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INFORMAL SETTLEMENT SEGMENTATION USING VHR
RGB AND HEIGHT INFORMATION FROM UAV IMAGERY: A

CASE STUDY OF NEPAL

ABSTRACT

Informal settlement in developing countries are complex. They are con-

textually and radiometrically very similar to formal settlement. Resolution

offered by Remote sensing is not sufficient to capture high variations and fea-

ture size in informal settlements in these situations. UAV imageries offers

solution with higher resolution. Incorporating UAV image and normalized

DSM obtained from UAV provides an opportunity of including information

on 3D space. This can be a crucial factor for informal settlement extraction

in countries like Nepal. While formal and informal settlements have similar

texture, they differ significantly in height. In this regard, we propose segmenta-

tion of informal settlement of Nepal using UAV and normalized DSM, against

traditional approach of orthophoto only or orthophoto and DSM. Absolute

height, normalized DSM(nDSM) and vegetation index from visual band added

to 8 bit RGB channels are used to locate informal settlements. Segmentation

including nDSM resulted in 6 % increment in Intersection over Union for infor-

mal settlements. IoU of 85% for informal settlement is obtained using nDSM

trained end to end on Resnet18 based Unet. Use of threshold value had same

effect as using absolute height, meaning use of threshold does not alter result

from using absolute nDSM. Integration of height as additional band showed

better performance over model that trained height separately. Interestingly,

benefits of vegetation index is limited to settlements with small huts partly

covered with vegetation, which has no or negative effect elsewhere.
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1
Introduction

1.1 Contextual Background

Global population distribution is dynamic [1]. Rural-urban proportion is also

changing temporally, with major movements towards city. While city-centered

development, better education and health facilities[2] have been major pull

factor for migration, loss of jobs in primary sectors such as agriculture pushes

one from the rural area to city [1]. [3] estimates that the number of people

living in the urban area will exceed those in rural area by 2030. This share was

only thirty percent in mid 20th century. This demands rapid development in in-

frastructures. But, infrastructure development rate is insufficient to meet these

requirement[4]. One of the adverse effect of these “unintended urbanization”

is growth of unorganized settlements [5].

In developing countries, while core centres are developed, areas in the

off-centers are deprived of proper housing development, creating an urban

divide[3]. The poor then occupy a land, generally public or state-owned [4]

and build houses. As these lands are not formally recognized by authorities,

these are termed informal settlements.

Alternate terms as squatter settlements, slums and regional terms as ghettos,

Zopadpatti, ranchos, katchi abadi, shanty town,etc. are also used to refer to in-

formal settlements[5, 6], "slum" and informal settlement" being the commonly

used ones. However, these term differ in micro level. While informal settle-

ment is concerned more with right aspect, slum sees from environmental aspect.

According to [7], informal settlements are the settlements developed without

1



CHAPTER 1. INTRODUCTION

proper land ownership and without regard to regulations and standards for

safety, health. On the other hand, slums are settlements with poor living stan-

dards. So, informal settlements can have good housing as well, and all slums

might not necessarily be informal ones[5]. But, both of these,have some com-

mon characteristics from i) lack of recognition, ii) absence of tenure security,

iii) inadequate infrastructures, iv) overcrowded and sub-standard living and v)

location of land less suitable for occupation [7]. Due to the global and broader

scope, the term "informal settlement" is used in majority of literature to make

it more general[4, 5, 7] .

Though global percent of people living in unorganized settlements is de-

scending, absolute number is not[7]. 40 to 70 percent of urban dwellers from

developing countries live in informal settlement[5] and there is no sign of im-

provement in trend[6]. In this regard, Agenda 11.1 of Sustainable Development

Goals aims to ensure access for all to adequate, safe and affordable housing and

basic services and upgrade slums by 2030 [8]. The first task of each govern-

ment in this initiative is to map spatial extent of informal settlements. These

tasks are challenging due to the need of collaboration between several agen-

cies,growing pattern of informal settlements, limited or insufficient data to

delineate informal settlement [9].

Informal settlements are heterogeneous from city to city[1], and also within

centre and outskirt of city[10]. For instance, the informal settlements in the

global south take the form of single storey buildings built from scrap materials

on abandoned area[4, 5] as in Mumbai. But in Bucharest, they have pointed and

hipped roofs [1]. Thus, developing a functioning approach for extraction of

informal settlement is subjective to context, and a universal model for informal

settlement extraction does not exist[11].

In recent years, informal settlement mapping has been benefited from medium

to high resolution satellite images. Expert meeting in 2008[10] has also high-

lighted the potential of application of satellite images in informal settlement

extraction. Methodologically, OBIA has been used dominantly in last fifteen

years along with other methods [11].

