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Abstract. In this paper, we are interested in giving two characterizations
for the so-called property Lo,o, a local vector valued Bollobás type the-
orem. We say that (X, Y ) has this property whenever given ε > 0 and
an operador T : X → Y , there is η = η(ε, T ) such that if x satisfies
‖T (x)‖ > 1 − η, then there exists x0 ∈ SX such that x0 ≈ x and T itself
attains its norm at x0. This can be seen as a strong (although local) Bol-
lobás theorem for operators. We prove that the pair (X, Y ) has the Lo,o for
compact operators if and only if so does (X,K) for linear functionals. This
generalizes at once some results due to D. Sain and J. Talponen. More-
over, we present a complete characterization for when (X ̂⊗πY,K) satisfies
the Lo,o for linear functionals under strict convexity or Kadec–Klee prop-
erty assumptions in one of the spaces. As a consequence, we generalize
some results in the literature related to the strongly subdifferentiability
of the projective tensor product and show that (Lp(μ)×Lq(ν);K) cannot
satisfy the Lo,o for bilinear forms.
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1. Introduction

It has now been 60 years since Bishop and Phelps proved that every bounded
linear functional can be approximated by norm-attaining ones [2]. Since then,
several researchers have been working in norm-attaining theory in many dif-
ferent directions and it is out of doubt one of the most traditional topics in
Functional Analysis nowadays. Bollobás [3] pushed further the Bishop–Phelps
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theorem by proving that if ε > 0, then there exists η(ε) > 0 such that when-
ever x∗ ∈ SX∗ and x ∈ SX satisfy |x∗(x)| > 1 − η(ε), then there exist a new
functional x∗

0 ∈ SX∗ and a new element x0 ∈ SX such that

|x∗
0(x0)| = 1, ‖x0 − x‖ < ε, and ‖x∗

0 − x∗‖ < ε (1.1)

(our notation is standard and can be found in Sect. 1.1 at the end of this intro-
duction). Let us notice that the Bishop–Phelps theorem plays an important
role in non-reflexive spaces since otherwise every functional attains its norm.
On the other hand, Bollobás theorem does make sense in the reflexive setting
and, in this case, the functional x∗ necessarily attains its norm; so it would
be natural to wonder whether a version of Bollobás theorem without changing
the initial functional x∗ holds in general, that is, whether it is possible to take
x∗
0 = x∗ in (1.1). In a more general situation, we are wondering the following:

given ε > 0, is it possible to find η(ε) > 0 such that whenever T ∈ L(X,Y )
with ‖T‖ = 1 and x ∈ SX satisfy ‖T (x)‖ > 1−η(ε), one can find a new element
x0 ∈ SX such that ‖T (x0)‖ = 1 and ‖x0 − x‖ < ε? It is easy to see that the
pair (X,K) satisfies it whenever X is a uniformly convex Banach space and
it turns out that this is in fact a characterization for uniformly convex spaces
(see [13, Theorem 2.1]). Nevertheless, there is no way of getting such a similar
statement for linear operators: indeed, the authors in [7] proved that if X and
Y are real Banach spaces of dimension greater than or equal to 2, then the
pair (X,Y ) always fails such a property. Therefore, the only hope for getting
positive results in the context of operators would be by considering a weaken-
ing of the mentioned property and that was done in [4,8,9,16,17] (and more
recently in [5,6] as a tool to get positive results on different norm-attainment
notions). More specifically, we have the following property.

Definition 1.1. Let X,Y be Banach spaces. We say that the pair (X,Y ) has
the Lo,o for operators if given ε > 0 and T ∈ L(X,Y ) with ‖T‖ = 1, there
exists η(ε, T ) > 0 such that whenever x ∈ SX satisfies ‖T (x)‖ > 1 − η(ε, T ),
there exists x0 ∈ SX such that

‖T (x0)‖ = 1 and ‖x0 − x‖ < ε. (1.2)

