Electronic supplementary information for:

Structure, photoluminescence emissions, and photocatalytic activity of Ag₂SeO₃: a joint experimental and theoretical investigation

Ivo M. Pinatti ^{a*}, Aline B. Trench ^b, Ana C. M. Tello ^b, Paula F. S. Pereira ^b, Josiane C. Souza ^b, Marcio D. Teodoro ^c, Ieda L. V. Rosa ^b, Juan Andrés ^d, Elson Longo ^b, and Alexandre Z. Simões ^a

^a Faculty of Engineering of Guaratinguetá, São Paulo State University (UNESP), 12516-410, Guaratinguetá, SP, Brazil.

^b CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos 13565-905, Brazil.

^c Physics Department, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos 13565-905, Brazil.

^d Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló 12071, Spain.

*corresponding author: ivopinatti@hotmail.com

Figure SI-1. Rietveld refinement plot of (a) Ag₂SeO₃-SC, (b) Ag₂SeO₃-UP, (c) Ag₂SeO₃-CP and (d) Ag₂SeO₃-MH microcrystals.

Table SI-1. Atomic positions of the Ag₂SeO₃ microcrystals.

Atoms	А	g2SeO3-SO		Ag ₂ SeO ₃ -UP			
	Х	У	Z	X	У	Z	
Ag1	0.2708(7)	0.2528(6)	0.0891(8)	0.2616(0)	0.2519(0)	0.0916(0)	
Ag2	0.2519(2)	0.5862(1)	0.6366(1)	0.2526(0)	0.5837(0)	0.6357(0)	
Se1	0.7394(8)	0.4066(6)	0.8335(4)	0.7398(0)	0.4083(0)	0.8358(0)	
01	0.4101(1)	0.3940(7)	0.8476(3)	0.3891(0)	0.3948(0)	0.8505(0)	
02	0.7696(4)	0.5366(8)	0.6878(1)	0.7623(0)	0.5371(0)	0.6864(0)	
03	0.8142(4)	0.2782(6)	0.6686(1)	0.7965(0)	0.2871(0)	0.6770(0)	

Atoms	А	.g ₂ SeO ₃ -CI	0	А	Ag ₂ SeO ₃ -MH			
	X	У	Z	X	У	Z		
Ag1	0.2616(0)	0.2519(0)	0.0916(0)	0.2598(2)	0.2538(0)	0.0893(6)		
Ag2	0.2526(0)	0.5837(0)	0.6357(0)	0.2534(9)	0.5847(1)	0.6367(9)		
Se1	0.7398(0)	0.4083(0)	0.8358(0)	0.7306(9)	0.4093(5)	0.8338(0)		
01	0.3891(0)	0.3948(0)	0.8505(0)	0.4024(8)	0.3897(3)	0.8477(6)		
02	0.7623(0)	0.5371(0)	0.6864(0)	0.8402(6)	0.5392(7)	0.7058(1)		
03	0.7965(0)	0.2871(0)	0.6770(0)	0.8079(0)	0.2973(7)	0.6624(9)		

ICSD N°78388 Ag1 (x) 0.2616(2), (y) 0.2519(1), (z) 0.0916(2); Ag2 (x) 0.2526(2), (y) 0.5837(1), (z) 0.6357(1); Se1 (x) 0.7398(3), (y) 0.4083(1), (z) 0.8358(2); O1 (x) 0.3891(19), (y) 0.3948(8), (z) 0.8505(1); O2 (x) 0.7623(2), (y) 0.5371(9), (z) 0.6864(1); O3 (x) 0.7965(2), (y) 0.2871(8), (z) 0.6770(1)

Parameters	Samples							
Tarameters	Ag ₂ SeO ₃ -SC	Ag ₂ SeO ₃ -UP	Ag ₂ SeO ₃ -CP	Ag ₂ SeO ₃ -MH				
Source	Cu Ka	Cu Ka	Cu Ka	Cu Ka				
Chemical formula	Ag_2SeO_3	Ag_2SeO_3	Ag_2SeO_3	Ag_2SeO_3				
Formula weight	342.69	342.69	342.69	342.69				
Temperature	ambient	ambient	ambient	ambient				
Pressure	ambient	ambient	ambient	ambient				
Wavelength (Å)	1.5406	1.5406	1.5406	1.5406				
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic				
Space group (No.)	<i>P2</i> ₁ / <i>c</i>							
<i>a</i> (Å)	4.8580(4)	4.8601(4)	4.85710(14)	4.85999(14)				
b (Å)	10.33829(11)	10.33457(16)	10.33995(22)	10.33953(14)				
<i>c</i> (Å)	6.95715(7)	6.95925(11)	6.95691(15)	6.95652(10)				
α (°)	90.0	90.0	90.0	90.0				
β (°)	91.085(4)	90.919(8)	90.9292(34)	91.1142(28)				
γ (°)	90.0	90.0	90.0	90.0				
$V(\text{\AA}^3)$	349.348(27)	349.496(33)	349.345(15)	349.499(12)				
Z	4	4	4	4				
<i>d</i> -space range (Å)	0.94-5.77	0.94-5.77	0.94-5.77	0.94-5.77				
χ ²	1.55	1.50	1.33	1.26				
R_p (%)	7.93	9.76	9.82	8.59				
R _{wp} (%)	12.53	13.75	13.90	11.90				

 Table SI-2. Crystallographic data of Rietveld refinement.

