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Abstract: Commercially viable automated picking in unstructured environments by a robot arm
remains a difficult challenge. The problem of robot grasp planning has long been around but the
existing solutions tend to be limited when it comes to deploy them in open-ended realistic scenarios.
Practical picking systems are called for that can handle the different properties of the objects to be
manipulated, as well as the problems arising from occlusions and constrained accessibility. This
paper presents a practical solution to the problem of robot picking in an online shopping warehouse
by means of a novel approach that integrates a carefully selected method with a new strategy, the
centroid normal approach (CNA), on a cost-effective dual-arm robotic system with two grippers
specifically designed for this purpose: a two-finger gripper and a vacuum gripper. Objects identified
in the scene point cloud are matched to the grasping techniques and grippers to maximize success.
Extensive experimentation provides clues as to what are the reasons for success and failure. We chose
as benchmark the scenario proposed by the 2017 Amazon Robotics Challenge, since it represents a
realistic description of a retail shopping warehouse case; it includes many challenging constraints,
such as a wide variety of different product items with a diversity of properties, which are also
presented with restricted visibility and accessibility.

Keywords: robotics; grasping; warehouse automation; manipulation

1. Introduction

Large depots that contain millions of different items are becoming more common as
online retail services offer huge catalogs to worldwide potential customers. This demands
novel solutions for automation on increasingly varied conditions. Robot picking is not an
exception: incoming items need to be stowed, stored temporarily and later retrieved to
attend to customer orders. The autonomous manipulation of a large variety of different
manufactured products is still a major challenge that cannot be easily achieved with a
unique solution, either a universal gripper or a single-grasp planning algorithm.

The problem of grasp planning has been around in the robotics community for a long
time [1]; however, the existing solutions tend to be limited when it comes to deploying
them in open-ended realistic scenarios. Practical picking systems are called for that can
first cope with the different properties of the objects to be manipulated: different shapes,
rigid vs. articulated vs. soft objects and textured vs. untextured vs. transparent surfaces.
Second, if items are not stored separately but in clutters, then recognition and location
systems have to deal with occlusions and constrained accessibility. These types of scenarios
require the solution of complex sub-problems such as reliable object modeling, recognition
and location, grasp and path planning in the presence of uncertainty and obstacles, robust
execution and many others.

Nechyporenko and co-workers conducted a study comparing the AGILE (Antipodal
Grasp Identification and LEarning ) and HAF (Height Accumulated Features) methods
for robot grasping [2]. This paper builds on that preliminary work; here we focus on the
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problem of planning the grasp and its execution, under the conditions mentioned above.
Grasp synthesis refers to the problem of finding a grasp configuration that satisfies a set
of criteria relevant for the grasping task [1]. The generation, evaluation and selection of
grasps can be performed in different ways; in the following paragraphs we review the
state-of-the-art on the topic of robot grasping but limiting its scope to approaches that are
pertinent to picking objects from a container, such as a tote or a bin.

Task-based grasping has been separately studied in the context of Bayesian networks
for encoding the probabilistic relations among various task-relevant variables [3]. The
synthesis of the category and task has been performed based on 2D and 3D data from
low-level features [4,5]. Instead of relying on sensor data points, another proposal is to
synthesize grasps based on semantic content with the hope of yielding more stable grasps
that are functionally suitable for specific object manipulation tasks [6,7].

Miller et al. used shape primitives such as spheres, cones and boxes to approximate
object shape in the GraspIt simulation environment [8]. In another approach, supervised
learning with local patch-based image and depth features was used for grasping novel
objects in cluttered environments [9]. Height maps for the representation of features
have been proposed for grasp planning with a reported 92% success rate for single object
grasping and taking only 2–3 s [10,11]; the implementation on the Baxter robot is remarkable
since it has a precision of only 1cm, and a simple gripper is used. Using features based on
geometry, a combination of analytical and data-driven methods was also proposed [12].
Finally, another approach also uses features but instead of a 3D sensor, it relies on the
supervised deep learning of 2D RGB images [13]; as is common for deep learning, this
method requires both a large dataset and a long training time. A proposal to alleviate
this last drawback has been recently put forward for a related problem in warehouse
automation [14].

In recent years, a solid trend has emerged to apply machine and deep learning to deal
with object recognition, grasp planning and other components of the pick-and-place pipeline.
In some cases, convolutional networks are applied exclusively to image processing [15],
whereas in other cases, learning techniques aim to obtain models that link visual perception
to grasp planning. Some exhaustive techniques execute in simulation millions of grasps on
artificially generated virtual objects in order to learn the relationship between shapes and
successful grasps [16], or even try to connect simulated point clouds to promising suction
placements on object surfaces [17,18]. Reinforcement learning approaches have also proved
to be appropriate for this kind of applications. In some cases, demonstrated trajectories
have been used as training data for the path planning of the arm [19,20]. In other cases,
a visual or task success reward has been used to adapt the grasping strategies [21,22].
In general, learning-based approaches are very task specific or require extensive and
exhaustive computational training.

