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2. INTRODUCTION 
   Over the last years, solar thermal salts have been studied as natural solution for 

storage and heat transfer in Concentrating Solar Power Plants (CSP). This new kind of 

renewable energy has become one of the alternatives of fossil fuels. The CSP plants 

transform the solar energy into electricity by the Thermal Energy Storage (TES) 

properties of this kind of material, which allows to store large amounts of heat. These 

types of salts provide a high thermal stability, low material costs, high density of the salt 

fluid, high heat storage capacity, non-flammability and low vapor pressure. In addition, 

compared with organic salts these inorganic salts present a higher melting point. [1] 

   A large quantity of inorganic salts have been used as solar salt systems in CSP plants, 

mixtures of carbonates (Li2CO3 and K2CO3), mixtures of chlorides (BaCl2, NaCl and CaCl2) 

and finally, the most commonly used, a mixture of sodium and potassium nitrates 

(NaNO3:KNO3). [2] 

   An interest in the enhancement of the heat capacity in solar salts with the addition of 

nanoparticles has been grown in the last years. In 2011, Shin and Banerjee [3] reported 

an unusual specific heat enhancement when silica nanoparticles were added to 

carbonate and chloride salts mixtures. These results were obtained when the solar salts 

were doped with 1-2 %wt of nanoparticles. The increase of the specific heat of the 

nanofluid seems to be against the mixture rule, which states that the specific heat of a 

nanofluid should decrease if the added nanoparticles have a lower specific heat than the 

fluid itself. This theory applies to molecular liquids, such as alcohols, thermal oils, 

ethylene glycol or water. 

   A large number of proposals for this increase in specific heat have been put forward, 

such as the formation of a thermal resistance due to an electrostatic force between the 

nanoparticles and the liquid solar salt, the formation of a semi-solid barrier on the 

surface of the liquid with thermal properties greater than the liquid itself or the 

introduction of the nanoparticles into the solar salt from an oxygen-nitrogen bond, 

generating a nanofluid with calorific properties greater than the liquid solar salt itself. 

  It has been shown that the conditions in which this nanofluid is prepared are very 

important in obtaining this increase in heat capacity. All the authors agree that the 

enhancement in heating capacity depends on the available specific surface area of the 

nanoparticles and on the nanoparticle-salt interaction, which occurs at the key stage 

corresponding to the formation of the nanofluid. The maximum increase in heating 

capacity has been recorded at 1-2 %wt in nanoparticles.  

 

 
[1] Nicole, P.; Thomas, B.; Claudia, M.; Markus, E.; Antje, W. Thermal energy storage, overview and specific 

insight into nitrate salts for sensible and latent heat storage. Belstein Journal of Nanotechnology. 2015. 
[2] Patricia, A.; Rosa, M.; Leonor, H.; Raul, M.; Luis, C.; J Enrique, J. Increment of specific heat capacity of 
solar salt with SiO2 nanoparticles. National library of Medicine. 2014. 
[3] Shin, D., Banerjee, D. Experimental Investigation of Molten Salt Nanofluid for Solar Thermal Energy 
Application. 8th Thermal, Engineering Joint Conference AJTEC. ResearchGate. 2011. 
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   This abnormal enhancement in the specific heat of the solar salts opens a new avenue 

of research and the unknown factors of this effect are currently being studied. The type 

of interaction between nanoparticles and solar salts is still unknown and several 

mechanisms for abnormal enhancement have been proposed. In this work we are going 

to study this kind of interactions using Quantum mechanics tools. 

  Within chemistry, Quantum mechanics (QM) is an essential tool for studying chemical 

reactions. Classical mechanics fails in describe correctly systems as small as electrons, 

which are very light particles. For this reason, quantum mechanics-based methods 

provide the best option to describe systems at the atomic scale. These methods involve 

a series of complex mathematical calculations which are carried out by computational 

resources. In this work we use these computational methods to study the reaction of 

silica nanoparticles 10 %wt (SiO2) and his interaction with solar salts mixtures 

(NaNO3:KNO3) in order to enhance the heat capacity of the latter.  

 

3. METHODOLOGY 
   In this section we will review all the mechanisms we have used to carry out this work. 

3.1 Self-Consistent Field Method 
   In quantum mechanics we can describe the complete behaviour, in a no-relativistic 

way, of a molecular system using the time dependent Schrödinger equation, which can 

be written as:   

�̂�𝛹 = 𝑖 ℏ
𝜕𝛹

𝜕𝑡
                                                [1] 

where �̂� is the Hamiltonian and 𝛹 the wave function of the system. This wave function 

is very important since it provides complete information about the system, being 

possible to calculate the density probability distribution of the particles with its square. 

The behaviour of  𝛹 is determined by the Hamiltonian operator, which also includes 

other operators to describe the system. 

   Considering the atom and the electrons as point masses we can separate in different 

terms the energy of both. The time-independent Hamiltonian can be written as [4]: 

 

�̂�  =  𝑇 ̂ +  �̂�  =  �̂�𝑛  +  �̂�𝑒  + �̂�𝑛𝑛  +  �̂�𝑒𝑒  +  �̂�𝑛𝑒                            [2] 

 

where e refers to electrons and n to the nuclei. The last term of equation is the potential 

energy of attraction between electrons and nuclei. Third and fourth terms refer to 

potential energy between electrons and between nuclei, in this case of repulsive nature. 

 
[4] Peter, A.; Ronald F. Molecular Quantum Mechanics, 4th Edition. Oxford University Press. 2005. pp.288-
319. 
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Finally, the first and second terms correspond to kinetic energy of both, electrons and 

nuclei, separately. 

  Equation [2] can be solved for the Hydrogen atom, where the third and fourth are 

missing since there are just one proton and one electron, and the kinetic can be 

described by the relative movement of the electron to the proton. The solution of this 

equation gives a set of wavefunctions, known as hydrogen orbitals, which helps by 

extrapolation to understand the properties of the atom. 

   When it comes to find an analytical solution of equation [2] for polyelectronic atoms 

we deal with a more complex problem. For example, for the Helium atom with two 

electrons it’s impossible to solve, and some assumptions must be made.  

   The first one is the Born-Oppenheimer approximation, that considers there is a big 

difference between electrons and nuclei, the mass (Mn>>me). Therefore, we can assume 

electrons are moving faster than the nuclei, fast enough to consider the latter static, and 

thus simplify the Hamiltonian neglecting the kinetic energy term of nuclei. This 

approximation also eliminates the correlation in attraction between electrons and 

nuclei, turning the nuclear repulsion into a classical Coulombic term, and simplifying the 

expression of the nuclei-electron attraction. The Hamiltonian can be rewrite now as: 

�̂� = �̂�𝑒 + �̂�𝑒𝑒 + �̂�𝑛𝑒 + 𝑉𝑛𝑛                                                   [3] 

where nuclear-nuclear repulsion term 𝑉𝑛𝑛 is reduced to a constant parameter given by 

the geometry. 