Notice that if the pair (X,Y ) satisfies such a property, then, in particular,
every operator has to be norm-attaining. Consequently, the Banach space X
must be reflexive by James’ theorem. By using a result due to Godefroy et
al. [12] and a characterization by Franchetti and Payá [11], it turns out that
the pair (X,K) has the Lo,o for linear functionals if and only if X∗ is strongly
subdifferentiable (SSD, for short; see its definition below). On the other hand,
at the same way that it happens in the classical norm-attaining theory (see,
for instance, [14]), the Lo,o was studied for compact operators [16,17]: we say
that (X,Y ) has the Lo,o for compact operators if given ε > 0 and a norm-
one compact operator T , there is η(ε, T ) > 0 such that whenever x ∈ SX

satisfies ‖T (x)‖ > 1− η(ε, T ), there exists x0 ∈ SX satisfying conditions (1.2).
It is known that whenever X is strictly convex and Y is an arbitrary Banach
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space, the pair (X,Y ) has the Lo,o for compact operators if and only if the
dual X∗ is Fréchet differentiable (see [17, Theorem 2.3]); and when X satisfies
the Kadec–Klee property then (X,Y ) has the Lo,o for compact operators for
every Banach space Y (see [16, Theorem 2.12]).

Our first aim in the present paper is to generalize [16, Theorem 2.12] and
[17, Theorem 2.3] at once. Indeed, we have the following theorem.

Theorem A. Let X be a reflexive Banach space. The following are equivalent.
(i) The pair (X,Y ) satisfies the Lo,o for compact operators for every Banach

space Y .
(ii) The pair (X,K) has the Lo,o (equivalently, X∗ is SSD).

Our second main result deals with a strengthening of the Lo,o in the
context of bilinear forms (see [8]).

Definition 1.2. [8, Definition 2.1]. Let X,Y be Banach spaces. We say that
(X ×Y ;K) has the Lo,o for bilinear forms if given ε > 0 and B ∈ B(X ×Y ;K)
with ‖B‖ = 1, there exists η(ε,B) > 0 such that whenever (x, y) ∈ SX × SY

satisfies |B(x, y)| > 1 − η(ε,B), there exists (x0, y0) ∈ SX × SY such that

|B(x0, y0)| = 1, ‖x0 − x‖ < ε, and ‖y0 − y‖ < ε.

It is known that (X ×Y ;K) satisfies the Lo,o for bilinear forms whenever
(a) X,Y are finite dimensional;
(b) X is finite dimensional and Y is uniformly convex;
(c) X = �p and Y = �q if and only if p > q′, where q′ is the conjugate index

of q.
(see Proposition 2.2.(a), Lemma 2.6, and Theorem 2.7.(b) of [8], respectively).
By observing items (a), (b), and (c) above, one might think that the reflex-
ivity of the projective tensor product X ̂⊗πY plays an important role here
(notice that (c) gives the result for �p-spaces exactly when the projective ten-
sor product �p ̂⊗π�q is reflexive (see [15, Corollary 4.24])). And this is indeed
not a coincidence: we have the following result, which gives a complete char-
acterization for the Lo,o in terms of the reflexivity of X ̂⊗πY and also relates
the Lo,o in different classes of functions under strict convexity or Kadec–Klee
property assumptions on X. For the necessary terminology on approximation
properties, we send the reader to the very end of Sect. 1.1.

Theorem B. Let X be a strictly convex Banach space or a Banach space sat-
isfying the Kadec–Klee property. Let Y be an arbitrary Banach space. Assume
that either X or Y enjoys the AP, or that the pair (X,Y ∗) satisfies the
pointwise-BCAP. The following are equivalent.
(a) L(X,Y ∗) = K(X,Y ∗) and both (X,K), (Y,K) have the Lo,o for linear

functionals.
(b) X ̂⊗πY is reflexive and both (X,K), (Y,K) have the Lo,o for linear func-

tionals.
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(c) (X × Y ;K) has the Lo,o for bilinear forms.
(d) (X ̂⊗πY,K) has the Lo,o for linear functionals.

