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Abstract: In supervised learning, classifiers range from simpler, more interpretable and generally
less accurate ones (e.g., CART, C4.5, J48) to more complex, less interpretable and more accurate ones
(e.g., neural networks, SVM). In this tradeoff between interpretability and accuracy, we propose a
new classifier based on association rules, that is to say, both easy to interpret and leading to relevant
accuracy. To illustrate this proposal, its performance is compared to other widely used methods on
six open access datasets.

Keywords: classification; association rules; open access datasets; statistical implicative analysis

1. Introduction

The problem of classification is crucial in many applications. For example, in hand-
written digit recognition, a digitized image of the written digit (the input) is processed,
and each character must be classified as one of the digits 0–9 (ten classes in all). In a SPAM
filter, each message is processed and must be classified as SPAM or ham (not SPAM). The
inputs are features of the messages (the frequency of some key words, of capital letters,
etc.). In medicine, inputs such as blood indicators and patients’ other pieces of information
can be used to decide if a disease is present or absent. The last two examples are instances
of binary classification. In general, each classifier is a flexible model that learns from data,
in its particular way, using a large database of observations for which the ground truth is
known (the training set). Once the classifier is tuned up in order to have a small misclassifi-
cation rate over the training set, it can be tested with new observations (new handwritten
character images, new messages, new patients). It will assign to each observation the most
plausible class (i.e., the most likely letter or number, whether it is SPAM or not, whether the
patient suffers from the disease or not) and its accuracy can be tested against a test set [1].

Among the many existing classification methods, one can cite decision tree algorithms,
support vector machines, Bayesian algorithms, rule-based algorithms, neural networks,
distance based methods, genetic algorithms and associative classification [2].

Focusing on the rule-based algorithms, one can highlight the seminal work [3] and
the papers [4–7], which lead to classification algorithms with good results. Those methods
are based on the mining of rules by the well known Apriori algorithm [8], which has been
improved since, and has been successfully applied to very large datasets, mining all the
possible rules concerning frequent itemsets (sacrificing only small support rules). In the
context of classification, class association rules are rules implying a particular category
of the classification variable. In [3], the authors introduced the first serious classification
based on association rules (CBA), by relating classification rules under a precedence order,
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so that the observations can be classified using, the strongest rules, and if not applicable,
a default class, so that the misclassification rate is small [9,10]. The strength of the rules
is measured by the confidence, as it estimates the probability of the class given the other
features of the rule. Their results are successful with respect to the ROC curves, but they
usually produce rather complex structures describing the classification process.

Another rule-based method with two main differences from the CBA strategy is
proposed. First, only 2-length classifying rules are considered (and are combined for
classification improvement). Then, a new quality measure is used, taking into account both
the confidence of the rules and the statistical effect of the premises over the conclusions of
the rules.

For this second aspect of the rules, the concept of implication intensity of Statistical
Implicative Analysis (SIA) (see [11,12]) is used in this work. SIA is a data analysis method
for both hierarchical clustering and association rules. It uses statistical independence
(among the variables) as a baseline, to measure the similarity between variables (for
the clustering task) and the quality of rules (for association rule task). SIA was initially
developed in the field of Didactics of Mathematics [12], and is now being used in a wider
range of data and domains [13–17].

In this work, it will be compared to other classification methods of widespread use
in the literature (Naïve Bayes, radial basis neural networks, decision trees J48 and simple
CART) with breast cancer open access datasets from UCI Machine Learning repository,
namely Wisconsin Breast Cancer (WBC), Wisconsin Diagnosis Breast Cancer (WDBC) and
Wisconsin Prognosis Breast Cancer (WPBC) [18], through the computation of the confusion
matrices: accuracy, precision, sensitivity and specificity. These datasets have been used
in order to test classifiers such as in [2,19–23]. In addition, the Haberman dataset has been
used to test algorithms in [24]. The EEG Eye State Data Set (IDs_mapping) has been used
in [25] for classification of eye state using k-Nearest Neighbors algorithm and multilayer
perceptron neural networks models, and also used in [26], which proposes a novel EEG eye
state identification approach based on Incremental Attribute Learning (IAL). The Cervical
Cancer Behavior Risk Data Set (SOBAR) in [27] was also used in this study.