Still, commercially viable automated picking in unstructured environments by a robot
arm remains a difficult challenge. This paper proposes a new approach to this problem
based on the experience gathered by our participation in two editions of the Amazon
Robotics Challenge. Indeed, a preliminary version of our system [2] was used in combination
with an object recognition module [23] for successful participation in the Amazon Robotics
Challenge 2017, (ARC’17) [24]. As a testbed for the experiments described in this paper,
we use the scenario defined by that edition of the competition, which includes realistic
constraints of an online shopping warehouse.

The scenario of the Amazon Robotics Challenge has been used as a framework to test a
number of aproaches. Four specific grasping strategies were proposed depending on the
shape of the object and the type of end effector—either gripper or suction cup [18]. Learning
from demonstration was used to compute the reach-to-grasp action and heuristically
suggest the best contact points [20]. D’Avella et al. used a Baxter dual-arm robot to pick
objects from a box by means of a depth analysis of the RGB-D image of the scene, along
with a custom designed jamming end-effector [25].
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Our solution leverages state-of-the-art grasp planning methods integrated with a
new ad hoc algorithm. The main contribution of this paper is a practical solution to the
problem of robot picking in unstructured environments by means of a novel approach that
integrates a carefully selected method with a new strategy, the centroid normal approach
(CNA), on a cost-effective dual-arm robotic system with two grippers specifically designed
for this purpose. Objects are matched to the grasping techniques and grippers to maximize
success, and extensive experimentation provides clues as to what are the reasons for
success and failure. In terms of the developed methods, the main contribution of our
research is the creation and testing of the CNA algorithm that, using the point cloud and
the major graspable component of the object, is able to find the centroid and its normals
corresponding to the flattest part of the objet’s point cloud; then, grasps are rotated around
the vertical z-axis so that the final grasp is most adequate for the robot’s kinematics.

The paper is organized as follows. Section 2 describes our global system along with
the tasks to be performed by this system in agreement with the specifications of the ARC’17.
It has to be noted that ARC’17 was the last edition of the Amazon Robotics Challenge. The
rationale to choose this scenario is that it has become a de facto benchmark in the robotics
community. Section 3 describes in detail the grasp planning algorithms that constitute
the core of our approach. Section 4 describes the experiments carried out to evaluate the
system, and the results are discussed in Section 5. Systematic tests under the benchmarking
conditions of the Amazon Challenge are described and discussed in Section 6. Finally,
Section 7 summarizes our contributions.

2. System Description

Amazon Robotics aims to automate the task of customer order placement and delivery
of its products. Amazon’s automated warehouses successfully remove the walking and
searching for the object, but automated picking still remains a difficult challenge. The
Amazon Robotics Challenge was organized in order to spur the advancement of these funda-
mental technologies that, in the end, could be used at warehouses all over the world [26].
The challenge entrants could use their own robot hardware and software to attempt to
solve somewhat simplified versions of the general tasks of picking and stowing items on
warehouse shelves.

The challenge event consisted of two tasks: picking and stowing, first independently
and then combined in a final task. The robots are scored based on how many items are
picked and stowed, in a fixed amount of time, from a storage system into a box/bin and
vice versa. Some items are known in advance, so they are available for experimentation and
training beforehand; some other items are unknown, meaning that they are only shown
to the teams some minutes before starting the actual challenge. After the competition is
complete, the teams share and disseminate their approach to improve future challenge
results and industrial implementations [27–31].

The items to be picked by the robot have been selected not only because of their
common occurrence in warehouses and households but also because of their varied shape
and nature. Figure 1 shows the full set of forty benchmark items from ARC’17; all these
items are known in advance. In terms of grasping, the difficulty lies in item dimensions,
texture and point cloud representation. Some items, such as the bath sponge can easily slip
through the fingers of the gripper and others, such as the marbles, lets through vacuum air
pressure. These complications call for algorithms and gripper combinations that are robust
to changes in object orientation, shape and texture.
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Figure 1. Official set of benchmark items from ARC’17. All these items are known in advance.

The RobinLab system is based on a dual-arm Baxter manipulator by Rethink Robotics
with two custom-made grippers (Figure 2) and a shelving design based on a reliable
industrial solution [24]. Bins can smoothly slide on a system of free-rotating rollers that
are actuated by an external mechanism attached to the robot system. The purpose of this
storage system is to allow a compact packing of the items on the bins and, at the same time,
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provide a convenient access for the grippers and cameras from the top. The whole system
setup can be seen in Figure 3.

The function of the vision system is to identify and localize the objects in the storage
system in such a way that the grasping system can retrieve specific target items. The
primary design goal was to converge into an accurate set of working algorithms for object
recognition as well as creating a point cloud of one specific item. Different libraries used to
accomplish these tasks are integrated into the system. The vision system diagram is shown
in Figure 4; the hardware provides an RGB image from which objects are recognized, along
with a depth image from which a point cloud is generated. The vision pipeline module
handles the recognition of the objects by means of the combination of three methods (SIFT,
SegNet and ResNet) in a way that maximizes the number of objects found and minimizes
the number of false positives [23].