As a consequence of Theorem B, we have that (Lp(μ)×Lq(ν);K) cannot
satisfy the Lo,o for bilinear forms for every 1 < p, q < ∞ and for not purely
atomic measures μ, ν, since Lp(μ)̂⊗πLq(ν) is never reflexive (see [15, Theorem
4.21 and Corollary 4.22]). We conclude the paper with a discussion about the
relation between the Lo,o in B(X × Y,K) when we view B(X × Y,K) as an
space of operators or a dual space.

1.1. Terminology and Background

Here will be working with Banach spaces over the real or complex field K.
The unit ball and unit sphere of a Banach space X are denoted by BX

and SX , respectively. The symbols L(X,Y ) and B(X × Y ;K) stand for the
(bounded) linear operators and bilinear forms, respectively. When Y = K,
L(X,Y ) becomes simply X∗, the topological dual space of X. We say that
T ∈ L(X,Y ) attains its norm if ‖T (x0)‖ = ‖T‖ for some x0 ∈ SX and we
say that B ∈ B(X × Y ;K) attains its norm if |B(x0, y0)| = ‖B‖ for some
(x0, y0) ∈ SX × SY .

The norm of X is said to be strongly subdifferentiable (SSD, for short)
at the point x ∈ X if the one-side limit

lim
t→0+

‖x + th‖ − ‖x‖
t

exists uniformly for h ∈ BX . Let us notice that the norm of X is Fréchet
differentiable at x if and only if it is Gâteux differentiable and SSD at x.
When we say that X is SSD we mean that the norm of X is SSD at every
x ∈ SX .

The projective tensor product of two Banach spaces X and Y is the
completion of X ⊗ Y endowed with the norm given by

‖z‖π = inf

{ ∞
∑

n=1

‖xn‖‖yn‖ :
∞
∑

n=1

‖xn‖‖yn‖ < ∞, z =
∞
∑

n=1

xn ⊗ yn

}

.

We denote the projective tensor product of X and Y endowed with the above
norm by X ̂⊗πY . It is well-known (and we will be using these facts with no
explicit mention throughout the paper) that ‖x⊗y‖ = ‖x‖‖y‖ for every x ∈ X
and y ∈ Y , and that the closed unit ball of X ̂⊗πY is the closed convex hull of
BX ⊗ BY = {x ⊗ y : x ∈ BX , y ∈ BY }. Moreover, we have that (X ̂⊗πY )∗ =
B(X × Y ;K) under the action of a bounded bilinear form B as a bounded
linear functional on X ̂⊗πY given by

〈

B,

∞
∑

n=1

xn ⊗ yn

〉

=
∞
∑

n=1

B(xn, yn)
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and (X ̂⊗πY )∗ = L(X,Y ∗) under the action of a bounded linear operator T as
a bounded linear functional on X ̂⊗πY given by

〈

T,

∞
∑

n=1

xn ⊗ yn

〉

=
∞
∑

n=1

〈yn, T (xn)〉.

Analogously, we have that (X ̂⊗πY )∗ = L(Y,X∗).
Recall that a Banach space is said to have the approximation property

(AP, in short) if for every compact subset K of X and every ε > 0, there exists
a finite-rank operator T : X −→ X such that ‖T (x) − x‖ ≤ ε for every x ∈ K.
We also make use of the so-called pointwise bounded compact approximation
property (pointwise-BCAP, for short) defined recently in [10]: we say that a
pair of Banach space (X,Y ) has the pointwise-BCAP if for every operator
T ∈ L(X,Y ), there exists a constant λT ≥ 1 such that T ∈ λT BK(X,Y )

τc ,
where τc denotes the topology of compact convergence in L(X,Y ). We refer
the reader to [15] for background on the beautiful tensor products of Banach
spaces and approximation properties theories.

Finally, let us recall that a Banach space X satisfies the Kadec–Klee
property if the weak and the norm topologies coincide in the unit sphere of X.

2. Proofs of Theorems A and B

We start this section by giving the proof of Theorem A.