   The function now is separated in two parts, as the wavefunction describes exclusively 

the electrons of the system and thus, it depends of the nuclei coordinates. This leads to 

the following equation: 

�̂�𝑒𝑙(𝑅; 𝑟) 𝛹𝑒𝑙(𝑅; 𝑟) =  𝐸𝑒𝑙𝛹𝑒𝑙 (𝑅; 𝑟)                                            [4] 

𝐸𝑡𝑜𝑡 =  𝐸𝑒𝑙 + 𝑉𝑛𝑛(𝑅)                                                         [5] 

 

where R and r refers to the coordinates of nuclei and electrons, respectively. 

 

   Therefore, the Hamiltonian obtained for Helium is purely electronic and can be written 

as: 

�̂�𝑒𝑙  =  �̂�1 + �̂�2  +  �̂�𝑛,1  + �̂�𝑛,2 +  �̂�1,2                                          [6] 

 

where the terms for each electron are expressed (1 and 2). The problem arises with the 

last term, which corresponds to the electron repulsion. This term makes it impossible to 

solve the equation by a variable separation method and to obtain an analytical solution 

for the problem. 
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   A work around is to express the electronic system wavefunction as a combination of 

wavefunctions for each of the electrons in the system and try to approximate the 

repulsions between them. 

   This assumption requires to satisfy the Pauli exclusion principle (principle of 

antisymmetry) since the electrons are fermions and thus, are indistinguishable and 

identical particles. In order to satisfy the Pauli principle, the Slater determinants [5] are 

used. These determinants allow us to apply the HF method to systems with N electrons 

satisfying the antisymmetry principle.  

    This model takes the electron as a charge distributed in space (charge cloud model). 

This space is defined by the orbital of the electron and the probabilities of find that 

electrons are also distributed in this space. This one electron functions (𝛹𝑖) are known 

as spin-orbitals and are composed by a spatial and spin terms [6]. A slater determinant 

for N electrons can be written as:  

 

𝛹 =
1

√𝑁!
 |

(𝛹1)(𝑟1) (𝛹2)(𝑟1)
(𝛹1)(𝑟2)

…
(𝛹2)(𝑟2)

…

… (𝛹𝑁)(𝑟1)
…
…

(𝛹𝑁)(𝑟2)
…

(𝛹1)(𝑟𝑁) (𝛹2)(𝑟𝑁) … (𝛹𝑁)(𝑟𝑁)

|                          [7] 

 

where each one of the N electrons can be described by each one of the spin-orbitals 

(𝛹𝑖) which conform the wave function of the polyelectronic system, providing a 

particular electronic configuration. 

  Regarding to the treatment of electronic repulsions, the most appropriate 

methodology is the so-called Self Consistent Field Method, initially proposed by Hartree 

and subsequently modified by Fock. In this method the system is reduced to a set of 

mono-electronic problems, the electrons of the system are threated sequentially, 

considering that each electron moves in an average electrostatic field generated by the 

rest of the electrons, which are static. As a result, an improved wave function is obtained 

for that electron, which will be reused in the subsequent resolution of the rest of the 

electrons of the system. The overall process ends when the changes in the wave function 

of the system (𝛹) are below a certain tolerance. Usually its square (|𝛹2|), which 

provides the electron density, is taken as a reference.  

   Returning to the Helium atom [7], which fundamental electronic configuration is 1s2, 

the Slater determinant would be: 

 
[5] The Sherrill Group, Computational Chemistry, An Introduction to Hartree-Fock Molecular Orbital 
Theory: Slater Determinants via http://vergil.chemistry.gatech.edu/notes/hf-intro/node4.html 
(11/07/2020). 
[6] Emilio, S. F. M.; Juan Ferrer, C. Cálculos Computacionales (Teóricos) de Estructuras Moleculares, Tesis 
de la Universidad de Alicante, 2020. pp.8-13. 
[7] Quantum Mechanics in Chemistry, Second Edition, Melvin W. Hanna. 1969. pp.115-140. 

http://vergil.chemistry.gatech.edu/notes/hf-intro/node4.html
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𝛹 =
1

√2
|
𝜓1(𝑟1)𝛼1 𝜓2(𝑟1)𝛽1

𝜓1(𝑟2)𝛼2 𝜓2(𝑟2)𝛽2
| =

1

√2
{𝜓1(𝑟1)𝛼1 ⋅ 𝜓2(𝑟2)𝛽2 − 𝜓2(𝑟1)𝛽1 ⋅ 𝜓1(𝑟2)𝛼2} [8] 

 

considering that 𝜓1= 𝜓2= 1s = 𝜓,  we can rewrite: 

𝛹 =
1

√2
𝜓(𝑟1) ⋅ 𝜓(𝑟2) ⋅ {𝛼1 ⋅ 𝛽2 − 𝛽1 ⋅ 𝛼2} [9] 

   Since the Hamiltonian does not contain spin terms, the equation is reduced to the 

product of the space parts (also known as Hartree product). The Hamiltonian for Helium 

atom can be written as follows (in atomic units): 

(ℎ̂̂1 + ℎ̂̂2 +
1

𝑟1,2
) (𝜓1 ⋅ 𝜓2) = 𝐸 ⋅ (𝜓1 ⋅ 𝜓2)            ℎ̂̂𝑖 = −

1

2
𝛻𝑖

2 −
𝑍

𝑟𝑖
                    [10] 

using the average repulsion between electrons, we can separate equation [9] in two 

different equations for each electron (i) and the iteraction achieved (k): 

−
1

2
𝛻𝑖

2𝜓𝑖
𝑘 −

𝑍

𝑟𝑖
𝜓𝑖

𝑘 + 𝜓𝑗
𝑘 1

𝑟𝑖,𝑗
𝜓𝑗

𝑘𝜓𝑖
𝑘 = 𝜀𝑖

𝑘𝜓𝑖
𝑘                                      [11] 

   Initially, the problem for the first electron is solved, obtaining the energy (𝜀1
1) and a 

more approximated wavefunction (𝜓1
1), compared to the initial system (𝜓1

0, 𝜓2
0): 

−
1

2
∫ 𝜓1

1 𝛻1
2𝜓1

1 − ∫ 𝜓1
1 𝑍

𝑟1
𝜓1

1 + ∫ 𝜓1
1 𝜓2

0 1

𝑟1,2
𝜓2

0𝜓1
1 = 𝜀1

1                         [12] 

   Then, this new wavefunction is used to refine the second-one: 

−
1

2
∫ 𝜓2

1 𝛻2
2𝜓2

1 − ∫ 𝜓2
1 𝑍

𝑟2
𝜓2

1 + ∫ 𝜓1
1 𝜓2

1 1

𝑟1,2
𝜓2

1𝜓1
1 = 𝜀2

1                     [13] 

   This process is repeated until the changes in electron density are below a certain 

threshold (k=m). The final energy cannot be obtained directly from the sum of the 

energies of each electron, since the electron pair repulsion would be considered twice: 

𝐸 = 𝜀1
𝑚 + 𝜀2

𝑚 − ∫ 𝜓1
𝑚 𝜓2

𝑚 1

𝑟1,2
𝜓2

𝑚𝜓1
𝑚                                           [14] 

   We have exposed the simplest case of a polyelectronic atom. In the case of having 

molecules, formed by two or more atoms, the procedure is similar. The molecular wave 

function is expressed as a Slater determinant containing as much spin-orbitals as 

electrons. 