The ARC’17 task is in line with applications in a warehouse, production line, laboratory
or household in which a robot has to analyze a scene in front of it and then manipulate
objects. The robot has to safely operate in a restricted work space, requiring precise yet
simple kinematic configurations to allow for predictability and operability. There is low
visibility within the environment and the robot must handle objects in a clutter inside a
small box. Given that the objects will be both known and unknown and the robot needs to
operate in real time, the computation has to be performed quickly and efficiently. Low-cost
convenient grippers with a fast-acting algorithm has to be paired for the highest success of
object picking.

In addition, we added a vacuum system in order to offer alternatives when gripping
is unreliable or not possible. This kind of mechanism has been presented with complete
practical and theoretical analyses for other related approaches [27,30,31].

(a) Vacuum gripper (b) Pincher gripper

Figure 2. End effectors.

The input that the grasping module receives from the vision module is composed of
the object that has been identified, along with its location as given by an approximate point
cloud [23]. The grasping algorithm does not perform any further verification of the identity
of the object. Its purpose is to compute the position and orientation of one or several grasp
configurations that can be transfered to manipulation control.

The robot then has to move the arm in such a way that the terminal element ends
up in the desired location to grasp the object. The two grippers that have been mounted
on the Baxter robot are depicted in Figure 2. The first gripper is a vacuum gripper that
uses air pressure to pick up objects. The second gripper is a two-finger gripper with a
limited opening width, that has been named the Pincher. The goal now is to develop a
grasp planning approach that optimizes the performance of these grippers in a warehouse
environment.
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Vacuum 
Gripper Pincher

Storage 
System

Robot

Kinect 2.0

Figure 3. UJI RobinLab robot platform setup.

Figure 4. Vision system diagram.
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3. Grasp Planning

Two state-of-the-art algorithms for the two-finger gripper have been selected, analyzed
and compared. The most suitable one was subjected to further testing based on the analysis
of time, robustness and success.

In this section we provide theoretical knowledge for the two algorithms that were
considered. From a bird’s eye perspective, the separate algorithms have their individual
environments in which each one can exhibit its strength. HAF takes into account the height
of the objects and is used with a top grasp thereby reducing the dimensionality of the
problem [10,11]. AGILE (antipodal grasp identification and learning) explores the geometry
of the whole object in order to find handle-like sections to exploit for grasping and thus it
often aims at side grasps [12]. These feature-based algorithms can easily be compared with
our proposed method, CNA (centroid normals approach), which is computationally less
heavy and thus faster and also more adept at grasping flat objects such as books or folders
for which a two-finger gripper can only succeed with a side grip [32].

3.1. Height Accumulated Features (HAF)

As the name suggests, the HAF algorithm utilizes the heights of surface points,
gathered from the point cloud data, relative to their neighbors in order to learn how
to grasp the objects. The authors stress three important advantages of the algorithm;
segmentation independent, integrated path planning and use of known depth regions [10,11].

The term height refers to the measure of the perpendicular distance from the table
plane to the points on the top surface of the object. The input point cloud is first discretized
and the height grid H now contains a 1 × 1 cm2 cell that saves the highest z-valued points
with corresponding x and y values [33]. HAF features are defined similarly to Haar Basis
functions. All height grid values of each region, Ri, on a height grid H, are summed up. The
sums ri are individually weighted by wi and then summed up. The regions and weights are
dependent on the HAF feature that are defined by an SVM classification. A feature value,
fi, is defined as the weighted sum of all regions. The jth HAF value f j is calculated as:

f j =

nrRegionsj

∑
i=1

wi,j · ri,j (1)

ri,j = ∑
k,l∈N:H(k,l)∈Ri,j

H(k, l) (2)

The paper claims to have tested 71,000 features (70,000 of which are automatically
generated) and finally selected 300 to 325 with an F-score selection [11]. Figure 5 visualizes
the calculations in process for our implementation of the HAF algorithm; it corresponds to
one of the objects in ARC’17.

The green bars indicate the identified potential grasps, whereas the height of the bars
represents the grasp evaluation score. The frame (green, red and blue segments) represents
the final grasp hypothesis chosen by the algorithm and indicates the final position where
the end effector should go.
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Figure 5. HAF visualization for the tennis ball container: (left) view from the Kinect 2.0; (right) view from Baxter.

3.2. Antipodal Grasp Identification and Learning (AGILE)

AGILE grasping is an algorithm that uses a point cloud to predict the presence of
geometric conditions that are indicative of good grasps on an object [12]. First, geometry
is used to reduce the size of the sample space by applying the conditions required for a
grasp to exist: the hand must be collision-free, part of the object surface must be contained
between two fingers and the grasp is antipodal. A pair of point contacts with friction
is antipodal if and only if the line connecting the contact points lies inside both friction
cones [34]. Then, the remaining grasps are classified using machine learning; geometry is
used in order to automatically label the training set.

