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a b s t r a c t

We introduce several ordinal classification methods for functional data, specifically
multiargument and multivariate functional data. Their performance is analyzed in four
real data sets that belong to a neuroeducational problem and a neuropathological
problem.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Supervised learning is one of the most common problems in statistics. Classification is a problem where the objective is
o predict a class in a set, which is the so-called response, from a set of inputs. Classes are usually considered unordered,
.e. as levels of a nominal variable, and the majority of classification algorithms are designed for this kind of problem.
owever, classes are ordered, i.e. labels are levels of an ordinal variable, in many real life problems, such as collaborative
iltering, econometric modeling, medicine, psychology, social sciences, and more (Gutiérrez et al., 2016). An example of
n ordered variable would be patient condition (good, fair, serious, critical) or the rating of satisfaction (low, indifferent,
igh). Nevertheless, the literature about ordered classification methods is not very extensive for multivariate data or
igh-dimensional data (Hornung, 2020; Simó et al., 2020) and even less so for functional data (Wang and Shi, 2014).
In the multivariate case, Gutiérrez et al. (2016) established a taxonomy according to how the order is taken into account

n the classification procedure. They proposed three main approaches. The first is the naïve approach, which is the simplest
nd is very common, not only in the multivariate context but also in the functional context. It consists of using standard
lassification algorithms as if classes were unordered, i.e. nominal classification. In this case, the ordering information is
ot taken into account, and that information is lost. The second approach consists of decomposing the ordinal problem into
everal binary ones. Then, each of them can be solved by standard classification methods and the results are combined
o return a label, as described by Frank and Hall (2001). The third approach assumes that an unobserved continuous
ariable underlies the ordinal response. Some of the methods that belong to this approach are: ordinal logistic regression
odels, such as the cumulative link models used by Pierola et al. (2016), augmented binary classification problems, such

✩ The data sets and code for reproducing the results are available at http://www3.uji.es/~epifanio/RESEARCH/orderfda.zip.
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as the data replication method by Cardoso and Costa (2007), and ensemble methods, such as the ordinal random forests
proposed by Hornung (2020).

According to Gutiérrez et al. (2016), although results from the naïve approach can be very competitive in the multi-
ariate case, taking into account the order improves the performance. The few papers that deal with ordinal classification
hen inputs are functional data are based mainly on the use of the functional generalized linear model (Aguilera and
scabias, 2008; Barahona et al., 2020) and, in many cases, the order is ignored (Epifanio and Ventura, 2014). To the
est of our knowledge, ordinal methods for functional data with the ordinal binary decomposition approach, the second
pproach, have not been considered until now, and the third approach has not been fully exploited either. On the other
and, classification problems in neuroscience do not usually exploit the ordering information of the different classes in
he multivariate case.

The objective of this work is to introduce more ordinal methods for functional data, use them for the first time in two
euroscience problems and compare these methods. As a novelty, we present ordinal methods for the second and third
pproaches in the functional context. Note also that the functional data in both neuroscience problems are multivariate
unctional data with multiple arguments, which are not the classical univariate functional data. Furthermore, functional
ata analysis (FDA) is not usually applied to the analysis of brain structures, with some exceptions (Epifanio and Ventura,
014; Lila et al., 2016), although it is a natural way to do it. In fact, in the neuroscience literature, many brain structures
re represented with a functional basis, such as spherical harmonic (SPHARM) representation, but they do not go any
urther and functional data procedures are not exploited in this field. To the best of our knowledge, no previous work has
onsidered ordinal classification in neuroscience with functional data as inputs.
The outline of the paper is as follows: Section 2 reviews ordinal classification methods for the multivariate and the

unctional case. Section 3 contains the proposed functional ordinal classification methods. The results are discussed in
ection 4. Section 5 contains the conclusions. The appendix introduces the motivating problems and describes the data
n detail.

. Established ordinal classification methodologies

.1. Multivariate ordinal classification methodologies

Let X be an N × K matrix with K inputs in N instances and y the output vector, which is an ordered factor with Q
levels, the ordered classes C1, . . . , CQ .

The Frank and Hall (FH) method: Frank and Hall (2001) proposed to decompose the ordinal classification problem
into the following binary ones: they discriminated between C1, . . . , Cq and Cq+1, . . . , CQ , for q = 1 , . . . , Q −1. Each of these
binary classification problems yields an estimate pq of P(y ∈ Cq+1, . . . , CQ |x), for a new instance with input x. Then, the
predicted probability values of each of the Q classes for the corresponding output y are estimated by: P(y = C1|x) = 1−p1;
P(y = Cq|x) = pq−1 − pq, q = 2, . . . , Q − 1; P(y = CQ |x) = pQ−1, where pq = P(y > Cq | x) for q = 1, . . . ,Q − 1. It was
proposed for the multivariate case. Note that this method is applicable as long as the binary classifier produces class
probability estimates.