 

3.2 Base functions 
  Instead of using hydrogen wave functions in the Slater determinants, other kind of base 

functions are used for reasons of computational efficiency. In this work we use 

adjustments of Gaussian functions of the radial parts of the hydrogen orbitals. 
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   These orbitals can be written as a product of a linear combination of Gaussian 

functions (GTO), which allow a faster calculation for the molecular integrals: 

 

𝐺𝑇𝑂 =
2𝜒

𝜋
3
4

· 𝑒(−𝜒∗𝑟2)                                                                        [15] 

 

   The basis sets equations based by the Slater Type Orbitals (STO) are considered 

minimal basis sets [8]. The most common in this group is the STO-nG. Where n is an 

integer that indicates the number of Gaussian functions included in the same basis 

function. This primitive Gaussian functions also include valence and core orbitals. This 

kind of basis sets typically don’t give very good results compared to their larger 

counterparts. The most commonly minimal basis sets used are the STO-6G. 

 

   Split-valence basis sets: in a bonding between two atoms are the valence electrons 

which mainly involved. In view of that, it is common represent with more than one basis 

functions the valence orbitals. The most commonly known split-valence sets are 6-31G. 

   The nomenclature of this basis sets is important to understand how it works. The first 

number refers to the number of Gaussian functions summed to describe inner shell. The 

second number represents the number of Gaussian functions that compromise the first 

STO of the Double zeta. The last number shows the number of Gaussian summed to the 

second STO. For 6-31G we have respectively: 

- 6 Gaussian functions describing the inner-shell-orbital. 

- 3 Gaussian functions for the first Slater type orbital. 

- 1 Gaussian function for the second Slater type orbital. 

 

   In addition to split-valence and minimal basis sets we can add polarization functions, 
which describe polarization of the electron density of the atom in molecules. This basis 
sets incorporate functions to atoms with higher angular momenta that are required for 
the description of the ground state. In order to represent these functions, the asterisks 
have been used, where one asterisk means that polarization has been considered in the 
d orbital (heavy atoms), meanwhile two asterisks refers an additional polarization in p 
orbitals for hydrogen atoms. 

 

 
[8] Wikipedia: Basis sets (Chemistry). Split-valence basis sets, Polarization-consistent basis sets and Pople 
basis sets via https://en.wikipedia.org/wiki/Basis_set_(chemistry) (11/07/2020). 

https://en.wikipedia.org/wiki/Basis_set_(chemistry)
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Figure 1. A d-polarization function added to a p orbital. [8] 

 
   There are other type of basis sets that are commonly added to the calculations, the 
diffuse functions. That kind of functions are important to describe anions or dipole 
moments and provide a more accurate result. This kind of orbitals occupy a larger region 
in space and improve the description of species with extended electronic densities, as 
we said, anions or molecules forming hydrogen bonds. The presence of this orbitals is 
represented by one or two ‘+’ in the basis set name. An example could be 6-31++G* 
which indicates the presence of diffuse functions on hydrogen atoms. 
 

 

3.3  Density Functional Theory   
   One of the main problems of molecular orbital methods like Hartree Fock is the lack of 
correlation in the electron movement. The reason is because each electron is solved in 
an individual way, leaving the rest of the electrons of the system in a fixed position. 
Doing this type of approximation, we lose the component corresponding to the relative 
motion of the electrons and the dynamic interactions between them. There are several 
methods, called post Hartee-Fock, that allow to correct this mistake by means of 
different approximations. Among them, there are those based on the functional of 
electronic density. 
 
  Density functional theory (DFT) is an alternative method which uses the electron 
density, ρ(𝑟), as the principle variable. The electron density has the advantage over the 
wave function that, only depends on spatial coordinates (x,y,z)  and the spin, whereas 
the wave function not only depends on spin but also on 3N variables, being N the 
number of electrons in the system. The key to the DFT arises from the way the electrons 
that give rise to a certain density value are considered, being reduced to a dynamically 
equivalent system of non-interacting N electrons.  
 
  The expression of the energy for a system in terms of electron density ρ(r), under the 

Born-Oppenheimer approximation, can be written as [9]: 

 

𝐸[𝜌(𝑟)] = 𝑇𝑛𝑖[𝜌(𝑟)] + 𝑉𝑛,𝑒[𝜌(𝑟)] + 𝑉𝑒,𝑒[𝜌(𝑟)] + 𝑉𝑛,𝑛(𝑅) + ∆𝑇[𝜌(𝑟)] + ∆𝑉𝑒,𝑒[𝜌(𝑟)]      [16] 

 

 
[9] Kaupp, M. Book Review: A Chemist's Guide to Density Functional Theory. By Wolfram Koch and Max C. 
Holthausen. Angewandte Chemie International Edition, 40(5). 2001.  pp.963-964. 
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where the first term, 𝑇𝑛𝑖[𝜌(𝑟)], refers to the kinetic energy of the non-interacting 

electrons; the second one, 𝑉𝑛,𝑒[𝜌(𝑟)], corresponds to the interaction between nuclei and 

electron. The third term, 𝑉𝑒,𝑒[𝜌(𝑟)], accounts for the repulsion between electrons, and 

the fourth one, 𝑉𝑛,𝑛(𝑅) reflects the classical repulsion between nuclei. The fifth term,  

∆𝑇[𝜌(𝑟)], is the correction to the kinetic energy deriving from the interacting nature of 

the electrons, and finally, last term, ∆𝑉𝑒𝑒[𝜌(𝑟)], accounts for all non-classical 

contributions to the repulsion between the electrons [10].  

