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Motivation

Quantum chemistry is a central subject in Chemistry degree because it provides ultimate answers to
explain reactivity, structural, stability and spectroscopy of atoms molecules and solids. However, to
derive practical conclusions, one need to be familiar with several specific mathematical concepts
and  techniques.  Undergraduate  courses  on  Quantum  Chemistry  often  omit  much  of  this
mathematical background in order to highlight the physical concepts, as doing otherwise would
likely confuse the majority of students. Who would “not see the forest because of the leaves”. As a
result,  the solutions of the Schrödinguer equation are usually provided right after presenting the
Hamiltonian. Obviously, a student with interest in the matter realizes he is missing an important
step, for he is then unable to obtain solutions autonomously. 

The goal of this work is to provide an introductory view on some of the mathematical tools used in
Quantum Chemistry to obtain eigenvalues and eigenstates of the  time-independent  Schrödinguer
equation. Namely, we study polynomial method, the factorization method and the method of finite
differences. All three techniques are applied to solve the Quantum Harmonic oscillator problem. We
purpose fully fully choose this problem because it is pervasive in most areas of Physical Chemistry,
and  susceptible  of  being  solved  through  any  of  the  techniques,  which  will  allow  us  to  draw
comparisons and conclusions in the end
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1. Introduction

On the importance of the harmonic oscillator model 

A harmonic oscillator (hereafter HO) [1] is a system which returns to the position of equilibrium
describing sine waves when displaced out of it. 

This system has a great value in Physics and Chemistry. The reason is that any system weakly
shifted from a stable point can be modeled as a harmonic oscillator. We can apply it to a myriad of
cases. Typical instances at the a macroscopic level are pendulums and springs. At a microscopic
level, we can apply quantum harmonic oscillator in order to study vibration modes, electronic states
in semiconductor nanostructures or photon modes in radiation, to name a few. 

Classical explanation and systems 

As we said before, any system able to return to the position of equilibrium once it’s released out of
this, will be a HO. A clear example of harmonic oscillator can be an item, with mass “m”, bound to
a spring. When we apply a force in axis x, we will move the item to the balance position and, if we
release  in  any  point,  the  spring  speed  up  the  item to  the  balance  position.  The  value  of  this
acceleration will be proportional to the distance to the item balance position, multiplied by a spring
elasticity constant (Hooke’s Law) 

Equations 

We can calculate the acceleration through Newton’s second law and Hooke’s law, as we can see in
the equations 1 and 2. 

  (1)

Where:

• k is the elasticity constant of the spring
• x is the distance between the mass and the balance position
• a is the acceleration of the item
• m is the mass of the item
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Now, we can replace acceleration with the second derivative of the movement respect to the time,
according to his definition. After that, we will clear the acceleration.

  (2)

We define the angular frequency, in radian/second (rad/s):

  (3)

And determine the position of the mass as a function of time solving Eq.(2). The following result is
obtained:

  (4)

Where:

• A  is  a  constant  called  range  of  motion  and  it’s  the  maximum  movement  of  the  mass
respecting the balance position 

• (ωt+δ) is the phase 
• δ is the constant of the phase and it is set by the initial conditions of the problem.

A graphical interpretation of Eq.(4) is given in Fig.1: 

Figure 1. Time-evaluation of the position in a classical HO [2]
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One can determine the time it takes for the mass to carry out a complete oscillation by means of the
Period (T). The period is related to the angular frequency by the following equation:

  (5)

Energy 

From Hooke’s law and the fact that , it is straightforward to express the potential energy

of HO as:

  (6)

The energy is conserved as long as there is no friction in the system, switching to kinetic energy
cyclically.

In figure 2, we can see the total  energy, the kinetic energy and the elastic energy for different
positions of a particle that describes a simple harmonic movement

Figure 2. Energy for different particle positions  [2]
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Since the mechanical energy is conserved, the total energy, which is the sum of kinetic energy and 
potential, can be calculated by equation 7:

  (7)

Origin of the parabolic confinement 

The problem of the harmonic oscillator is common and of great relevance in physics, since any
mass in equilibrium subjected to a conservative force, behaves like a simple harmonic oscillator.

A force is conservative if the total work done on a particle that maintains a closed trajectory is zero.
In this case, the conservative force is associated with the potential energy. Consider an arbitrary
potential function , which we take one-dimensional for simplicity. [3]

Then, using a Taylor series, you can approximate this function to a specific point.  In this way, the
function is approximated to the point of minimum energy, where x = x0 , so we know the behavior
of the particle at the point of equilibrium against small perturbations. Applying this, the function
remains as follows:

  (8)

Where the higher-order terms are safely neglected if the displacement  is small.

