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1. Abstract 

 

We present a report that describes the stochastic variational Monte Carlo method 

underlying ideas and techniques, such as the Metropolis Algorithm in a multi-dimensional 

space. We design Fortran codes that generates, according to Metropolis, random 

numbers with non-uniform density, to sample local energy and its squared. Then, we 

compute energy and energy squared as the average of their local partners and, from 

them, the variance. We enclose illustrative calculations on the Harmonic Oscillator, 

Hydrogen atom and Helium atom ground states.  

 

 

2. Introduction 

 

The twentieth century can be considered as one of the most hopeful for quantum 

chemistry. Until then, quantum mechanics had virtually the same limitations than 

classical mechanics. It was in 1946 when the first electronic computer showed up, also 

known as ENIAC (Electronic Numerical Integrator And Computer). Its first function was 

to carry out a series of calculations, related to neutron diffusion[1] to assist in the design 

of the hydrogen bomb during the World War II. To this end, a new method based on 

random numbers sequences distributed evenly was developed. It was the beginning of 

the Monte Carlo (MC) method. Since this method uses random numbers, it is a stochastic 

procedure. Actually, it was along the World War II, and related to the development of 

nuclear weapons, when MC techniques were developed, mainly by scientist such as 

John Von Neumann, Enrico Fermi, S M Ulam and Nicholas Metropolis at Los Alamos 

National Laboratory, USA[2]. With the development of electronic computers, a number of 

new investigations on numerical methods in quantum chemistry were developed (until 

then, only exact function could be calculated by solving the Schrödinger equation for very 

simple systems). Nowadays, we can carry out calculation of large molecules; we can 

even calculate ordered crystals. 
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The origins of quantum chemistry emerged many years ago, where some equations 

could be solve by standard analytical and numerical methods. These methods accounted 

for up to two-body problems. Prior to deal with the electronic part of the Schrödinger 

equation of standard atoms and molecules, it is worth starting with the simple system: 

the He atom. We must solve the Hamiltonian eigenvalue equation,  𝐻̂ · 𝜑 = 𝜖 · 𝜑, where 

𝜑 = 𝜑(𝜏1, 𝜏2) is the wave function, with 𝜏 = (𝑟, 𝜎),  where 𝑟 is the vector position and 𝜎 

the spin. 𝐻̂ is the Hamiltonian, i.e., the energy operator and 𝜖 is the total energy of the 

system. 

The He Hamiltonian can be expressed as 𝐻̂(1,2) = 𝐻̂1 + 𝐻̂2 + V12 where V12 =
1

𝑟12
 , being  

𝑟12 the interelectronic distance. V12 is then singular (infinite) if 𝑟12 = 0. This means that 

the electron 1 and the electron 2 cannot be at the same position, i.e. 𝑟1 ≠ 𝑟2. Therefore, 

the probability of finding both electrons at the same position 𝑃(𝑟1 = 𝑟2) = |𝜑(𝑟1=𝑟2)|
2
 must 

be null. 

The He atom is a three body problem. Then, it has not analytical solution. In order to 

solve the Schrödinger equation in an approximate manner, we can start with the 

independent-particle model[3]. This model disregards electron-electron repulsion. Then, . 

𝑟12 = 0 is not a hindrance for it. The independent-particle Hamiltonian can be written as 

𝐻̂(1,2) = 𝐻̂1 + 𝐻̂2. Unfortunately, this model provides a very poor approximation of the real 

He energy and wave function (and in general of every poly-electronic atom and molecule).  

To improve the model, the electron-electron repulsion must somehow be taken in. The 

self-consistent field SCF of Hartree-Fock method does it in an averaged way. Prior to 

deal with SCF we must say a few words on the Pauli’s principle. Since permutation of 

identical particles commutes with the Hamiltonian, the Hamiltonian eigenfunctions must 

also be eigenfunctions of the permutation operator. In the simplest case of two particles, 

since a two-fold permutation is doing nothing, the squared of the permutation operator 

eigenvalue 𝜆2must be the unity, then 𝜆 = ±1 , i.e., we must have either symmetric 

 𝜑(𝜏1, 𝜏2) = 𝜑(𝜏1, 𝜏2)  or antisimetric 𝜑(𝜏1, 𝜏2) = −𝜑(𝜏1, 𝜏2)  functions. We call boson 

those particles with symmetric wavefunctions (e.g. photons) and fermions those with 

antisymmetric ones (e.g. electrons). Thus, the independent-particle model wave function 

of the He atom must be of the form: 𝜑(𝜏1,𝜏2) = ∅1(𝜏1) · ∅2(𝜏2) − ∅1(𝜏2) · ∅2(𝜏1). 

 



5 
 

Another way to describe the anti-symmetric wave function is the so-called Slater 

determinant:  

∅1(1) · ∅2(2) − ∅1(2) · ∅2(1) =
1

2
· |
∅1(1) ∅2(1)

∅1(2) ∅2(2)
| 

The exact N-body wave function of a system is not a single Slater determinant (this is 

the independent-particle model approximation to the exact wave function) but (due to the 

completeness of the Hilbert space of functions) it can always be written as a linear 

combination of (very many) Slater determinants. 

Coming back to the Hartree-Fock method, it can be summarized in the so-called Hartree-

Fock equation: 𝐹̂𝑖 𝜙𝑖 = 𝜖𝑖𝜙𝑖, where 𝐹̂ is the Fock operator, 𝜙𝑖 the optimized orbital and 

𝜖𝑖the associated energy. The many-electron Hartree-Fock wave function is then written 

as the Slater determinant of the occupied lowest-lying orbitals.  

Since, as stated above, the exact N-body wave function can always be written as a linear 

combination of Slater determinants, we can improve variationally the SCF wave function, 

as linear combinations of Salter determinants built out of Hartree-Fock orbitals. This is 

method is referred to as Configuration interaction (CI)[5] post-Hartree-Fock method. In 

the case of He atom, a Configuration interaction wave function will take the following 

form: 𝜑 = 𝑎 · det|1𝑠(1)1𝑠̅(2)| + 𝑏 · 𝑑𝑒𝑡|1𝑠(1)2𝑠̅(2)| + 𝑐 · 𝑑𝑒𝑡|1𝑠(1)2𝑝̅𝑧(2)| + ⋯ 

The appearance of computers gave as a result the obtention in a short period of complex 

calculations. From there, different methods arose to obtain the exact energy of small 

atoms like He and H. But, how to verify that such results are correct? Kolos and 

Wolniewicz[6] made variational methods for atoms with few electrons in order to calculate 

practically exact values of the energy that would serve as a reference. They took 

variational functions with thousands of parameters and simplified it so that they 

increasingly obtained a more sophisticated wave function. Its contribution to quantum 

chemistry is very important because it serves as a reference. Every time a new 

variational method comes up, we can compare the results to see how good the new 

method is. 