All the computations in this paper have been conducted by means of the R Statistical
Software [28].

2. Methodology

The aim of this paper is to define an accurate and easy to interpret binary classifier, and to
show that it is as competitive as other widely used and more complex classifiers. For that aim,
a quality measure taken from the Statistical Implicative analysis, described in Section 2.1, was
used. The rationale of the classifier is exposed in Section 2.2, and the criteria for comparing the
performance of the competing algorithms are given in Section 2.4.

In Section 2.3, the open access datasets used for the test are introduced, and the results
of the comparison are shown in Section 3. Finally results are discussed in Section 4.

2.1. A New Quality Measure of Association Rules

Association rules are endowed with several quality (or interestingness) measures. The
most widely used ones are confidence, support, and lift, and they can be easily displayed
when rules are mined through the Apriori algorithm [8], implemented in the popular arules
R package [29].

There are several other quality measures, each one extracting a slightly different facet
of the considered rule [30–32]. For the sake of good prediction rates, the confidence is the
most important one, since it measures how likely the right-hand side (rhs) of the rule is
observed for an individual who is seen to hold the left-hand side (lhs) of the rule.

For very large datasets, the computation is an issue, and the Apriori algorithm needs
to sacrifice rules affecting a low proportion of the sample, in order to finish in a reasonable
time. The support of a rule is the fraction of observations (relative frequency) holding both
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the lhs and rhs of the rule, and only rules exceeding a minimum support and a minimum
confidence are mined.

The lift of a rule is the proportion between the confidence of the rule and the support
of the rhs. It can be interpreted as the effect of the lhs over the rhs: when lift >1, the lhs
‘raises’ the chances of observing the rhs, while a lift <1 means that the lhs ‘reduces’ the
chances of observing the rhs.

Lift and confidence are neither completely independent nor tightly related. One can
have rules with a confidence such as 0.80 (hence giving a good predictive ability), but a lift
of only 0.90, meaning that the lhs reduces the initial chances of the rhs by 10%. Although
the best prediction is the occurrence of the rhs, because of the confidence, the effect of the
lhs should not be overlooked.

All the quality measures are descriptive, therefore subject to a natural variability under
the sampling scheme that has led to our dataset. In order to measure the effect of the lhs
over the rhs, one can use the statistical inference over the value of the lift of a rule in the
whole population. To that aim, the implication intensity of [11] is used.

Definition 1. Let a and b be two binary variables. The implication intensity of the rule a⇒ b is
the probability that a lack of relationship between a and b produces more counter examples than
the ones observed in the sample. Formally, P(Nab > nab), where Nab stands for a random variable
accounting for the number of counter examples observed in a random sampling, and nab stands for
the number of observed counter examples in the current sample.

Depending on the random sampling scheme, the distribution of Nab can be Binomial
or Poisson, and a Gaussian approximation is feasible for large sample sizes [11]. Other
probabilistic approaches to define the interestingness of rules can be seen in [33].

Example 1. If binary variables a and b hold the joint distribution given in Table 1, the implication
intensity of A⇒ B is P(Nab > 20). We can see A as the outcome of Bernoulli trials of parameter
p = 40/100, and similarly for B, with parameter p = 25/100. Under statistical independence,
we can see the observations of counterexamples (A = 1, B = 0) as Bernoulli trials of parameter
p = 0.4 · 0.25 = 0.1. Assuming statistical independence between A and B, the observed number
of counterexamples is exceeded with probability P(Nab > 20) = 0.9835. Although the confidence
of the rule is poor, 20/40 = 0.5, the lift is 0.5/0.25 = 2, showing how the fact that an itemset
contains A (A = 1) doubles the chances of that itemset containing B (B = 1). The implication
intensity accounts for this extraordinary significant effect of A over B.