Because x0 is a minimum, the first derivative of the potential , so the term V' disappears.
Also,   can be taken as the reference energy,  , so the first term can be discarded
from the equation. Equation 9 shows what the function looks like after applying these adjustments:

  (9)

If we define the equilibrium position as x0 = 0 (origin of coordinates), and V² is a constant, which 
will be called K, we obtain: 

  (10)

It is worth to remarking the generality of the parabolic potential in Eq.(10). It holds for any system
weakly  displaces   from  its  equilibrium  position,  as  long  as  the  force  is
conservative
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Quantum Harmonic Oscillator 

The Quantum Harmonic Oscillator (QHO) [4] is the quantum mechanical analogue of the classical
HO. It is one of the most important models in quantum mechanics, because  the electrostatic and
electrodynamics  interactions  that  determine  the  behavior  of  atoms  and  molecules  are  of
conservative  nature. It  is  also  one  of  the  few systems in  quantum mechanics  for  which exact
analytical solution is known.

Hamiltonian, energy and eigenfunctions

As  we have  studied above, the  potential of a system describing simple harmonic motion can be
calculated through equation 10, where a particle of mass "m" is subjected to a quadratic potential.

At the quantum level, the Hamiltonian must be defined for the particle. This is an operator whose
eigenvalues gives the observable "energy". Thus, the Hamiltonian of the particle will be:

  (13)

Where we have used to relationship between  k and  w in Eq.(3). Notice that the Hamiltonian is
composed of kinetic and potential energy terms. Also:

x corresponds to the operator position 
p is the linear moment operator, defined as:

  (12)

The time independent Schrödinguer equation is:

  (13)

For the HO becomes in equation 14:

  (14)
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It is convenient use non-dimensionalization in order to simplify the above equation. To do this, we
avail of the fact that the harmonic oscillator has natural scales of energy, expressed in hω and of

length, expressed in 

Furthermore,   represents the probability density,  which is dimensionless when integrated
over x, therefore,   has inverse length units. Therefore, the equation must be rewritten as a
function  of  a  non-dimensional  variable,  where  the  following  relationship  is  established:

  (15)

Where  which will be set afterwards corresponds to a natural system length. This gives the 
dimensionless wave function:

  (16)

Then the differential equation is as follows:

  (17)

This equation is readjusted in order to further simplify the equation:

  (18)

The coefficient of  in the potential term can be simplified by imposing:

  (19)

Which gives the natural length scales of the system:

  (20)
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Finally, the non-dimensional equation is as follows:

  (21)

Where it is established:

  (22)

If we look at equation 21, we can see that the term in front of  corresponds to the energy of the
harmonic oscillator. The equation can then be rearranged:

  (23)

The Hamiltonian of equation 24 corresponds to:

  (24)

To solve equation 24, the allowed energies and their  respective wave functions must be found.
These functions need to be normalized and symmetrical with respect to x=0. This ensures that the
probability density will be finite within the range of −∞  y ∞. 

The allowed energies as shown elementary Quantum Chemistry textbooks [5]: 

   (25)

In turn, the corresponding wave functions for the energies described in equation 26 are shown 
below:

  (26)
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Where:
      

    - The value of β is 

    - Nn corresponds to the normalization constant
    - Hn is a grade-n polynomial called the Hermite polynomial

Finally, figure 3 shows the first four wave functions of the Quantum Harmonic Oscillator [6]:

 Figure 3. First four wave functions of the Quantum Harmonic Oscillator
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Difference between classical and quantum harmonic oscillator

The  solutions  of  Eq.(7)  and  (21)  reveal  significant  differences,  which  evidence  the  different
behavior of classical and quantum regimen.

The  first  difference  that  must  be  treated  is  the  energy.  In  the  case  of  the  classical  harmonic
oscillator, there are no forbidden energies, all the energies within the range described above are
allowed. On the other hand, in the case of the Quantum Harmonic Oscillator, the energy levels are
quantized, so there are allowed and forbidden energies. 

The second difference to be dealt with is where the particle can be found. At the classical level, the
particle will be in the range described above, between the limit being the length of the spring. At a
quantum level, however, the particle is capable of exceeding the amplitude A by means of the tunnel
effect, allowing it to be found outside the range of the spring length. 