One of the advantages of Monte Carlo method includes the possibility of solving different 

types of problems that can’t be solved analytically. But sometimes the method also 

presents problems, for many-electron wave functions in order to obtain accuracy and 

exactly, it’s necessary to apply the Jastrow correlation factor. 
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2.1. Jastrow correlation factor 

 

Jastrow factor is used in atoms, molecules and solids. First Monte Carlo works were 

used with a two-body (electron-electron) Jastrow factor[7]. In order to decrease the 

energy and avoid the fluctuations of the local energy, a three-body (electron-electron-

nucleus) was studied.  

The Jastrow factor equation[8] includes both of them, but to make it easier, as a sum, 

Jastrow factor parameterizes the wave function equation in order to produce quality 

results and fairly accurately describe the electronic correlation. In Monte Carlo, in case 

of He atom, to prevent two particles from being in the same positions, i.e., 𝑟12 = 0, firstly 

the independent-particle model was introduced. As we said before, this model doesn’t 

take in count the electron-electron repulsion, so the Hamiltonian would be 𝐻̂(1,2) = 𝐻̂1 +

𝐻̂2. In Monte Carlo, we can apply the Jastrow Factor that gives a better solution of the 

Hamiltonian due to that this factor doesn’t reject the electron-electron repulsion. This 

equation would be 𝜙(1,2) = 𝜑1(𝑟𝑖) · 𝜑2(𝑟𝑗) · 𝑒
−
𝛼

𝑟𝑖𝑗 , applying this factor the probability of 

finding the electron when 𝑟𝑖=𝑗 would be 𝑒
−

𝛼

𝑟𝑖−𝑟𝑗 = 𝑒−
𝛼

0 = 𝑒−∞ = 0 → 𝜑1(𝑟𝑖) · 𝜑2(𝑟𝑗) ·

𝑒
−
𝛼

𝑟𝑖𝑗 = 0 

 

In this chapter we introduce the basic parts of a variational Monte Carlo calculation and 

a simulation of the Schrödinger equation. We begin with an introduction of the Variation 

Principle where we present a Monte Carlo method for determining E[𝜙 ]. After that, 

Metropolis Algorithm will show up. Then, we present the QMC calculations for different 

systems and finally, we end up presenting the essentials of Monte Carlo sampling and 

simulation. 
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3. Aim of the present work 

 

The main objectives of this work are to show: 

 -First, an introduction of the variational theorem that begins with the Metropolis 

algorithm and the addition of random walkers for a multi-dimensional space. 

  

 -Second, the study of different systems such as the Harmonic Oscillator, the 

Hydrogen and the He atom. 

 

 -Finally, last but not least, the application and simulation of different systems in 

the Fortran program and its difference using the cusp conditions. 

 

 

4. The Variational Principle 

 

The aim of the Variational principle[9] is to find an approximate solution to the 

Schrödinger’s equation. It may be stated as follows: The expectation value of a 

Hamiltonian,𝐻̂, calculated using a trial wave-function, 𝜑𝑇, is never lower in value than 

the true ground state energy, ∈𝑜, which is the expectation value of 𝐻̂ calculated using 

the true ground state wave-function, 𝜙𝑜
[10]. It also has to follow the next conditions: be 

continuous, differentiable, meet the boundary conditions etc…[11] . Boundary conditions 

for bounded systems reads: 𝜙(∞) = 𝜙(−∞) = 0. 

To explain the sentence we have to go back, starting first with the Schrödinger equation:                                                                           

                                                              𝐻̂ · 𝜙 = 𝐸 · 𝜙                                (1) 

Where 𝜙 is the wave function, 𝐻̂ is the Hamiltonian, the operator representing the energy 

of the system and 𝐸 is the total energy of the system. 
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On the other hand, to calculate the energy for any given choice of trial function, 𝜑𝑇, will 

follows as: 

                                                            𝐸 =
〈𝜑𝑇|𝐻̂|𝜑𝑇〉

〈𝜑𝑇|𝜑𝑇〉
                                                 (2) 

As the sentence said, the energy for 𝜑𝑇 will never be lower than the true ground state 

energy, 𝐸𝑜, then, 

                                                    𝐸𝑜 ≤ 𝐸 ; 𝐸𝑜 ≤ 
〈𝜑𝑇|𝐻̂|𝜑𝑇〉

〈𝜑𝑇|𝜑𝑇〉
                                          (3) 

To demonstrate it, the trial function can be expressed as a linear superposition: 

                                        𝜑𝑇 = ∑ 𝐶𝑛 · 𝜙𝑛𝑛  , where 𝑛 ∈ 1,2,3,…                                    (4) 

Where 𝜙𝑛is the true normalized eigenfunctions and ∑ |𝐶𝑛|
2

𝑛 = 1 

With the equation (2) and (4): 

     𝐸 =
〈𝜑𝑇|𝐻̂|𝜑𝑇〉

〈𝜑𝑇|𝜑𝑇〉
=
∑ 𝑐𝑛𝑚 𝑛

∗
𝑐𝑚〈𝜙𝑛|𝐻̂|𝜙𝑚〉

∑ 𝑐𝑛𝑚 𝑛
∗
𝑐𝑚〈𝜙𝑛|𝜙𝑚〉

=
∑ |𝑐𝑛|

2𝐸𝑛〈𝜙𝑛|𝜙𝑛〉𝑛

∑ |𝑐𝑛|
2〈𝜙𝑛|𝜙𝑛〉𝑛

=
∑ |𝑐𝑛|

2𝐸𝑛𝑛

∑ |𝑐𝑛|
2

𝑛
≥
∑ |𝑐𝑛|

2𝐸𝑜𝑛

∑ |𝑐𝑛|
2

𝑛
= 𝐸𝑜         (5) 

To make it simpler, imagine that 𝐸𝑜 is the ground state or lower state energy, for 𝐸𝑛 >

𝐸𝑜: 

                                 𝐸 = ∑ |𝑐𝑛|
2𝐸𝑛 ≥ ∑ |𝑐𝑛|

2𝐸𝑜 ≥ (∑ |𝑐𝑛|
2)𝐸𝑜𝑛⏟        

(∑ |𝑐𝑛|
2

𝑛 )=1

𝑛𝑛 = 𝐸𝑜                       (6) 

In order to determine 𝐸𝑜, the wave function corresponds to the true ground state wave 

function, 𝜙𝑜: 

                                                        𝐸𝑜 =< 𝜙𝑜|𝐻̂|𝜙𝑜 >                                                 (7) 

The Variational procedure starts by adjusting a set of parameters that 𝜑𝑇 contains. The 

best choice of the value of these parameters for the trial wave function will minimize 𝐸𝑜. 

We can write 𝜑𝑇 as: 

                                                   𝜑𝑇 = 𝜑𝑇(𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾, … )                                          (8) 

The main goal in VMC is to find the minimum value of E that depends on equation (2). 

