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Aims 
 
 

1- To provide an overview of the concepts of classical computation and quantum 
mechanics on which quantum computing is based.  

 
2- Introduce the basic ideas about quantum computing and expose its main 

differences with classical computing.  
 

3- To program different examples of quantum computation with 3-qubit systems, as 
well as Grover's search algorithm. 

  



 3 

1. Introduction 
 

Quantum computation and quantum information are defined as the study of information 
processing tasks that can be accomplished using quantum mechanical systems [1]. Their 
birth cannot be understood as the evolution of just one field, but as the merging of several 
branches of science, such as computer science, quantum mechanics, information theory 
and cryptography. 
  
It uses phenomena such as superposition, which establishes that if a physical system may 
be in one of many configurations—arrangements of particles or fields—then the most 
general state is a combination of all of these possibilities [2]; or entanglement, that occurs 
when a pair or group of particles interact in such way that the quantum state of each 
particle cannot be described independently of the state of the others. [3] 
 
Although quantum computers are mostly theoretical constructs at the present time, it has 
been proved that quantum computing will eventually outperform classical computing in 
many purposes [4]. A good example of this is quantum cryptography, which has the 
potential to encrypt data for longer periods of time than classical cryptography [5]. 
Quantum simulation is also one of the most relevant potential applications, since 
simulations of quantum systems that are carried out numerically on classical computers 
are subject to the exponential growth of required resources as the size of the quantum 
system increases. And it has been claimed that quantum computers will be able to mimic 
these systems efficiently in the polynomial scale [6].  
 
As a result, interest and investment in the field of quantum computing has increased 
dramatically in recent years. The market of quantum computing is projected to reach 
$64.980,0 million by 2030 from just $507,1 million in 2019. In the public sector, China 
has remained at the forefront of technological advances, launching the first quantum 
satellite in 2016. In the U.S., the Trump administration authorized in 2018 $1.200,0 
million to be spent on the quantum science over the next five years, while in 2020 India 
set a budget of $1.120,0 million for the same period. Europe, on the other hand, has a 
total initiative of €1.000,0 million providing funding for the next ten years. [7]  
 
The history of computation possibly begins with the appearance of the abacus in 500-300 
BC, but its main development did not come until the 19th and 20th centuries, with 
Boolean algebra (1854), the theory of computation (Turing, 1936) and information theory 
(Shannon and Weaver, 1940s). It was in that 40s decade that John Eckert and John 
Mauchly developed the ENIAC (Electronic Numerical Integrator and Calculator), the 
first fully electronic computer, in 1946. 
 
Parallel to the development of computation, in the early 20th century, the world of physics 
took a plot twist. The inadequacy of classical physics to the microscopic domain became 
increasingly evident due to various empirical facts, such as blackbody radiation and the 
photoelectric effect. Thus was born the theory of quantum mechanics, which differs from 
classical physics in that energy, momentum, angular momentum, and other quantities of 
a bound system are restricted to discrete values(quantization), objects have characteristics 
of both particles and waves (wave-particle duality), and there are limits to how accurately 
the value of a physical quantity can be predicted prior to its measurement, given a 
complete set of initial conditions (Heisenberg's uncertainty principle, 1927). [2] 
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Computing and the quantum world did not come together until well into the 20th century. 
In the 1970s, Paul Benioff began to research the theoretical feasibility of quantum 
computing. His research culminated in a paper, published in 1980, that described a 
quantum mechanical model of Turing Machines [8]. Shortly thereafter, Richard Feynman 
and Yuri Manin suggested that quantum computing has the potential to simulate things 
that classical computing cannot. [9] [10] 
 
The origin of this idea can be found in the decision problem, posed by David Hilbert and 
Wilhelm Ackerman in 1928:  
 
“Given a statement of a first-order logic 1defined by a finite set of axioms, is there an 
algorithm that can decide whether the statement is true or false? “ [11] 
 
In 1936, Alonzo Church and Alan Turing both independently demonstrated that the 
existence of such an algorithm was impossible [12] [13]. The concept of the Turing 
machine, an abstract notion of what we know as a programmable computer, appeared for 
the first time. And further work led to the Church-Turing thesis. 
 
“Any algorithmic process can be simulated efficiently using a probabilistic Turing 
machine.” [14] 
 
In 1994, Peter Shor demonstrated that the problem of finding the prime factors of an 
integer could be solved efficiently on a quantum computer – a problem that takes classical 
computers an exponentially long time to solve for large numbers [15]. His algorithm 
launched a huge interest in the field of quantum computing. And the Church-Turing 
quantum thesis was formulated: 
 
“A quantum Turing machine can efficiently simulate any realistic model of computation.” 
[16] 
 
Decoherence (loss of entanglement due to interactions of a quantum system with external 
factors) is a major obstacle for the development of robust quantum computers. However, 
the physical realization of quantum computing became significantly more tenable in 
1995, when Quantum Error Correction (QEC) emerged from several groups around the 
world. This theory makes it possible to protect quantum information from errors due to 
decoherence and other quantum noise [17]. But the first correcting code did not appear 
until 1997, when Alexei Kitaev proposed the surface code , a topological quantum error 
correcting code that is currently considered the most promising platform for realizing a 
scalable, fault-tolerant quantum computer. [18] 
 
Many companies have ventured into the quantum computing race since Paul Benioff 
began his research. But among these companies, IBM and Google are the ones that have 
achieved the best results. IBM launched in 2017 the first industry initiative to build 
commercially available universal quantum computing systems [19]. The project, named 
as IBM Quantum, is pioneer in providing quantum computing service, and it has led to 

 
1 First order logic is a formal system used in mathematics, philosophy, linguistics and computer science. It 
is a language with quantifiers that reach only individual variables, and with predicates and functions whose 
arguments are only constants or individual variables. That is, instead of propositions like "Mars is a planet", 
we would have " there exists x such that x is Mars and x is a planet", where "there exists" is a quantifier. 
[35] 
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the design and construction in 2019 of the first integrated quantum computing system for 
commercial use [20]. That same year, Google AI, in collaboration with NASA, claimed 
they had realized a quantum computation that would be unfeasible on any classical 
computer [21]  
 
Although the history of quantum computing is still short and there are still many 
discoveries to be made, there are already several quantum algorithms of great relevance. 
One of the best known, apart from Shor's, is Grover's algorithm, invented by Lov K. 
Grover in 1996 [22]. It is described as a database search algorithm which requires fewer 
function evaluations than a normal search, thus substantially reducing the search time. 
Inverting a function can be related to searching in a sequence, if we consider that this 
function produces the value of y as the position occupied by the value x in this sequence. 
Thus, if we have the function y=f (x), which can be evaluated in a quantum computer, 
Grover’s algorithm allows us to calculate the value of x given the value of y as input. 
 
In this context of increasing awareness of the potential of quantum computation for the 
society, we have devised this Bachelor’s Thesis Report as an attempt to provide the reader 
with a basic overview of the fundamentals of quantum computing from the point of view 
of an undergraduate student in Chemistry. 
 