Finally, we have discussed where the particle can be found, so the next step is to argue where it is
most likely to be found.  In both cases, the system can be solved by a purely statistical study. The
mass to oscillate from to must pass through the point of equilibrium, which is at x=0. It is the same
in the opposite direction, so the particle is twice as likely to be at the point of equilibrium as at the
ends.  At  the quantum level,  as shown in figure 3,  at  the ground state  level,  the particle  has  a
correlation with the classical level and is at the point of equilibrium. However, we have different
energy levels in QHO, being the probability of find the particle different in every energy level, in
contrast to HO.
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2. The Polynomial Method

As we  said  before,  we  would  like  to  solve  Schrödinguer  equation  for  the  quantum harmonic
oscillator. For that, we must calculate the eigenstates with their respective eigenvalues. So, we can
get this purpose through many ways. The first method we are going to apply is an algebraic method,
called Polynomial method. [7]

From Eq.(23), the non-dimensional Schrödinguer equation of the QHO is:

  (27)

  (28)

The associated boundary conditions are . The wave function is integrable.

The  idea  behind  the  Polynomial  method  is  that  we  can  express  any   as  a  infinite  length
polynomial.  This is in principle unpractical because we cannot handly infinite series, but under
certain conditions it becomes viable to consider a finite expansion. (Because we can’t solve an
equation composed for infinite terms of x. Therefore, we must to deal with the equation and find out
a finite length polynomial, which will be our problem solution.) So, as we mentioned before, we are
going to  express  as a infinite length polynomial and the goal is to determine de coefficients ,

 … that make  fulfill Eq.(28). We calculate its respective first and second derivatives:

 (29) 

 (30)

 (31)

After that, we can substitute in the equation 28, and we have:

  (32)

There are  a  lot  of  terms and it  may be quite  hard to  find  out  any way to  solve  the equation.
Therefore, we are going to group equation 32 according to the power of x:

  (33)
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At this moment, we have infinite terms and for the equations 33 to hold for any value of x each of
them must individually equal zero. Then:

   (34)
   (35)

  (36)
   (37)
   (38)

If we look at the our proposed solution, one may feel that there isn’t a practical solution. The reason
of that is because all the even   depends of   and, obviously, all the odd  depends of . We
must make a choice of the values of  and expect that the polynomial will be finite at some 
power. Unfortunately, there is no chance to get that, because any of the values that we attribute, the
polynomial will tend to an infinite series. 

As we said before, we can’t find a direct solution for equation 28. However, if we analyze the
equation and the method to solve it, we will notice that we can succeed if we rewrite the guess
function  as the product of the polynomial and a Gaussian function:

  (39)

Then: the derivatives become:

  (40)

  (41)

We apply common factor in order to simplify 41 equation: 

   (42)

After substituting 39, 40 and 42 in 28, we will obtain:

  (43)

To find the roots of Eq.(43), we focus on the polynomial, because an exponential function can never
equal zero. Therefore:

  (44)
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In order to simplify, we are going to define . Then, Eq.(44) becomes:

  (45)

Eq.(45)  is  Hermitte’s  differential  equation,  which  is  known to  be  susceptible  of  being  solved
through the polynomial method, so, we are going to follow exactly the same steps as before.

  (46)

  (47)

  (48)

Then, we can substitute equation 34, 34.1 and 34.2 in the equation 33.2, and we will have:

  (49)

After that, we are going to group equation 35 according to the power of x:

  (50)

We equal all of the terms to zero in order to find out a solution for the coefficients:

   (51)
  (52)
  (53) 
  (54)
  (55)
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If we clear the coefficients, we will obtain:

  (56)

  (57)

  (58)

  (59)

  (60)

Ultimately, all coefficients depends on n,  and . Basically, the idea is to set values that we can
obtain a finite polynomial. For this to occur, on the one hand, we set increasing integer values for ,
from 0 to the value we would like to get. On the other hand, we set  and  for even 
and vice versa for the odd . The reason of the solution is because all even and odd  coefficients
are directly related with his previous, so, once a coefficient vanishes, all his relatives will vanish as
well. 

In the next table, we show the first five  values with his respective .

Table 1. First six energies and Hermite polynomials
n E f

0 1 0

1 0 1

2 1 0

3 0 1

4 1 0

5 0 1

Where we have used the relationship:

   (61)

And:

   (62)
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The polynomial in table 1 are known as Hermite polynomials

Once we have obtained the functions, we can readily obtain HO eigenfunctions, , through equation
39 and the associated eigenvalues.