Moreover, we will find a set of parameters in order to obtain that low energy. Furthermore, 

for greater efficiency we will use the Metropolis Algorithm, its random walker and the 

thermalization explained in the next points. Last but not least, we will focus in the 

calculation of the variance and comparing it with the value of the energy because when 
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the variance is closer to zero it means that we are closer to the exact value of the wave 

function, therefore one of our objectives is to search the minimum value of the variance. 

One of the advantages of having variational[5] method in front of the non-variational 

method is that the first one, the calculated energy is always higher or equal to the exact 

energy for the ground state. For example the calculation of the energy for the ground 

and the excited state will always produce an error in the same direction in front of the 

exact energy solution and thus, as both errors are in the same direction, the difference 

in errors is small. However, the second case, the calculated energy can be higher or 

lower than the exact energy. Following the same example, the energy of the ground and 

the excited state can produce errors in different directions. Therefore, the difference may 

combine instead of cancelling.  

 

 

5. Variational Monte Carlo Method 

The variational method is one of the most productive approaches for finding approximate 

solutions of the electronic Schrödinger equation [5].   

The expected value of the energy is the following 

                                       < 𝐸 >=
∫𝑑𝑅 𝜑(𝑅;𝛼)

∗ 𝐻̂(𝑅) 𝜑(𝑅;𝛼)

∫𝑑𝑅|𝜑𝑅;𝛼|
2                                            (9) 

Where 𝑅 = (𝑟1, 𝑟2, … , 𝑟𝑁)  are the positions of the particles in the system and 𝛼 =

(𝛼1, 𝛼2, … , 𝛼𝑠) is a set of variational parameters in question which the trial wave function 

𝜑𝑇,𝛼 depends. 

The efficient way to calculate the minimum expectation value of < 𝐸 > is to search and 

after that, vary the 𝛼 parameters. 

The procedure to obtain the minimum value of the energy is the next one: 

1. Construct a trial wave function 𝜑𝑇,𝛼 with the correspondent variational 

parameters. 

2. Calculate < 𝐸 >. 

3. Vary the set of parameters in order to minimize the energy. 

We will introduce the Metropolis Algorithm in the next paragraph. 
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5.1. Metropolis Algorithm 

 

The straightforward application to obtain the minimum energy comes from choosing a 

trial wave function 𝜑𝑇,𝛼, this one serves as a mean to define the probability density[12] 

                                              ∫ |𝜑𝑇(𝑥; 𝑡)|
2𝑑𝑥

𝑏

𝑎
                                              (10) 

This is called the probability density for a one particle in the system. 

The probability density is interpreted as the probability of finding the particle between the 

position a and b in a t time. 

As we will work with normalized functions, these ones have to accomplish the next 

condition: 

                                           ∫ |𝜑𝑇(𝑥; 𝑡)|
2𝑑𝑥

∞

−∞
= 1                                       (11) 

Then, |𝜑𝑇(𝑥; 𝑡)|
2 represents the probability of finding the particle in our system state in 

a x position. 

After that, from the equation of the energy we can observe that another way to interpret 

its equation (9) is 

            < 𝐸 >=
∫𝑑𝑅 𝜑𝑇

∗ 𝐻̂ 𝜑𝑇

∫𝑑𝑅|𝜑𝑇|
2 = ∫𝑑𝑅

𝐻̂𝜑𝑇

𝜑𝑇

|𝜑𝑇|
2

∫𝑑𝑅|𝜑𝑇|
2⏟    

𝜌(𝑅)

= ∫𝑑𝑅 𝐸𝐿(𝑅)𝜌(𝑅) = 〈𝐸𝐿(𝑅)〉𝜌         (12) 

Where 𝜌 is a distribution function.  

Then we define the local energy to be: 

                                                    𝐸𝐿(𝑅) =
𝐻̂𝜑𝑇(𝑅)

𝜑𝑇(𝑅)
                                                     (13) 

Therefore, the more improvement of the trial wave function, the better expected value of 

the local energy 𝐸𝐿 we will obtain and thus, a closer possibility to the exact energy E. 

Then, another way to express the energy following the VMC from the local energy is 

                                                   < 𝐸 >=
∫|𝜑𝑇|

2𝐸𝐿𝑑𝑅

∫|𝜑𝑇|
2𝑑𝑅

                                                 (14) 

In order to simplify, the equation (14) can be expressed as an approximation  

                                                    < 𝐸 >=
∑|𝜑𝑇|

2𝐸𝐿

∑|𝜑𝑇|
2                                                 (15) 

This new equation will be used to calculate the energy. 
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On the other hand, we calculate the sample of the local energy 𝐸𝐿 and the sample 𝐸𝐿
2 in 

order to get < 𝐸𝐿
2 >, this is used to calculate the variance 

                                                  𝜎𝐸𝐿
2 =< 𝐸𝐿

2 > −< 𝐸𝐿 >
2                                           (16) 

In probability theory, a continuous uniform distribution describes that the probability is 

the same at any point of the interval, therefore, the mean of the distribution is 𝐸 =
1

𝑛
∑𝐸𝑖. 

For a non-uniform distribution like the harmonic oscillator the mean depends on the 

probability, e.i. 𝐸 = ∑ 𝑃𝑖 · 𝑋𝑖𝑖  

Then the equation to calculate E is a mix of both equations 

                                                    𝐸 =
1

𝑛
∑ 𝐸𝐿(𝑥𝑘)
𝑛
𝑘=1                                              (17) 

Where 𝑥𝑘 are the points at which the local energy is sampled 𝐸𝐿, and n are the number 

of sample points. 

The main objective of the Metropolis Algorithm is to perform what is called a sampling of 

importance in the configurational space, e.i., sampling not all the space of configurations, 

but only that important area. Therefore, areas of very high and low probability are not 

treated on equal foot. Then the sampling distribution will be lead by a random numbers 

uniformly distributed to a non-uniform distributed histogram. 

 

Figure 1. Probability distribution function for the Metropolis Algorithm. 

In order to sample only the important areas, the Metropolis algorithm starts by a random 

step. Once the electron is moved from its original position R to the new position R’ we 

have to calculate the probability of each one and then, calculate the ratio, i.e. 𝑤 =
𝑃(𝑅′)

𝑃(𝑅)
.  
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The Metropolis algorithm tells us that if  

𝑤 > 1 

Then we have to accept the new position. But if 𝑤 < 1, in order to know if the new position 

R’ should be discarded or not, it will be compared with a random number that will range 

from 0 to 1 which are the uniform distributions that most computers generate. If the 

probability is greater than the probability of R’, then the position R’ will be discarded while 

if the probability is lower then it will be accepted. 

 

 

5.1.1. Thermalization 

 

Once we start generating random numbers, to be sure that we have reached all the 

possible positions, we must include the term thermalization. 

 It’s important that the entire area is sampled, that is, that it goes to both low and high 

probability areas. To ensure that the random walkers have sampled the entire area, half 

of the steps will be determined to be good and the other half, bad. In order to know that 

a step is good, a random number will be asked and if it has a high probability then it will 

be accepted, while if the probability is low, the step will be discarded. 