To this end, this work starts by introducing ideas from classical information and classical 
computing such as bit, byte, number encoding and the like. Logic gates will be described, 
with a review of the operators on which most current computational algorithms rely. In 
the next chapter, we will provide the backgrounds of quantum mechanics, emphasizing 
the phenomena of superposition and entanglement. And we will also study why the wave 
function collapses into a single (non-entangled) state when measuring, being that 
normally in quantum mechanics it evolves deterministically according to the Schrödinger 
equation as a linear superposition of different states. We call this the measurement 
problem. Based on these ideas, we will be able to introduce the basics in quantum 
information and quantum computing and to expose its fundamental differences with 
classical computing. For this purpose, we will explain the qubit and the difficulties of its 
physical implementation, review the quantum computing protocol and briefly describe 
the usual quantum gates. In a last stage, we will provide a few examples of routines and 
computational codes aimed for quantum computers, programmed with Mathematica, 
which altogether constitute a complete, student-made implementation of Grover’s 
algorithm. The latter exercise is probably the most challenging and self-instructing part 
of this work. 
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2. Classical information and classical computing 
2.1. Information storage and encoding 

 
This chapter introduces the basic concepts required to understand how classical 
information is stored and manipulated, as well as its physical implementation in today's 
computers. With the information contained in this chapter we intend to provide the reader 
with some background on classical computing concepts that will be revisited in chapter 
4 once we introduce quantum computing. In this way, hopefully, we will be able to 
capture the conceptual breakthrough that quantum computation entails. 
 
The smallest unit of classical information is the bit (binary digit). It is a binary variable, 
generally represented as 0 or 1, where the number indicates one of two possible values or 
states, such as true or false, open or closed, north or south, and so on. We can store one 
bit in any electronic device or any other physical system that exists in either of two 
possible distinct states. These two states can be, for example, two positions of an electrical 
switch, two different directions of magnetisation or polarisation, or two voltage levels 
allowed by a circuit. Generally, in today's digital equipment (PCs, smartphones, game 
consoles, etc.) bits are implemented by using transistors. [23] 
 
A transistor is an electronic device that regulates the flow of current or 
voltage in a circuit, acting as a switch and/or amplifier for electrical or 
electronic signals. As shown in figure 2.1, it has three terminals: base, 
collector and emitter. If the input signal is 1 (current through the base), 
the output signal is 1 (current between the collector and emitter). If the 
input signal is 0 (no current through the base), the output signal is also 0.  
 
Bits are extremely useful because any discrete value such as numbers, words and images 
can be encoded using sequences of bits. With a single bit, there are only two (21) possible 
patterns to store information in, 0 or 1, which is of limited usefulness. However, every bit 
we add double the possibilities. For example, with two bits, we have four (22) possible 
patterns: 00, 01, 10 and 11. With three bits, we have eight (23) possible patterns: 000, 001, 
010, 011, 100, 101, 110 and 111. In general, n bit yields 2n different patterns for storing 
information, so we find that the number of messages (m) that can be delivered by n bits 
is: 

𝑚 = 2!       (2.1) 
 
Of course, human beings do not handle information as sequences of bits, so in order to 
be able to interact and exchange further information between computers and humans, 
there are rules that have been developed that associate sequences of ones and zeros with 
letters and decimal numbering. The basic unit of information used in classical computing 
is the byte, which consists of a group of 8 bits with a storage capacity of up to m=256 
values, enough to store any of the most usual characters or alphabetic letters. 
 
ASCII, for example, is an encoding convention that represents each typed character by a 
number. The code uses 8-bit sequences, so the numbers range from 0 to 255 and each is 
stored in one byte to represent the upper and lower case letters of the English alphabet, 
plus punctuation marks, digits 0 to 9 and some control information. Thus, if we insert a 
message such as “Hello” in a computer that uses this code, it would be stored as follows: 
 
 

Figure 2. 1. 
Transistor symbol 



 7 

Character H e l l o 
Code 72 101 108 108 111 
Byte 01001000 01100101 01101100 01101100 01101111 

Table 2. 1. Example of correspondence between alphabetic letters and ASCII 

However, the number of patterns available in the ASCII code is insufficient to represent 
the alphabet of many Asian and some Eastern European languages, so Unicode had to be 
designed. This encoding typically stores each character in 2 bytes, so it uses 16-bit 
sequences, with which 65536 different patterns can be composed. Enough to be able to 
write texts in languages such as Chinese, Japanese and Hebrew.  
 
A byte works well for characters, but for computational purposes we are very much 
interested in number manipulation too. Integer numbers can be easily encoded with bits 
by writing them in binary (rather than decimal) base. As an example, the table below 
shows the correspondence for numbers from 0 to 7, for which we need 3 bits, which offer 
8 (23) different patterns to encode each digit. 
 

000 0 100 4 
001 1 101 5 
010 2 110 6 
011 3 111 7 

Table 2. 2. example of correspondence between binary and decimal numbers 

   
In general, to encode integers in binary notation, each position is associated with a weight, 
just as in the decimal system (ones, tens, hundreds, etc.). In the case of binary notation, 
the most right-hand digit is associated with 20, the next position to the left with 21, the 
next with 22, and so on up to 2n, where n is the number of bits. To obtain the corresponding 
value, as in base ten, we multiply the value of each digit by the weight associated with its 
position and then sum the results. The following tables show an example, comparing 
decimal and binary notation (with 8 bits).  
 

Decimal pattern    
 2 3 3  Weight Result Sum 
     x 1 3 

233      x 10 30 
     x 100 200 

 
  Binary pattern    

1 1 1 0 1 0 0 1  Weight Result Sum 
         x 1 (20) 1 

233 

         x 2 (21) 0 
         x 4 (22) 0 
         x 8 (23) 8 
         x 16 (24) 0 
         x 32 (25) 32 
         x 64 (26) 64 
         x 128 (27) 128 
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As we have seen previously, with 8 bits we can only store 256 different numbers, so to 
achieve a larger range, integers are usually stored in 8 bytes, that can store numbers 
between -9223372036854775808 and 9223372036854775807. 
 

2.2. Information manipulation 
 
With all of the above, we can now understand the basis of classical information, but how 
are the individual bits manipulated in a computer? 
 
We can understand bit manipulation as handling of true/false values, if we imagine that 
bit 0 represents the false value and bit 1 represents the true value. To manipulate these 
values, functions belonging to Boolean algebra are used. Given one or more binary 
arguments (true/false or 0/1), these functions produce a single binary output, applying a 
logical operation such as conjunction (and), disjunction (or) or negation (not). The 
electronic device that generates the output of a Boolean operation when given the input 
values of that operation is called a logic gate. In today's computers, they are often 
implemented with small electronic circuits in which the digits 0 and 1 represent voltage 
levels. [23] 
 
To understand how they work, we provide a review of the eight most commonly used 
logic gates, along with their symbol and their logic table or truth table.  
 

GATE SYMBOL TRUTH TABLE 

Buffer: acts as an identity function, 
generating no voltage or a voltage that is the 
same as the input. 
  

 

INPUT OUTPUT 
A Q 
0 0 
1 1 

NOT: Its output is the opposite of the input. 

 

 

INPUT OUTPUT 
A Q 
0 1 
1 0 

AND: Both input values must be true to 
obtain a true output. 

 
 

INPUT OUTPUT 
A B Q 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
OR: If one of the input values is true, we will 
get a true output. 
  

 

INPUT OUTPUT 
A B Q 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

NAND: if one or both of the values are false, 
it generates a true output. 

 
 

INPUT OUTPUT 
A B Q 
0 0 1 
0 1 1 
1 0 1 
1 1 0 
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NOR: if one or both of the values are true, it 
generates a false output. 
 

 
 

INPUT OUTPUT 
A B Q 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

XOR: only generates a true output if the 
values of the inputs are different. That is, 
equal inputs generate a false output. 
 

 
 

INPUT OUTPUT 
A B Q 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

XNOR: opposite to XOR, only generates a 
true output if the inputs are the same. 
 