   The last two terms are grouped together leading to the exchange-correlation 

potential, 𝑉𝑋𝐶[𝜌(𝑟)], which contain all the unknown terms and, which is 

approximated by a certain analytical functional of the electron density: 

𝐸[𝜌(𝑟)] = 𝑇𝑛𝑖[𝜌(𝑟)] + 𝑉𝑛,𝑒[𝜌(𝑟)] + 𝑉𝑒,𝑒[𝜌(𝑟)] + 𝑉𝑛,𝑛(𝑅) + 𝑉𝑋𝐶[𝜌(𝑟)]          [17] 

   Generally, the exchange-correlation potential is expressed by the sum of every 

contribution: 

𝑉𝑋𝐶[𝜌(𝑟)] = 𝑉𝑋[𝜌(𝑟)] + 𝑉𝐶[𝜌(𝑟)]                                               [18] 

   There are different expressions available for the terms involved in equation [18], such 

as:  

- Local density approximation (LDA): this model focuses on the idea of a 

hypothetical uniform electron gas, known as homogeneous electron gas, which 

is distributed in a positive charged background, obtaining a total electrically 

neutral assembly. This system is possible because the DFT allows to know the 

form of the exchange and correlation energy functionals with a very high degree 

of accuracy. 
- Generalized gradient approximation (GGA): the GGA methods use not only the 

information about density 𝜌(𝑟), but they also include information about the 

gradient of the charge density (∇ρ).  

  The most used GGA correlation functionals are: 

• LYP[11]: correlation functional of Lee, Yang and Parr, which includes local and 

non-local terms. 

• PBE[12]: gradient-corrected correlation functional of Perdew, Burke and 

Ernzerhof. 

 
 
[10] M. A.L. Marques. Book review: A Primer in Density Functional Theory by C. Fiolhais, F. Nogueira and 
M. Marques. Springer. 2010. 
[11] C. Lee.; W. Yang.; R. G. Parr. "Development of the Colle-Salvetti correlation-energy formula into a 
functional of the electron density", Phys. Rev. B. 1988, 37, pp.785-789. 
[12] J. P. Perdew.; M. Ernzerhof.; K. Burke. "Rationale for mixing exact exchange with density functional 
approximations", J. Chem. Phys., 1996 105, 9982. 
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   Regarding the exchange functional, the most commonly used is the Becke’s functional 

B[13], which also includes Staler corrections for the gradient of the density.  

   The most recent functionals called meta-GGA belong to this family of functionals, but 

they incorporate higher-order density gradient terms. 

   Finally, Hybrid functionals combine the exchange-correlation of conventional GGA or 

M-GGA methods with a small percentage of pure HF exchange. The current amount of 

this last parameter is fitted empirically. There are many exchange-correlation hybrid-

GGA functionals. One of the most widely used is B3LYP, the Becke three parameter Lee-

Yang-Parr functional: 

 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = (0.20𝐸𝐻𝐹 + 0.72𝐸𝐵88,𝐺𝐺𝐴 + 0.08𝐸𝑆,𝐿𝐷𝐴)𝑋 + (0.81𝐸𝐿𝑌𝑃,𝐺𝐺𝐴 + 0.19𝐸𝑉𝑊𝑁−3 5⁄ ,𝐿𝐷𝐴)𝐶       [19] 

 

where, as we can see, LDA functionals are also used: Slater (S [14]) for the exchange, and 

Vocko, Wilk and Nusair (VWN [15]) for the correlation. 

   In conclusion, DFT is a powerful tool which can provide similar or even better results 
than methods based on wave function, also with lower computational cost. It has a 
disadvantage: if a selected functional provides a wrong result, it can’t be systematically 
improved. Even so, DFT is one of the most used methods in calculating the structures of 
molecules and chemical reactivity in computational chemistry. 
 

3.4 Functionals: B3LYP 
   B3LYP is one of the most popular density functional in computational chemistry. This 

hybrid functional was one of the first DFT methods which gave a significant 

improvement over HF methods. B3LYP is generally faster than most post Hartree-Fock 

techniques and usually brings similar results.  It is also fairly robust for a DFT method, 

with a not very high computation cost.  On a more fundamental level, it is not as heavily 

parameterized as other hybrid functionals, having only 3. Although another hybrid 

functionals have been commonly used in recent times, as the Minnesota suite of density 

functionals, B3LYP is still one of the most used and one of the most balanced hybrid 

functionals in terms of cost of the calculations and quality of the results. 

 

 

 
[13] A. D. Becke. "Density-functional exchange-energy approximation with correct asymptotic 
behaviour", Phys. Rev. A 1988, 38, pp.3098-3100. 
[14] J. C. Slater, The Self-Consistent Field for Molecular and Solids, Quantum Theory of Molecular and 
Solids, Vol. 4 (McGraw-Hill, New York, 1974). 
[15] S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for 
local spin density calculations: A critical analysis,” Can. J. Phys., 58 (1980) pp.1200-1211 
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   In the year 2019 a total of 10724 articles were published where DFT methods were 

applied, in more than one third of these articles (34.9%) B3LYP is used as a hybrid 

functional [16].  

   The following graph shows the total number of articles in 2019 where DFT methods 

were used and where B3LYP was used as a functional hybrid. The use in the total number 

of articles and in different study topics is shown: 

 

 

Graphic 1. Amount of B3LYP usage in DFT methods in 2019. 

 

3.5 Gibbs free energy: RRHO 
   The value of the free energy associated to a certain chemical process gives us 

information about it, such as its degree of spontaneity (either endergonic or exergonic), 

or the proportion that will be established between the reagents and products when the 

equilibrium is reached (equilibrium constant). Since mechano-quantum calculations 

provide the internal energy of the system, additional methods are needed to estimate 

the free energy of the system, usually based on statistical thermodynamics. Initially, we 

can use Maxwell's relationship between Gibbs' energy and Helmholtz's potential: 

𝐺 = 𝐹 + 𝑃𝑉                                                                   [20] 

Then, we must apply some considerations: 

- The energy of the different levels will be expressed according to the energy of the 

fundamental level, which will become zero. Doing that, the partition function of the 

system when only the fundamental level is populated will be equal to the unity (it would 

correspond to the case when the temperature is 0 K).  

 
[16] B3LYP and DFT methods search (filter: last year) via https://pubs.acs.org/  (12/07/2020). 
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- We introduce the relationship between Helmholtz potential and the canonical partition 

function of system QNVT, derived from the statistical definition of entropy: 

𝐹 − 𝐹(0) = −𝑘𝐵𝑇ln𝑄                                                    [21] 

- We will assume that the system has an ideal behaviour (particles are independent and 

indistinguishable): 

𝑄 =
𝑞𝑁

𝑁!
                                                                    [22] 

- The energy value when the temperature is 0 K is independent of the variables that 

control the measurement (or collective):   

𝐺(0) ≈ 𝐹(0) ≈ 𝑈(0)                                                     [23] 

- The Stirling approximation [17] to approximate the logarithm value of a factorial for a 

large number: 

ln𝑁! ≈ 𝑁ln𝑁 − 𝑁                                                           [24] 

With these assumptions we can write the Gibbs free energy as:  