This term doesn’t reject totally a bad step, i.e., we will introduce an equation which adjust 

every step to accept at least 50% of the probability that the particle is within our 

acceptance area. 

                                         𝑆𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 ∗ 𝑚𝑖/(0,5𝑑0 ∗ 𝑐𝑜𝑛𝑡)                                      (18) 

Where the step is the maximum step-length in the random walk. 
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5.1.2. Metropolis random walkers 
 

To introduce the Metropolis random walker[13] applied by Metropolis in 1953 we will 

consider a one dimension random walker. R for the probability of moving to the right and 

L to the left. The walker starts at x=0, where x is the position, then, the walker can jump 

as we mentioned before, either to the left or to the right. Moreover, the walker can remain 

at the same position, but we won’t consider this situation. Finally, the length of every step 

is ∆𝑥 = 𝑙.  

As easy illustration to understand the example is the following 

 

Figure 2. One dimensional walker 

In case of complex problems, one random walker is not enough due to the great time it 

would be and the difficulty of finding all the peaks of the distribution. For that reason, it’s 

more useful to start with a large number of independent random walkers which will start 

from different random points in the configuration space. 

On the other hand, in case of multi-dimensional space it’s convenient to use a large 

number of random walkers in order to obtain a better accuracy of the peaks of the 

distribution.  

We will introduce the random walkers into the “main” program which will be explained in 

the next points. 

%Initial time. 

%Initial energy which is zero. 

%Initial square of energy. 

 

%Run a walk. 

%Energy for this walk. 

%Square energy for this walk. 

 

%Time to do the calculations. 

 

%Average of the energies. 

%Average of the square energies. 

%Average of the variance. 
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5.2. Cusp conditions 

 

The development and continued research of analytics wave functions is making 

problems easier in order to solve problems in atomics physics. The variational approach 

has achieved a very high level of accuracy on the calculation, for example the He atom 

that we will see in the next paragraphs. 

The energy eigenfunction 

                                                   𝐻𝑁𝜙(𝑟𝑖) = 𝐸𝜙(𝑟𝑖)                                                     (19) 

And considering the Hamiltonian for N-electron atoms and ions is 

                                                           𝐻 = 𝑇 + 𝑉                                                         (20) 

Where  

𝑇 = −∑
1

2 𝑚𝑖
𝑉̅𝑖
2𝑁

𝑖=1  ;  𝑉 = ∑
𝑍𝑖  𝑍𝑗

𝑟𝑖𝑗

𝑁
𝑖<𝑗  

𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗| and T,V are the kinetic and potential energy operators. 

The potential contains singularities at the set of points {𝑟𝑖𝑗 = 0} , that is, at the 

coalescence of any two (or more) particles, then the 𝜙(𝑟𝑖)  cannot satisfy the cusp 

condition. 

In other words, cusp conditions, as the name says, are conditions that are applied to an 

equation, in our case the local energy, in order to avoid obtaining infinite and therefore, 

an infinite cusp.  

 

Figure 3. Represention of an infinite cusp. 

As an easy example we can introduce the hydrogen atom, its local energy is  

𝐸𝐿(𝑟) = −
1

𝑟
−
𝛼

2
(𝛼−

2

𝑟
) which will be explained in the next sections. When we consider 
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r=0, the local energy tends to infinite and therefore, the cusp. To avoid this, we have to 

apply the cusp condition, which is the introduction of a condition that despite the fact that 

r continues to be 0, the result does not tend to infinity. Looking at the equation, the 

condition that is imposed is that  𝛼 = 1 . Then, although r=0, the result of the equation is 

no longer 0, but  −
1

2
 . 

H.S.Patil[14] develops simple wave functions for 2 and 3 electrons and ions in order to 

deduce fairly accurate values for the energies by adjusting the wave function in front of 

the position. 

Nevertheless, cusp conditions do not work for all situations. For example, when the 

hydrogen atom is confined, its wave function is no longer the same and therefore, it no 

longer has the same cusp conditions. Another way to explain it is when the boundary 

conditions are natural, the cusp conditions can be applied, but when altering them, the 

differential equations are modified and therefore, the cusp conditions change. 

 

5.3. Fortran’s code  

We are going to use the FORTRAN 95[15]. The name FORTRAN comes from FORmula 

TRANslation, as it the name says, it was designed in order to solve numerical tasks for 

physics and mathematical sciences mostly. 

In this section we are going to introduce the different codes, parameters and variables 

that afterwards, will be written into the program. 

First of all, we have to know how is going to be the structure of the program. This 

structure has a principal program called “main”. 

 

 

 

 

 

 

 

Figure 4. Structure of the Fortran program. 
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This main program works from the values we introduce to the input and at the same time, 

the main interacts with a routine that we call walk_scan where all the calculations are 

made. In order for this routine to be able to perform all the calculations, it needs a series 

of functions: prob, ene and random/funtion_ran2.   

In the first one, it refers to probability, prob, where the probability function for each case 

is introduced. The next one is the ene, referring to the local energy function and the last 

one, the program funtion_ran2 where we will established the random numbers. 

A code has been developed for the Fortran program. 

Table 1.  Parameters used in the VMC. 

Parameter Variable name 

Initial position xo 

Length of the coordinate domain ro 

Random number Rand2(idum) 

Probability at the initial position po 

Number of stages m 

 

As a complex program the Fortran is, it’s very important to define everything, so first of 

all, before defining the different functions, we have to introduce some terms: 

The Integer term, as its name says, it’s a number that can be written without a fractional 

component and therefore, the space it occupies in the computer memory is relatively 

small, specifically 4 bytes. 

The Integer term is computed as: 

 

On the other hand, in all fields of science there is the Double Precision term. This term 

works with real numbers, as an example of a real number is the following: 
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Therefore, real numbers need more precision than integers. In case of different real 

numbers we have to introduce the Double Precision in order to distinguish them. 

The Double Precision term for the local energy function is computed as 

 

Another way to introduce the term in order to simplify the operator's work is called the 

Implicit double precision term  

 

This term defines that the variable that begins with the letters a-h and o-z will be double 

precision while the other letters, i-r will be an integer. 

 

Now we will define the different functions as the local energy, probability and random 

walker. As the energy and probability will be different to each case, in this chapter we 

will only define the random walker in a program called funtion_ran2. 

 

 

These 3 programs will be executed into the walk_scan program, which in the first place, 

the thermalization is performed. 
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%x random starting point. 

%Calls the probability function and calculate it 

at the initial position. 

 

%We start a loop. 

 

%Counter to know how many steps we perform. 

%STEP 1. 

%Actual step, it allows that the random number 

can be either positive or negative. 

%New position.  
 

%New probability. 
 

%Calling a random number (0<w<1). 

 

%If p1/p0>w then we accept the new step. 

%The random walker change its position from x 

to xb. Go to STEP 2. 
 