We can represent the first five solutions:

 

Figure 4. First five wave functions of the Quantum Harmonic Oscillator through polynomial
method.

One can see that the figure we have obtained matches perfectly the textbook solution depicted in 
Chapter 1, figure 3.

Finally, we must check if our proposed resolution  fulfills boundary conditions.  In this case, the
particle is located in a potential where the limits are 0 and L. Both sides of the potential tend to 
and the probability to find the particle in these limits must equal zero, so the wave function must be
zero. The wave function can be expressed as:

  (64)

It  is  evident  that  both  numerator  and  denominator  tend  to  infinity  if  .  To  solve  this
undetermination apply L’Hopital’s rule. It is defined as: [8]

   (65)
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From Eqs. (29) and (39), we calculate the derivatives

  (66)

  (67)

Again, we realize  is undetermined at , because both functions continue depending of .

However,  In equation 39 the power of  decreases one grade while in equation 39 keeps constant in
the  first  derivatives.  So,  we can  continue  applying  L’Hopital’s  rule  in  order  to  study how the
equation 39 changes:

 (68)
 (69)

To further analysis, we are going to focus only on the polynomial of the highest degree, because tt is
the most restrictive term to solve the undetermination. From Eq.(66), (68), and (69), one can infer
the general expression of the derivative:

  (70)

Clearly, when   the polynomial derivative becomes constant. So:

  (71)

Once we have studied the equation 29, we are going to study equation 39. First derivative has been
calculated, equation 67, so, we must calculate second and third derivatives:

  (72)

  (73)

As we can see, the power of x is increasing when we calculate second and third derivative, so, that 
means  tend to .

   (74)
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After studying equation 37, we can conclude that:

  (75)

This  means  that  our  proposed  resolution  accomplish  boundary  conditions  and  the  polynomial
method is a practicable way to solve Schrödinguer equation for the quantum harmonic oscillator.
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3. The Factorization Method

Another  way  to  solve  Schrödinguer  equation  for  the  quantum  harmonic  oscillator  is  the
factorization method [9]. This is an algebraic method which let us solve Schrödinguer equation
through ladder operators. First, we must define the energy operator, Hamiltonian:

   (76)

The Hamiltonian is reminiscent of the difference of two squares. This is just an idea, because we are
working with operators, no with numbers, so we must to study their rule commutations in order to
establish how far we can arrive.

  (77)

As we can see, our idea can work properly because we obtain a similar expression of the equation
76. So, according to the above expression, the following step will be to define ladder operators,
where  is the raising operator and  is the lowering operator. In addition to that, we are going to

introduce a constant,  ,with the aim to simplify the equation 77.

  (78)

   (79)

Once ladder operators are defined, we are going to multiply them and try to find a new Hamiltonian
expression in function of them.

   (80)

   (81)

    (82)

   (83)
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It could be interesting to solve  as well, in order to ease our future work:

   (84)

   (85)

   (86)

From Eq.(83), it is clear we can rewrite the Hamiltonian as:

   (87)

Now,  it’s  time  to  understand  how these  operators  commute.  First,  we will  study commutation
between  and :

    (88)

   (89)

Collecting equation 88 and 89:

   (90)

   (91)

It could be interesting define equation 93

  (92)

   (93)
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Now, we are going to study commutation between  and :

   (94)

   (95)

  (96) 

    (97)

   (98)

   (99)

     (100)

Finally,   and  will commutate as:

  (101)

  (102)

  (103)

   (104)

   (105)

   (106)

   (107)

Here below we sum up the three commutations:

    (108)

    (109)

    (110)
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Now, it’s time to study how will influence our operators on the Schrödinguer equation. We shall
realize when we apply raising operator to , we will obtain , with a quantum number of one
greater unity. On the other hand, the application of the lowering operator to   would lead us to

 , with a quantum number of one lower unity. This can be seen by letting the Hamiltonian set
upon the wave functions  and .

      (111)

   (112)

   (113)

  (114)

     (115)

And with the raising operator will be:

     (116)

  (117)

  (118)

   (119)

    (120)

This confirms that the application of the ladder operators to oscillator eigenfunctions lead us to
obtain  and  , according to the operator that we apply.