 $R_p = profile R$ -factor; $R_{wp} = weighted profile R$ -factor

Fig. SI-2. Core level spectra of Ag 3d of the (a) Ag_2SeO_3 -SC, (b) Ag_2SeO_3 -UP, (c) Ag_2SeO_3 -CP, and (d) Ag_2SeO_3 -MH samples.

Fig. SI-3. Core level spectra of Se 3d of the (a) Ag_2SeO_3 -SC, (b) Ag_2SeO_3 -UP, (c) Ag_2SeO_3 -CP, and (d) Ag_2SeO_3 -MH samples.

Fig. SI-4. Core level spectra of O 1s of the (a) Ag_2SeO_3 -SC, (b) Ag_2SeO_3 -UP, (c) Ag_2SeO_3 -CP, and (d) Ag_2SeO_3 -MH samples.

	Elements		Ag	(3d) Se		Se ((3d)		O (1s)	
Samples	oxidation states	Ag^+		Ag ⁰		Se ⁴⁺		O ^{2.}		
	spin-orbit components	3d _{5/2}	3d _{3/2}	3d _{5/2}	3d _{3/2}	3d _{5/2}	3d _{3/2}	Lattice oxygen	Oxygen vacancies	Hydroxyl group
Ag ₂ SeO ₃ -	Position (eV)	367.7	373.7	368.6	374.6	58.47	59.33	530.4	531.9	533.4
SC	Conc. (%)	27.61	26.69	23.24	22.46	50.78	49.22	53.36	32.45	14.19
Ag ₂ SeO ₃ -	Position (eV)	367.5	373.5	368.5	374.5	58.33	59.19	530.3	531.8	533.3
UP	Conc. (%)	25.29	24.45	25.55	24.70	50.62	49.38	56.93	31.47	11.60
Ag ₂ SeO ₃ -	Position (eV)	367.5	373.5	368.5	374.5	58.36	59.22	530.2	531.7	533.2
СР	Conc. (%)	23.98	23.18	26.86	25.97	50.62	49.38	38.28	40.38	21.34
Ag ₂ SeO ₃ -	Position (eV)	367.5	373.5	368.7	374.7	58.44	59.30	530.2	531.7	533.2
MH	Conc. (%)	27.78	26.85	23.07	22.30	50.62	49.38	44.91	38.55	16.53

Table SI-3. XPS elements positions and concentration of the area components for Ag, Se and O of the Ag_2SeO_3 samples.

Surface	E_{surf} (% C_i)								
	Ideal	A1	A2	A3	B1	B2	B3		
(011)	0.23(67.2)	0.70 (0.0)	0.70 (0.00)	1.10 (0.00)	0.23(58.4)	0.23(40.6)	0.23(41.4)		
(100)	0.25(31.5)	0.25(45.0)	0.25(38.7)	0.25(35.1)	0.25(32.4)	0.51(9.02)	0.51(11.4)		
(001)	0.30(0.00)	0.30(37.5)	0.15(54.5)	0.15(58.6)	0.30(0.00)	0.30(0.00)	0.30(0.00)		
(021)	0.35(0.00)	2.20(0.0)	2.20(0.00)	2.20(0.00)	0.30(9.24)	0.25(18.1)	0.23(29.3)		
(110)	0.36(1.23)	2.20(0.0)	2.20(0.00)	2.20(0.00)	0.36(1.23)	0.51(7.81)	0.51(8.57)		
(111)	0.37(0.00)	2.20(0.0)	2.20(0.00)	2.20(0.00)	0.51(0.00)	0.51(3.15)	0.80(0.00)		
(010)	0.64(0.00)	0.64(17.5)	0.64(12.8)	1.40(6.28)	0.64(0.00)	0.23(21.3)	0.23(9.23)		
(101)	0.70(0.00)	0.7(0.0)	2.0(0.00)	2.0(0.00)	0.70(0.00)	0.70(0.00)	0.70(0.00)		
Epoly	0.24	0.34	0.25	0.26	0.24	0.29	0.27		

Table SI-4. Surface area composition, E_{surf} and E_{poly} for the different proposed morphologies.

Fig. SI-5. Band gap energy estimated by Kubelka and Munk for the (a) Ag₂SeO₃-SC, (b) Ag₂SeO₃-UP, (c) Ag₂SeO₃-CP, and (d) Ag₂SeO₃-MH samples.

Fig. SI-6. XRD patterns of the Ag₂SeO₃-SC catalysts after 3 photocatalytic cycles.