Ordered logistic regression: The cumulative link model is explained in detail by Agresti (2002, Ch. 7). The model is
logit(P(y ≤ q|x)) = ζq − η, where the logit link function is the inverse of the standard logistic cumulative distribution
function, i.e. logit(p) = log(p/(1-p)), ζq parameters provide each cumulative logit, and η is the linear predictor β1x1 +· · ·+

βK xK . We refer to this method as POLR.
The data replication method: Cardoso and Costa (2007) proposed the data replication method for the multivariate

case, where the ordinal classification problem is reduced to binary classification problems by augmenting the features,
through their replication, i.e. the original vector is concatenated with each of the extension features. A final classification
rule is built based on the results of the binary problems to obtain the prediction of a new instance. We refer to this
method as oSVM (ordinal Support Vector Machine), since SVMs are used in the implementation.

Ordinal forest (OF): Hornung (2020) proposed a random forest-based prediction method for ordinal outputs in the
multivariate case. The idea of OF is to use optimized score values in place of the category values of the ordinal output
and treat the result as a metric output.

2.2. Functional nominal and ordinal classification methodologies

Kernel-Induced Random Forests (KIRF): Fan et al. (2010) proposed KIRF for functional data. Kernel-induced classi-
fication trees are built using kernel functions of each two different cases of the training set as candidate splitting rules.
These trees are used in KIRF. Fan et al. (2010) proposed KIRF for functional data classification by defining some kernels
for functional data. Note that only nominal functional classification was considered with univariate and unidimensional
functional data. They considered the kernel function of two curves as the squared Euclidean norm of the principal
component (PC) scores of the PC expansion with K components.

FPCA-SVS-LDA: This method is also a nominal classification procedure, like KIRF. It was proposed by Ferrando et al.
(2020), and it consists of using functional principal component analysis (FPCA) followed by step-wise variable selection
(SVS) for linear discriminant (LDA) classification. It belongs to the first approach as described in Section 1, where the
order is not taken into account.

FPCA-POLR: Aguilera and Escabias (2008) used FPCA to solve multicollinearity in functional multinomial logit models
for ordinal responses. We use FPCA followed by POLR. It belongs to the third approach.
2
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Table 1
Performance measures for several classifiers for the left putamens data set: accuracy, sensitivity, specificity, precision, and negative predictive value
(NPV) for each class and RPS.
Method Accuracy Sensitivity Specificity Precision NPV RPS

E ME NE E ME NE E ME NE E ME NE

FPCA-SVS-LDA 0.313 0.267 0.353 0.278 0.712 0.576 0.653 0.211 0.462 0.227 0.771 0.463 0.711 0.392
FPCA-POLR 0.418 0.267 0.529 0.333 0.731 0.667 0.714 0.222 0.621 0.300 0.776 0.579 0.745 0.370
FH-FPCA-SVS-LDA 0.418 0.267 0.500 0.389 0.731 0.636 0.735 0.222 0.586 0.350 0.776 0.553 0.767 0.356
FPCA-oSVM 0.448 0.200 0.706 0.167 0.923 0.273 0.816 0.429 0.500 0.250 0.800 0.474 0.727 –
FPCA-OF 0.501 0.200 0.912 0 1 0.091 0.939 1 0.508 0 0.813 0.500 0.719 0.190
FPCA-KIOF 0.478 0.200 0.647 0.389 0.885 0.424 0.796 0.333 0.537 0.412 0.793 0.539 0.780 0.193

Table 2
Performance measures for several classifiers for the right putamens data set.
Method Accuracy Sensitivity Specificity Precision NPV RPS

E ME NE E ME NE E ME NE E ME NE

FPCA-SVS-LDA 0.358 0.400 0.412 0.222 0.865 0.485 0.612 0.462 0.452 0.174 0.833 0.444 0.682 0.328
FPCA-POLR 0.433 0.333 0.559 0.278 0.827 0.485 0.755 0.357 0.528 0.294 0.811 0.516 0.740 0.315
FH-FPCA-SVS-LDA 0.418 0.533 0.529 0.111 0.846 0.485 0.714 0.500 0.514 0.125 0.863 0.500 0.686 0.323
FPCA-oSVM 0.537 0.200 0.853 0.222 0.981 0.242 0.898 0.750 0.537 0.444 0.810 0.615 0.759 –
FPCA-OF 0.493 0 0.971 0 1 0 0.980 – 0.500 0 0.776 0 0.727 0.192
FPCA-KIOF 0.433 0 0.677 0.333 0.846 0.424 0.776 0 0.548 0.353 0.746 0.560 0.760 0.214