By correspondence with the HO solutions, see the table 1, we infer:

    (121)

    (122)

We wish to determine the constant of proportionality:

     (123)

   (124)
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Once we propose equations 123 and 124, we must think a way to calculate the  and  value. This
looks like pretty hard but we can get these values through calculating expectations values of the
ladder operators. The procedure will be as: 

     (125)

As  :

  (126)

Therefore:

    (127)

As   are Hermitian adjoints, we can apply some commutation rules in order to estimate  value:

     (128)

  (129)

  (130)

Collecting with equation 123:

   (131)

  (132)

   (133)

So, after calculating expectation value of , we find a mathematical relation between  and the
quantum number, . Now, we can express k in function of the quantum number, .

    (134)

      (135)
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Then, collecting equation 123 and 135, we will obtain equation 136:

   (136)

Now, it’s  time to repeat  the above process  in  order  to estimate k  value.  Once again,  we take⁺
advantage of the expectation value to get this constant.

    (137)

  (138)  

  (139)

As 

  (140)

  (141)

  (142)

As   are Hermitian adjoints, we can apply some commutation rules in order to estimate  
value:

   (143)

  (144)

  (145)

Collecting with equation 124:

   (146)

   (147)

    (148)
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After calculating expectation value of , as the same way we did in , we find a mathematical
relation to express  in function of the quantum number, :

   (149)

    (150)

Collecting equations 124 and 150, we will obtain:

    (151)

After getting equation 151, we can easily obtain a general expression fot the HO wave functions. To
begin, we must clear  

    (152)

The following step will be assign value numbers to . We must remember that energy is quantized, 
so,  will raise only in positive enter numbers, from  to  . The procedure would be as for :

   (153)

    (154)

The eigenfunction for  would be:

   (155)

  (156)

  (157)

    (158)
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And for  would be:

   (159)

   (160)

   (161)

    (162)

The  first  three  eigenfunction  resolution  suggest  us  the  equation  163,  where  we  express  any
eigenfunction  in  function  of  the  quantum number,  .  The  value  of   will  be  estimate  in  the
following step, in equation 168. In addition to that, we know  value, which is the raising operator,
expressed in equation 78.

   (163)

As we said before, the following step will be to calculate the ground state formula,  ,  through
applying it lowering operator. The reason of that is we can’t reduce the quantum number of the
ground state, because this is zero. So, we are going to try to develop this idea:

      (164)

  (165)

  (166)

  (167)

     (168)
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To follow our research, we are going to estimate ground state energy. We can get it through equation
71 and the procedure is explained below. Basically, as we tell before, when we apply lowering
operator to the ground state eigenfunction,  the result  will  be  ,  because we can get a quantum
number lower than . So, we are going to take advantatge of this:

   (169)

  (170)

  (171)

As 

   (172)

   (173)

Well, the final step in our research, obviously, will be find the eigenfunctions and the eigenvalues
associated,  which are the energies for a given state.  For this,  we know when we apply raising
operator to a eigenfunction, we will obtain the function with a quantum number with a greater unity.
So,  we  are  to  apply  it  to  the  equation  174  and  we  will  obtain  the  energy  of  the  following
eingenfunction, . 

   (174)

Collecting equation 173 and 174, we obtain the following expression:

  (175)

  (176)

   (177)

   (178)
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We repeat the above procedure to calculate ,  and :

   (179)

   (180)

   (181)

As we can see, the application of the raising operator time and again let us obtain the energy that we
wish. Of course, this energies quantized.

On the other hand, we notice that the above procedure let us estimate the value of the energy in
function of quantum number as well. Generally, we can express the results obtained as:

   (182)

The, the value of the energy for the quantum harmonic oscillator will be:

   (183)

Now, it’s time to calculate the eigenfunctions.  The procedure will  be the same to calculate the
energies, we are going to apply the raising operator time and again to a eigenfunction in order to
obtain  the  eigenfunction  with  a  quantum  number  one  unity  greater.  We  need  the  following
equations:

    (184)

    (185)

   (186)
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Collecting equation 184, 185 and 186:

   (187)

First, we calculate :

    (188)

      (189)

Now, time to calculate :

    (190)

    (191)

And to calculate :

    (192)

    (193)

Finally, we estimate :

    (194)

    (195)
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In equation 196, we can see the general expression for the eigenfunctions calculated, where  are
the Hermite polynomials, which take a different value in functions of the quantum number:

 

    (196)

We can sum up the results obtained in the following table:

Table 2. First five energies and Hermite polynomials

0

1

2

3

4

The energies and functions obtained by the factorization method correspond to the results obtained 
by the polynomial method, table 1.
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4. The finite differences

Method explication 

The difference finite approximation [10] is a simple and versatile numerical method used to solve
differential equations. This method is able to replace the integration of the differential equation by
the resolution of a system composed by some linear equations.  We can do this substituting the
continuous  space  to  a  discrete  space  with  finite  points.  In  addition  to  that,  it  has  got  many
applications in different fields, such as chemical engineering, mathematics, physics and, of course,
quantum chemistry.