Proof of Theorem A. (i)⇒(ii). Suppose that (X,Y ) has the Lo,o for compact
operators. Let ε > 0 and x∗ ∈ SX∗ be given, and let us prove that (X,K)
has the Lo,o for linear functionals. Define T : X −→ Y by T (x) := x∗(x)y0
for some y0 ∈ SY . Then, ‖T‖ = ‖x∗‖ = 1 and T is compact. By hypothesis,
there is η(ε, T ) > 0 witnessing the definition of the property Lo,o. Let us set
η(ε, x∗) := η(ε, T ) > 0. Let x0 ∈ SX be such that |x∗(x0)| > 1−η(ε, T ). Then,
‖T (x0)‖ = ‖x∗(x0)y0‖ = |x∗(x0)| > 1−η(ε, T ) and by the assumption there is
x1 ∈ SX such that ‖T (x1)‖ = 1 and ‖x1−x0‖ < ε. Then, |x∗(x1)| = ‖T (x1)‖ =
1 and ‖x1 − x0‖ < ε, that is, (X,K) has the Lo,o for linear functionals.
(ii) ⇒ (i). Suppose that (X,K) has the Lo,o for linear functionals. By con-
tradiction, suppose that there exist ε0 > 0, T ∈ K(X,Y ) with ‖T‖ = 1, and
(xn) ⊆ SX such that

1 ≥ ‖T (xn)‖ ≥ 1 − 1
n

(2.1)

but satisfying that dist (xn,NA(T )) ≥ ε0, where NA(T ) = {x ∈ SX : ‖T (x)‖ =
‖T‖}. Since X is reflexive and (xn)∞

n=1 is bounded, we may (and we do) assume
that xn

w−→ x0 for some x0 ∈ BX . Since T is a compact operator, we have

that T (xn)
‖·‖−→ T (x0). By (2.1), we have that ‖T (x0)‖ = 1 and, in particular,

x0 ∈ SX . Let us take y∗
0 ∈ SY ∗ to be such that y∗(T (x0)) = ‖T (x0)‖ = 1.

Consider x∗
0 := T ∗y∗

0 ∈ SX∗ . Then x∗
0(x0) = T ∗y∗

0(x0) = y∗(T (x0)) = 1. Since
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xn
w−→ x0, we have that x∗

0(xn) −→ x∗
0(x0) = 1 as n → ∞. Since (X,K) has

the Lo,o for linear functionals, there is (x′
n) ⊆ SX such that x∗

0(x
′
n) = 1 for

every n ∈ N and ‖x′
n − xn‖ → 0. This shows that

1 = x∗
0(x

′
n) = T ∗y∗

0(x
′
n) = y∗

0(T (x′
n)),

that is, 1 = y∗
0(T (x′

n)) ≤ ‖T (x′
n)‖ ≤ ‖T‖ = 1, so, ‖T (x′

n)‖ = 1 and then
x′

n ∈ NA(B). The convergence ‖x′
n −xn‖ → 0 yields the desired contradiction.

Remark 2.1. [17, Theorem 2.3] says that X is strictly convex and the pair
(X,Y ) has the Lo,o for compact operators if and only if X∗ is Fréchet differen-
tiable. Let us notice that X∗ is Fréchet differentiable if and only if X is strictly
convex and (X,K) has the Lo,o (see [9, Theorem 2.5]). Therefore, Theorem A
generalizes [17, Theorem 2.3] as we no longer need strict convexity on X. On
the other hand, [16, Theorem 2.12] says that if X is a reflexive space which
satisfies the Kadec–Klee property, then (X,Y ) has the Lo,o for compact oper-
ators for every Y . This is also covered by our Theorem A since whenever X is
a reflexive space satisfying the Kadec–Klee property, the pair (X,K) satisfies
the Lo,o (see [9, Propositions 2.2 and 2.6]).

We now present the proof of Theorem B.