Table 1. Joint frequency table of binary variables a and b of Example 1 illustrates the concepts of
confidence, lift and implication intensity.

b b Total

a 55 5 60
a 20 20 40

Total 75 25 100

Remark 1. The implication intensity coincides with the (complement to 1 of the) p-value of the
statistical hypothesis test “H0 : lift ≤ 1 vs. H1 : lift > 1”, when using the test statistic Nab, and
the procedure “reject H0 if Nab ≥ c” for some c.

Bearing this in mind, the authors want to build a classifier based upon strong rules,
showing a large confidence, but also significant rules. Moreover, the goal is to choose rules
whose lhs shows a significant positive effect on the rhs (i.e., when the implication intensity
is strong). Then, the notion of implifidence (a term formed by the contraction of implication
and confidence) as a useful quality measure is used.
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Definition 2 ([34]). The implifidence of a rule a⇒ b is defined as

IC(a→ b) = I(a→ b)[C(a→ b)C(b→ a)]1/4.

where IC, I and C denote, respectively, implifidence, implication intensity, and confidence, and the
rule b→ a is the transposition of the mined rule a→ b.

The properties of IC(·) with respect to the confidence C(·) and the intensity I(·) are
studied in [34], where the authors show, under several conditions, their relationship.

2.2. The Proposed Approach

Usually, input variables are numerical or categorical data. In order to extract asso-
ciation rules, they are turned it into transactions. Numerical data can be binned into a
small number of intervals (for example, variable Vi has a range of data that can be split
into ni intervals I1, I2, . . . , Ini ). For each j = 1, 2, . . . , ni, one can define the binary variable
Vi,j, indicator of interval Ij (i.e., reaching value 1 only for data whose variable Vi belong to
interval Ij, and 0 elsewhere). The number of intervals for the numeric variables is the first
parameter of our classifier.

The output binary classification variable Y is replaced by two other binary variables
Y0 and Y1, each one indicator of the corresponding class.

The notion of implifidence [34], introduced in the previous section as the quality
measure that takes into account both the confidence (best for prediction) and a statistically
significant effect of the lhs over the rhs, can be used. Every 2-length classifying rule (i.e.,
whose lhs is a binary input variable and whose rhs is either Y0 or Y1) can be mined. The
implifidence threshold is the second parameter of the model, and it will filter the rules in
order to keep only the significant ones.

Once the significant rules have been detected, the involved variables are said to be the
significant variables for the classification process.

The more variables are used to define the classification process, the lower prediction
error may be reached. In contrast, the more complex would be the resulting classification
method, and less comprehensible for the practitioner. In order to get a trade-off, a third
parameter has to be chosen, an odd number to group significant variables, and classify by
majority voting.

The final group of significant variables shall be the one with the lowest sample
prediction error, and it will conform to the final classification method.

To summarize, the process is the following:

1. Transform every input variable Vi into a set of binary variables Vi,1, Vi,2, . . . , Vi,ni (here
one has one or more parameters, the number of intervals in which each numeric
variable is categorized). The classification variable Y is doubled into the binary
variables Y0 and Y1.

2. Mine all the 2-length classifying rules (whose lhs is a binary input variable and rhs is
either Y0 or Y1). This choice allows us to mine all the rules without the sacrifice of a
minimum support, even for large datasets, in a reasonable time.

3. Choose a threshold i0 (this is a new parameter in [0, 1]) for implifidence, and filter the
rules exceeding that implifidence. They can be called significant rules. Any original
variable Vi such that all its binary related variables (Vi,1, Vi,2, . . . , Vi,ni ) are the lhs of a
significant rule, it can be called significant variable.