Grasp geometry is quantified by certain parameters. The reason why this algorithm is
easy to implement is that these parameters are easy to tune depending on the dimensions
of the two-finger gripper. The gripper is specified by the parameters θ = (θl , θw, θd, θt)
which, respectively, stand for gripper length, width, the distance between two fingers and
the thickness of fingers. The method relies on features: classification of hand hypothesis
uses a feature descriptor of a hand hypothesis as seen in Figure 6. In the histogram of
gradients (HOG) feature descriptor, the distribution (histograms) of directions of gradients
(oriented gradients) are used as features. Gradients (x and y derivatives) of an image are
useful because the magnitude of gradients is large around edges and corners (regions of
abrupt intensity changes) and edges and corners pack in a lot more information about
object shape than flat regions [35].

Figure 6. An example of the HOG feature representation Adapated from [36].

3.3. Centroid Normals Approach (CNA)

The idea behind the new centroid normals approach (CNA) method comes from the
observation that many manufactured objects are symmetric and have a large central surface
that is most suitable for creating an air sealed grasp. The main idea is to receive a point
cloud and downsample it using a voxel grid. Then, a cylinder or a plane is extracted,
depending on the most prominent object shape. Finally, using the extracted shape, grasps
located in its center are found by using surface normals and Euler to quaternion rotations.
Quaternions are used for convenience with the purpose of simplifying the analysis of the
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orientation of an object that can be either lying on a flat surface or leaning against a wall.
Figure 7 shows the logic flow of the approach.

Figure 7. CNA logic flow.

The PCL library contains the following options for creating a model from a set of point
cloud data points: random sample consensus (RANSAC), least median of squares (LMEDS),
M-estimator sample consensus (MSAC), randomized RANSAC (RRANSAC), randomized
MSAC (RMSAC), maximum likelihood estimation sample consensus (MLESA) and progres-
sive sample consensus (PROSAC). A thorough comparison based on accuracy, computing,
time and robustness was performed between RANSAC and its descendants as well as other
consensus models by [37,38]. Based on the analysis of this work, PROSAC has been chosen
for implementation.

Once the relevant shape has been extracted, which would be planar (in the case of a
book) or cylindrical (e.g., for the tennis ball container), the algorithm finds the centroid or
the 3D average of all the points fed into it. Then it calculates the surface normals closest to
the centroid.

3.3.1. Kinematic Constraints

When the grippers were mounted onto the Baxter robot in such a way that they are
perpendicular with respect to the wrist, the twist of the gripper was moved from joint W2
to joint W1: Figure 8 shows the joints of the Baxter robot, the original configuration (using
W2 for twisting around Z-axis) and the chosen configuration (using W1).

Figure 8. Configuration of the wrist joints: (left) Baxter joints; (center) standard configuration using W2 for Z-axis twist;
(right) our configuration using W1 for Z-axis twist.

The restriction of twist means that the angular roll along the z-axis of the gripper is also
restricted. Table 1 summarizes the angular range in each joint. Note that the angular motion
has been reduced by 140.5 degrees by reorienting the gripper as seen on Figure 3. Outside
of the movement range, the robot will not be able to move and the inverse kinematic (IK)
solution will not be found.
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Table 1. Joint range comparison.

Gripper Orientation lim1 (deg.) lim2 (deg.) Range (deg.)

Classical 175.25 184.75 350.50
UJI RobinLab 120.00 270.00 210.00

Although this decision was made in order to increase the number of possible vertical
grasps where the z-axis is pointing directly downwards, the sacrifice was the limitation on
the gripper. The position of the gripper on the robot arm poses two important challenges:

1. If the orientation of the object to be grasped requires the roll of the arm to be within
the impossible limits of the wrist joint, then the object cannot be grasped although the
grasp vector can be deemed to be successful.

2. The final position and orientation of the grasp determines greatly the position of the
arm and its configuration. The grasps should try to put the robot arms similar to that
when it is in the “tuck-arms” position.

3.3.2. Cluttered Scenario in the Stowing Task

For the pick task the idea is to have the robot approach as vertical as possible with a
predefined rotation about z-axis to meet challenge 1 above and successfully pick up the
identified item for a particular order. However, the stow task is different since the objects
might be tightly pressed against the wall, hence further calculations need to be performed
to meet challenge 2 specified above (compare the pose of book2 and book1 in Figure 9). The
tote has been divided into South (W1), North (W2), East (W3), West (W4) and Planar grasp
orientations, which originate from the sections of the tote as seen on the figure. The idea
behind this classifications comes from the result of the normals.

The normals provided by the point cloud library are vectors that have the z-axis
(normal) to the object however the x and y-axis are random based on the computation and
reconstruction of the surface. If the robot sees a normal to the object to be sufficiently vertical
and sufficiently close to the wall, then the grasp vector will resort to the predetermined
arm position in the location specified. Four basis frames have been established, going
out about 45◦ from the surface of each wall (such as Nz). From the basis frames the robot
has an option of +/− 30◦ about the normal. These predetermined angles guarantee an IK
solution. The way to find out which wall is being addressed has been achieved through
statistical analysis of the components of the quaternion, q = qw + qxi+ qyj+ qzk. Knowing
the location and threshold C of how tilted the grasp needs to be to transfer from Planar
to a Wall position, the conditions shown in Figure 9 will classify roughly estimates the
orientation of the normal within the bin.