Proof of Theorem B. (a) ⇒ (b). If we assume (a), then we have that X and
Y are both reflexive, and that every operator from X into Y ∗ is compact. So,
L(X,Y ∗) = (X ̂⊗πY )∗ is reflexive by Ryan [15, Theorem 4.19]. Then, X ̂⊗πY
is reflexive.
(b) ⇒ (a). If X ̂⊗πY is reflexive, then so is L(X,Y ∗) = (X ̂⊗πY )∗. Since
(X,Y ∗) has the pointwise-BCAP (or either X or Y has the AP), we have that
L(X,Y ∗) = K(X,Y ∗) (see [10, the diagram on pg.4] for the pointwise-BCAP
assumption and [15, Theorem 4.21] for the AP assumption).
(a) ⇒ (c). Suppose that L(X,Y ∗) = K(X,Y ∗) and assume that both (X,K)
and (Y,K) satisfy the Lo,o for linear functionals. By contradiction, let us
assume that (X × Y ;K) fails to have the Lo,o for bilinear forms. Then, there
exist ε0 > 0, B ∈ B(X × Y ;K) with ‖B‖ = 1, and (xn, yn)∞

n=1 ⊆ SX × SY

such that
1 ≥ B(xn, yn) ≥ 1 − 1

n
(2.2)

and whenever (u, v) ⊂ SX × SY is such that B(u, v) = 1, we have that

‖u − xn‖ ≥ ε0 or ‖v − yn‖ ≥ ε0. (2.3)

Since X and Y are reflexive and both (xn)∞
n=1 and (yn)∞

n=1 are bounded, we
may assume (and we do) that xn

w−→ x0 and yn
w−→ y0 for some x0 ∈ BX

and y0 ∈ BY . Let T ∈ L(X,Y ∗) = (X ̂⊗πY )∗ be arbitrary. By assumption,
we have that T ∈ K(X,Y ∗). Since xn

w−→ x0 and T is compact, we have that

T (xn)
‖·‖−→ T (x0) and then since

|T (xn)(yn) − T (x0)(y0)| ≤ ‖T (xn) − T (x0)‖‖yn‖ + |T (x0)(yn) − T (x0)(y0)|,
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we have that
T (xn)(yn) −→ T (x0)(y0) (2.4)

as n → ∞ for every T ∈ (X ̂⊗πY )∗ = L(X,Y ∗) = K(X,Y ∗). This means that
xn ⊗ yn

w−→ x0 ⊗ y0. In particular, since B ∈ B(X × Y ;R) = (X ̂⊗πY )∗, we
have that B(xn, yn) −→ B(x0, y0) and by (2.2), B(x0, y0) = 1. In particular,
x0 ∈ SX and y0 ∈ SY .

Let us consider TB ∈ L(X,Y ∗) and SB ∈ L(Y,X∗) to be the associated
linear operators to the bilinear form B. We have that

T ∗
B(y0)(x0) = TB(x0)(y0) = B(x0, y0) = 1,

which shows that T ∗
B(y0) ∈ SX∗ . Analogously, S∗

B(x0)(y0) = 1 and S∗
B(x0) ∈

SY ∗ .
Claim: We have that

(�) T ∗
B(y0)(xn) −→ 1 as n → ∞.

(��) S∗
B(x0)(yn) −→ 1 as n → ∞.

We only prove (�) since (��) is analogous. As T ∗
B is a compact operator

and yn
w−→ y0, we have that T ∗

B(yn)
‖·‖−→ T ∗

B(y0). At the same time, by (2.4)
we have that

T ∗
B(yn)(xn) = TB(xn)(yn) −→ TB(x0)(y0) = 1

as n → ∞. Therefore,

|T ∗
B(yn)(xn) − T ∗

B(y0)(xn)| = |(T ∗
B(yn) − T ∗

B(y0)(xn))|
≤ ‖T ∗

B(yn) − T ∗
B(y0)‖ −→ 0

and so T ∗
B(y0)(xn) −→ 1 as n → ∞.

Let us prove that ‖xn − x‖ −→ ∞ as n → ∞. Assume first that X

satisfies the Kadec–Klee property. Since x0 ∈ SX and xn
w−→ x0, we have that

‖xn − x0‖ → 0 as n → ∞. We prove that the same holds if X is taken to
be strictly convex. Indeed, by using (�), we have that T ∗

B(y0)(xn) −→ 1 as
n → ∞. Since (X,K) satisfies the Lo,o and X is strictly convex, we have that
X∗ is Fréchet differentiable (see [9, Theorem 2.5.(b)] and then, by the Šmulyan
lemma, we have that ‖xn − x0‖ −→ 0 as n → ∞ as desired.