4. Extract the subset of significant variables (in this step, variables with low effect on the
classification variable Y are discarded).

5. Make the table of 1-predictor classifications, using the significant rules, where each in-
dividual (row) is classified in accordance to each of the selected significant
variables (column).

6. Choose a low odd number m of ‘premises’ (another parameter). Rules will be built
with at most m premises in order to classify data).
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7. For every combination of m significant variables:

• Classify each individual in the sample using the classifying rules involving the
m variables, by majority voting among the outcomes of those rules.

• Compare classification with the true class.
• Assess the prediction of the m-tuple by the four measures of performance (accu-

racy, precision, sensitivity, specificity).

8. Choose the m-tuple with best performance (accuracy by default, but any other can
be chosen).

9. Return final classifier that uses the m-tuple leading to the best performance.

For example, if a variable V has 3 categories a, b and c, one then considers the rules
where each category implies the positive class (a → 1, b → 1 and c → 1), and the rules
where each category implies the negative class (a→ 0, b→ 0 and c→ 0). If for category a,
both of its rules are not significant, it will not be possible to use this variable V to classify
an individual for who V = a. Then V is not a significant variable.

We have implemented the algorithm in a convenient R package for Linux, freely
available in [35]. It contains the function SIAclassif(), that develops the algorithm, and
returns the classifier, as well as the function predict.SIA(), which takes the object given
by the previous function and applies it to new data, returning the predicted class of all the
instances present in a new dataset.

In the Appendix A, one can find the text output of our algorithm, which explains
to the user how the instances are classified according to their values in the significant
variables.

2.3. Data Description

Our approach has been tested using six widely used datasets: Wisconsin Breast Cancer
(WBC), Wisconsin Diagnosis Breast Cancer (WDBC), Wisconsin Prognosis Breast Cancer
(WPBC), Haberman’s survival (Haberman), EEG Eye State Data Set (IDs_mapping) and
Cervical Cancer Behavior Risk Data Set (SOBAR) [18].

The WBC dataset relates the malignancy of tumors (2 for benign, 4 for malignant)
to 10 attributes like clump thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli,
mitoses, and class. It has 683 records with a class distribution of 444 negative and 239
positive records.

The WDBC dataset relates the diagnosis (M = malignant, B = benign) to ten cell nuclei
features, extracted by computer vision diagnostic system: radius, texture, perimeter, area,
smoothness, compactness, concavity, concave points, symmetry and fractal dimension [36].
For each image, as it contains several cells, three values of each feature are kept: the mean
value, the standard error, and the mean of the three largest values. In summary, there are
569 records with 30 input features, and a class distribution of 212 positive and 357 negative
records.

In the WPBC dataset, the outcome (R = recurrent, N = non-recurrent) is related to
time (recurrence time, for recurrent, and disease-free time, for non-recurrent), as well as to
features such as in the WDBC dataset, and tumor size and lymph node status. In summary,
there are 194 records on 30 input features with 46 positive and 148 negative records.

The Haberman dataset reflects a study on the survival of patients who had undergone
surgery for breast cancer. It contains 306 instances and 3 attributes (the age of patient at
the time of operation, the year the patient underwent surgery and the number of positive
auxiliary nodes detected) as well as the survival status class (1 = the patient survived
5 years or longer, and 2 = the patient died within 5 years). It gives 81 positive and 225
negative records.

EEG Eye State classification is important and useful to detect humans’ cognition state.
The dataset includes 14 continuous EEG measurements. The eye state was detected via a
camera during the EEG measurement and added later manually to the file after analyzing
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the video frames. A ‘1’ indicates the eye-closed and ‘0’ the eye-open state, with an amount
of 6723 positive and 8257 negative records.

The Cervical Cancer Behavior Risk Data Set contains 18 explanatory attributes regard-
ing ca cervix (1 = has cervical cancer, 0 = no cervical cancer) in 72 instances, with 21 positive
and 51 negative records [37].