Baxter

Kinect

Book1Book1

: 

: ,

: ,

: 

1

2

3 4

Figure 9. Labeling of the tote.
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Two rotation quaternions can be combined into one equivalent quaternion by the
relation: q′ = q2q1. In which q′ corresponds to the rotation q1 followed by the rotation q2
ans is used to obtain rotations about the normals to the wall. Another role is the location
within the tote. The tilted grasp would be sent to the gripper only if its tilt is not too close
to the walls. This appears in the algorithm as a simple threshold.

3.3.3. Grasp Selection

Finally, a scoring algorithm has been devised in order to prioritize grasps. The grasp
score Si is calculated as follows. Knowing the pose of all the grasps, first find the average
of all the x and y points, then subtract the xi and yi values of the current grasp from the
averages, xav and yav to find how far away it is from the center. xdist = |xav − xi| and
consequently ydist = |yav − yi|. The next in consideration is the z, which will be subtracted
from the previous score. The w values are scalars that can adjust how much each score
should matter. In the case applied for our system, wx = wy = 0.7 and wz = 0.3. These
values have been empirically determined based on our experiments.

Si = (wx, wy) · (xdist, ydist)− (wz) · (zi) (3)

The right-hand side of Figure 10 shows the input point cloud of another object in
the ARC’17 data set (the mesh cup). The left side shows the same point cloud but with
the violet dots showing the post-processed point cloud; the yellow lines show the surface
normals; the green circle shows the x and y position of the point cloud centroid; the purple
central surface normals around the centroid correspond to the CNA vectors having the
relevant z-axis that will be used for processing the outputted grasps. The frame on the
right side shows one of the final grasp frames for the end effector.

Figure 10. CNA algorithm visualization for the mesh cup.

4. Experimentation and Results
4.1. Experimentation Procedures

This section presents the experimental setup for testing the grasping algorithms as
well as the results. During the pick and stow tasks, the grasping algorithms receive a single
point cloud of an object to be manipulated. The algorithm for grasping has to output a
suitable grasp vector. During the stow task, the tote contains 20 objects in a mixed jumble.
The vision pipeline, in this case, does not guarantee the segmentation of a single object and
can include parts of other objects. These noisy data require the algorithms to be robust.
The grasp must also be calculated quickly and successfully. Knowing which algorithm
performs best under which circumstance is key to devising a final structure that can pick
up the maximum amount of objects.
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4.2. Preliminary Object to Gripper Matching

Before applying the testing of algorithms it is important to know which gripper works
well with which object. In a perfect scenario, the best grasp algorithm will output a similar
result to what a human would choose.

The procedure for finding out whether the object can be grasped by the vacuum or
two-finger gripper consists of an empirical test, by guiding manually the Baxter robot and
trying to grasp the object with each gripper:

1. Guide the Baxter robot and approach the item with the gripper.
2. Attempt to lift the gripper along with the item.
3. If the item can be lifted easily then it is graspable by the given gripper.
4. If the object falls down or slips then the object cannot be grasped by the given gripper.

This empirical test allows the task planning procedures to know which arm to use for
object manipulation. If the object can be lifted using vacuum pressure on most sides of the
object then the right arm will be used with suction. If the object is best grasped with the
gripper then the left arm will be used to manipulate the object.

4.3. Preliminary Implementation of Algorithms

For object manipulation, the algorithm options are either AGILE, HAF or CNA. The
AGILE and HAF grasping are used with the same gripper and produce similar results.
In order to understand the potential of the grasping algorithms, it is first important to
implement them and obtain results to see whether the algorithm is capable of dealing with
the point cloud presented by the vision pipeline. The goal of this testing is to see how the
algorithm behaves and fits once it is integrated into the whole system.

It is important to see the output of the final obtained approach vector as well as the
time taken to perform the calculation of the given vector or vectors. The execution time
has been computed with the open multi-processing library (OMP).

Figure 11 shows the approximate calculation time of each algorithm. With this infor-
mation further steps have been taken to simplify the grasping optimization. Furthermore,
Figure 12 shows the qualitative analysis of robustness.

Figure 11. Time each algorithm takes to calculate a set of grasps, based on 10 function calls for 10
different objects.
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a

dc

b

Figure 12. Robustness comparison of AGILE and HAF for the crayons box (a). Results for HAF (b)
and AGILE (c,d) are shown.

4.4. Discarding AGILE

In Figure 11 it can be seen that the AGILE grasping algorithm takes up to 14 s to
calculate, HAF takes up to 11 while CNA takes up to 2 s. This is a huge drawback to
computing height and geometrical features since the time-per-object increases greatly. In
order to minimize time and thus maximize the performance of the system, we decided to
limit the number of objects that will be used with the HAF or AGILE grasping algorithms.
If an object has an option of being picked with CNA then this algorithm has the priority.