Resolution available with low and medium resolution do not serve properly

for informal settlements as informal settlements have small buildings and nar-

row roads [11, 12]. In addition, heterogeneity of roofing material yields mixed

pixels, adding complexity to automatic extraction [13]. Further limitations are

imposed by large extent of similarity between radiometric characteristics and

context of formal and informal settlement in developing countries.

2



1.2. MOTIVATION AND PROBLEM STATEMENT

Unmanned aerial vehicle overcomes the issues with cloud cover and resolu-

tion of satellite images. High resolution cloud-free images can be taken from

low height [14, 15] on any time with UAV. This ensures on-demand and fast

availability of orthophotos [16] as well as other features such as DSM from the

same platform. Neural network using very high resolution UAV data brings

together the benefits of high resolution and deep learning. It takes advantage

of spectral, textural, geometrical and contextual features on classifying image,

enhancing the result[15].

However,optical band 2D orthophoto alone does not offer enough solution

towards it, especially in complex situations. Furthermore, both formal and

informal settlement share common type of context, posing challenge to deep

learning as well.This challenge is more prominent in developing countries. In

this regard,including height information in form of DSM, nDSM or point cloud

have been observed to enhance segmentation task[17] and feature extraction[12,

18, 19]. Thus, UAV orthophoto along with feature height can be a key in

informal settlements segmentation for Nepal,as informal buildings are usually

single-storey and shorter in contrast to those in formal settlement.

Our work consists of segmentation of informal settlement using orthophoto,

nDSM and vegetation index obtained from UAV, applied to developing country,

Nepal. We also quantify the contribution of integrating height information

and analyse the effect of using threshold height in place of absolute height

in segmentation. In a nutshell, we assess the value added by SfM derived

feature height and very high resolution orthophoto on extraction of informal

settlement in complex scenario.

1.2 Motivation and Problem Statement

Nepal is a developing country with 34 % of multidimensional poverty. It stands

on 142nd position[20] in Human development index according to Human De-

velopment Report 2020. Large fraction of population here lives in informal

settlement [2]. Thus the country is in need of proper method for informal

settlement extraction.

Existing approaches on informal settlement mapping have used deep learn-

ing either using planimetric detail only [21], or are limited to context of de-

veloped countries only[12]. These approaches do not address the complexity

of informal settlement in Nepal. In Nepal, settlements are mixed, and for-

mal and informal buildings are very similar from radiometric and contextual

3
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perspectives. Small buildings, partly obstructed by vegetation are not well

identifiable in satellite images. UAV offers advantage of availability of DSM

and 3D point cloud along with horizontal details, which is not available with

satellite images[16]. So, very high resolution UAV orthophoto combined with

height information is expected to provide better segmentation result for in-

formal settlement extraction in context of Nepal. This is because, informal

buildings are usually single-storey and shorter in height [22].

We develop a framework to extract informal settlement in developing coun-

try like Nepal by deep learning with UAV orthophoto, and analyse experimen-

tally whether including nDSM as the additional channel to UAV-based very

high resolution RGB orthophoto leads to better result. If it enhances, we also

test a concept of nDSM threshold, as it offers elimination of irrelevant heights

and representation of height over wider DN range, and might enhance segmen-

tation accuracy.

1.3 Aims and Objectives

The main aim of the our work is to develop a framework to detect and locate

informal settlement using UAV images and normalized DSM in a developing

country like Nepal. The overall aim is complemented by following specific

objectives:

• to assess the performance of state-of-art segmentation models to detect

and locate informal settlement extraction in context of Nepal,

• to quantify the benefits of additional features such as height and vegeta-

tion index in UAV image for informal settlement extraction,

• to develop a CNN-based segmentation technique and its adequate config-

uration, including additional data such as height to analyse the segmen-

tation performance.

1.4 Methodology

The methodology of our research has three major stages namely (i) UAV im-

age acquisition and processing, (ii) Pre-processing of image and ground truth

data, and (iii)Experimentation and extraction of informal settlement from very

high resolution images, and analysis on the contribution of height and height

integration approach(figure 1.1).

4



1.4. METHODOLOGY

Figure 1.1: Overall methodology of Research Work

First phase of data collection and preparation deals with UAV image data

acquisition from nine sites of informal settlements in Nepal, and their process-

ing to prepare ready-to-feed image data. Ground truth cadastral data are also

collected on the same phase. Images and cadastral maps are acquired in the

month of September and October 2020.

In second phase, we pre-process the data for deep segmentation model.

Point cloud are further processed to generate DTM representing bare earth,

which are subtracted from DSM to obtain normalized DSM (nDSM). Using cho-

sen threshold value for height, nDSM are converted to 8-bit DN range and ap-

pended to RGB orthophoto as additional channel. On the same stage, cadastral

data obtained as shapefile are completed by manual digitization if necessary,

and then rasterized. This stage thus prepares data to use as input for training

our model.