 
 

INPUT OUTPUT 
A B Q 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

Table 2. 3. List of logic gates 

A good example to understand how logic gates work is their use for integer addition. Now 
that we know how to encode integer numbers with bits, their sum in binary notation will 
not be so different from the sum in base ten.  
 
 

 0 1 0 0 1 1 1 0 
+ 0 1 0 0 1 0 1 1 

Carry 1 0 0 1 1 1 0  
 1 0 0 1 1 0 0 1 

 
We add the bits in the same position, starting from the right, and if the base value is 
reached, we restart the addition from zero and carry one to the next bit. Therefore we will 
need, for each pair of bits, an output for the sum and an output for the carried value. One 
can check from the truth tables of the logic gates, that the XOR gate allows us to obtain 
the result of the addition, while the AND gate determines whether or not we carry one to 
the next position. The circuit formed by these two gates is called a half-adder. 
 

 

 
Figure 2. 2. Different inputs and outputs for a half-adder circuit 
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With an additional half-adder, we can add the carry output in the following position. The 
next carry output is generated with an OR gate, using the outputs of the AND gates of 
both half-adders as input. All these together form a full-adder circuit.  
 

 
Figure 2. 3. Example of full-adder circuit 

 
By connecting a hall-adder circuit with 7 full-adder circuits, we can add 8-bit binary 
numbers, see Fig.2.3. This is precisely the kind of computational circuit that enables your 
ordinary calculator or computer to carry out simple additions. [23] 
 

 
Figure 2. 4. Basic circuit for addition 
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3. Quantum mechanics 
 
 
The aim of this chapter is to illustrate the reader with some of the key concepts and 
phenomena on which quantum computing is based. We will introduce the concepts of 
superposition and entanglement, discuss the probabilistic nature of quantum physics and 
also the so-called measurement problem. Rather than providing a self-contained 
introduction to quantum mechanics, which the reader can find in several textbooks (e.g. 
Refs. [24], [25]), we will address these concepts by drawing analogies of classical physics 
in the quantum limit and simple examples.  
 
Some of these ideas may be difficult to understand, as they are suited to the microscopic 
domain and are not applicable to our experience in everyday life. That is why we will 
start this chapter by discussing the Dirac polariser experiment [2]. This is a good example 
to introduce some quantum concepts because photons, being bosonic particles, can 
accumulate to provide macroscopic effects we can observe directly. 
 
The polarisation of light is defined as the angle formed by the electric 
field vector of electromagnetic radiation and the axis perpendicular to 
its displacement (Fig 3.1). Generally, conventional light sources, such 
as the sun, emit unpolarized light, whose electric field oscillates equally 
in all directions. We can filter it using a polarizer, which is a grating 
that only allows light that oscillates in the plane parallel to the filter 
gratings to pass through. Light transmitted on the other side is 
considered polarized light, since its electric field oscillates in only one 
direction.  
 
Imagine shining a beam of unpolarised light through a vertical polariser. The intensity of 
light observed on the other side will be lower, since only the fraction of light polarised 
parallel to the filter will pass through it. If we then add a horizontally polarised filter, no 
light would reach the other side at all, as all of it is vertically polarized.   
 
If the light beam is not able to pass through two filters, it would be logical to think that 
the addition of a third filter cannot change this fact. But, surprisingly, if between the two 
aforementioned filters we place a polariser with an angle of 45º, we will see that part of 
the light is able to pass through all three filters (Fig. 3.2). 

 
Figure 3. 2. Polariser at 45º between two parallel polarisers 

In terms of classical physics (electromagnetism), this behavior can be described by the 
classic principle of superposition and by the vector character of the incident radiation. 
The vector decomposition of the electric field of the incident radiation is as follows:  
 

𝐸%⃗" = 𝐸#	𝚤 + 𝐸$#	𝚥      (3.1) 

Figure 3. 1. 
Polarisation angle 
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Where 𝐸# is the x-axis component of the electric field and 𝐸$# is the y-axis component. 
 
The intensity is proportional to the emergent amplitude, and the squares of the 
components at 0 and 90 are related to each other:  
 

|𝐸#|% = 𝑐𝑜𝑠%𝜃|𝐸"|%  ;   |𝐸$#|% = 𝑠𝑖𝑛%𝜃|𝐸"|%     (3.2) 
 

|𝐸#|% + |𝐸$#|% = |𝐸"|%(𝑐𝑜𝑠%𝜃 + 𝑠𝑖𝑛%𝜃) = |𝐸"|%     (3.3) 
 

The fraction of light passing through the first polariser is only the vertical component 
(𝐸%⃗"′ = 𝐸" 	𝑠𝑖𝑛𝜃	). As there is no component with projection on the x-axis, no light reaches 
the other side if a horizontal polarizer is added (𝐸%⃗"&& = 0). 
 
Using this classical electromagnetism approach we can estimate what proportion of the 
radiation passes through each polarizer. But if only vertically polarized light pass through 
the first filter, how is it possible that it can also pass through two other filters with 
different polarization? We need to approach the problem from the point of view of 
quantum physics. To this end we keep in mind that, as revealed by the photoelectric effect 
[24], light is make of collection of photons, each with its own frequency and polarization. 
 
The photon is the indivisible unit of light and, therefore, it is not possible for only a 
fraction of it to pass through the filter. There are only two possible outcomes: to pass or 
not to pass. We can deduce that there will be a certain probability that a photon will be 
polarised in one direction or the other. Thus, when a beam of light passes through a 
polarizer, some photons pass and others do not, and therefore the intensity of the emerging 
light is lower. 
 
The quantum state of a photon with any polarisation can be written as: 
 

|𝜓'⟩ = 𝑐(|𝑥⟩ + 𝑐)|𝑦:       (3.4) 
 
In our case |𝑥⟩ would be the state fully polarized along the x-axis and |𝑦⟩ would be the 
state polarized along the y-axis. So the photon state is a superposition of two orthogonal 
states ( ⟨𝑥|𝑦⟩ = 0	). Necessarily, the probability that the photon is polarised in any 
direction must be 100%. Therefore, the wave function will be normalized,  

 
⟨𝜓'|𝜓'⟩ = 𝑐(% + 𝑐)% = 1          (3.5) 

 
The square of the coefficients 𝑐( and 𝑐) are related to the probability that the photon is 
polarised in one direction or the other. 

 
It is important to note that the measurement changes the state of 
the system. In our case the measuring device is the polarizer. The 
photons that manage to pass through the first filter must be 
polarized along the y-axis, so their state has changed to: 

 
|𝜓'%⟩ = |𝑦⟩ + 0|𝑥⟩       (3.6) 

  

Figure 3. 3. polarization axes 
after passing through the 
filter at 45º (x’, y’) 
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Since now 𝑐(% = 0	, these photons will not be able to pass through a second horizontal 
polarizer. But if we add in between a polarizer which is not orthogonal (e.g. 45º), the 
projection of the photon polarized along |𝑦⟩ over |𝑦′⟩ is finite (Fig.3.3). We could rewrite 
the wave function with the new axes: 

 
|𝜓'%⟩ = |𝑦⟩ = 𝑐(′|𝑥′⟩ + 𝑐)′|𝑦′:       (3.7) 

 
Where both 𝑐(′ and 𝑐)′ are finite. Now the photons can pass through the second polarizer 
with probability 𝑐)% and collapse to  |𝜓'*⟩ = |𝑦′⟩	. (Fig. 3.4 (b))  

 
As we can see, |𝑦′⟩ is no longer orthogonal to |𝑥⟩, or to |𝑦′′⟩ if we rewrite the axes for the 
horizontal polarizer (Fig. 3.4 (c)). Consequently, photons will be able to pass through the 
third filter with a finite probability. 