𝐺𝑜 ≈ 𝑈𝑜(0) − 𝑅𝑇ln(
𝑞

𝑁𝐴
)                                                       [25] 

where the partition molecular function q (equation [22]) can be obtained from the 

expressions derived for the ideal gas case: 

 

𝜀 = 𝜀𝑡𝑟𝑎𝑠 + 𝜀𝑟𝑜𝑡 + 𝜀𝑣𝑖𝑏 + 𝜀𝑒𝑙𝑒                   𝑞 = 𝑞𝑡𝑟𝑎𝑠 ⋅ 𝑞𝑟𝑜𝑡 ⋅ 𝑞𝑣𝑖𝑏 ⋅ 𝑞𝑒𝑙𝑒    
              

𝑞𝑡𝑟𝑎𝑠 = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2 )

3

2
𝑉          𝑞𝑟𝑜𝑡 =

√𝜋

𝜎

𝑇
3
2

√𝜃𝐴𝜃𝐵𝜃𝐶
            𝜃𝑖 =

ℎ2

8𝜋2𝑘𝐵𝐼𝑖
         

             

𝑞𝑣𝑖𝑏 = ∏
1

1−𝑒
−

ℎ𝜐𝑖
𝑘𝐵𝑇

                 𝑞𝑒𝑙𝑒
𝑛𝑚𝑜𝑑𝑒𝑠
𝑖 = ∑ 𝑔𝑠𝑒

−𝜀𝑖
𝑘𝐵𝑇𝑠𝑡𝑎𝑡𝑒𝑠

𝑖                     

                        [26] 

 

This approximation is commonly known as Rigid Rotor Harmonic Oscillator (RRHO). 

 

 

 

 

 

 
[17] Wikipedia, Stirling approximation via https://en.wikipedia.org/wiki/Stirling%27s_approximation 
(12/07/2020). 

https://en.wikipedia.org/wiki/Stirling%27s_approximation
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3.6 IR spectrum 
   Quantum mechanics provides a simple solution to the problem of vibration for a 

diatomic molecule, which is described as a single particle with reduced mass m = 
m1·m2

(m1 + m2)
 (kg) attached to a spring: 

𝐸 = ℎυ (𝑣 +
1

2
)            υ =

1

2π
√

𝑘

𝑚
                                               [27] 

where 𝑣 is the corresponding vibrational quantum number (𝑣 = 0, 1, 2, ...), υ is the 

frequency of the oscillator (s-1) and k is the force constant related to the strength of the 

chemical bond (N/m). A difference from the classical result is that the energy is not zero 

when 𝑣 =0, we obtain a residual value equal to ½hυ, known as zero-point energy (ZPE). 

 

   To study transitions between different vibrational states caused by the absorption of 

electromagnetic radiation, we must look at the dipole moment operator of the 

molecule, as it is the most appropriate one to describe the interaction of the molecule 

with the radiation (with the electric field component). In addition, we must take into 

account that this dipole moment will vary with the molecular vibrations associated with 

each vibrational state. If we consider that these variations are small, we can express the 

dipole moment operator as a Taylor series of a few terms: 

μ̂ = μ𝑒 + (
𝜕μ

𝜕𝑅
)

𝑅𝑒

(𝑅 − 𝑅𝑒) +
1

2
(

𝜕2μ

𝜕𝑅2)
𝑅𝑒

(𝑅 − 𝑅𝑒)2 + ⋯                     [28] 

where Re represents the equilibrium distance of the diatomic molecule and μe is the 

electronic component of dipolar moment. Thus, the dipole moment of the transition 

between two vibrational states v'' and v' is: 

∫ Ψ𝑣′
∗ μ̂Ψ𝑣′′𝑑τ𝑣𝑖𝑏 ≈ μ𝑒∫ Ψ𝑣′

∗ Ψ𝑣′′𝑑τ𝑣𝑖𝑏 + (
𝜕μ

𝜕𝑅
)𝑅𝑒

∫ Ψ𝑣′
∗ (𝑅 − 𝑅𝑒)Ψ𝑣′′𝑑τ𝑣𝑖𝑏

|μ|𝑣′′,𝑣′ ≈ (
𝜕μ

𝜕𝑅
)𝑅𝑒

∫ Ψ𝑣′
∗ (𝑅 − 𝑅𝑒)Ψ𝑣′′𝑑τ𝑣𝑖𝑏

          [29] 

 
where the first integral is neglected due to the orthogonality condition of the vibrational 

wave functions and equation [28] has been simplified to the first term. So, equation [29] 

provides the conditions for the vibrational transition between the states v'' and v' 

mediated by absorption of electromagnetic radiation. 

   The dipole moment of the molecule must vary with the geometry during the transition, 

and will modulate its intensity: 

(
𝜕μ

𝜕𝑅
)𝑅𝑒

≠ 0                                                                [30] 

   For the equation [29] a selection rule must be enforced in order to obtain a value 

different to zero: 

Δ𝑣 = 𝑣′ − 𝑣′′ = ±1                                                    [31] 
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   In the case of polyatomic molecules, the vibrations of the nuclei are more complex, 

but can be expressed as a linear combination of a finite number of independent 

vibrations, known as normal modes. In each of these normal modes the atoms vibrate 

in phase and with the same frequency (although the amplitude of this vibration may be 

different). Since the normal modes are orthogonal, vibrational energy and wave function 

can be expressed from them: 

𝐸𝑣𝑖𝑏 = ℎ ∑ υ𝑖 (𝑣𝑖 +
1

2
)

𝑛𝑚𝑜𝑑𝑒𝑠

𝑖=1

 

Ψ𝑣𝑖𝑏 = ∏ ψ𝑣𝑖𝑏,𝑖(𝑞𝑖)
𝑛𝑚𝑜𝑑𝑒𝑠
𝑖=1                                                [32] 

𝑍𝑃𝐸 =
ℎ

2
∑ υ𝑖

𝑛𝑚𝑜𝑑𝑒𝑠
𝑖=1     

 

   From a practical point of view, the value of k/m in equation [27] is obtained from the 

eigenvalues of the mass weighted matrix of the second energy-derived coordinates 

(Hessian matrix). In addition, it is common to use Lorentzian type [18] functions to 

simulate band widening when graphing the spectra: 

𝐿(𝜐) = ∑ 𝐼𝑘 (1 +
𝜐−𝜐𝑜,𝑘

𝜔𝑘 2⁄
)

−1
𝑛𝑚𝑜𝑑𝑒𝑠
𝑘=1                                          [33] 

where 𝐼𝑘, 𝜐𝑜,𝑘 and 𝜔𝑘 represent the intensity (equation [30]), frequency and bandwidth 

measured at half height (FWHM) of each of the normal modes of the molecule. 