3. Proposed ordinal functional classification methodologies

The proposed methods generalize the previous methods to functional data by exploiting an FPCA decomposition.
FH-FPCA-SVS-LDA:We propose to use the FH method considering FPCA-SVS-LDA as the binary classifier since it returns

lass probability estimates. In other words, we apply the FH method to the matrices of FPC scores. To the best of our
nowledge, this is the first time FH has been used with functional data. This method belongs to the second approach.
FPCA-oSVM: We consider the same idea used by Hall et al. (2001), Epifanio (2008), and Epifanio and Ventura (2011):

a feature extraction stage whose resulting features are carried forward to a (nominal) classification stage. However, in
our case, the nominal classification stage is changed for an ordinal classification stage. Feature extraction is a powerful
preprocessing method for improving the performance of a learning algorithm (see the section on Feature Extraction
in Hastie et al. (2009, pp. 126–127)). In this case, FPCA is used for the feature extraction stage. As the FPC scores are
multivariate, oSVM is used for the ordinal classification stage. This method belongs to the third approach.

FPCA-OF: We again consider the previous idea. FPCA is also used for the feature extraction stage, but OF is used for
he ordinal classification stage. This method belongs to the third approach.

FPCA-KIOF: We consider KIRF for functional data, but in this case, OF is used for ordinal classification with multivariate
and multiargument functional data. This method belongs to the third approach.

4. Results and discussion

We apply the methods presented in Sections 2.2 and 3 to the data described in Appendix. In particular, our data are the
PC score matrices of the left and right putamens and the left and right hippocampi, which are described by multivariate
nd multiargument functional data. The implementation of the methods is explained in Appendix, including the choice
f the number of PCs. The final class assignation is implemented by choosing the class with the highest probability. The
erformance of the methods is assessed by leave-one-out (LOO) cross-validation. In each trial, we leave one subject out
nd FPCA is applied to the remaining subjects, which form the training set of that trial. The FPC scores of the training
et are used with the classification methods to fit each model. We compute the FPC scores of the left-out subject, which
s the test set of that trial, and we predict its class and/or save the class probability estimates. We repeat this process
or each subject of the data set. In this way, we obtain LOO performance estimates. The performance is evaluated with
ifferent measures: the commonly used measures for nominal classification assessment, such as accuracy, but we also use
he ranked probability score (RPS), which is specific for ordered classification (see Appendix for details). Tables 1 and 2
how the results for the left and right putamens, respectively, while Tables 3 and 4 show the results for the left and right
ippocampi, respectively. The best value in each column appears in bold. RPS can be computed for all the methods, except
PCA-oSVM, since oSVM returns only the predicted class. We can see the performance in different kinds of real problems.
n the one hand, the neuroeducation problem is a very difficult classification problem, as it is not easy to distinguish
etween classes with the putamen shape. On the other hand, the neuropathological problem is an easier classification
roblem. The classes can be distinguished better, especially for the left hippocampus.
According to the results in Table 1, it is clear that taking into account the order improves the performance. FPCA-SVS-

DA is the method with the lowest accuracy and the highest RPS. The methods with the highest accuracy are FPCA-OF,
3
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Table 3
Performance measures for several classifiers for the left hippocampi data set.
Method Accuracy Sensitivity Specificity Precision NPV RPS

CN MCI AD CN MCI AD CN MCI AD CN MCI AD

FPCA-SVS-LDA 0.750 0.833 0.333 0.900 0.813 0.864 0.944 0.769 0.400 0.900 0.867 0.826 0.944 0.088
FPCA-POLR 0.821 1 0.333 0.900 0.875 0.955 0.889 0.857 0.667 0.818 1 0.840 0.941 0.089
FH-FPCA-SVS-LDA 0.893 1 0.500 1 0.938 1 0.889 0.923 1 0.833 1 0.880 1 0.059
FPCA-oSVM 0.607 0.833 0.167 0.600 0.750 0.773 0.889 0.714 0.167 0.750 0.857 0.773 0.800 –
FPCA-OF 0.750 1 0 0.900 0.686 1 0.889 0.706 – 0.818 1 0.786 0.941 0.149
FPCA-KIOF 0.750 1 0 0.900 0.813 0.955 0.833 0.800 0 0.750 1 0.778 0.938 0.095