To conclude the proof of this implication, let us set y∗
0 := S∗

B(x0) ∈ SY ∗ .
Then, y∗

0(y0) = 1 and y∗
0(yn) −→ 1 as n → ∞ by (��). Since (Y,K) has

the Lo,o for linear functionals, there is (y′
n) ⊆ SY such that y∗

0(y
′
n) = 1 and

‖y′
n − yn‖ −→ 0 as n → ∞. This means that

1 = y∗
0(y

′
n) = S∗

B(x0)(y′
n) = B(x0, y

′
n).

Since ‖xn − x0‖ −→ 0 and ‖y′
n − yn‖ −→ 0 as n → ∞, we get a contradiction

with (2.3).
(c) ⇒ (d). Suppose that (X × Y ;K) has the Lo,o for bilinear forms. To prove
that (X ̂⊗πY,K) has the Lo,o for linear functionals, let us fix B ∈ (X ̂⊗πY )∗ =
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B(X × Y ;K) with ‖B‖ = 1. By hypothesis, given ε ∈ (0, 1), there exists
η(ε,B) > 0. We use similar arguments from [6, Proposition 4.3].

Let z ∈ SX ̂⊗πY be such that

Re〈B, z〉 > 1 − η(ε,B)2

2
.

By Ryan [15, Proposition 2.8] we can find (xn)∞
n=1 ⊆ SX , (yn)∞

n=1 ⊆ SY ,
and (λn)∞

n=1 ⊆ R
+ such that z =

∑∞
n=1 λnxn ⊗ yn and such that

∞
∑

n=1

λn < 1 +
η(ε,B)2

2
.

Consider the sets

I := {n ∈ N : Re B(xn, yn) > 1 − η(ε,B)}

and J := Ic. Hence, we have that

1 − η(ε,B)2

2
< Re〈B, z〉 =

∞
∑

n=1

λn Re B(xn, yn)

=
∑

n∈I

λn Re B(xn, yn) +
∑

n∈J

λn Re B(xn, yn)

≤
∑

n∈I

λn + (1 − η(ε,B))
∑

n∈J

λn

=
∞
∑

n=1

λn − η(ε,B)
∑

n∈J

λn

< 1 +
η(ε,B)2

2
− η(ε,B)

∑

n∈J

λn,

that is, η(ε,B)
∑

n∈J λn < η(ε,B)2 and then

∑

n∈J

λn < η(ε,B). (2.5)

Notice that for each n ∈ I, we have that Re B(xn, yn) > 1 − η(ε,B). Then, by
hypothesis, there exists (x′

n, y′
n)n∈I ⊆ SX × SY such that

|B(x′
n, y′

n)| = 1, ‖x′
n − xn‖ < ε, and ‖y′

n − yn‖ < ε.
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Let us write B(x′
n, y′

n) = eiθn with some θn ∈ R for every n ∈ I. Let us notice
that, for each n ∈ I, we have

1 − η(ε,B) < Re B(xn, yn) = Re B(xn − x′
n + x′

n, yn)
= Re B(xn − x′

n, yn) + Re B(x′
n, yn)

≤ ‖xn − x′
n‖ + Re B(x′

n, yn − y′
n + y′

n)
= ‖xn − xn‖′ + Re B(x′

n, yn − y′
n) + Re B(x′

n, y′
n)

≤ ‖xn − x′
n‖ + ‖yn − y′

n‖ + Re B(x′
n, y′

n)
< 2ε + Re B(x′

n, y′
n)

that is, 1 − Re B(x′
n, y′

n) < 2ε + η(ε,B) for each n ∈ I. Now, since 1 =
|B(x′

n, y′
n)|2 = Re B(x′

n, y′
n)2 + ImB(x′

n, y′
n)2, we have that, for every n ∈ I,

1 > 1 − 2ε − η(ε,B) + ImB(x′
n, y′

n)2

which implies that Im B(x′
n, y′

n)2 < 2ε + η(ε,B). Thus, if n ∈ I, we have that

|1 − eiθ| = |1 − B(x′
n, y′

n)|
=

√

(1 − Re B(x′
n, y′

n))2 + Im B(x′
n, y′

n)2

<
√

(2ε + η(ε,B))2 + 2ε + η(ε,B)

<
√

4ε + 2η(ε,B).

