with an equivalent norm which

makes E∗ strictly convex (see the proof of [21, Theorem 8.13]). Now, if E∗ is strictly

convex, every point of the sphere is an extreme point. The non-reflexivity of E guarantees

that there are points on the sphere of E∗ which are extreme but do not attain its norm.

Finally, notice that C 6= {0} for a point x∗ in the sphere if and only if x∗ is not an extreme

point.

On the other hand, we have some Banach spaces satisfying property (P ).

Proposition 5.9. Let A be an infinite set. Then, `1(A) has property (P ). In particular,

x∗ ∈ NA(`1(A),R) if and only if δx∗ ∈ NA(FBL[`1(A)],R).

Proof. Let x∗ ∈ `∞(A) = `1(A)∗ with ‖x∗‖ = 1. Suppose that it does not attain its norm.

Let us prove that, given any finite set F ⊂ A, we can find y∗ ∈ `∞(A) and λ > 0 such

that ‖x∗ ± y∗‖ ≤ 1 and λy∗(t) = x∗(t) holds for every t ∈ F . This is enough in view of the

w∗-topology on `∞(A). To this end, let F ⊂ A be an arbitrary finite set. Since x∗ does not

attain its norm, we have that supt∈F |x∗(t)| = α < 1. Now, define y∗ ∈ `∞(A) by

y∗(t) :=

{
(1− α)x∗(t) if t ∈ F ;

0 otherwise.

Let us prove that ‖x∗ ± y∗‖ = sup
t∈A
|x∗(t)± y∗(t)| ≤ 1. For this, we consider two cases.

(1) If t /∈ F , then we get that y∗(t) = 0 and so

|x∗(t)± y∗(t)| = |x∗(t)| < ‖x∗‖ = 1.

(2) If t ∈ F , then we get that |x∗(t)| ≤ α and so

|x∗(t)± y∗(t)| ≤ α + (1− α)|x∗(t)| ≤ 1.

Hence, taking supremum in A, we have ‖x∗ ± y∗‖ ≤ 1. Finally, taking λ := 1
1−α , for any

t ∈ F we have that λy∗(t) = λ(1− α)x∗(t) = x∗(t), as desired. �
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Isometric preduals of `1(A), for A an infinite set, satisfy Conjecture 5.5. Indeed, this is

a consequence of the fact that isometric preduals of `1 have property (P ), as we can see in

the following theorem.

Theorem 5.10. Let E be an isometric predual of `1(Γ) for some infinite set Γ. Then an

element x∗ ∈ NA(E,R) if and only if δx∗ ∈ NA(FBL[E],R) (in other words, E satisfies

Conjecture 5.5).

Proof. We show first that, by Theorem 5.6, we can suppose that Γ is a countable set, so E is

an isometric predual of `1. Indeed, suppose that Z is a separable ai-ideal in E. By the proof

of [35, Theorem 1], Z is a separable isometric predual of L1(µ) for some measure (Ω,Σ, µ).

Moreover, Z∗ embeds into E∗ by Theorem 2.3, so Z∗ inherits the Radon-Nikodým property

from E∗. Thus, Z∗ is separable and has the Radon-Nikodým property. This implies that

Z∗ = `1; in other words, µ is purely atomic. Indeed, assume by contradiction that there

exists some subset A with 0 < µ(A) and such that µ|A does not contain any atom. Then

the mapping
L1(µ) −→ L1(µ|A)⊕1 L1(µ|Ω\A)

f 7−→ (fχA, fχΩ\A)

is an onto linear isometry, so L1(µ) contains an isometric copy of L1(µ|A), and L1(µ|A)

fails the Radon-Nikodým property because it is easy to see that its unit ball does not have

any extreme point, which entails a contradiction with the fact that Z∗ = L1(µ) has the

Radon-Nikodým property. This contradiction proves that Z∗ = `1.

Let (e∗n)∞n=1 be the Schauder basis of E∗ isometrically equivalent to the usual `1-basis,

i.e. ∥∥∥∥∥
n∑
i=1

aie
∗
i

∥∥∥∥∥ =
n∑
i=1

|ai|

for every n ∈ N and scalar sequences (ai)
n
i=1. Denote by Fn the closed span of {e∗1, . . . , e∗n}.

Suppose that x∗ ∈ E∗ does not attain its norm. Without loss of generality, we may suppose

that ‖x∗‖ = 1. Then, x∗ has infinite support. Indeed, this follows from the following claim

which may have its own interest.

Claim: Let E be a Banach space. Suppose that E∗ is isometric to `1(N). If x∗ ∈ E∗ is

finitely supported, then x∗ ∈ NA(E,R).