 

 
Figure 3. 4. Polarization direction and new axes for the three filters 

 
So far we have managed to introduce the concept of superposition and some other basic 
ideas of quantum physics. Thus, let's leave aside Dirac's experiment and move on to 
another important phenomenon: entanglement.  
 
Mathematically, entanglement is defined as the state of a composite system that cannot 
be expressed as a direct product of its individual states. In this state, one constituent 
cannot be fully described without considering the others. 
 
Consider a system consisting of two indistinguishable particles. It is a fundamental 
property of quantum physics that they must be symmetric or antisymmetric with respect 
to the exchange of particles. If the particles are indistinguishable, the Hamiltonian must 
remain unaffected by exchanging their coordinates: 
 

𝑃>+,𝐻@ 	= 𝐻@	𝑃>+,  ;    A𝑃>+, , 𝐻@C = 0     (3.8) 
 

That is, the Hamiltonian (𝐻@) and the permutation operator (𝑃>+,) commute. This in turn 
implies that they share a complete set of eigenfunctions. Therefore, when applying the 
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operator on a wave function, we obtain the same function, multiplied by its eigenvalue, 
𝜆. 
 

𝑃>+, 	𝜓(𝑘, 𝑙) = 𝜓(𝑙, 𝑘) = 𝜆	𝜓(𝑘, 𝑙)    (3.9) 
 
Since 𝑃>+, is a hermitic operator, 𝜆 must be a real number. If we apply the operator twice:  
 

𝑃>+,𝑃>+, 	𝜓(𝑘, 𝑙) = 𝑃>+, 	𝜆	𝜓(𝑙, 𝑘) = 𝜆%	𝜓(𝑘, 𝑙)    (3.10) 
 
But if we permute twice the coordinates of a wave function, it remains unchanged, then 
𝜆% = 1. From this we can deduce that 𝜆 = ±1.  Particles with 𝜆 = +1 are called bosons 
(e.g., photons) and we say that they are symmetric with respect to the permutation. On 
the other hand, particles with 𝜆 = −1 are called fermions (e.g., electrons) and these are 
antisymmetric with respect to the permutation.  
 
Let us imagine now that we have a system formed by two particles that do not interact 
(perhaps because they are far apart in space). The Hamiltonian of the system could be 
written as 

𝐻@ = ∑ ℎ>--     (3.11) 
 
where ℎ>- is the Hamiltonian acting on the i-th single particle. We could think that, since 
there is separation of variables, the wave function could be written as the product of the 
independent particles. 
 

𝜓(𝜏., 𝜏%) = 𝜙/(𝜏.)	𝜙0(𝜏%)     (3.12) 
 
where 𝜙/ would be the orbital of particle 1 and 𝜙0	the orbital of particle 2.  
 
However, the wave function (3.12) does not have the required symmetry properties 
because it does not fulfill Eq. (3.9). As we have seen above, for indistinguishable particles 
it must be symmetric or antisymmetric with respect to the permutation. If our system 
consists of two bosons, the required wave function would be:  
 

𝜓 = 𝑁[𝜙/(𝜏.)	𝜙0(𝜏%) + 𝜙/(𝜏%)	𝜙0(𝜏.)]      (3.13) 
 
While in case of electrons, which are fermions, the function 
 

𝜓 = 𝑁[𝜙/(𝜏.)	𝜙0(𝜏%) − 𝜙/(𝜏%)	𝜙0(𝜏.)] = P𝜙/
(𝜏.) 𝜙/(𝜏%)

𝜙0(𝜏.) 𝜙0(𝜏%)
Q   (3.14) 

 
is the function to be considered (a Slater determinant). If the composite system is in this 
state, it is impossible to attribute to either electron 1 or electron 2 a definite pure state. 
We say then that it is in an entangled state.  
 
Incidentally, we note from Eq. (3.14) that if 𝜙/ = 𝜙0 , the wave function vanishes. This 
is a manifestation of the Pauli principle, which states that there cannot be in a system two 
identical fermions occupying the same spinorbital.  
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One last fundamental aspect of quantum mechanics, which we will rely on in future 
chapters when discussing quantum computing, is that of time-dependent perturbations in 
a quantum system. 
 
The evolution of the state of a system in time is given by the time-dependent Schrodinger 
equation [26]: 
 

− ℏ
-
23
24
= 𝐻@(𝑞, 𝑡)	𝜓        (3.15) 

 
where ℏ is the reduced Planck constant, 𝜓 the system's eigenfunction and 𝐻@(𝑞, 𝑡) is the 
Hamiltonian operator with 𝑞 and 𝑡 representing space and time coordinates, respectively. 
 
When studying Eq.(3.15) for chemical purposes, one is usually concerned with 
equilibrium situations, where the system does not change with time. Then, the 
Hamiltonian can be simply written as 𝐻@(𝑞), and it is reasonable to make a separation of 
variables and writte 𝜓- as a product of a function of space coordinates and a function of 
time: 
 

𝜓-(𝑞, 𝑡) = 𝑓-(𝑞) · 𝜒-(𝑡) = 𝑓-(𝑞) · 𝑒56-4/ℏ        (3.16) 
 

𝐻@(𝑞)	𝜓-(𝑞, 𝑡) = 𝐻@(𝑞)	𝑓-(𝑞) · 𝜒-(𝑡) = 𝜒-(𝑡)	𝐻@(𝑞)	𝑓-(𝑞)    (3.17) 
 
This corresponds to a stationary state, since the probability distribution is independent of 
time, ⟨𝜓-|𝜓-⟩ = ⟨𝑓-|𝑓-⟩ . 
 
In the case that we would need to manipulate the state of a quantum system, the 
Hamiltonian becomes time-dependent, and the solutions are no longer stationary states, 
but combinations of stationary states. 
 

𝜓-(𝑞, 𝑡) = ∑ 𝑓-(𝑞) · 𝑒56-4/ℏ-        (3.18) 
 

To illustrate how this changes the behavior of quantum systems,, we will use one of the 
simplest examples: the particle in a 1D box [26].  
 

𝐻@	𝜓 = 89
%:
𝜓 = − ℏ!

%:
;!

;(!
𝜓 = 𝐸	𝜓     (3.19) 

 
If we apply a time-independent Hamiltonian as in (3.17), the eigenfunctions obtained are: 
 

𝜓!(𝑥) = Y %
	=	
𝑠𝑖𝑛 !>(

=
    (3.20) 

 
and the corresponding probability density is: 
 

|𝜓(𝑥)|% = %
=
sin% !>(

=
     (3.21) 

 
Fig. (3.5) shows the functions and probability densities of the states corresponding to the 
two lowest suffices needed to study the time-dependent example we want. 
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As we can see, in any of both stationary states, there is a finite probability of finding the 
particle on either side of the box at any time. This is not the case for non-stationary states. 
Let suppose as an example that we induce a spectroscopic transition between the 
fundamental state and the first excited state of the particle in the box. 
 
A good approximation to this non-stationary state would be a 50% combination of the 
first two stationary states 
 

𝜓(𝑥, 𝑡) = .
√=
(sin 𝜋 (

=
· 𝑒5-6"4/ℏ + sin 2𝜋 (

=
· 𝑒5-6!4/ℏ).     (3.22) 

 
|𝜓(𝑥, 𝑡)|% = .