Now, let us define

z′ :=
∑

n∈I

λne−iθnx′
n ⊗ y′

n ∈ X ̂⊗πY.

We have that

〈B, z′〉 =
∑

n∈I

λne−iθnB(x′
n, y′

n) =
∑

n∈I

λn = ‖z′‖π.

On the other hand, since

‖x′
n ⊗ y′

n − xn ⊗ yn‖ ≤ ‖x′
n ⊗ y′

n − x′
n ⊗ yn‖ + ‖x′

n ⊗ yn − xn ⊗ yn‖
≤ ‖y′

n − yn‖ + ‖x′
n − xn‖

< 2ε
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we have that (here we use (2.5) and the fact that |1 − eiθ| <
√

4ε + 2η(ε,B))

‖z′ − z‖π =

∥

∥

∥

∥

∥

∑

n∈I

λne−iθnx′
n ⊗ y′

n −
∑

n∈I

λnxn ⊗ yn −
∑

n∈J

λnxn ⊗ yn

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

n∈I

λn(e−iθnx′
n ⊗ y′

n − xn ⊗ yn)

∥

∥

∥

∥

∥

+
∑

n∈J

λn

≤
∑

n∈I

λn|e−iθn − 1| +

∥

∥

∥

∥

∥

∑

n∈I

λn(x′
n ⊗ y′

n − xn ⊗ yn)

∥

∥

∥

∥

∥

+
∑

n∈J

λn

<
(
√

4ε + 2η(ε,B)
)

∑

n∈I

λn + 2ε
∑

n∈I

λn +
∑

n∈J

λn

<
(
√

4ε + 2η(ε,B)
)

(

1 +
η(ε,B)2

2

)

+ 2ε

(

1 +
η(ε,B)2

2

)

+ η(ε,B)

=
(
√

4ε + 2η(ε,B) + 2ε
)

(

1 +
η(ε,B)2

2

)

+ η(ε,B).

In particular, we have that ‖z′‖ > 0 and we may define z′′ := z′
‖z′‖ ∈ SX ̂⊗πY .

Notice that, since

‖z′′ − z′‖ =
∥

∥

∥

∥

z′

‖z′‖ − z′
∥

∥

∥

∥

= |1 − ‖z′‖| ≤ ‖z − z′‖
we have that

‖z′′ − z‖ ≤ ‖z′′ − z′‖ + ‖z′ − z‖
< 2‖z′ − z‖
< 2

(
√

4ε + 2η(ε,B) + 2ε
)

(

1 +
η(ε,B)2

2

)

+ 2η(ε,B).

Finally, notice that

〈B, z′′〉 =
〈

B,
z′

‖z′‖
〉

= 1.

This shows that (X ̂⊗πY,R) satisfies the Lo,o for linear functionals.
(d) ⇒ (b). Suppose that (X ̂⊗πY,K) has the Lo,o for linear functionals. By
Dantas et al. [9, Theorem 2.3], X ̂⊗πY is reflexive and (X ̂⊗πY )∗ is SSD. Since
X∗, Y ∗ are closed subspaces of (X ̂⊗πY )∗ = L(X,Y ∗) = L(Y,X∗), we have
that both X∗, Y ∗ are SSD [11]. Therefore, both (X,K) and (Y,K) satisfy the
Lo,o for linear functionals.