After a few preliminary testings with time, it was determined that having both AG-
ILE and HAF grasping to be applied to the same gripper increases complexity and adds
redundancy. From the first step, it is known that AGILE takes more time. The second im-
portant step is determining the robustness and success of the algorithms. As an illustrative
example, Figure 12 shows the case of the crayons box. From its point cloud HAF computed
a downward facing grasp vector as seen in Figure 12b. The grasp is unique with limited
variations of twist around any other axis but it is stable and the result is repeatable. By
choosing the vertical approach rather than the one at an angle, the robot is less likely to
collide with the bin or with the tote. This saves time for not executing grasps that are likely
to fail; it also shows robustness since the grasps with low scores often result in a polluted
point cloud and are eliminated.

AGILE grasping, as can be seen in Figure 12c, presents the result with many possibili-
ties. The possibilities are often at an angle away from the vertical z-axis since the edges of
objects have more geometrical features. Unfortunately, the gripper often cannot pick up
an object from the sideways position since there are no feasible non-friction fingers to be
able to do so. AGILE grasping also takes into consideration the many parts of the point
cloud that are not relevant, as can be seen in Figure 12d; these grasps can potentially cause
a collision if executed.

Table 2 shows the strengths and weaknesses of the methods in comparison with each
other. It was concluded for further testing to discard the AGILE grasping from the system
architecture as the lack of robustness reduces success and increases the possibility of whole
system failure.
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Table 2. Comparing AGILE and HAF.

Criteria AGILE HAF

Time − +
Robustness − +

Success + +

4.5. Testing Objects in Isolation

Testing objects in isolation is relevant for the problem since the point cloud given
from the vision pipeline is an imperfect point cloud of a single object. The evaluation
was performed based on 10 grasping attempts, each of which was scored on a binary
0/1 system to mark whether the object has been grasped and lifted or not. The setting of
grasping is exactly as would be during the competition and in the warehouse. If the point
cloud or hardware is not perfect, then the algorithm has to be able to deal with this. The
scenario is not fully controlled but rather as realistic as possible. The successful grasps
were added up and the success

num.attempt × 100% was calculated. For demonstration videos of
the robot grasping, please visit https://vimeo.com/grasps accessed on 4 May 2021. The
experiment ran according to the following rules:

1. In principle, all objects originating from the ARC’17 competition, can be grasped by
the gripper in their respective category.

2. The point cloud is as provided by the vision pipeline. No changes are made to
improve how the vision system perceives the object. The testing is performed with
full integration of the whole system architecture.

3. The environment is exactly as the system would predict it to be in a real-world setting.
A failure of gripper arm orientation or positioning is considered a failure for grasping.

In the case of HAF most failures are due to the grasp not being reachable, whereas
CNA fails mostly due to the object slipping/dropping from the gripper, or not being
properly fixed to the vacuum cups.

4.6. Object to Algorithm Classification

Next, given a set of repeated testing and analysis of success, Table 3 was created to
show which algorithm was used for which object. This table maximizes the success of the
object picking. Number 1 stands for the fact that the first try is to be attempted with the
algorithm in that column, and number 2 stands for the second try and this algorithm has
the second priority. This has been performed because an object such as the duct tape can
be picked up with either the vacuum (vac.) or the two-finger gripper (grip.) depending on
its orientation.

Table 3. Optimization table for ARC’17 items.

# Object CNA Vac. CNA Grip. HAF Grip.

1 avery_binder 1
2 balloons 1
3 burts_bees_baby_wipes 1
4 toilet_brush 2 1
5 colgate_toothbrush_4pk 1
6 crayons 1
... ... ... ...
40 flashlight 1

Total 29/40 8/40 5/40

https://vimeo.com/grasps
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5. Evaluation
5.1. Maximizing Use of CNA

As can be seen, there was a maximization of the use of the CNA algorithm, first of all,
because it is successful, second because it is fast and third because it is not restricted by the
workspace of the robot arm.

After an extensive amount of testing, the final optimized table has been created in
order to maximize success for grasping with various algorithms and two grippers. The
CNA algorithm works because it takes the center of the object given the point cloud and
exploits the consistent texture quality of objects, such as the gloves. These deformable
objects can be grasped in the same way that a book is grasped. There is no difference in
computation and the hardware of the Pincher adapts well to the object. Note that some
objects can be picked up with both grippers depending on which way the orientation is or
which part of the object is visible. In this case, the robot is programmed to try twice with
different algorithms. With this exploitation, it can be seen in Figure 13 that over 75% of the
objects will be picked up using the CNA algorithm, whether with vacuum or with Pincher.

Figure 13. Number of items per grasping strategy.

5.2. Failure Analysis

Figure 14 shows that CNA with vacuum is the most used and is also the most reliable
approach. So if it is deemed that vacuum is most useful for a certain object then there
is over 90% chance that it will be successfully picked up. The set of pie charts provides
important information as to what happened during testing with the unsuccessful grasps.
The pie charts document the reasons for failure. The most notable reasons relevant to
grasping that were seen during testing are listed below.