√=
^sin% >(

=
+ sin% %>(

=
+ 2 sin >(

=
sin %>(

=
cos𝜔𝑡b      (3.23) 

 
If we compare (3.23) with (3.21) we see that, unlike in stationary states, the probability 
density in non-stationary states depends on time. Plotting the evolution of |𝜓(𝑥, 𝑡)|% with 
time, we can see that the location of the particle changes and it bounces from wall to wall. 
Therefore, it is almost impossible to find the particle on either side of the box at certain 
times. 

      

 
 

Figure 3. 6. Plots for |ψ(x)|2 with evolution of time using Mathematica 

 

 
  

Figure 3. 5. Plots for ψ(x) and |ψ(x)|2 using Mathematica 
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4. Quantum computing 
 
4.1. The qubit 

 
We have already seen in Chapter 2 that conventional bits can take only the values 0 or 1, 
thus they can be implemented by any system with two possible states (e.g. two voltage 
levels in a circuit). This has proved to be an extremely efficient way of coding 
information.  
 
Over the last 50 years, the information technology industry has been exponentially 
developing following Moore’s law, which states that the number of transistors in a 
microprocessor double about every two years. The advances achieved by engineers in the 
lithography of silicon have allowed the exponential miniaturisation of electronics, but, as 
transistors reach the nanoscopic scale, classical physics no longer applies and we must 
stick to the laws of quantum mechanics. 
 
As we saw in Chapter 3, quantum systems differ from classical ones in that the states can 
occur as a superposition of two orthogonal states (Eq.3.4). This brings about the idea that 
it may be possible to implement bits based on such kind of states. We call them quantum 
bits (or qubits). Hence, a qubit could be in state |0⟩, state |1⟩, or a combination of both:  
 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩      (4.1) 
 
Where 𝛼 and 𝛽 are complex numbers. Because the amount of information that a system 
of qubits can represent increases exponentially, superposition allows quantum algorithms 
to process information in a fraction of the time it would take for even the fastest classical 
computer systems to solve certain problems. 
 
However, although a qubit may exist in a superposition of states, we know that if we 
measure it we will not find it like that. It will collapse in state |0⟩ with probability |𝛼|%, 
or in state |1⟩ with probability |𝛽|%. 
 
Quantum states behave mathematically in an analogous way to physical vectors. This is 
why we can also describe a qubit by a column vector:  
 

|0⟩ = ^10b					 ; 					 |1
⟩ = ^01b					 ; 					 |𝜓

⟩ = ^
𝛼
𝛽b       (4.2)  

 
The state of a qubit, |𝜓⟩, is a vector in a two-dimensional complex vector space, whose 
standard basis, {|0⟩, |1⟩}, consists of two distinguishable orthonormal states. 

 
Since |𝛼|% + |𝛽|% = 1, we can also rewrite Eq. 4.1 as:  
 

|𝜓⟩ = 𝑒-@ ^cos "
%
|0⟩ + 𝑒-A sin "

%
|1⟩b       (4.3) 

 
Where 𝛾, 𝜃 and 𝜑 are real numbers. And since the global phase factor, 𝑒-@, has no 
observable effect [27], then we can write: 
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|𝜓⟩ = cos "
%
|0⟩ + 𝑒-A sin "

%
|1⟩         (4.4) 

 
This state vector describes a point on the surface of a 3D sphere known as the Bloch 
sphere, which can be observed in Fig. 4.1. The points on this surface can also be expressed 
in Cartesian coordinates as: 
 

(𝑥, 𝑦, 𝑧) = (sin 𝜃 cos𝜑 , sin 𝜃 sin𝜑 , cos 𝜃)      (4.5) 

  

Figure 4. 1. State of a qubit on the Bloch sphere 

 
We have already learned three ways to represent the state of a single qubit: vectors in ket 
notation, column vector or points on the Bloch sphere surface. Now we can move on to 
composite systems. 
 
In the last chapter we saw that some quantum systems can be written as the direct product 
of their independent particles. Therefore, if we have a qubit in state |𝜓.⟩ and a second 
qubit in state |𝜓%⟩, the state of the combined system would be: 
 

|𝜓⟩ = |𝜓.⟩⨂|𝜓%⟩       (4.6) 
 
A system of two qubits then is a vector that can be written in the following ways:  
 

|𝜓⟩ = 𝛼##|00⟩ + 𝛼#.|01⟩ + 𝛼.#|10⟩ + 𝛼..|11⟩      (4.7) 
 

|𝜓⟩ = l

𝛼##
𝛼#.
𝛼.#
𝛼..

m 

 
Where |𝑖𝑗⟩ represents the basis states of the system and the coefficients 𝛼-B are the 
corresponding amplitudes.  
 
As in the case of a single qubit, the measurement result, 𝑥 = (00,01,10,11), is obtained 
with probability |𝛼(|%. Furthermore, the state of the 2-qubit system after the measurement 
will be |𝑥⟩ and the normalisation condition must be satisfied, so we know that |𝛼##|% +
|𝛼#.|% + |𝛼.#|% + |𝛼..|% = 1. 



 19 

 
However, this is not the case for all two-qubit systems. If each qubit forms a closed 
system, i.e. they are prepared independently and kept isolated, their state can be written 
in product form. But if we allow the qubits to interact, it may not be possible to represent 
their state by a tensor product. Then we say that they are entangled.  
 
The last question to be addressed about the qubit is its physical implementation in a 
computer. We need a system with two possible states, as in the case of the bit, but in this 
case the system must satisfy the peculiarities of quantum mechanics that we have already 
seen throughout this paper. 
 
In a classical computer, as we saw in chapter 2, each bit is stored in a physical system as 
a small capacitor in which different values of the charge represent 0 and 1. But this does 
not represent a good qubit, as it cannot remain in a superposition state, or in an entangled 
state.  
 
A good example of a qubit would be a photon, as we saw in the previous chapter, or a 
particle with spin-1/2, such as an electron, where only the spin can change. The quantum 
state of this particle would be:  
 

|𝜓⟩ = 𝛼|↑⟩ + 𝛽|↓⟩     (4.8) 
 
where |↑⟩ and |↓⟩ are the states with 𝑆C = ±	ℏ

%
 . Being 𝑆C the projection of the electron 

spin momentum over the z-axis. From now on, when talking about computation, we will 
refer to N of these 2-state systems as an N-qubit register, considering them together as a 
quantum system.  
 
The biggest problem is not really finding systems that we can use as qubits but building 
a computer with them. Such computers are fragile and difficult to control. Any influence 
from the outside world would collapse the computation and the qubit would no longer 
represent many states at once. [28]  
 
Currently one of the most favored qubit designs is based on semiconductor circuits. Other 
examples of physical systems with which to implement a qubit are both nuclear spin and 
atomic spin [29]. Recently, much attention has also been paid to the use of quantum dots, 
which are semiconductor nanoparticles with optical and electronic properties 
characteristic of quantum mechanics [30]. Physicists and materials scientists still have to 
work to isolate the qubits as much as possible, as well as to keep them in their quantum 
states long enough to perform calculations. 
 

4.2. Quantum computation protocol  
 
The quantum computing protocol is divided into three main steps: initialisation, 
manipulation and measurement.  
 