%If p1/p0<w then we go back to STEP 1 and 

get a new random position. 
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%STEP 2. 
 

 

 

 

%We generate a new position. 
 

%New probability. 
 

%Calling a random number (0<w<1). 

 
 

 

%Calls the local energy function, then calculate 

the energy and finally collect all the energies (ene1). 

%Collect all the squared of local energies (ene2) 

 

 

 

%LAST STEP. 

%Average of energies. 

%Average of squared of energies. 

 

 

 

The last step is to define our main program in which all the instructions must be written in order to obtain 

the results we need, which in this case is the value of alpha, the energy and the variance. 

 

 

 

 

 



20 
 

 

 

 

 

%Value of pi. 

 

%The program opens the input file. 

%The program reads the first line of the input file. 

%It reads the values of r0, m, walkers and hits. 

%The program reads the third line. 

%It reads the values of alphai, alphaf and alphap. 

%The program closes the input file.  

 

%The program opens a new file called out.data. 

%We write r0,m,walkers,hit in the first line and the 

values of the variables in the second line of our 

out.data 

%We write alphai, alphaf, alphap in the fourth line 

and its values in the next line. 

 

%Alpha, energy, variance is written in the fifth line. 
 

%Defining the initial step. 

 

 

%We will calculate the time the program will take 

to perform all calculations. 
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%Initial value of energy. 

%Initial value of squared energy. 
 

%The program goes to the walk_scan file. 

%Sum of all energies. 

%Sum of all squared energies. 
 

 

%The best energy. 

%The best squared energy. 

%Average of variance of the walks. 

 

%alpha, energy, variance is written in the program. 

 

%The values calculated are written in the program. 

 

%At the end of the out.data file, the computation 

time, i.e., the time that the program takes to obtain 

all the calculations. 

 

 

 

As the main, walk_scan and funtion_ran2 programs are the same for all our examples, we only have to 

define the ene (local energy) and prob (probability) programs and varying the values of the input for 

each case. 

We will start with the simplest case, the monodimensional harmonic oscillator following by the hydrogen 

atom to finish with the helium atom.  
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5.4. Harmonic Oscillator 

 

A little reminder of what a harmonic oscillator is reflected in the simplest example out 

there: the movement of a mass "m" attached to a massless spring that moves in a one-

dimensional way around an equilibrium point.  

We can adapt this model to a system of two atoms joined by a bond that assimilates to 

the spring by shortening and stretching from its equilibrium position[16]. 

On the other hand, the Hamiltonian for the harmonic oscillator in one dimension is the 

following[18] 

                                                   𝐻 = −
ℎ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑘𝑥2                                                (21) 

Where m is the mass of the particle and k is the force constant for the Harmonic oscillator. 

In order to simplify the calculation, we will consider m=k=h=1. Then, the equation is 

rewritten as[16] 

                                                     𝐻 = −
1

2

𝑑2

𝑑𝑥2
+
𝑥2

2
                                                     (22) 

The harmonic oscillator energy eigenvalue is 

𝐻𝜙 = 𝐸𝜙 

                                                      [−
1

2

𝑑2

𝑑𝑥2
+
𝑥2

2
] 𝜙 = 𝐸𝜙                                             (23) 

To calculate the exact wave function for the ground state, we consider then 𝐸0 = 1, so 

the exact wave function for the ground state is the following 

                                                        𝜙𝑜(𝑥) =
𝑒
−𝑥2

2

𝜋
1
4

                                                         (24) 

Since we want to make a pedagogical approach to the VMC method, then we have to 

follow the instructions we determined in point 4. First of all, we have to choose a trial 

function and it has to accomplish some conditions: Meet the boundary conditions, be 

continuous, differentiable, etc… 

Therefore, our chosen trial function is the following: 

                                                          𝜙𝑇(𝑥) = 𝑒
−𝛼𝑥2                                                   (25) 
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From the equation (22) and (25), we insert both equations in equation (13) in order to 

obtain the local energy, 𝐸𝐿: 

                                                 𝐸𝐿,𝛼(𝑥) = 𝛼 + 𝑥
2 (

1

2
− 2𝛼2)                                          (26) 

The calculation of the local energy will be shown at Appendix 1. 

So we have to introduce the local energy into the Fortran program, calling it ene. We will 

implement it in a few lines 

 

Figure 5.  Ene for the harmonic oscillator. 
 

After that, an easy step is to define the probability density of Eq. (10), we obtain the 

following expression for the probability density 

                                              | 𝜙𝑇(𝑥)|
2 = |𝑒−𝛼𝑥

2
(𝑥)|

2
                                       (27) 

Finally, we obtain 

                                                     𝑝(𝑥) = 𝑒−2𝛼𝑥
2
                                               (28) 

Once we have our probability, it’s time to introduce it into the program, calling prob to the 

probability density 

 

Figure 6.  Prob for the harmonic oscillator. 
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We define the values for the different variables of the input. In this calculation we set 

10.000 points and 300 walkers. 

Table 2. Selected values for the different variables of the input. 

r0 0,25 

M 10.000 

Walkers 300 

hits 0,5 

Alpha i 0,4 

Alpha f 0,8 

Alpha p 0,05 

 

From the input program we obtain the values of the energy and the variance. 

Table 3. Results for the energy and the variance of the harmonic oscillator with 10.000 
points and 300 walkers from Fortran program. 

𝜶 Energy Variance 

0,40 0,524916496 0,026953987 

0,45 0,508872421 0,005961365 

0,50 0,5 0 

0,55 0,496636257 0,004921188 

0,60 0,497831078 0,017943971 

0,65 0,501905206 0,037806655 

0,70 0,508463951 0,06320927 

0,75 0,517605294 0,093264883 

0,80 0,527625781 0,127739564 

 

We represent the energy and the variance. In order to know if our solution is more 

accurate or not, we have checked that the minimum of both the energy and the variance 

are the same. 

Figure 7. The figures show a variational plot of the harmonic oscillator with 10.000 

points and 300 walkers. The figure on the left shows the energy from the 𝜶 parameter, 

while the figure on the right shows the variance from the 𝜶 parameter. 
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As we can see the minimum of both clearly differs and do not coincide. One way to 

decrease this minimum is to increase the number of points or walkers so this later can 

sample better the entire area.  

Then, to get accurate results, we will increase the number of points from 10.000 to 50.000, 

and to be completely safe, we will also increase the number of walkers from 300 to 500. 

Table 4. Selected values for the different variables of the input. 

r0 0,25 

M 50.000 

Walkers 500 

hits 0,5 

Alpha i 0,4 

Alpha f 0,8 

Alpha p 0,05 

 

From the input program we obtain the values of the energy and the variance. 

Table 5. Results for the energy and the variance of the harmonic oscillator with 50.000 
points and 500 walkers from Fortran program. 