• Grasp not found: The algorithm does not output a grasp based on the input point
cloud.

• Grasp not feasible: The executed grasp will not result in lifting the object.
• Robot imprecision: The grasp is feasible and can be executed; however, the robot

misses the location of grasp due to calibration or actuation errors.
• Object slip/drop: Object is grasped but then slips between the fingers or escapes from

the vacuum pressure.
• Texture of object not consistent: The grasp from the point cloud looks potentially

successful; however, a label or a bump in the object obstructs the lifting of the object.
• Grasp not reachable: The restrictions to robot’s wrist motion deem the grasp not

executable.



Appl. Sci. 2021, 11, 5805 16 of 24

Figure 14. Percent success per grasping strategy with isolated objects; each success rate has been
determined for the corresponding subset of objects. The total average is weighted with the percentage
of items per strategy, including the 6 blacklisted not_possible items.

In the case of CNA with vacuum, the main reason, as seen in Figure 15a, is the
inconsistency of object texture. For example, the pie plates item has a back side that is
perfectly flat and has 100% chance of being picked up; however, testing was performed
on all sides and the other side is curved and air pressure slips between the holes. On the
other side, the pie plates item has been picked up 0/5 times; as such, the total success can
only be 50%. Figure 15b shows the reason behind the failure of CNA with Pincher. The
main reason is that the object slips. The material of an object such as table cloth is very thin
and thus drops unexpectedly. Another major reason is that the texture is inconsistent. An
object such as black fashion gloves has a label and if one of the fingers touches this label
then it glides across the label without grabbing any of the material. Note that in the above
case the CNA algorithm is successful despite the hardware restrictions. This is due to the
preassigned angular rolls around the z-axis of the robot wrist. This technique in CNA
allows for the configuration to always be comfortable for Baxter and the IK to always find
a solution. Hence the strength of this algorithm is its independence of the orientation of
the wrist. Figure 15c shows the reasons for the failure of the HAF algorithm with Pincher.
This combination shows a low success rate of 25%. The reason behind this low success rate
can be attributed to the hardware restrictions: a grasp can always be calculated, even if it
is not the best, but it can rarely be executed. Another reason, especially relevant for the
hand weight item, is robot imprecision: the Pincher opening allows about a millimeter of
clearance with the center of the hand weight and the robot has 1cm accuracy, hence the
robot simply misses the correct grasp location.

(a) CNA with vacuum (b) CNA with Pincher (c) HAF with Pincher

Figure 15. Reasons of failure for the different methods.
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The conditions for testing have been as realistic as possible. It is very important to
evaluate a grasp in this perspective because grasping criteria often only results in success
with regards to the object, not to the scene. Despite the setback described above, the total
success rate, as shown in Figure 14, shows a 69% success for object grasping.

To illustrate the results, Figure 16 shows the successful grasps of three different items
with CNA and the vacuum gripper, Figure 17 shows other successful grasps of flexible and
deformable items with CNA and the Pincher, and, finally, a successful grasp of one of the
difficult items (the toilet brush) is achieved with HAF and the Pincher (Figure 18).

Figure 16. CNA with vacuum; successful grasp of the Reynold’s wrap, tennis ball container and Irish spring soap.
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Figure 17. CNA with Pincher; successful grasp of balloons, face cloth and table cloth.

Figure 18. HAF with Pincher; successful grasp of the toilet brush.

6. System Performance Tests Based on ARC’17 Benchmark

Eight tests with different setups were performed in order to test the system perfor-
mance in the picking task, replicating the conditions of the ARC’17 as a benchmark. For
each test, 10 target items, distributed among the 5 bins of the storage system, had to be
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identified by the vision system, and a correct grasp had to be planned to pick them up.
In each test, the 32 items in the bins were a combination of known items (from the set of
40 objects shown in Figure 1) and unknown items. Since these unknown items were not
provided by Amazon, we used the 12 items shown in Figure 19 as our unknown set; as in
the competition, they are similar, but different, to some of the known items. Further, they
were only available to the system 30 min before each test.

The first two tests are explained in detail below to illustrate the testing conditions
and make observations about the system. The information gathered from all the tests is
summarized later on.

Figure 19. Set of unknown items. These items are only available 30 min before each test.

6.1. Test 1

The initial setup for this test can be seen in Figure 20. The 10 target items to be grasped
are as follows: In bin A there is the unknown target item ‘big duck’, and the known ‘glue
sticks’ and ‘balloons’. In bin B, there is the unknown ‘glue’. In bin C, both the ‘crayola cera’
and ‘Adventures of Huckleberry Finn’, which are unknown. In bin D, the ‘glasses’ and
‘brush’ are unknown, and the ‘bath sponge’ and ‘windex’ are known. There are no target
items in bin E, therefore it is ignored for this test.

Figure 20. Initial setup for Test 1.
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In this case, all the target objects were successfully picked up with the exception of the
‘big duck’ item that was not recognized by the vision subsystem. The reason was that it
was overlapped by the ‘small duck’ item that was flipped over it by the Pincher gripper
when the ‘balloons’ were picked up.