3.7 Heat capacity 
   Heat capacity can be derived from the expression of the internal energy of the system 

in terms of the partition function (equation [22]): 

 

𝑈 = 𝑘𝐵𝑇2 𝜕𝑙𝑛𝑄

𝜕𝑇
           𝑈 = 𝑘𝐵𝑇2 1

𝑄

𝜕𝑄

𝜕𝑇
              𝑐𝑣 = (

𝜕𝑈

𝜕𝑇
)

𝑉
 

𝑐𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
≈ 3𝑁𝐴𝑘𝐵 + 𝑁𝐴𝑘𝐵 ∑

𝜃2

𝑇2

𝑒
𝜃
𝑇

(𝑒
𝜃
𝑇−1)

2              𝜃 = ℎ
𝜐𝑒

𝑘𝐵
                      [34] 

 

where the first term in the cv (3·R, R = NA·kB) arises from the dependency of translational 

and rotational motions on T3/2. Thus, the remaining term accounts for the different 

vibrational modes of the molecule, being  the vibrational temperature of each mode. 

This last term is the responsible for the different value of the heat capacity among the 

given molecules (with translational, rotational and vibrational degrees of freedom). 

 
[18] Wikipedia, Spectral line shape, Line shape functions: Lorentzian  via 
https://en.wikipedia.org/wiki/Spectral_line_shape (12/07/2020). 

https://en.wikipedia.org/wiki/Spectral_line_shape


QU0943 – Curso 2019/2020   
 

- 19 - 
 

4. RESULTS 
   In this work, a quantum chemical analysis has been carried to study the behaviour of 

silica nanoparticles when interacting with solar salts, in order to explain the reason for 

the increase in the heating capacity of the mixture. For this purpose, Gaussian09 

calculations have been used, first to evaluate the mechanism of the silica clustering, and 

second to study the availability of the chemical interaction between these clusters and 

the solar salt. A DFT method has been used for this purpose with an extended basis set 

6-31G(d,p) and the B3LYP as an exchange-correlation functional. We will also compare 

the experimental FTIR spectra with the theorical one for the solar salt, the nanoparticles 

and the nanofluid trying to assign each peak and determine whether if the introduction 

of a nitrate group is possible. 

 

4.1 Mechanism of silica clustering 
  In order to understand the interaction between silica nanoparticles and solar salt we 

must first know the behaviour of silica in solution. The simplest soluble molecule of silica 

is the orthosilicic acid, Si(OH)4. The orthosilicic acid undergoes self-polycondensation [19] 

in solution, where every interaction between two molecules will generate one molecule 

of water as is shown in Figure 2: 

 

 

Figure 2. Mechanism of condensation of silicic acid species in solution. 

 
[19] David J. B.; Olivier D.; Carole C. P. An overview of the fundamentals of the chemistry of silica with 
relevance to biosilicification and technological advances. FebsPress. 2012. 
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   From the 6 silicon atoms, small clusters of silica are formed. The simplest models are 

those of 6 and 8 silicon atoms, for which 9 and 12 water molecules are released 

respectively, one for each new Si-O bond formed. Figure 3 shows some of the structures 

formed in the self-polycondensation of orthosilicic acid. From two silicon atoms to a 

cluster of eight silicons: 

 

 

 

 

 

 

 

 

Figure 3. Exemplary orthosilicic acid structures from monomers through to octamers. A) Orthosilicic acid, 

B) two silicon product, C) three silicon product, D) four silicon product, E) six silicon cluster and F) eight 

silicon cluster. 
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   In this work we will use the 6 and 8 silicon clusters as they are the two most 

representative models for silica nanoparticles. 

   In order to verify the behaviour of the nanoparticles in solution, some calculations 

have been made to check that small silica clusters of 6 and 8 silicon atoms are being 

formed. For this purpose, we have selected the combination of   B3LYP/6-31G(d,p) for 

the calculations. First, an optimization of the molecules must be made: 

 

Figure 4. Cluster model products of auto-polycondensation of orthosilicic acid. 

  Once we have the correct geometry of the molecule its internal energy is calculated to 

obtain the Gibbs free energy, which will give us information about the formation of the 

silica clusters. In all the calculations very high equilibrium constants are obtained, which 

indicates the formation of the silica clusters. 

- Reaction 6 silicon atoms: 

6 Si(OH)4  ↔ Si6O9(OH)6 + 9 H2O 

 

Nº Molecules Molecule Eo+Gcorr (Ha) 

6 Si(OH)4   -3558.632111 
1 Si6O9(OH)6  

-3558.671893 9 H2O 
 

Table 1. Internal energies for the clustering of 6 silicon atoms (Ha). 

 

   Once we have the energy of reagents and products, we must convert it from Hartrees 

to kJ/mol using the relationship: 

1 Hartree = 2625.5 kJ/mol                                                 [33] 

and calculate the Gibbs free energy (ΔGº) as: 

ΔGº = 𝐺𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 −  𝐺𝑟𝑒𝑎𝑔𝑒𝑛𝑡𝑠                                             [34] 
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With the ΔGº of the reaction, we can calculate the reaction constant as: 

𝐾𝑒𝑞 = 𝑒
−ΔGº

𝑅𝑇                                                 [35] 

where R is a constant and T is temperature (K). The results obtained are represented in 

the following table: 

∆𝑮º (kj/mol) Keq 

-104.448 1.54x1018 
 

Table 2. Equilibrium constant for auto-polycondensation of 6 silicon atoms. 

 

Applying same procedure to the 8 silicon atoms cluster: 

- Reaction 8 silicon atoms: 

 

8 Si(OH)4  ↔ Si8O12(OH)8 + 12 H2O 

 

Nº Molecules Molecule Eo+Gcorr (Ha) 

8 Si(OH)4   -4744,831496 

1 Si8O12(OH)8  

-4744,930549 12 H2O 
 

Table 3. Internal energies for the clustering of 6 silicon atoms (Ha). 

 

∆𝑮º (kj/mol) Keq 

-260.064 1.92x1045 
 

Table 4. Equilibrium constant for auto-polycondensation of 8 silicon atoms. 

 

   The results shown in Table 2 and Table 4 demonstrate that this is a very exothermic 

reaction where orthosilicic acid spontaneously forms clusters of 6 and 8 silicon from self-

condensation, where for each new Si-O bond formed, one water molecule is released. 
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4.2 IR spectrum 
   Once we have the silica cluster model and the solar salt model, we can obtain their 

theoretical vibration frequencies, and with them the corresponding theoretical 

spectrum. It is important to take into account the error made by the method and basis 

set used [20]. Comparing this theoretical spectrum with the experimental one we will be 

able to verify what is happening in the interaction between the solar salt and the silica. 

   Figure 5 and Figure 6 show both, the theoretical and the experimental spectrum 

respectively for nanoparticles, salt and mixture. The experimental spectrum has been 

provided by Rosa Mondragon and her team who are also studying this field: 

 

   Figure 5. IR theoretical spectrum for nanoparticles, salt and mixture. 