By [23, Corollary 4.1], there exists a w∗-continuous contractive projection Qn from E∗

onto Fn such that En := Q∗nF
∗
n satisfies that En ⊂ En+1 for every n, each En is isometric to

`n∞, and
⋃∞
n=1En is dense in E. Suppose that x∗ ∈ E∗ is finitely supported. So, for some

n ∈ N, we have that x∗ =
∑n

j=1 aje
∗
j ∈ Fn with aj ∈ R for j = 1, . . . , n. This implies that

Qn(x∗) = x∗. Given x ∈ E, if J : E −→ E∗∗ denotes the embedding of E into E∗∗, we have

that

x∗(x) = J(x)(x∗) = J(x)(Qn(x∗)) = (J(x) ◦Qn)(x∗)

= x∗(Q∗nJ(x)).
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This shows that, for a fixed x ∈ E, the action of x∗ at x is the same as the action of x∗ at

Q∗nJ(x). Since ‖Qn‖ = 1 and BQ∗nF
∗
n

= BEn is compact, we conclude that x∗ must attain

its norm and this proves the claim.

Now, set x∗ =
∑∞

j=1 aje
∗
j with aj ∈ R for every j ∈ N. We will prove that x∗ is in the

w∗-closure of the set R+C = {λy∗ : λ > 0, y∗ ∈ C}, where C is the set defined in Definition

5.7. In order to do this, for each n ∈ N we construct elements y∗ ∈ C as follows.

If
∑

k≤n |ak| = 0, we just take y∗ = 0 ∈ C. Suppose now that
∑

k≤n |ak| > 0. Since x∗

has infinite support, there is m > n such that am 6= 0. Since x∗ ∈ E∗ and

1 = ‖x∗‖ =

∥∥∥∥∥
∞∑
j=1

aje
∗
j

∥∥∥∥∥ =
∞∑
j=1

|aj|,

we can pick m big enough so that

|am| = λ
∑
k≤n

|ak|

for some λ ∈ (0, 1). Set

y∗ := λ
∑
k≤n

ake
∗
k − ame∗m ∈ E∗.

Then,

‖x∗ + y∗‖ =

∥∥∥∥∥
∞∑
k=1

ake
∗
k +

∑
k≤n

λake
∗
k − ame∗m

∥∥∥∥∥
=

∥∥∥∥∥λ∑
k≤n

ake
∗
k +

∑
k 6=m

ake
∗
k

∥∥∥∥∥
≤ |am|+

∑
k 6=m

|ak|

=
∞∑
k=1

|ak| = ‖x∗‖ = 1,
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and

‖x∗ − y∗‖ =

∥∥∥∥∥
∞∑
k=1

ake
∗
k −

∑
k≤n

λake
∗
k + ame

∗
m

∥∥∥∥∥
=

∥∥∥∥∥∥∥(1− λ)
∑
k≤n

ake
∗
k +

∑
k>n
k 6=m

ake
∗
k + 2ame

∗
m

∥∥∥∥∥∥∥
= (1− λ)

∑
k≤n

|ak|+
∑
k>n
k 6=m

|ak|+ 2|am|

=
∑
k 6=m

|ak| − λ
∑
k≤n

|ak|+ 2λ
∑
k≤n

|ak|

=
∑
k 6=m

|ak|+ λ
∑
k≤n

|ak|

=
∑
k 6=m

|ak|+ |am| =
∞∑
k=1

|ak| = ‖x∗‖ ≤ 1.

This implies that y∗ ∈ C.

Let us end by proving, using the element y∗ as defined above, that x∗ is in the w∗-closure

of the set R+C. To this end, pick a w∗-open set

W := {z∗ ∈ E∗ : |x∗(xi)− z∗(xi)| < ε for 1 ≤ i ≤ k}

for certain x1, . . . , xk ∈ E. Since
⋃
n∈NEn is dense in E, we can assume that xi ∈ En for

a large enough n ∈ N and for every i ∈ {1, . . . , k}. Pick y∗ ∈ C and 0 < λ < 1 such

that Qn(x∗) = 1
λ
Qn(y∗) as constructed before. Given i ∈ {1, . . . , k}, we have that, since

xi ∈ En = Q∗nF
∗
n , then xi = Q∗n(xi). Hence,

1

λ
y∗(xi) =

1

λ
y∗(Q∗n(xi)) =

1

λ
Q∗n(xi)(y

∗)

=
1

λ
(J(xi) ◦Qn)(y∗)

= J(xi)

(
1

λ
Qn(y∗)

)
= J(xi)(Qn(x∗))

= Q∗n(xi)(x
∗)

= x∗(Q∗n(xi))

= x∗(xi).

Since i was arbitrary, we get that 1
λ
y∗ ∈ W , so we are done. �

In order to be completely ready to prove Theorem 5.1, we need a last result.
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Theorem 5.11. Let E be a Banach space and assume that F is a 1-complemented subspace

of E. Suppose that there exists y∗ ∈ F ∗ such that δy∗ 6∈ NA(FBL[F ],R). Then, there exists

x∗ ∈ E∗ such that δx∗ 6∈ NA(FBL[E],R).