Initialisation simply consists of establishing a defined initial state for our quantum 
system. Most often the N-qubit register is initialised in one of its basis states. This means 
that one of the amplitudes 𝛼-B+… will be equal to 1, while the rest will be equal to 0. For 
a 3-qubit register, which state can be written as 
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|𝜓⟩ = 𝛼###|000⟩ + 𝛼##.|001⟩ + 𝛼#.#|010⟩ + 𝛼#..|011⟩ + 𝛼.##|100⟩ 

 
+𝛼.#.|101⟩ + 𝛼..#|110⟩ + 𝛼...|111⟩            (4.9) 

  
One of these initial states could be, for example: 
 

|𝜓⟩ = |011⟩ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

0
0
0
1
0
0
0
0

	

⎦
⎥
⎥
⎥
⎥
⎥
⎤

         (4.10) 

 
Analogous to classical computing, in quantum computers information is manipulated 
using gates. But in this case the gates are unitary operations, i.e. they preserve the norm 
of the state. These operations must not collapse the state of the system as in measurement.  
 
Like qubits, quantum operators can be represented by matrices. A quantum gate with n 
inputs and outputs can be represented by a matrix of degree 2n. In the case of single qubit 
gates, 2. = 2. Of these, the simplest is the quantum NOT gate (sometimes called the Pauli 
X gate).  

𝑈EFG = 𝑋 ≡ ^0 1
1 0b       (4.11) 

 
It changes the state of the qubit from |0⟩ to |1⟩ and vice versa. In terms of the Bloch 
sphere, this can be visualized as a rotation through an angle 𝜋 about de x axis.  
 

𝑈EFG|0⟩ = ^0 1
1 0b ^

1
0b = ^01b = |1⟩ 

 
𝑈EFG|1⟩ = ^0 1

1 0b ^
0
1b = ^10b = |0⟩ 

 

 
Figure 4. 2. Bloch sphere representation of the quantum NOT gate acting on a qubit 
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Another family of relevant single-qubit gates are phase shift gates, which change or alter 
the relative phase of the amplitudes 𝛼 and 𝛽, leaving the probabilities |𝛼|% and |𝛽|% 
unchanged.  
 

𝑃 = ^1 0
0 𝑒-Ab         (4.12) 

 
Where 𝜑 is the phase shift. This is equivalent to drawing a horizontal circle on the Bloch 
sphere of 𝜑 radians. We could also compare it to cutting the sphere at the equator, along 
the 𝑥 − 𝑦 axes, so that the |1⟩ hemisphere rotates, while the |0⟩ hemisphere remains static. 
In general, the action of the phase shift on a qubit is:  
 

𝑃|𝜓⟩ = ^1 0
0 𝑒-Ab ^

𝛼
𝛽b = ^

𝛼
𝑒-A𝛽b 

When 𝜑 = 	𝜋, 𝑒-> = cos 𝜋 + 𝑖 sin 𝜋 = −1, and we obtain the Pauli Z gate. 
 

𝑃(𝜋) = 𝑍 ≡ ^1 0
0 −1b        (4.13) 

 
It generates a half-turn in the Bloch sphere about the z axis, as shown in Fig. 4.3. 

 
Figure 4. 3. Bloch sphere representation of the phase shift 𝜋 gate acting on a qubit 

If we let 𝜑 = 	𝜋/2, then we have that 𝑒->/% = cos(𝜋/2) + 𝑖 sin(𝜋/2) = 𝑖. The gate we 
obtain is called the S gate, which has the matrix representation  
 

𝑃(𝜋/2) = 𝑆 = ^1 0
0 𝑖b         (4.14) 

 
It is like a quarter turn anti-clockwise about the z axis (Fig. 4.4). 
 
And finally, we obtain the gate T if 𝜑 = 	𝜋/4, whose matrix representation is as follows: 
 

𝑃(𝜋/4) = 𝑇 = ^1 0
0 𝑒->/Hb = 𝑒->/I y𝑒

5->/I 0
0 𝑒->/I

z           (4.15) 
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Figure 4. 4. Bloch sphere representation of the phase shift 𝜋/2 gate acting on a qubit 

 
In terms of the Bloch sphere, we can visualize this as an eight turn clockwise about the z 
axis. (Fig.4.5) 

  
Figure 4. 5. Bloch sphere representation of the phase shift 𝜋/4 gate acting on a qubit 

The Hadamard gate is also one of the most relevant single qubit gates, which we will use 
later in this paper. 

𝐻 = .
√%
^1 1
1 −1b     (4.16) 

 
Visualized on a Bloch sphere, the Hadamard gate interchanges the x and the z axes, and 
inverts the y axis (Fig. 4.6 and 4.7) 

 
By applying this gate on a qubit in one of the basis states, we obtain a superposition of 
both: 

𝐻|0⟩ =
1
√2

(|0⟩ + |1⟩) 
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 Figure 4. 6. Bloch sphere representation of the Hadamard gate acting on a qubit in one of the basis states 

 
The Hadamard gate can also take a superposition of both basis states and put them back 
together into a single state: 
 

𝐻
1
√2

(|0⟩ − |1⟩) = |1⟩ 

 

 
Figure 4. 7. Bloch sphere representation of the Hadamard gate acting on a qubit in a superposition state 

 
The last gate we will discuss in this chapter is the CNOT (Controlled NOT) gate. It has 
two input qubits, the first qubit is known as the control qubit and the second one as the 
target qubit. Its matrix representation is  
 

𝐶𝑁𝑂𝑇 = ~
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

~         (4.17) 

 
As one can easily check from matrix products, if the control qubit is in state 1, then the 
target qubit changes from one basis state to another. If the control qubit is set to 0, the 
target qubit is left unchanged. The general set of operations is: 
 

𝐶𝑁𝑂𝑇	|00⟩ = |00⟩ 
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𝐶𝑁𝑂𝑇	|01⟩ = |01⟩ 
 

𝐶𝑁𝑂𝑇	|10⟩ = |11⟩ 
 

𝐶𝑁𝑂𝑇	|11⟩ = |10⟩ 
 
The remaining step to finalize the computation would be measurement. As for the 
initialisation, we often seek to find the register in one of the 2 basis states. To do this we 
measure each of the qubits individually.  
 
We already know from Chapter 3 that the probability of measuring each basis state is 
given by the square of its amplitude. Moreover, if the result of the measurement is, for 
example, |110⟩, |𝜓⟩ collapses to the basis state |110⟩ and any subsequent measurement 
will always give |110⟩. 
 
Finally, we will discuss the quantum circuit model, an example of which is shown in Fig. 
4.8. It is read from left to right, starting from the initial state of the N-qubit register. The 
qubits are carried along "wires", which in this case only mean time flow. On the right side 
we can see the quantum circuit symbol for the measurement.  

 
Figure 4. 8 Example of quantum circuit 

In the central area of the circuit we can see several quantum gates. These are generally 
represented by a box with the symbol of each gate in it. A quantum gate acting on n qubits 
will receive the input qubits through n wires and another n wires will carry the output 
qubits away from the gate.  
 
Fig. 4.9 illustrates another interesting convention of quantum circuits. Being U any 
unitary matrix acting on n qubits, we can define a controlled-U gate, which is a natural 
extension of the controlled-NOT gate. This gate, like the CNOT shown in Fig. 4.10, has 
a control qubit, indicated by a black dot, and n target qubits, indicated by the wires on the 
boxed U, or the symbol ⨁ in the case of CNOT.   
 
 
 
 
 
 

 
Figure 4. 9 Controlled-U 
gate 

Figure 4. 10 Two different representations for CNOT 
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5. Computational project 
 
In this final chapter, after reviewing all the necessary concepts throughout the work, we 
will simulate the operation of a quantum computer, implementing some realistic 
examples of quantum algorithms. For this purpose, we will take three programming 
projects proposed for undergraduate students in a scholar paper [31]. The program used 
to carry out the project was Wolfram Mathematica, since it has all the necessary 
functionalities for the work to be done and has been used several times throughout the 
degree, so its use is familiar. 
 