𝜶 Energy Variance 

0,40 0,525373939 0,027130826 

0,45 0,508906586 0,005980667 

0,50 0,5 0 

0,55 0,496754412 0,004888279 

0,60 0,497689099 0,018059323 

0,65 0,501871152 0,037827525 

0,70 0,508736349 0,063095214 

0,75 0,517671771 0,093110174 

0,80 0,528055042 0,127541426 

 

Figure 8. The figures show a variational plot of the harmonic oscillator with 50.000 

points and 500 walkers. The figure on the left shows the energy from the 𝜶 parameter, 

while the figure on the right shows the variance from the 𝜶 parameter. 
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As we can see, the result of the graphs is the same even though we have modified the 

variables. This means that a good "sample" has been achieved and therefore, we do not 

need to calculate more. 

In this point, we have to mention that as we said in the chapter 4, the energy for 𝜑𝑇 will 

never be lower than the true ground state energy, 𝐸𝑜, i.e. 𝐸𝑜 ≤ 𝐸. In our case, we have 

obtain for the harmonic oscillator some energies that its values are lower than 𝐸𝑜, this 

does not fulfill the variational principle. The cause is due to an imperfect sampling that 

can lead to an incorrect prediction regarding the optimal parameter and energy. In order 

to solve this, we will compare at the end of this work, our result with the true ground state 

energy. 

 

 

 

 

 

5.5. Hydrogen atom 

 

A system with two particles, a heavy nucleus (consisting of a single proton) and an 

electron, known as the hydrogen atom, has the following Hamiltonian[12][19] 

                                      𝐻 = −
ℎ2

2𝑚𝑟2
[(
𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)) −

𝐿2(𝜃,𝜑)̂

ℎ2
] −

1

𝑟
                                    (29) 

For states with l=0 and h=m=1, the equation is simplified as follows 

                                              𝐻𝑙=0 = −
1

2𝑟2
[
𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)] −

1

𝑟
                                           (30) 

 Then, our chosen trial function is the next one  

                                                         𝜙𝑇(𝑟) = 𝑒
−𝛼𝑟                                                      (31) 

From the equation (13), we use the equations (30) and (31) to obtain the local energy 

                                                     𝐸𝐿(𝑟) = −
1

𝑟
−
𝛼

2
(𝛼−

2

𝑟
)                                              (32) 

Where the calculation of the local energy will be shown at Appendix 1. 

And the probability is the square of the local energy multiplied by the spherical 

coordinates, that is, the volume element 𝑑𝑣 = 𝑟2 · 𝑠𝑖𝑛𝜃 𝑑𝑟𝑑𝜃𝑑𝜑 

                                                         𝑝(𝑟) = 𝑟2 · 𝑒−2𝛼𝑟                                                 (33) 

 



27 
 

Now, it’s time to introduce the local energy and the probability to the Fortran. 

 

Figure 9. Ene for the hydrogen atom. 
 

 

Figure 10. Prob for the hydrogen atom. 
 

 

As in the case of the harmonic oscillator, the variables are defined in the input. This time 

we will start with smaller values so that the calculation time is also shorter. In this 

calculation we set 5.000 points and 50 walkers. 

Table 6. Selected values for the different variables of the input. 

r0 4 

M 5.000 

Walkers 50 

hits 0,5 

Alpha i 0,4 

Alpha f 1,5 

Alpha p 0,1 

 

We change in the Main program the value of Pas: 

 

In order to avoid negative regions because the domain in the case of hydrogen goes 

from 0 to r while for the harmonic oscillator the values were from –𝛼 to +𝛼. 

Another change we have introduced is the Random shoots which substituted the 

Random walks. The difference between these two are that the first one, the random walk 

scans all regions, including all low probability zones, while the random shoot only scans 
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more specific regions and avoids low probability zones. The random shoot is used above 

all for more complicated systems, therefore, we will use the random shoot for the system 

following that of hydrogen, the helium atom. 

 

We assure that the value obtained at random is positive because as we mentioned 

before, the domain for the hydrogen atom is from 0 to r. 

Once we set our programs, we run to get the local energy values as well as the variance. 

Table 7. Results for the energy and the variance of the hydrogen atom with 5.000 
points and 50 walkers from Fortran program. 

𝜶 Energy Variance 

0,40 -0,321810293 0,080184078 

0,50 -0,377410661 0,095604285 

0,60 -0,422280888 0,084647283 

0,70 -0,456201855 0,069366411 

0,80 -0,480884415 0,036492927 

0,90 -0,495284114 0,011216274 

1 -0,5 0 

1,10 -0,494071739 0,019136482 

1,20 -0,477377539 0,093244951 

1,30 -0,452900871 0,213963741 

1,40 -0,418080273 0,445612216 

1,50 -0,370605775 0,829475343 

 

Figure 11. The figures show a variational plot of the hydrogen atom with 5.000 points 

and 50 walkers. The figure on the left shows the energy from the 𝜶 parameter, while 

the figure on the right shows the variance from the 𝜶 parameter. 
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The lowest point cuts at 1, to ensure that, we will increase the number of points or walkers 

so this later can sample better the entire area.  

Therefore, we will increase the number of points from 5.000 to 50.000, and the number 

of walkers from 50 to 1.000. 

 

Table 8.  Results for the energy and the variance of the hydrogen atom with 50.000 
points and 1.000 walkers from Fortran program. 

𝜶 Energy Variance 

0,40 -0,321607826 0,0863487398 

0,50 -0,376617125 0,0948691017 

0,60 -0,421554304 0,0870296316 

0,70 -0,456403722 0,0689179719 

0,80 -0,481016514 0,0390292970 

0,90 -0,495591857 0,0125427519 

1 -0,5 0 

1,10 -0,494294980 0,0188894181 

1,20 -0,478406828 0,0870331950 

1,30 -0,452546498 0,2281680587 

1,40 -0,416430534 0,4726736834 

1,50 -0,370034575 0,8394580725 

 

Figure 12. The figures show a variational plot of the hydrogen atom with 50.000 points 

and 1.000 walkers. The figure on the left shows the energy from the 𝜶 parameter, while 

the figure on the right shows the variance from the 𝜶 parameter. 

 

The difference between the figure 11 and figure 12 is practically null. As the minimum of 

the energy and the variance is the same, we have obtained a good “sample”. 
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5.6. Helium atom 

 

The He atom, the simplest polyelectronic system, has the following Hamiltonian[12][20] 

                                 𝐻(𝑟1, 𝑟2) = −
1

2
∇𝑟1
2 −

1

2
 ∇𝑟2
2 −

𝑍

𝑟1
−

𝑍

𝑟2
+

1

𝑟12
                              (34) 

Where Z is the nuclear charge of the electron 𝑖, ∇𝑖
2 is the laplace operator that derives 

the (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) coordinates, 𝑟𝑖 is the distance between the nucleus and the electron 𝑖 and 

finally, 𝑟12 is the interelectronic distance. 

We want to perform a VMC calculation of the ground state of the helium atom[19], then 

we are going to define our trial function that fulfills the cusp conditions, 

                                             𝜙(𝑟1, 𝑟2) = 𝑒
−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12                                 (35) 

Being 𝛼 and 𝛽 the variational parameters. 