2.4. Classifier Comparison Criteria

To evaluate our approach, we have compared our results to those of the different clas-
sifiers (J48, Naive Bayes, svmRadial, CART and K-nearest neighbors). All machine learning
algorithms used for the comparison in this paper were conducted using RWeka [38]. The
RWeka package provides a collection of functions that give R access to the machine learning
algorithms in the Java-based Weka software package [39].

The level of effectiveness of the classification model is calculated with the number of
correct and incorrect classification in each possible value of the variable being classified in
the confusion matrix [1,40].

The entries in the confusion matrix have the following meaning in the context of
our study: TP is the number of true positives (the number of correct predictions that an
instance is positive), TN is the number of true negatives (the number of correct predictions
that an instance is negative), FP is the number of false positives (the number of incorrect
predictions that an instance is positive) and FN is the number of false negatives (the number
of incorrect predictions that an instance is negative).

The accuracy is the proportion of the total number of predictions that were correct
( TP+TN

TP+TN+FP+FN ). The precision is the measure of accuracy provided that a specific class has
been predicted ( TP

TP+FP ). The sensitivity is the measure of the ability of a prediction model
to select instances of a certain class from a data set ( TP

TP+FN ). The specificity corresponds to
the true negative rate, which is commonly used in two class problems ( TN

TN+FP ) [20,22].

3. Results

As stated in Section 2.4, the decision was made to use 5-fold cross-validation. The
datasets were randomly divided into five groups. Fixing one of such groups, all methods
were fitted to all the instances in the other groups. Then, all fitted methods were asked
to classify the instances in the fixed group, from which the confusion matrix and the four
performance criteria were computed. Repeating the process for each of the five groups and
averaging the obtained values, the results shown in Table 2 and represented for ease of
interpretation in Figure 1 are obtained. These results are discussed in Section 4.

When the classes are unbalanced, some classes may not appear in some training/test
sets, and it leads to undefined values of the performance criteria (because of the
fractions 0/0).

The classifier has been implemented in an R package, and it can be freely downloaded
from [35] and used as follows under Linux:

• Place the Clasif.zip file in a local folder (that we denote as path_to_file)
• Run install.packages(path_to_file, repos = NULL, type="source") in the R

Console. The package will be installed from source.
• Run library(Classif) in the R Console
• Run Classif() in the R Console. It provides a comfortable windows interface where

the user can pick the dataset file and select the number of votes without writing
code. Its output is the comparison among the classifiers that we show in Table 2. The
object rules (that the user can print just typing rules in the R Console) contains the
classifying rules and the accuracy for each possible number of votes.

• Internally, the function SIAclassif() is the one that performs all the steps of our
algorithm, according to the implifidence threshold and the maximum number of votes.
It computes the implifidence of all the rules, it selects the significant variables, and
it computes all the combinations of groups of significant variables and the resulting
classification for each one, taking the one which maximizes the accuracy (by default,



Mathematics 2021, 9, 1315 7 of 12

or any other criterion specified by the user). It prints a sentence explaining the rule for
classification. As an example, the result for the WBC dataset is shown in Appendix A.

• The function predict.SIA() requires, as a first argument, the object returned by
the function SIAclassif(), and as a second argument, a data frame with the new
instances, in order to apply the classification and produce the predicted output.

Table 2. Classification results for the ML methods applied to each dataset. Values are obtained by
averaging under 5-fold cross validation. NA values arise when some class may not appear in the
training/test set, and the performance criteria involve the fraction 0/0 for some of the classifiers.