In order to begin to study our method, we will define  as a function which only depends of ,
and we can express its derivative centered on one point of as:

   (197)

Graphically, we can visualize equation 197 as shown in the figure 5:

Figure 5. Geometrical interpretation of a point centered 3-point derivative

Where  is an infinitesimally small change
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Nevertheless,  we are  going  to  approach   as  a  finite  (yet  small)  distance.  Therefore,  the  first
derivative will take the following value: 

    (198)

In order  to find out  the value of the second derivative,  we are going to  develop the functions
through Taylor series. The mathematical procedure will be the following:

    (199)

   (200)

Once we know the definitions, we can sum both Taylor series and will obtain the following result:

    (201)

And finally, clearing the second derivative:

    (202)

In order to sum up, the first and second derivatives will be:

   (203)                   (204)
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To finalize the theory of the method, we are going to split x axis in such a way that the difference
between two point is . This will be as the following picture:

Figure 6. Discretization of the x space

Then, we can express the first and second derivative as:

  (205)                    (206)

Where:

•  is the value of the function on the point  of the split
•  is the value of the function on the next point
•  is the value of the function on the before point

Discretization of the differential harmonic oscillator equation

Expressions 205 and 206 allow us to solve numerically any differential equation up to 2nd order. We
shall illustrate how it can be used for the HO case.

The starting point is the non-dimensionalizated HO Schrodinguer equation, recall Eq. (24):

  (207)
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Now, to solve equation 207 through the difference finite method, we can combine it with equation
206 and we will obtain the following expression:

  (208)

We can develop equation 208 as the following way:

  (209)

And collect all terms corresponding to the wave function,  , at different points:

  (210)

In order to simplify, we define the following coefficients:

  (211)                      (212)

Then, equation 210 takes the form:

   (213)

Once we have obtained our discretizated equation, equation 213, we must convert it in a linear
equation system and, finally, in a matrix structure. To get this goal, it’s necessary to define some
parameters. 

For instance, the potential is defined in a range between x=  to x=  (we will explain in the
following section how to deal with this range when we program with Mathematica). In addition to
that, according to the theory above, we are going to split this range in   points and  will be the
separation  between  two  consecutive  points.  Then,  we  can  define   according  to  the  above
definitions:

  (214)
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Where:

• L is the integration length
• n is the number of points which we are going to take

As we said before, we establish the potential is defined in a range of   to  . As L
express the length of the potential,   and  will be definitions, but, we can’t program
this, because we would need infinite loop . Then, the solution will be to define  as a big
number that represent this infinite. If we establish  as a number not large enough, the wave length
can’t be represented properly, because we have established a border in a place where the wave
functions should be non-zero

In addition to that, B is a function of  and it has got the variable , which is the position of the
particle. This variable with determine the value of B and takes a specific value for every . So, we
must establish the link between  and . Well, in the first point,  and , according to the
above  paragraph,  where  we  establish   as  the  frontier.  If  we  continue  analyzing  points,  the
difference between two consecutive  is , so, in the second point ,  will be . In
the third , . Then, we can define .

Now, the following step will be to particularize some points of the equation 91. We must mention
that we can’t particularize the function in the extremes (  and  ). The reason of that is
because we need the previous and the next points to particularize a specific point. In these cases, the
points   and  won’t be in the range of  , respectively. We must remember that we
define  as a large number, creating a huge space that represent the  to .

  (215)

  (216)

   (217)

   (218)

   (219)

   (220)

   (221)
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We  can  write  this  system  as  the  following  matrix,  according  to  the  Schrodinguer  equation,
:

Through the diagonalization of the matrix H, we can obtain the eigenvalues, which correspond to
the energies and their respective eigenvectors. The graphical representation of the eigenvectors let
us obtain the wave function:

   (222)

For the first four energies, the wave function will be:

               Ground state

               First excited state

               Second excited state

               Third excited state

We establish L=10 atomic units of space and n=1000 to calculate the energies. In table 3, we can 
see the values of the energy obtained and the analytical value of the energy as obtained in previous 
chapters, for every state.