Remark 2.2. In Theorem B, the assumptions that X or Y has the AP or that
the pair (X,Y ∗) satisfies the pointwise-BCAP are only used to get that (b) ⇒
(a); on the other hand, implications (a) ⇒ (c) ⇒ (d) ⇒ (b) are valid without
these assumptions (notice that (c) ⇒ (d) ⇒ (b) are valid for general Banach
spaces while in (a) ⇒ (c) we assume that X is strictly convex or that satisfies
the Kadec–Klee property).
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Remark 2.3. The approximation properties in Theorem B are technical
assumptions we need in order to guarantee that the equality L(X,Y ∗) =
K(X,Y ∗) holds true. In fact, this is what we use to get (b) ⇒ (a). Let us
notice also that, as far as we know, it is an open problem whether the fact
X ̂⊗πY is reflexive implies that L(X,Y ∗) = K(X,Y ∗) is true for general reflex-
ive spaces X and Y . A positive answer for this problem would provide us a
general characterization for Theorem B.

As an immediate consequence of Theorem B, we have the following corol-
lary. Notice that item (a) below was proved also in [8, Theorem 2.7.(b)].

Corollary 2.1. Let 1 < p, q < ∞ and let q′ be the conjugate index of q.
(a) (�p × �q;K) satisfies the Lo,o for bilinear forms if and only if p > q′.
(b) (Lp(μ), Lq(ν);K) fails the Lo,o for bilinear forms for not purely atomic

measures μ, ν.

Proof. Under the assumption of (a), we have that the projective tensor prod-
uct �p ̂⊗π�q is reflexive (see [15, Corollary 4.24]). For (b), since Lp(μ)̂⊗πLq(ν)
contains complemented isomorphic copies of �1 for every p, q, it is never reflex-
ive (see [15, Theorem 4.21 and Corollary 4.22]). Therefore, both items follow
immediately by applying Theorem B. �

Let us conclude the paper by commenting on the Lo,o for different classes
of functions. Let X and Y be Banach spaces. In B(X ×Y ;K), as we have seen
in Theorem B, one can consider:
(A) the Lo,o for linear functionals seeing B(X × Y ;K) as (X ̂⊗πY )∗,
(B) the Lo,o for operators seeing B(X × Y ;K) as L(X,Y ∗), and, of course,
(C) the Lo,o for bilinear forms.

We have the following relation between properties (A), (B), and (C):
• General implications. Clearly, we have that (C) ⇒ (B) by considering

the associated bilinear for BT ∈ B(X × Y ;K) of a given operator T ∈
L(X,Y ∗). Also, by our Theorem B (implication (c) ⇒ (d)) and noticing
that, for this implication, we do not need any assumption on X besides
reflexivity (not even approximation property assumptions), we also have
that (C) ⇒ (A).

• Not true implications. (B) does not imply (A) or (C) in general. Indeed,
by [1, Theorem 2.4.10], for every 1 < p < ∞, we have that L(c0, �p) =
K(c0, �p) = L(�p′ , �1), where p′ is the conjugate index of p. We have that
(�p′ , �1) has the Lo,o for operators by Theorem A (since (�p′ ,K) has the
Lo,o for linear functionals) but neither (�p′ × c0;K) nor (�p′ ̂⊗πc0;K) can
have the Lo,o for bilinear forms and for linear functionals, respectively,
since c0 is not reflexive.

• Implications with extra assumptions. Assume that either X or Y has
the AP, or that the pair (X,Y ∗) has the pointwise-BCAP. In this case,
implication (A) ⇒ (B) holds. Indeed, if (X ̂⊗πY ;K) has the Lo,o for linear
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functionals, then X ̂⊗πY must be reflexive and, by one of our assumptions,
every operator from X into Y ∗ is compact and by Theorem B, the pair
(X,K) has the Lo,o for linear functionals. By Theorem A, the pair (X,Y ∗)
has the Lo,o for operators. Finally, if X or Y has the AP (or (X,Y ∗) has
the pointwise-BCAP) and X or Y is stricly convex, then (A)⇒(C).
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Universidad de Murcia
Campus de Espinardo
30100 Murcia
Spain
e-mail: abraham.rueda@um.es
URL: https://arzenglish.wordpress.com

Received: May 12, 2021.

Accepted: July 22, 2021.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	A Characterization of a Local Vector Valued Bollobás Theorem
	Abstract
	1. Introduction
	1.1. Terminology and Background

	2. Proofs of Theorems A and B
	Acknowledgements
	References