From the equation (13), we consider the equations (34) and (35) to obtain the local 

energy equation 

𝐸𝐿(𝑟1, 𝑟2) = −𝑍
2 +

(𝑍−2)

𝑟1
+
(𝑍−2)

𝑟2
+

1

𝑟12
[1 −

2𝛽

(1+𝛼𝑟12)
2] +

2𝛼𝛽

(1+𝛼𝑟12)
3 −

𝛽2

(1+𝛼𝑟12)
4 +

𝑍𝛽(𝑟1+𝑟2)

𝑟12(1+𝛼𝑟12)
2 ·

1−𝑟1·𝑟2

𝑟1·𝑟2
   (36) 

 

The calculation of the local energy will be shown at Appendix 1. 

And the probability is |𝜙(𝑟1, 𝑟2)|
2 

                                            𝑃(𝑟1, 𝑟2) = 𝑒
−2𝑍𝑟1𝑒−2𝑍𝑟2𝑒

2𝛽𝑟12
1+𝛼𝑟12                            (36) 

Once we have define our local energy and our probability, it’s time to introduce them to 

the Fortran program. 

 

Figure 13. Ene for the helium atom. 
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Figure 14. Prob for the helium atom. 
 

We define the value of Z=2 and β=0,5 and then define the variables, as we did before 

for the harmonic oscillator and the hydrogen atom, in the input. 

Table 9. Selected values for the different variables of the input. 

m 10.000 

Walkers 30 

hits 0,5 

Alpha i 0,1 

Alpha f 0,5 

Alpha p 0,1 

 

Once we set our programs, we run to get the local energy values as well as the variance. 

Figure 15. The figures show a variational plot of the hellium atom with 10.000 points 

and 30 walkers. The figure on the left shows the energy from the 𝜶 parameter, while 

the figure on the right shows the variance from the 𝜶 parameter. 

 

As we did in the previous cases, the number of walkers should be increased as well as 

points, to ensure that we obtain a good sample. 
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Table 10. Selected values for the different variables of the input. 

m 100.000 

Walkers 300 

hits 0,5 

Alpha i 0,1 

Alpha f 0,5 

Alpha p 0,1 

 

Table 11.  Result for the energy and the variance of the helium atom with 100.000 
points and 300 walkers from Fortran program. 

𝜶 Energy Variance 

0,10 -2,8871720201 0,1288254790 

0,20 -2,8973993333 0,0880324597 

0,30 -2,8992661283 0,0747072885 

0,40 -2,8975571739 0,0755853980 

0,50 -2,8954444381 0,0840059018 

0,60 -2,8920013138 0,0969516939 

0,07 -2,8889521874 0,1123684394 

0,08 -2,8857201686 0,1289611364 

0,09 -2,8832081431 0,1461683652 

1,00 -2,8806966216 0,1636861969 

 

 

Figure 16. The figures show a variational plot of the hellium atom with 100.000 points 

and 300 walkers. The figure on the left shows the energy from the 𝜶 parameter, while 

the figure on the right shows the variance from the 𝜶 parameter. 

 

As we can see, the figure 15 and 16 have almost no difference, the minimum point cuts 

by approximately 0,3, therefore we can confirm that we have obtained a good sample. 
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6. Conclusions 

 

In this final degree work, a pedagogical approach has been carried out on the Monte 

Carlo variational method and its subsequent illustrative calculations such as the 

harmonic oscillator and the hydrogen atom from the Fortran program in order to estimate 

the ground state energy of the systems. 

As the first application of the method, the variational principle has been studied and then 

delved into the variational method of Monte Carlo (VMC). 

After that, the Fortran’s code was developed in order to accomplish the Fortran’s 

language. The code uses the Metropolis Algorithm and the random walkers. 

Once we have obtained the results of our different systems, we have seen that the code 

we have developed produces good results, as we can see as the table below 

Table 12. The table shows the energy comparison. Energies are in units of Hartree. 

Energy comparison 

Atom Reference energy[21] VMC results by Fortran Energy 

Harmonic oscillator 0,5 0,5 

Hydrogen -0,5 -0,5 

Hellium -2,86168 -2,89927 

 

Comparing our results with the reference energies we can clearly see that our results 

are pretty accurate, a perfect result for the harmonic oscillator and the hydrogen atom. 

On the other hand, we observe that the result of the helium energy with that of the 

reference is very close, so we can conclude that VMC is a very precise method.  

We have to emphasize that one of the drawbacks of the Fortran program is that the 

calculation time is much longer for more complex systems, where a clear increase in 

time has been noticed in the calculation of helium compared to that of the harmonic 

oscillator. 

To finish, we can conclude that VMC  produces very good results when developing a 

good code, besides that it is a quick and easy method to use, although it must be taken 

into account that it only works for very simple systems since the calculation time can 

increase considerably. 
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8. Appendix 

APPENDIX 1 

 

Local energy for a 1D harmonic oscillator 

 

The Hamiltonian for the harmonic oscillator in one dimension is the following: 

                                                       𝐻 = −
ℎ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑘𝑥2                                           (A.1) 

We can simplify the calculation and choose m=k=h=1. Then the equation would be: 

                                                         𝐻 = −
1

2

𝑑2

𝑑𝑥2
+
𝑥2

2
                                                (A.2) 

As we mention before, we chose a trial function that accomplish some conditions (Meet 

the boundary conditions, be continuous, differentiable, etc…): 

                                                              𝜙𝑇(𝑥) = 𝑒
−𝛼𝑥2                                              (A.3) 

Now we introduce the local energy, 𝐸𝐿: 

                                                             𝐸𝐿(𝑅) =
𝐻̂𝜑𝑇(𝑥)

𝜑𝑇(𝑥)
                                              (A.4) 

Therefore, from the local energy equation and taking into account the equations (A.3) 

and (A.4) we obtain the equation of the local energy that afterwards will be introduced 

in the Fortran program. 