Table 3. Comparative between analytical values and real energies
State Finite difference Real energies
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As we can see,  there is  hardly  no difference  between the energy values  obtained and the real
energies. Then, finite difference method is a good way to solve harmonic oscillator Schrödinguer
equation. Now, we will represent these states in the following picture:

Figure 7. First four wave functions of the Quantum Harmonic Oscillator through finite differences
method

Then, to conclude, we would just like to underscore that we have obtained numerical results 
practically identical to the other methods. Moreover, unlike the other methods, where we follow an 
analytical procedure to obtain the energies and wave lengths, we have obtained the results though a 
numerical procedure. 

Mathematica codes employed to calculate eigenvalues, eigenvectors and plot figure 8 are provided 
in Appendix 1

38



5. Critical comparison of the three methods

Introduction

In this paper, the Schrödinguer equation of the quantum harmonic oscillator has been solved using
three different methods, obtaining the same wave energies and functions for each level.

Each of the methods contains well-defined features, leading to similarities and differences between
the three methods. Some of these features may be either the nature of the method or the versatility
of each. All of this will be discussed below, naming their advantages and disadvantages over the
other methods.

Polynomial method

The polynomial method presents a solution to the Schrödinguer equation by a series of finite length
polynomials. To do this, one must master mathematical knowledge in order to apply techniques that
allow transforming a polynomial of infinite length into a polynomial of finite length, which contains
a meaningful solution that physically reflects the solution to the Schrödinguer equation.

In addition, the method is analytical in nature, since the solution will be obtained by developing the
polynomials,  so  it  does  not  require  any  knowledge  of  programming,  as  well  as  only  a  basic
knowledge of differential calculus. Furthermore, the method requires basic knowledge of algebra.
The method is capable of providing us with a solution from a simple mathematical point of view,
without using physical terms.

Regarding the  required  knowledge of  quantum chemistry,  basic  knowledge will  be  required  to
identify the solutions with physical meaning, as well as to discard the trivial solutions.

Factorization method

The factorization method is characterized by solving the Schrödinguer equation using a series of
operators, called ladder operators. These operators will allow us to obtain the energies and wave
functions of the quantum harmonic oscillator through a complex set of mathematical operations.
The understanding and development of these operations will allow us to apply the operators to
obtain the energies of the next or previous quantum level, depending on the operator applied.

The method can be defined as analytical, and, like the polynomial method, it does not require any
programming knowledge. However, this method teaches us to put into practice quantum chemistry
concepts to obtain the solution of the Schrödinguer equation. Therefore, we must master these in
order to apply them properly. As for the algebraic difficulty, it requires only a basic level.
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Finite difference method

Finite  difference  method  presents  a  solution  to  the  QHO  by  means  of  discretization  of  the
continuum space, where the initial differential equation becomes a discretized differential equation.
This discretized equation is then transformed into a linear system of equations and then a matrix
equation. This method is based on approximations, so the greater the discretization of the potential,
the greater its accuracy.

In addition, the method has a numerical character, so for its resolution, programming knowledge is
required,  as  well  as  a  basic  knowledge  of  quantum  chemistry  that  allows  us  the  appropriate
approach to the problem to be solved.

With respect to the required knowledge of differential calculation, these go into the background,
since the basis of the method is to propose an alternative to solving differential equations in the
classical way. 

Finally,  the  method  requires  some  basic  knowledge  of  mathematical  development  in  order  to
correctly complete each of the stages mentioned in the first paragraph

Conclusion

In the table 4, we can see the summary described above:

Table 4. Comparative of the three methods.

Method Nature Differential
calculation
knowledge

Mathematical
development
knowledge

Quantum
Chemistry
knowledge

Programming
knowledge

Versatility

Polynomial Analytical Basic Average Basic Low Basic

Factorization Analytical Basic Average High Low High

Difference
finite

Numerical Low High Basic High High

The numerical method is characterized by requiring a high mathematical development, since this is
the basis of this method. This characteristic can easily be dispensed with if we opt for an analytical
method, which its requirements of mathematical development are lower.

Furthermore,  if  we  want  to  choose  to  learn  the  basics  of  quantum  chemistry  along  with  its
application, it would be better to choose an intuitive method, such as the factorization method

Finally, knowledge of programming stands out in a numerical method, such as the finite difference
method, being a feature more than dispensable in analytical methods.
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Adequacy of the methods

After analyzing the characteristics of the different methods with which the Schrödinguer equation
of the quantum harmonic oscillator has been solved throughout this paper, it would be convenient to
discuss their properties from the point of view of learning.