Because, of course, we do not have access to a quantum computer, the various 
computations have been implemented on a classical computer. This is not able to take 
advantage of quantum programming to save computational time, but it is entirely feasible 
for obtaining results that we can evaluate. 
 
The only limitation of using a classical computer is the number of qubits that can be used, 
which is a maximum of about 27. The problem is that the number of states grows as 2E 
and for 27 qubits, we have 134217728 states. Each of the states also has a complex 
coefficient. Therefore, there are two numbers of 16 bytes each: 
 

2.J	𝑏𝑦𝑡𝑒𝑠 ∗ 2%K𝑠𝑡𝑎𝑡𝑒𝑠 = 4294967296	𝑏𝑦𝑡𝑒𝑠 ≈ 4	𝐺𝑏𝑦𝑡𝑒𝑠 
 
This is the total RAM, or at most half of it, that a normal laptop might have. 
 

5.1. Programming project 1: Simulate measurement of a 3-qubit 
register 

 
First, we implement the initialization and measurement of our 3-qubit system. In eq.4.9 
we have already seen how to define the state of 3 qubits. We must set the number of 
qubits and create a vector state with eight positions, in which we will store the coefficients 
corresponding to each basis state. 
 

𝑏𝑎𝑠𝑖𝑠 = {{0,0,0}, {0,0,1}, {0,1,0}, {0,1,1}, {1,0,0}, {1,0,1}, {1,1,0}, {1,1,1}} 
 
After creating a state vector full of zeros, we must insert in it the desired values for the 
coefficients of the wave function and make sure that it is normalized. For example, we 
could set as initial state an equal superposition of states |000⟩ and |111⟩, see eq.5.1. 
 

|𝜓⟩ = #
√%
(	|000⟩ + |111⟩	) = #

√%

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

1
0
0
0
0
0
0
1

	

⎦
⎥
⎥
⎥
⎥
⎥
⎤

       (5.1) 
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According to what we have studied in previous chapters, if we make several 
measurements, the result will be |000⟩	50% of the time and |111⟩	the other 50% of the 
time, but the result of each single measurement will be random. 
 
Therefore, to program the measurement in Mathematica, we first choose a random 
number r between 0 and 1. This respects the randomness of the measurement and 
coincides with the sum of the quadratic coefficients. In our case there is a 50% probability 
of finding the system in each of the two possible states, so if r is between 0 and 0.5, the 
result of the measurement will be |000⟩. If, on the other hand, r is greater than 0.5, the 
result of the measurement will be |111⟩.  
 

|𝜓⟩ = #
√&

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

1
1
1
1
1
1
1
1

	

⎦
⎥
⎥
⎥
⎥
⎥
⎤

    (5.2) 

 
In order to bring it to the general case, we will use a slightly more complicated example, 
the superposition of the eight basis states shown in 5.2. In this case the probability of 
finding the system in each of the states is 12.5%. If r is between 0 and 0.125, the result of 
the measurement is |000⟩. If it is between 0.125 and 0.25, the result is |001⟩. Between 
0.25 and 0.375 is |010⟩, between 375 and 0.5 is |100⟩, ... To program this, in a first step 
we define 𝑞 = |𝛼###|%, so that if 𝑞 > 𝑟, the result of the measurement is |000⟩. If not, we 
redefine 𝑞 = 𝑞 + |𝛼##.|% and compare again. If 𝑞 > 𝑟 the result is |001⟩	and, if not, we 
repeat the same step for the following states until 𝑞 > 𝑟 is satisfied and we find the result. 
This can be programmed in several consecutive steps or using a loop. The code used in 
this work is as follows: 
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Using another loop, we can repeat the measurement as many times as we wish and thus 
study the probability of obtaining each result. In Figure 5.1 we can see represented the 
results of repeating the measurement simultaneously for both states. And below is the 
code used to perform it. 
 

 
 
 
 
 
 
 
 
 

 
Figure 5. 1. Results of the measurement in programming project 1. On the x-axis we can see the label of each state 
and on the y-axis the number of times it has been measured. On the left the state defined by 5.1 and on the right the 

state defined by 5.2. 

 
5.2. Programming project 2: First full quantum computations 

 
For the second project, four different calculations included in Fig. 5.2. were programmed. 
These are not particularly complicated examples and will allow us to illustrate the effect 
of the most frequent single-qubit gates.Previously the necessary logic gates must be built, 
which in the case of 3 qubits are represented by 2*𝑥	2* matrices. The matrices 
corresponding to the Hadamard gate acting on each of the 3 qubits (𝐻@(.), 𝐻@(%) and 𝐻@(*)) 
are shown below, as well as the phase shift gate (𝑅>"

(*)) acting on the third qubit. 𝐻@(.), 
𝐻@(%) and 𝐻@(*) are constructed with the tensor product of the Hadamard gate seen in 4.16 
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and two identity matrices, with the H gate being multiplied at the position of the qubit on 
which it operates. 

 
 

𝐻9(#) = 𝐻9 ⊗ 𝐼<⊗ 𝐼< = #
√%

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0
0
0
0

1 0 0
0 1 0
0 0 1

1 				0 				0 			0
0
0
0

				
1 				0 			0
0 			1 			0
0 				0 			1

		

1 0 0 0
0
0
0

1 0 0
0 1 0
0 0 1

−1 		0 				0 			0			
0
0
0

−1 0 0
0 −1 0
0 0 −1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (5.3) 

 

𝐻9(%) = 𝐼<⊗𝐻9 ⊗ 𝐼< = #
√%

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 		0 			0		
0
0
0

1 0 0
0 −1 0
0 0 −1

1 	0 		0 		0		
0
0
0

1 		0 		0
0 		1 		0
0 	0 		1

	

1 0 		0 			0
0
0
0

1 		0 			0
0 		1 			0
0 		0 			1

		
1 0 		0 			0		
0
0
0

1 0 0
0 −1 0
0 0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (5.4) 

 

𝐻9()) = 𝐼<⊗ 𝐼<⊗𝐻9 = #
√%

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 		1 0 		0
1
0
0

−1 0 0
		0 1 1
		0 1 −1

0 		0 	0 		0
0
0
0

		0 	0 		0
		0 	0 		0
		0 	0 		0

		

0 		0 	0 		0	
0
0
0

	
0 	0 		0
0 	0 		0
0 	0 		0

1 1 		0 		0	
1
0
0

−1 0 0
0 1 1
0 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (5.5) 

 

𝑃?*
()) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0			 0		 0
0
0
0

𝑒,* 0 0
0 1 0
0 0 𝑒,*

0 0			 0		 0	
0
0
0

0			 0		 0	
0			 0		 0	
0			 0			 0	

0 0			 0		 0	
0
0
0

0			 0		 0	
0			 0		 0	
0			 0			 0	

1 0			 0		 0
0
0
0

𝑒,* 0 0
0 1 0
0 0 𝑒,*⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

           (5.6) 

 
 

 
 
 
 
 

Figure 5. 2. Calculations to be solved for programming project 2. The initial state 
of the qubit register is read from top to bottom.  As we saw in chapter 4, H 
represents the Hadamard gate and 𝜋 represents the phase shift gate with 𝜃 = 𝜋. 
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Once |𝜓⟩ is initialized to state |000⟩, the gates are applied by multiplying |𝜓⟩ by the left. 
They must be applied in the same order as shown in the circuit diagram. The gates in 
Fig.5.2(b), for example, are carried out by the following operation 

 
|𝜓⟩ ⟸ 𝐻@(*)𝐻@(%)𝐻@(.)|𝜓⟩      (5.7) 

 

 
 
As in the previous project, the measurement after each of these calculations was repeated 
in order to observe the trend of the results. The representation of these results can be seen 
in Figure 5.3.  
 