 

 

 

 
[20] IR frequencies have been scaled considering the errors of the theoretical method and basis set used, 
as described in https://cccbdb.nist.gov/vibscalejust.asp  (14/07/2020). 
 

https://cccbdb.nist.gov/vibscalejust.asp
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   Figure 6. IR experimental spectrum for nanoparticles, salt and mixture. 

 

4.2.1 IR silica cluster 
  First, we must obtain the spectrum for the reagents. For silica nanoparticles, we have 

used the eight-silicon cluster since it is the most representative model (the largest one). 

As we have explained before, orthosilicic acid undergoes self-polycondensation in 

solution forming silica clusters. For each Si-O link formed, one water molecule is 

released. So, in the case of the eight-silicon cluster, 12 water molecules will be released 

as shown in the following figure:  

 

Figure 5. Cluster silica product. 
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Once we have the model of the eight-silicon cluster, we can obtain its vibration 

frequencies and from them represent the IR spectrum of the model. In the following 

figure we can observe the theorical spectrum of the eight-silica cluster (blue line) 

superposed with the experimental one (green line): 

 

Figure 6. IR silica cluster. 

   In the following table are compiled all the vibration frequencies in cm-1 of the silica 

cluster surrounded by the twelve water molecules, as well as the assignment of each 

vibration: 

 

Signal Frequency (cm-1) Assignment 

A 1636 H2O molecules 

B 1632 H2O molecules 

C 1141 Si-O-Si stretching 

D 993 Si-OH stretching 

E 958 Si-OH stretching 

F 804 Si-O-Si stretching 

G 542 Si-O-Si stretching 
 

Table 5. Frequencies silica cluster. 

   The peak over 1630 cm-1 (A and B signals) corresponds to the vibrations of the water 

molecules. The silica cluster theoretically has three characteristic bands, two bands on 

1090-1010 cm-1 (C signal) and another on 625-480 cm-1 (F and G signals) that correspond 
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to the Si-O-Si stretch and third band on 955-830 cm-1 (D and E signals) that corresponds 

to the Si-OH stretching [21]. 

 

4.2.2 IR solar salt 
 The solar salt model is composed of a network of nitrate anions and metal cations as 

shown in the figure below: 

 

Figure 7. Solar salt. 

   For this model we have used a total of 16 molecules of KNO3 and 29 molecules of 

NaNO3 to obtain a mixture 40:60  %wt of K+/Na+. 

   The theoretical spectrum of the solar salt is obtained in the same way as with the eight-

silicon cluster and is represented in the following figure (blue line) together with the 

experimental spectrum (green line): 

 
[21] Infrared and Raman Characteristic Group Frequencies, Third Edition, JOHN WILEY & SONS. 2001. 
pp.243-246. 
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Figure 8. IR solar salt. 

   The following table shows all the vibration frequencies of the solar salt, as well as the 

assignment for each of these vibrations: 

Signal Frequency (cm-1) Assignment 

A 1396 N-O stretching 

B 859 N out-of-plane bending 

C 865 N out-of-plane bending 
 

Table 6. Frequencies solar salt. 

  Inorganic nitrates commonly present two characteristic bands, one on 1450-1340 cm-1 

and the other on 825 cm-1 both corresponding to the N-O stretching and N out-of-plane 

bending respectively. 

   In the following figure are represented the vectors of movement for each vibration for 

the solar salt model: 

        

Figure 9. Vectors of movement of N out-of-plane bending and N-O stretching respectively. 
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4.2.3 IR nanofluid 
   Once we obtain the IR of the two reagents and verify that the theoretical spectra agree 

with the experimental ones, we must propose a model for the products. In our case we 

have proposed two models: one where the silica cluster is found inside the solar salt 

(without chemical reaction) and another where a nitrate group is included in the 

nanoparticle (with chemical reaction). Due to the size of the system, an initial 

concentration of nanoparticles of 10 %wt has been selected, although it experimentally 

determined that the optimal concentration providing a larger increase on the heat 

capacity is around 2 %wt, since it is known that it is the mass percentage that provides 

a greater increase of the specific heat because of the contact surface of the nanoparticle, 

which is maximum due to the lack of agglomerations. 

   For this model we have used a total of 16 molecules of KNO3, 25 molecules of NaNO3 

and, for the nanoparticles, an eight-silicon cluster. 

   The following figure corresponds to the first model where the silica cluster remains 

unreacted to the solar salt: 

 

Figure 10. Solar salt silica cluster interaction without chemical reaction. 

 

   The theoretical IR spectrum (blue line) is represented together with the three 

experimental spectra as is shown in Figure 11: experimental solar salt spectrum (blue 

dotted line), experimental silica cluster spectrum (purple dotted line) and experimental 

nanofluid spectrum (red dotted line). 
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Figure 11. IR spectrum nanofluid without chemical reaction. 

   The following table shows the vibrational frequencies of the nanofluid without 

chemical reaction as well as the assignment of these frequencies: 

 

Signal Frequency (cm-1) Assignment 

A 1415 N-O stretching 

B 1389 N-O stretching 

C 1235 Si-O and N-O stretching 

D 1188 Si-O and N-O stretching 

E 1112 Si-O and N-O stretching 

F 926 Si-OH stretching 

G 748 N out-of-plane bending 

H 538 Si-O-Si stretching 
 

Table 7. Frequencies nanofluid without chemical reaction. 

   As we can observe the introduction of the silica cluster in the solar salt modifies the 

frequencies and the bands suffer a displacement. Thus, we find a displacement of the 

bands of the Si-O-Si stretching (C, D and E signals), that are now over 1230-1000 cm-1. 

 

   In the following figure are shown the vectors of movement for the vibrations of silica 

cluster inside the solar salt: 
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Figure 12. Vectors of movement of Si-OH and Si-O-Si stretching respectively. 

 

  In the second model of nanofluid a nitrate group is introduced in the silica cluster. The 

possible mechanism of this reaction will be discussed in the following section. Figure 13 

shows the model of nanofluid with chemical reaction: 

 

                     Figure 13. Solar salt silica cluster interaction with chemical reaction. 

   The theoretical IR spectrum (blue line) is represented together with the three 

experimental spectra of nanofluid (red dotted line) as is shown in Figure 14:  
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Figure 14. IR spectrum nanofluid with chemical reaction. 

  The following table shows the vibrational frequencies of the nanofluid with chemical 

reaction as well as the assignment of these frequencies: 

Signal Frequency (cm-1) Assignment 

A 1428 O2N-O-Si stretching 

B 1152 Si-O-Si and N-O stretching 

C 862 Si-OH stretching 

D 847 Si-OH stretching 

E 744 N out-of-plane bending 

F 610 N-O stretching 

G 538 Si-O-Si stretching 

 

Table 8. Frequencies nanofluid with chemical reaction. 