Proof. Let y∗ ∈ F ∗ such that δy∗ does not attain its norm. Assume, without loss of

generality, that ‖y∗‖ = 1. Consider a norm-one projection P : E −→ F . Let us define

x∗ := P ∗(y∗) ∈ E∗. Notice that x∗ ∈ SE∗ since ‖y∗‖ = 1 and F is 1-complemented.

Claim: δx∗ does not attain its norm.

On the contrary, let us assume that δx∗ attains its norm. Then, there exists f ∈ SFBL[E]

such that f(x∗) = f(P ∗(y∗)) = (f ◦ P ∗)(y∗) = 1. We will show that f ◦ P ∗ ∈ FBL[F ] and

‖f ◦P ∗‖FBL[F ] ≤ 1, which will imply that δy∗ attains its norm and this will give the desired

contradiction.

We prove first that f ◦ P ∗ has finite norm on FBL[F ]. Indeed, let y∗1, . . . , y
∗
k ∈ F ∗ be

such that sup
y∈BF

∑k
i=1 |y∗i (y)| ≤ 1. Then,

sup
x∈BE

k∑
i=1

|(P ∗y∗i )(x))| = sup
x∈BE

k∑
i=1

|y∗i (P (x))| = sup
y∈BF

k∑
i=1

|y∗i (y)| ≤ 1.

Hence
k∑
i=1

|(f ◦ P ∗)(y∗i )| =
k∑
i=1

|f(P ∗y∗i )| ≤ ‖f‖FBL[E] = 1,

which proves that f ◦ P ∗ ∈ RY ∗ has finite norm and that it is smaller than or equal to 1.

On the other hand, (f ◦ P ∗)(y∗) = f(x∗) = 1 by assumption.

Let us finally prove that f◦P ∗ ∈ FBL[F ]. To this end, take (fn)n∈N a sequence depending

on finitely many coordinates in FBL[E] such that fn → f . Notice that fn ◦P ∗ ∈ FBL[F ].

Indeed, given any x ∈ E and y∗ ∈ F ∗ it follows that

(δx ◦ P ∗)(y∗) = δx(P
∗(y∗)) = P ∗(y∗)(x) = y∗(P (x)) = δP (x)(y

∗),

which means that δx ◦ P ∗ = δP (x). This proves that fn ◦ P ∗ ∈ FBL[F ] holds for every

n ∈ N. Now, an argument involving Cauchy condition on the sequence (fn)n∈N similar to

the one in Theorem 5.6 implies that f ◦ P ∗ ∈ FBL[F ]. �

We finish the paper by showing that there is no Bishop-Phelps type theorem for lattice

homomorphisms. Recall that the Bishop-Phelps theorem states that the set of norm-

attaining functionals in a dual Banach space is norm-dense. In the Banach lattice setting

the situation is extremely opposite; we cannot approximate any not norm-attaining lattice

homomorphism by norm-attaining lattice homomorphisms.

Theorem 5.12. Let X be a Banach lattice and x∗ ∈ Hom(X,R) a lattice homomorphism

in SX∗ which does not attain its norm. Then, ‖x∗ − y∗‖ ≥ 1 for any y∗ ∈ Hom(X,R) ∩
NA(X,R).
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Proof. Since y∗ attains its norm whereas x∗ does not, both lattice homomorphisms are

linearly independent. By Corollary 3.2, we have ‖x∗ − y∗‖ ≥ ‖x∗‖ = 1. �

In conclusion, we have seen that on several free Banach lattices there exist lattice homo-

morphism which do not attain their norm. As far as we know, these are the first examples

of not norm-attaining lattice homomorphisms in the literature. We wonder if the existence

of a lattice homomorphism which does not attain its norm on a Banach lattice X implies

that X contains some kind of free structure. In particular, we wonder if X contains an

isomorphic copy of a free Banach lattice FBL[E] whenever there exists x∗ ∈ Hom(X,R)

which does not attain its norm.
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[5] M. D. Acosta, D. Garćıa and M. Maestre, A multilinear Lindenstrauss theorem, J. Func. Anal.

235 (2006), 122–136.

[6] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics

233, Springer, 2016.

[7] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Handbook of the Geometry of Banach

Spaces, Springer, 2006.

[8] R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n-linear forms, Function

Spaces (K. Jarosz, ed.), Lecture Notes in Pure and Appl. Math. 172 Marcel Dekker, New York, (1995),

19–28.
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30100 Murcia, (Spain)

ORCID: 0000-0003-0718-1353

Email address: abraham.rueda@um.es

URL: https://arzenglish.wordpress.com

http://orcid.org/0000-0001-8117-3760
http://orcid.org/0000-0002-5927-5215
https://orcid.org/0000-0002-2764-0070
https://orcid.org/0000-0003-0718-1353
https://arzenglish.wordpress.com

	1. Introduction
	2. Background and Notation
	3. The structure of `39`42`"613A``45`47`"603AHom(X, R) and disjoint families
	4. Banach lattices on which every lattice homomorphism attains its norm
	5. Lattice homomorphisms which do not attain their norms
	References