In Fig.5.2(a) a Hadamard gate is applied to qubit 2, so that it is in an equal superposition 
of states |0⟩ and |1⟩. This is confirmed by the measurement results observed in Fig.5.3.(a), 
which vary randomly between states |000⟩ and |010⟩.  
 

 
Figure 5. 3. Results of the calculations in programming project 2 

 
In the calculation of Fig.5.2(b), Hadamard gates are applied to each of the qubits. This 
will leave each of the three in an equal superposition of states |0⟩ and |1⟩ and, therefore, 
the result varies randomly among the eight possible basis states, as we can see in 
Fig.5.3(b). 
 
To simulate the circuit of Fig.5.2(c), two successive Hadamard gates are applied to the 
same qubit, so it will remain unchanged and the measurement result should always be 
|000⟩. This can also be checked in Fig.5.3(c).  
 
In Fig.5.2(d) a first Hadamard gate is applied to qubit 3, which leaves it in an equal 
superposition of states |0⟩ and |1⟩. Next, the phase shift phase, with 𝜃 = 𝜋, generates a 
half-turn on the Bloch sphere about the z-axis. By applying another Hadamard gate on 
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the resulting state, qubit 3 is left in state |1⟩. We can see these operations represented on 
the Bloch sphere in Fig.5.4. As a result of the computation, the measurement should 
always give |001⟩, which can be seen in Fig.5.3(d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. Programming project 3: Implement Grover’s quantum search 
 
Imagine I ask you to think of a number from 1 to 8, which are numbers that we can encode 
with 3 qubits. Classically, if I wanted to guess that number, I could be lucky enough to 
get it right the first time or unlucky enough to go through all of them before getting to the 
right one. This means that the average number of tries needed to get to the correct answer 
is 4. 
 
Generally speaking, if we wanted to perform a search in a database with N entries, we 
would need to check an average of N/2 entries to find the desired one. In our case of eight 
numbers this does not seem like much, but in databases with thousands or millions of 
entries, the search time increases considerably. 
 

Figure 5. 4.Computation of Fig.5.2(d) represented on the Bloch sphere 
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Using Grover's search 
algorithm, whose circuit 
diagram can be seen in 
Fig.5.5, the average number 
of entries in the database 
that we must consult is 
reduced to (𝜋/4)√𝐷. If we 
are talking about a database 
with one million entries, 
this reduces the search from 
500,000 to 785 attempts on 
average, which represents a 
clear example of quantum supremacy. 

 
To perform the Grover search, the database must be put in quantum oracle form. The 
quantum oracle (𝑂>)	is like the identity matrix, except that it has -1 as the diagonal element 
for the correct answer. If, emulating the above case, I try to guess a number from 1 to 8 
but with a quantum search, obviously I should not know the correct answer beforehand, 
so the oracle really must be like a black box. To each element of the diagonal would 
correspond a number from 1 to 8 and you should put -1 in the correct position without 
telling me which one it is. In 5.8 the correct answer is number 7. 
 

𝑂? =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0
0
0
0

1 0 0
0 1 0
0 0 1

0 0 0 0
0
0
0

0 0 0
0 0 0
0 0 0

0 0 0 0
0
0
0

0 0 0
0 0 0
0 0 0

1 0 0 0
0
0
0

1 0 0
0 −1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (5.8) 

 
In addition to Hadamard gates, a special operator 𝐽� will be needed, whose matrix is always 
as follows:  
 

𝐽< =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 0 0 0
0
0
0

1 0 0
0 1 0
0 0 1

0 0 0 0
0
0
0

0 0 0
0 0 0
0 0 0

0 0 0 0
0
0
0

0 0 0
0 0 0
0 0 0

1 0 0 0
0
0
0

1 0 0
0 1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (5.9) 

 
In summary, first the 3-qubit register is initialized to state |000⟩	and three H gates are 
applied to it to create a superposition of the eight basis states. Then the oracle changes 
the input state of the correct answer to -1. The Grover diffusion operator, shown in 
Fig.5.5, is used to amplify the amplitude of the correct answer. If we imagine it on Bloch's 
sphere, each repetition of the dotted block, which we will call the iteration step, rotates 
the state of the system to bring it a little closer to the correct answer. 
 
Since the number of iterations must be close to (𝜋/4)√𝐷, and in our case D=8, we will 
repeat the step twice.  
 

Figure 5. 5. Quantum circuit diagram for Grover's algorithm 
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^
𝜋
4b√8 = 2.22 ≈ 2 

 
The measurement results are shown in Fig.5.6. We can see that the result is 	|110⟩	around 
or above 90% of the time in all cases. The state 	|110⟩	corresponds to position 7, which 
is the number we were looking for. Performing 7 measurements (Fig.5.6(a)) gives only 
one wrong result, which means that if you performed only one measurement you could 
get it right at most at the second attempt. The code used for the computation was as 
follows: 
 

 
 

 
Figure 5. 6. Results of Grover's search with correct answer |110⟩ increasing the number of repetitions of the 

measurement: (a) 7 times. (b)10 times. (c) 100 times. (d) 1000 times 

 
In Fig.5.7 we can also see the results of two computations in which the correct answer 
was changed to |010⟩ and the number of iterations also varied. As a result, the percentage 
of times the answer is correct decreases. 
 

 
Figure 5. 7. Results of Grover's search with correct answer |010⟩. (a) With 3 iterations. (b)Only one iteration step. 

(a) (b) 

(c) (d) 
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With the previous examples we have been able to see the power of Grover's algorithm, 
which is able to arrive at the correct answer in very few runs. On the other hand, the weak 
point of the algorithm is also demonstrated, since its answer is probabilistic, like quantum 
mechanics, and not deterministic, as in classical physics. 
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6. Conclusions  
 
The information contained in this work, especially the examples put into practice in 
chapter 5, has allowed us to illustrate the power of quantum computations. Moreover, it 
gives us an idea of the classical resources needed to simulate them.  
 
Although we have not been able to perform these computations on a quantum computer, 
the results obtained have shown us a small proof of quantum supremacy. This may lead 
us to think that a quantum computer would be exponentially more powerful than a 
classical one with the same number of bits. However, both quantum computers and 
quantum algorithms are currently at an early age, so the results they offer are not much 
better than those of a classical computer in most situations. We may not have to wait long 
for this to change, judging by the speed at which advances are being made in both 
quantum physics and material science.  
 
It is important to note that, although the results have not yet surpassed classical 
computation for the most part, the development of quantum computing has moved us 
from seeing quantum systems as phenomena that must be explained as they are found in 
nature, to seeing them as systems that we can design and create. This has led to the 
development of ingenious algorithms to simulate, in a classical way, quantum systems 
that were originally considered hard to simulate. The ability to perform these simulations 
is expected to be a significant advance in the field of chemistry. [32] [33] [34] 
 
While the project may seem at first sight only loosely related to the contents of the Grade 
in Chemistry, the knowledge of the fundamentals of quantum mechanics and 
computation, together with self-instructing work through surveying of specialized 
literature, have eventually culminated in this report, which provides a self-contained 
explanation to the basics of the quantum computation for graduates in Chemistry, thus 
paving the way for future students who feel attracted by this fascinating and emerging 
field 
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Annex. Full computation project code 
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