   With the introduction of a nitrate group in the silica cluster a new frequency appears 

at 1428 cm-1 (signal A). This frequency corresponds only to the vibration of the nitrate 

group attached to the silicon in the nanoparticle. This is a great evidence that allows us 

to check if the introduction of a nitrate group is possible or not. In the experimental 

spectrum, small bands with a lot of noise are observed, so it is difficult to know if it is 

the same band. The Si-O-Si (signal B) band has widened due to the nitrates of solar salt 

which overlap at the same frequency. 



QU0943 – Curso 2019/2020   
 

- 32 - 
 

 

Figure 15. Vector of movement for the vibration of the introduced nitrate. 

 

 

4.3 Chemical reaction 
   Once we have analysed the IR spectra, we must study the introduction of the nitrate 

group into the silica cluster. For this purpose, we will make a thermodynamic study as 

we have already done with the silica clusters, where we will obtain both the Gibbs-free 

energy and the equilibrium constant to check if the reaction is exothermic and therefore, 

if a nitrate group is introduced.  

   In order to make the calculations we have selected the cluster of 8 silicon atoms to 

represent the silica nanoparticles. The reaction studied is as follows: 

Si8O12(OH)8 + 41 NO3
- → Si8O12(NO3)(OH) 7 + 40 NO3

-+ OH- 

 

 

Table 9. Internal energies for the nanofluid product. 

Applying [33], [34] and [35] equation we obtain: 

 

 Molecule Eo+Gcorr (kJ/mol) 

Reagents Si8O12(OH)8 + NO3
- -96687662.82 

Products Si8O12(NO3)(OH)7 + OH- -96687700.77 
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∆𝑮º (kJ/mol) Keq 

-37.95 4.05x106 

 

Table 10. Equilibrium constant of nanofluid. 

 

4.4 Heat capacity calculations 
   Calculations of the calorific capacities of the nanofluid have been made, both for the 

model without chemical reaction and for the model with chemical reaction, in order to 

estimate the effect of the reaction on the increase of the specific heat. The results are 

shown below: 

CVwithout reaction = 5586.443 J/mol·K at 780 K. 

CVwith reaction = 5597.466 J/mol·K at 780 K. 

∆CV = 
5597.466−5586.443

5586.443
𝑥100 = 0.2% 

    

   The specific heat increase obtained for 10 %wt in nanoparticles is 0.2 %, a value that 

is quite far from the experimental one (around 20 %). 

5. CONCLUSIONS 
   This work has been useful for me to go deeper into a field of chemistry such as 

computational chemistry. In addition, I have been able to experience how a research 

work is carried out starting from scratch with only one experimental spectrum. I have 

learned to implement to my knowledge in chemistry programs like Gaussian09, which is 

a great tool for the study of chemical reactions and that has provided us with very 

valuable information to be able to carry out this work  

   It must be taken into account that in order to achieve the models used in this work, a 

great number of calculations have been made, discarding a large quantity of models that 

were not suitable to our study. The models used are the most representative within our 

calculation conditions and the programs used, as well as the objective of this TFG. We 

have added a last section as an appendix where calculations for smaller models are 

shown. 

   Analyzing the results, it is feasible to introduce a nitrate group in the silica 

nanoparticles, although it does not have a very high Keq, it is an exergonic reaction and 

therefore the nitrate could be chemically absorbed to the surface of the nanoparticles. 

   In this work we have used 10% wt of nanoparticles obtaining an increase of the calorific 

capacity of 0.2%, a result that differs from the one obtained experimentally with an 

increase of the specific heat of almost 20%. This is because we have not been able to 

reproduce the system necessary to obtain these results, using 1-2 %wt of nanoparticles. 

To reproduce such a system would have been very costly in terms of calculation and 
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would not have been feasible. On the other hand, a plausible reason for the small 

increase of heat capacity measured expeirmentally at 10 %wt of nanoparticles can be 

due to the presence of agglomeration, leading to a decrease in the available specifc 

surface, thus causing that fewer nitrate groups are combined with the nanoparticles. To 

improve the study, additional factors and computational techniques, beyond the scope 

of this TFG, should be taken into account. 

 

6. APPENDIX 
   In this appendix we have decided to compile all those small models that have helped 

to reach the results of this work. Calculations were made with less computational cost 

and the results were analysed, from there, new models were discarded or implemented 

in order to obtain the definitive ones. 

   In order to study the behaviour of silica clustering and to achieve the final model of 

the 8-silicon cluster, we analysed smaller models with less silicon atoms. 

   A total of three models have been studied before arriving at the model used in this 

research. These models were formed from 2, 3, and 4 silicon atoms. 

- Reaction 2 silicon atoms 

2 Si(OH)4  ↔ Si2O(OH)6 + H2O 

 

Nº Molecules Molecule Eo+Gcorr (Ha) 

2 Si(OH)4   -1185.76578 

1 Si2O(OH)6  

-1185.834873 1 H2O 
 

Table 11. Internal energies for the clustering of 2 silicon atoms (Ha). 

Applying [33], [34] and [35] equation we obtain: 

 

∆𝑮º (kJ/mol) Keq 

-181.403672 3.86x1031 

 

Table 12. Equilibrium constant of 2 silicon model. 

 

- Reaction 3 silicon atoms 

 

3 Si(OH)4  ↔ Si3O3(OH)6 + 3 H2O 

 

 

 



QU0943 – Curso 2019/2020   
 

- 35 - 
 

Nº Molecules Molecule Eo+Gcorr (Ha) 

3 Si(OH)4   -1778.64867 

1 Si3O3(OH)6  

-1778.730151 3 H2O 
 

Table 13. Internal energies for the clustering of 3 silicon atoms (Ha). 

Applying [33], [34] and [35] equation we obtain: 

 

∆𝑮º (kJ/mol) Keq 

-213.928365 1.78x1037 

 

Table 14. Equilibrium constant of 3 silicon model. 

 

- Reaction 4 silicon atoms 

 

4 Si(OH)4  ↔ Si4O4(OH)8 + 4 H2O 

 

Nº Molecules Molecule Eo+Gcorr (Ha) 

4 Si(OH)4   -2371.53156 

1 Si4O4(OH)8  

-2371.647111 4 H2O 
 

Table 15. Internal energies for the clustering of 4 silicon atoms (Ha). 

 

Applying [33], [34] and [35] equation we obtain: 

 

 

∆𝑮º (kJ/mol) Keq 

-303.37915 6.68x1052 
 

Table 16. Equilibrium constant of 4 silicon model. 

 

   For these three designs, we have calculated the internal energy of the water molecules 

separately from the silica cluster as opposed to the work, where the water molecules 

are in the same model along with the silica cluster. Thus, the results obtained only give 

us qualitative information about the formation of the clusters, being in all cases an 

exergonic reaction. 