                                                         𝐸𝐿,𝛼(𝑥) =
(−

1

2

𝑑2

𝑑𝑥2
+
𝑥2

2
)·𝑒−𝛼𝑥

2

𝑒−𝛼𝑥
2                                    (A.5) 

 

𝐸𝐿,𝛼(𝑥) = (−
1

2 · 𝑒−𝛼𝑥
2  
𝑑

𝑑𝑥
· (
𝑑

𝑑𝑥
𝑒−𝛼𝑥

2
)) + (

𝑥2

2 · 𝑒−𝛼𝑥
2 · 𝑒

−𝛼𝑥2) = 

 

= (−
1

2 · 𝑒−𝛼𝑥
2  
𝑑

𝑑𝑥
· ((−2𝛼𝑥) · 𝑒−𝛼𝑥

2
)) + (

𝑥2

2 · 𝑒−𝛼𝑥
2 · 𝑒

−𝛼𝑥2) = 

= (
𝛼

𝑒−𝛼𝑥
2  
𝑑

𝑑𝑥
· (𝑥 · 𝑒−𝛼𝑥

2
)) +

𝑥2

2
=  

𝛼

𝑒−𝛼𝑥
2  · (1 − 2𝛼𝑥

2) · 𝑒−𝛼𝑥
2
+
𝑥2

2
=  

 

= 𝛼 − 2𝛼2𝑥2 +
𝑥2

2
 

Then the local energy finally remains as follows: 

                                                       𝐸𝐿,𝛼(𝑥) = 𝛼 + 𝑥
2 (

1

2
− 2𝛼2)           (A.6) 
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Local energy for the hydrogen 

 

The Hamiltonian of the hydrogen atom is the following: 

                                        𝐻 = −
ℎ2

2𝑚𝑟2
[(
𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)) −

𝐿2(𝜃,𝜑)̂

ℎ2
] −

1

𝑟
                                 (A.7) 

In order to simplify the equation we take into account when l=0, and h=m=1, then the 

equation ends as: 

                                             𝐻𝑙=0 = −
1

2𝑟2
[
𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)] −

1

𝑟
                                           (A.8) 

 

Having the trial function equation: 

                                                            𝜙𝑇(𝑟) = 𝑒
−𝛼𝑟                                                  (A.9) 

We can solve both equations from the local energy equation: 

                                                         𝐸𝐿(𝑅) =
𝐻̂𝜑𝑇(𝑥)

𝜑𝑇(𝑥)
                                                 (A.10) 

The steps to obtain the local energy equation is the following: 

𝐸𝐿(𝑟) =
1

𝑒−𝛼𝑟
· (−

1

2𝑟2
[
𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)] −

1

𝑟
) · 𝑒−𝛼𝑟 =

1

𝑒−𝛼𝑟
· (−

1

2𝑟2
[
𝑑

𝑑𝑟
(𝑟2 · 𝑒−𝛼𝑟

𝑑

𝑑𝑟
)] −

𝑒−𝛼𝑟

𝑟
) = 

 

=
1

𝑒−𝛼𝑟
(
−2𝛼𝑟 · 𝑒−𝛼𝑟 + 𝛼2𝑟2 · 𝑒−𝛼𝑟

2𝑟2
−
𝑒−𝛼𝑟

𝑟
) =

−2𝛼𝑟

2𝑟2
+
𝛼2𝑟2

2𝑟2
−
1

𝑟
= 

 

= −
2𝛼

2𝑟
+
𝛼2

2
−
1

𝑟
 

 

Then the local energy finally remains as follows: 

                                                   𝐸𝐿(𝑟) = −
1

𝑟
−
𝛼

2
(𝛼−

2

𝑟
)                                             (A.11) 

In order to check that the calculations made are correct, they are verified in the 

program Mathematica. 
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Local energy for the Helium 

 

The simplest system beyond the hydrogen is the helium atom, who has the following 

Hamiltonian 

                                 𝐻(𝑟1, 𝑟2) = −
1

2
∇𝑟1
2 −

1

2
 ∇𝑟2
2 −

𝑍

𝑟1
−

𝑍

𝑟2
+

1

𝑟12
                                  (A.12) 

Defining the trial function 

                                            𝜙(𝑟1, 𝑟2, ) = 𝑒
−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12                                       (A.13) 

It’s time to solve both equations from the local energy equation: 

                                                      𝐸𝐿(𝑅) =
𝐻̂𝜑𝑇(𝑥)

𝜑𝑇(𝑥)
                                                   (A.14) 

Writing out the kinetic energy term in the spherical coordinates of electron 1 and 2, we 

arrive at the following expression for the local energy[12] 

            𝐸𝐿(𝑟1, 𝑟2) =
1

𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12

· (−
1

2

𝑑2

𝑑𝑟1
2 −

1

𝑟1

𝑑

𝑑𝑟1
−
1

2

𝑑2

𝑑𝑟2
2 −

1

𝑟2

𝑑

𝑑𝑟2
−
𝑍

𝑟1
−

𝑍

𝑟2
+

1

𝑟12
) · 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12      (A.15) 

 

𝐸𝐿(𝑟1, 𝑟2) =
1

𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12

· (−
1

2

𝑑

𝑑𝑟1
(
𝑑

𝑑𝑟1
 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12) −

1

𝑟1

𝑑

𝑑𝑟1
(𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12) −

1

2

𝑑

𝑑𝑟2
(
𝑑

𝑑𝑟2
 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12) −

1

𝑟2

𝑑

𝑑𝑟2
(𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12) −

𝑍

𝑟1
−

𝑍

𝑟2
+

1

𝑟12
)                                          (A.16) 

 

𝐸𝐿(𝑟1, 𝑟2) =
1

𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12

· (−
1

2
(
2𝛼2𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
3 −

2𝛼𝛽

(1+𝛼𝑟12)
2) ·  𝑒

−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12 + (

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧)

2

·

𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12 −

1

𝑟1
(

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧) · 𝑒

−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12 −

1

2
(
2𝛼2𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
3 −

2𝛼𝛽

(1+𝛼𝑟12)
2) ·

 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12 + (

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧)

2

· 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12 −

1

𝑟2
(

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧) ·

𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒
𝛽𝑟12
1+𝛼𝑟12 −

𝑍

𝑟1
· 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12 −

𝑍

𝑟2
· 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12 +

1

𝑟12
· 𝑒−𝑍𝑟1𝑒−𝑍𝑟2𝑒

𝛽𝑟12
1+𝛼𝑟12)                       (A.17) 

 

𝐸𝐿(𝑟1, 𝑟2) = −
1

2
(
2𝛼2𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
3 −

2𝛼𝛽

(1+𝛼𝑟12)
2) + (

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧)

2

−
1

𝑟1
(

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧) −

1

2
(
2𝛼2𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
3 −

2𝛼𝛽

(1+𝛼𝑟12)
2) + (

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧)

2

−
1

𝑟2
(

𝛽

1+𝛼𝑟12
−
𝛼𝛽(𝑟1+𝑟2)

(1+𝛼𝑟12)
2 − 𝑧) −

𝑍

𝑟1
−

𝑍

𝑟2
+

1

𝑟12
                (A.18) 

 

Simplifying the equation we arrive at the following expression for the local energy 

𝐸𝐿(𝑟1, 𝑟2) = −𝑍
2 +

(𝑍−2)

𝑟1
+
(𝑍−2)

𝑟2
+

1

𝑟12
[1 −

2𝛽

(1+𝛼𝑟12)
2] +

2𝛼𝛽

(1+𝛼𝑟12)
3 −

𝛽2

(1+𝛼𝑟12)
4 +

𝑍𝛽(𝑟1+𝑟2)

𝑟12(1+𝛼𝑟12)
2 ·

1−𝑟1·𝑟2

𝑟1·𝑟2
 (A.19) 

 

 