In introductory courses to quantum chemistry it is usual to present the solutions of the different
models of quantum mechanics without the explanation of the procedure carried out to acquire these
solutions. Therefore, the analysis of the methods made in table 4 can help us if we decide to choose
a method to explain the reasoning behind the derivation of Hamiltonian solutions.

A priori, all three methods have well-defined characteristics. From an introductory point of view to
quantum  chemistry,  the  polynomial  method  presents  at  the  same  time  a  greater  mathematical
simplicity in determining how the solutions of the quantum harmonic oscillator are obtained. This
feature will allow the student to easily understand the Hamiltonian solution of the QHO with a
simple mathematical development. Furthermore, the method has different applications, such as its
application  to  obtain  the  solutions  of  the  radial  part  of  the  hydrogen  atom  or  the  spherical
harmonics. [7]

On the other hand, methods such as factorization require the application of mathematical operators,
whose treatment can be complex if you are not familiar with them. The application of this method
for resolution is determined by a number of requirements, described in the article by Hull and Infeld
[11]. As a clarification, quantum mechanical models such as the rigid rotor meet these conditions,
so their resolution by the factorization method is perfectly feasible.

A similar case occurs with numerical methods such as the finite difference method. The method can
be really useful if our knowledge of quantum chemistry and programming is remarkable. In that
case, the method is presented as a very good alternative, since it allows us to settle the previous
knowledge acquired. Furthermore, this method has different applications, which can be either other
models of quantum mechanics, such as the particle in the box or the resolution of a system in three
dimensions to which we add a potential. This last application may involve a series of difficulties.
For example, the Schrödinguer equation is always a second order differential equation in space, but
sometimes spin-orbit interactions or other terms of the equation can add derivatives of different
order, making the resolution of the equation difficult.

All this analysis can be altered according to the context in which we find ourselves. For example, if
we are  in  a  course  where  introductory  knowledge of  programming and quantum mechanics  is
taught,  the finite difference method acquires a great potential,  since its  difficulty in demanding
programming knowledge is valued.

Another example could be an introductory course to the different methods of quantum mechanics.
In this case, it  is necessary to find a method applicable to several quantum models, in order to
facilitate the understanding of the process carried out for the resolution of quantum models. In this
case,  the  factorization  method  plays  a  fundamental  role.  It  leads  us  to  obtain  directly  the
eigenvalues and to a manufacturing process of the eigenfunctions, without a difficult mathematical
procedure. We can reproduce the procedure carried out to solve the harmonic oscillator with the
equations of other quantum models, such as that of the hydrogen atom. With this we will achieve a
simple and standard procedure with which we will demonstrate the solution of the different models
of quantum mechanics
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6.  Appendix  1:   Mathematica  codes  employed  to
calculate eigenvalues and eigenvectors

 Clear["Global`*"]

*Matrix build

matriu=Table[0,{fil,1,n-1},{col,1,n-1}];

*Definitions  

(* L is a large number that represent the lenght of discretizated space,
n represents in how many points we have discretizated the space
delta is the separation between two consecutives points, Eq.(214) *)

n=1000;                       
L=10;
delta=L/n;     
x[i_]:=(-L/2)+(i*delta); a=-1/(2*delta2);

*Diagonals build

For[i=1,i<=n-1,i=i+1,matriu[[i,i]]=(x[i])^2/2+1/delta2];
For[i=1,i<= n-2,i=i+1,matriu[[i,i+1]]=a];
For[i=2,i<= n-1,i=i+1,matriu[[i,i-1]]=a];

*Obtaining eigenvalues (energies)

eners=Eigenvalues[matriu //N] ;

eners

{...,9.53598,8.51101,7.50257,6.50034,5.49991,4.49988,3.49992,2.49996,1.49998,0.499997}

*Obtaining eigenvectors (wave function)

funs=Eigenvectors[matriu//N];
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*Plot of the first four wave function

ListPlot[funs[[n-1]],Axes-> False,PlotStyle→Brown]

ListPlot[funs[[n-2]]+5,Axes-> False,PlotStyle→Red]

 
ListPlot[funs[[n-3]]+10,Axes-> False,PlotStyle→Black]

 
ListPlot[funs[[n-4]]+15,Axes-> False,PlotStyle→Orange]
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