Table 4
Performance measures for several classifiers for the right hippocampi data set.
Method Accuracy Sensitivity Specificity Precision NPV RPS

CN MCI AD CN MCI AD CN MCI AD CN MCI AD

FPCA-SVS-LDA 0.571 0.917 0 0.500 0.875 0.818 0.667 0.846 0 0.455 0.933 0.750 0.706 0.204
FPCA-POLR 0.679 0.917 0.167 0.700 0.875 0.864 0.778 0.846 0.250 0.636 0.933 0.792 0.824 0.179
FH-FPCA-SVS-LDA 0.679 1 0.333 0.500 0.875 0.818 0.833 0.857 0.333 0.625 1 0.818 0.750 0.137
FPCA-oSVM 0.607 1 0.333 0.300 0.625 0.818 0.944 0.667 0.333 0.750 1 0.818 0.708 –
FPCA-OF 0.714 1 0 0.800 0.813 1 0.722 0.800 – 0.615 1 0.786 0.867 0.160
FPCA-KIOF 0.607 0.917 0 0.600 0.688 0.955 0.722 0.688 0 0.546 0.917 0.778 0.765 0.162

FPCA-KIOF, and FPCA-oSVM, which are also the methods with the lowest RPS: FPCA-OF and FPCA-KIOF. However, many of
the subjects are classified in the ME class for FPCA-KIOF, FPCA-OF, and FPCA-oSVM. For example, 61 subjects are assigned
to the ME group by FPCA-OF. ME is the most numerous group, but only 34 individuals belong to that intermediate class.
There is a high percentage in sensitivity, but a low percentage in specificity for FPCA-OF in the ME class.

The same performance pattern is observed in the results in Table 2. Again, it is beneficial to consider the order because
he method of the first (naïve) approach returns the worst performance in terms of accuracy and RPS. In this case, the
est accuracy is clearly attained by FPCA-oSVM, i.e. the difference in accuracy compared to the other methods is wider.
As regards the results in Table 3, FH-FPCA-SVS-LDA is the best method in terms of accuracy and RPS. The second best in

erms of accuracy is FPCA-POLR. In this case, FPCA-SVS-LDA, which does not take order into account, provides results that
re similar to or better than other methods that consider the ordering information. This shows that naïve methods can
lso be very competitive. The accuracy of FPCA-SVS-LDA is equal to that attained by FPCA-OF and FPCA-KIOF and better
han that of FPCA-oSVM. The RPS value for FPCA-SVS-LDA is the second best. Note the difference between the results for
utamens and hippocampi. For right putamens the best method was FPCA-oSVM, which is the worst for left hippocampi
n terms of accuracy. Therefore, there is no single method that performs best in all possible datasets, as is the case in
ominal multivariate classification.
For right hippocampi, the results in Table 4 show that FPCA-OF is the best in terms of accuracy, but FH-FPCA-SVS-LDA

s the best in terms of RPS. FH-FPCA-SVS-LDA returns the second-best in accuracy, together with FPCA-POLR. However,
he RPS value of FPCA-POLR is the second-worst. The naïve method, FPCA-SVS-LDA, is again the worst in terms of both
ccuracy and RPS.

. Conclusion

We have introduced several methodologies for ordinal classification of functional data. This problem has hardly been
tudied. We have considered methods that have not been considered until now: FH-FPCA-SVS-LDA, a method with the
rdinal binary decomposition approach; feature extraction plus augmented binary classification (FPCA-oSVM), feature
xtraction plus ensembles (FPCA-OF) and kernel-induced ordinal random forests (FPCA-KIOF). They have been analyzed
n four real neuroscience data sets, and the results confirm that taking into account ordering information improves
erformance. We have seen that there is no ‘number one’ method, but a method can perform better in some data sets
nd worse in other data sets. This is why having different alternative methodologies to address an ordinal classification
roblem is a good option.
Although the proposed methodologies have been presented for multiargument and multivariate functional data, they

an be used for classical univariate functional data. In fact, as future work, ordinal classification for univariate functional
ata can be studied for both dense and sparse functional data. Note that FPCA can be performed for sparse functional
ata (Yao et al., 2005). We can extend more ordinal classification methodologies from the multivariate case (see Gutiérrez
t al. (2016) for a survey) to the functional case. Another direction of future work would be to consider more applications,
ot only in the neuroscience field. Many real-world applications include ordinal classification and ordinal information

hould not be ignored.
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