Dataset Method Accuracy Precision Sensitivity Specificity

WDBC NB 0.7240773 0.6629947 0.5329353 0.8361464
CART 0.6432337 0.5986015 0.1629407 0.9303413

J48 0.6274165 NA 0.0000000 1.0000000
RadSVM 0.6274165 NA 0.0000000 1.0000000

SIA 0.8347979 0.7786700 0.7688728 0.8728805

IDs_mapping NB 0.6417223 0.6092675 0.5617475 0.7067785
CART 0.6578772 0.6288379 0.5829920 0.7187949

J48 0.6104806 0.6032557 0.3858690 0.7933888
RadSVM 0.5512016 NA 0.0000000 1.0000000

SIA 0.6550734 0.6325261 0.5529404 0.7383278

SOBAR NB 0.9027778 0.9652778 0.7460317 0.9739583
CART 0.6527778 0.5027778 0.4365079 0.7619464

J48 0.7083333 NA 0.0000000 1.0000000
RadSVM 0.7083333 NA 0.0000000 1.0000000

SIA 0.8055556 0.7833333 0.7301587 0.8952020

WBC NB 0.9765739 0.9475863 0.9870416 0.9707784
CART 0.9458272 0.9225932 0.9247400 0.9574295

J48 0.9311859 0.9130195 0.8921389 0.9536268
RadSVM 0.9663250 0.9570372 0.9447121 0.9775771

SIA 0.9428990 0.9107039 0.9285842 0.9500720

WPBC NB 0.6752577 0.3009450 0.2740059 0.7963057
CART 0.7577320 0.5552283 0.1666237 0.9403461

J48 0.7628866 NA 0.0000000 1.0000000
RadSVM 0.7628866 NA 0.0000000 1.0000000

SIA 0.6752577 0.2424399 0.1640648 0.8377091

haberman NB 0.7156863 0.4185765 0.2281000 0.8850047
CART 0.6960784 0.2857298 0.2097401 0.8622492

J48 0.7352941 NA 0.0000000 1.0000000
RadSVM 0.7352941 NA 0.0000000 1.0000000

SIA 0.6143791 0.2898471 0.2910234 0.7110647
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Figure 1. Comparison of the performance of the compared methods in the six open access datasets.
Values are obtained through 5-fold cross validation. Our approach (SIA) proves to be competitive
and its added value is the simple interpretability (see Appendix A).

4. Conclusions

We have proposed a machine learning algorithm for classification based on association
rules, using a rather novel quality measure, the implifidence (see Section 2.1), and a majority
vote among a set of significant rules.

Our approach has been tested using six well known open access datasets, and its
results have been compared with four other well established algorithms for classification
(Naive Bayes, Radial basis neural networks, Decision trees J48 and simple CART), using
5-fold cross-validation in order to keep away from overfitting.
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As can be seen in Figure 1, our proposal gets a top or second position among the five
classifiers in four of the six datasets, with regard to accuracy, precision and sensitivity. Our
model is ranked top or second in only two of the datasets regarding specificity.

The worthiest benefit of our approach is the simplicity of interpretation of the classifi-
cation rule (see Appendix A for an example), since the classification is directly related to
the observed variables.

One can consider that, in the trade-off between accuracy and interpretability of the
model, our proposal overcomes all the other tested methods. Even if J48 and CART are also
interpretable, their trees are usually more complex than the rules we get with our method.

In this study, the default parameters for all the classifiers have been kept. The
effect of choosing different parameters in every model will be analysed in detail in a
forthcoming research.
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Appendix A

As an example for practitioners, we show below the output of our classifier, the
function SIAclassif(), stored in an object called rules, for the WBC dataset, using up to
7 significant variables. Output classes are “malignant” and “benign”, while input features
are V1, V2, ..., V8 and V9.

• If the user wants to use only one variable, the best classification is done by checking
V2, which predicts the class “malignant” for an individual whenever it takes one of
the values 10, 3, 4, 5, 6, 7, 8 or 9. The accuracy of this classifier is 0.926793557833089.

• If the user accepts to use up to three variables, the best classification reaches an
accuracy of 0.961932650073206 by checking the variables V8, V3 and V6. The rule
forecasts the class “malignant” for a record, if at least two of the variables V8, V3 and
V6 take one of their listed values (see component [[2]] below).