6.2. Test 2

The initial setup for this test can be seen in Figure 21. In bin A there are the known
target items ‘flashlight’ and ‘black fashion gloves’. In bin B, there are the unknown ‘big
duck’, and known ‘white facecloth’ and ‘marbles’. In bin C, both the ‘ruban isolant’ and
‘balls’, which are unknown. In bin D, the unknown ‘brush’. In bin E, the known ‘mesh-cup’
and ‘duct-tape’.

In this case, three items were not successfully picked up: ‘duct tape’ was not recog-
nized, and even though ‘balls’ and ‘marbles’ were correctly identified, picking up with the
vacuum gripper and the Pincher gripper, respectively, failed.

Figure 21. Initial setup for Test 2.
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6.3. Summary of Conducted Tests

The summary of the eight conducted tests can be seen in Table 4. The number of items
that were successfully picked up is shown for each test. In the second and third columns,
respectively, the percentage of the target known items that were correctly picked is shown,
along with that percentage for the unknown items. The time for the task to finish is also
shown (note that there is a limitation of 15 min for each test). Finally, the score according to
the Amazon Robotic Challenge rules is shown in the rightmost column.

A total of 62 items were successfully picked and placed in the eight tests, out of the
overall 80 target items to be identified among the 256 items in the bins (8 × 32)—the result
was a 77.5% success ratio. Some of the target items were the same in various tests, but under
different conditions (pose, visibility). This ratio is higher than 69% for objects in isolation,
but it has to be noted that now attempts to lift an item that failed were repeated up to three
times as soon as the sensors detected the error; if the second or third try were successful
it is counted as a success according to the competition rules. No significant differences
are to be found in the percentages for known and unknown items; this is congruent with
the fact that the grasp planning approach does not rely on previous knowledge about an
object, beyond the decision of which gripper and algorithm to use. For the known items,
this decision was taken by looking at the optimization Table 3 above. For unknown items
this information was input manually in the available minutes, and based on their similarity
with known items.

Table 4. Summary data of conducted tests.

Test # Successful Items Known Items (%) Unknown Item (%) Time (min:s) Amazon Score

1 9/10 100 83 8:56 135
2 7/10 66 75 14:29 80
3 8/10 66 100 8:40 105
4 8/10 75 83 8:27 95
5 8/10 83 75 11:18 90
6 7/10 50 100 11:11 110
7 9/10 100 75 10:15 100
8 6/10 60 60 14:41 75

Averages 7.75/10 75 81 11:00 98

7. Conclusions

Although the problem of grasp planning has been around in the robotics community
for a long time [1], the existing solutions tend to be limited when it comes to deploying
them in realistic scenarios. Our main contribution here has been to try and apply previous
knowledge together with our own methods in a realistic scenario as proposed by Amazon
for its warehouses. The hardware employed is very cost effective: from the Baxter robot
itself to the in-house made suction-cup end-effector and the 3D-printed Pincher gripper.
This adds extra limitations on the precision and repeatability of the system.

The UJI RobinLab team took part in the ARC’17 in order to automate this warehouse
environment. One of the necessary accomplishments for the robot is to be able to grasp an
object, which requires a software approach that matches the robotic hardware. Based on
our experience, we present here a practical solution to the problem of robot picking in this
unstructured, realistic scenario by using an approach based on two algorithms that takes
a point cloud as an input and outputs a position and orientation of the gripper given the
hardware specifications and restrictions.

Two state-of-the-art algorithms for two-finger grippers were analyzed since they both
use a point cloud as an input, and a grasp position and orientation as output. We have
implemented and systematically studied them in terms of computation time, robustness
and success rate. It was concluded that AGILE was less robust and took longer than
HAF. The latter gave fewer grasp options with only vertical grasps, but showed better
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robustness and computational speed. Given the results, it was decided that AGILE did not
add significant contribution to the task and was discarded for the system.

Another contribution of the work is the creation and testing of the centroid normals
approach (CNA) algorithm. It uses the point cloud and the major graspable component of
the object in order to find the centroid and its normals in the flattest part of the point cloud
of the object. Then, grasps are rotated around the vertical z-axis in such a way that the final
grasp is most comfortable for the Baxter robot. This approach was the most successful in
combination with a two-finger gripper and a vacuum gripper.

The final contribution was to match the competition objects to the grasping techniques
and grippers to maximize the number of grasped items, as shown in Table 3. This table
exposes the analysis that one universal algorithm for one universal gripper has not been
found and currently the best solution is to use various algorithms for various grippers. This
is supported by the fact that even though our overall success rates of 69% and 77.5% for
our two sets of tests, respectively, may appear to not be high enough, our detailed failure
analysis provides important clues about the reasons why the system fails, which very often
are unrelated to the grasping algorithms themselves (object texture, imprecision of the
control and/or point cloud, kinematic restrictions, etc.). We believe that our results will
provide a useful addition to the literature in the field towards the deployment of practical
working systems.
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