• In general, the user decides on a particular classifier according to the importance given
to the accuracy, as well as to the simplicity of the rule. In any case, the interpretation
of the classification of our approach is easy, contrary to other classifiers, because the
practitioner only needs to check the values of a few of the original variables in order
to decide the output class.

The user can choose to maximize other criteria such as precision, sensitivity, specificity,
or any linear combination of all the four measures. If the user types rules in the R Console,
the output is the following:

[1] "rules"
[[1]]
[1] "Classify as ’malignant’ iff at least 1 of the following variables
hold: V2={10,3,4,5,6,7,8,9}; . The ’accuracy’ is 0.926793557833089."

[[2]]
[1] "Classify as ’malignant’ iff at least 2 of the following variables

http://archive.ics.uci.edu/ml
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hold: V8={10,3,4,5,6,7,8,9}; V3={10,3,4,5,6,7,8,9}; V6={10,3,4,5,6,7,8,9};
. The ’accuracy’ is 0.961932650073206."

[[3]]
[1] "Classify as ’malignant’ iff at least 2 of the following variables
hold: V7={10,4,5,6,7,8,9}; V3={10,3,4,5,6,7,8,9}; V6={10,3,4,5,6,7,8,9};
. The ’accuracy’ is 0.961932650073206."

[[4]]
[1] "Classify as ’malignant’ iff at least 3 of the following variables
hold: V8={10,3,4,5,6,7,8,9}; V7={10,4,5,6,7,8,9}; V3={10,3,4,5,6,7,8,9};
V6={10,3,4,5,6,7,8,9}; V1={10,6,7,8,9}; . The ’accuracy’ is
0.972181551976574."

[[5]]
[1] "Classify as ’malignant’ iff at least 3 of the following variables
hold: V7={10,4,5,6,7,8,9}; V5={10,3,4,5,6,7,8,9}; V2={10,3,4,5,6,7,8,9};
V6={10,3,4,5,6,7,8,9}; V1={10,6,7,8,9}; . The ’accuracy’ is
0.972181551976574."

[[6]]
[1] "Classify as ’malignant’ iff at least 3 of the following variables
hold: V7={10,4,5,6,7,8,9}; V5={10,3,4,5,6,7,8,9}; V3={10,3,4,5,6,7,8,9};
V6={10,3,4,5,6,7,8,9}; V1={10,6,7,8,9}; . The ’accuracy’ is
0.972181551976574."

[[7]]
[1] "Classify as ’malignant’ iff at least 3 of the following variables
hold: V7={10,4,5,6,7,8,9}; V2={10,3,4,5,6,7,8,9}; V3={10,3,4,5,6,7,8,9};
V6={10,3,4,5,6,7,8,9}; V1={10,6,7,8,9}; . The ’accuracy’ is
0.972181551976574."

[[8]]
[1] "Classify as ’malignant’ iff at least 4 of the following variables
hold: V8={10,3,4,5,6,7,8,9}; V7={10,4,5,6,7,8,9}; V5={10,3,4,5,6,7,8,9};
V2={10,3,4,5,6,7,8,9}; V3={10,3,4,5,6,7,8,9}; V6={10,3,4,5,6,7,8,9};
V1={10,6,7,8,9}; . The ’accuracy’ is 0.97510980966325."

[[9]]
[1] "Classify as ’malignant’ iff at least 4 of the following variables
hold: V8={10,3,4,5,6,7,8,9}; V7={10,4,5,6,7,8,9}; V5={10,3,4,5,6,7,8,9};
V3={10,3,4,5,6,7,8,9}; V6={10,3,4,5,6,7,8,9}; V1={10,6,7,8,9};
V4={10,2,3,4,5,6,7,8,9}; . The ’accuracy’ is 0.97510980966325."
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