5
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Third step is the major step and consists of experimentation on perfor-

mance of models with a combination of parameters. Eight main architectures

are formed by combination of two standard encoders and four segmentation

models. Performance of each of these combinations of backbone architecture

and segmentation models are assessed for patch sizes from [48,64,96,128,192].

Feeding RGB data and multi-channel data respectively and training them

model, the contribution of height on segmentation result are analysed at the

first sub-phase of this phase.

In the later part,the best performing architecture is further chosen for the

identification of contribution of height and optimum threshold height to seg-

ment informal settlement. The result are cross-validated using left-out tiles. At

the end we are able to draw conclusion on whether or not integration of height

enhances segmentation. If it contributes,we will answer the approach of height

information incorporation and find the threshold height to effectively segment

informal settlement from others.

On the same phase, the optimum method of integrating height is analyzed.

Segmentation based on Fully Convolutional Network (FCN) with single and

dual parallel branches are assessed to identify the optimum strategy for incor-

poration of height-related information.

1.5 Contribution

Our work will explore and experimentally test the feasibility on advantages of

height information and vegetation index on segmenting informal settlement in

complex scenarios. Following are the major contributions of the work in the

scientific community:

• It will propose a methodology, including data acquisition and prepro-

cessing techniques, CNN-based segmentation algorithms and optimally

performing configurations to map informal settlements in complex sce-

nario,

• It will also analyse the usefulness and impact of auxiliary data in addition

to RGB images, such as height and their implications on the use of this

data,

6



1.6. THESIS STRUCTURE

1.6 Thesis Structure

This thesis has been divided into seven chapters. Chapter 2 presents the liter-

ature review and related works. Theoretical concept required for reading of

this thesis has been discusses on chapter 3. It is followed by details of study

area, data preparation and pre-processing in chapter 4. Overall methodology

has been discussed in the same chapter. Chapter 5 further describes the exper-

imental arrangement, tests performed for finalization of model, and choice of

hyperparameter. Also discussed in the same chapter is the approach used for

test of contribution of height.

Major results from the experiment have been discussed in chapter 6. Some

of the limitations and recommends have been included in same chapter.Final

conclusion is delivered in chapter 7 respectively .

7
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2
Literature Review

2.1 Conventional Approaches for Informal

Settlement Extraction

Expert Group Meeting on Slum Identification and Mapping held in 2008[10]

has categorized existing approaches in informal settlement mapping as (i) Vi-

sual image interpretation, (ii) Object-based Image Analysis (OBIA), (iii) texture-

based methods, and (iv)community-based methods. Despite being more reli-

able and supervised, visual image interpretation is labour-intensive [11]. This

led to algorithm-based approaches. As reviewed by [11], OBIA, visual interpre-

tation and standard pixel-based image classification has been used in 32%, 17%

and 13 % respectively of the recent publications on informal settlement extrac-

tion. Later,machine learning and deep learning evolved as better alternative,

and was mentioned in 14 % of the works in last fifteen years.

Traditional approaches of household survey, integrated with GIS are still

popular. One of those include work carried out by [23]in Pune, India. These

approach offer advantage of direct interaction with people, and also availability

of attribute data as well. Recently, remote sensing community has been greatly

benefited by high spatial and temporal resolution of satellite images[24]. In

2007 [25] extracted informal settlement in peri-urban region in America using

existing urban boundaries, census data and orthophotos. In another scenario,

[26] observed that Free Google Earth Images taken from 8000 feet and 6000

feet offered sufficient accuracy for informal settlement in Johannesburg. Also

9



CHAPTER 2. LITERATURE REVIEW

[27] had used IKONOS images to segment informal settlement from Malaysia

using spectral classification in 2013. However,spectral characteristics based

approach required additional visual interpretation due to high in-class variance

and context dependence of settlements[11].

OBIA overcomes limitations of spectral classification by considering context

and shape in addition to spectral properties. Use of rule-set is the key for

improved segmentation of features, especially in urban area[28]. In 2013,[29]

used GLCM and Gabor filter and extracted informal settlement from Google

Earth images. This approach achieved accuracy of 74.15%, a lot higher than

53.65 % from previous works. In alignment with this, [30] and [31] observed

that including features like road and parcel boundary could segment informal

settlement with classification accuracy of 87% and 93.5 %, respectively, as

seen from study in India and Jamaica. However, transfer-ability of rule-set are

limited due to their variation and dynamics in spatial and temporal domain

[28]. Thus accuracy varies widely [11].To some extent, these rule-set can be

generalized using ontology-driven model over data-driven model [24].

Development in UAV and deep learning techniques has taken informal

settlement extraction to next level. Number of researches have focused in deep

learning and UAV these days, which we discuss in section 2.2 and 2.3.

2.2 Deep Learning and UAV in Informal

Settlement

UAV offer flexible alternatives to satellite imageries, providing cloud-free very

high resolutions at any time[16, 32]. Additionally, availability of 3D point

cloud from the same platform opens door for access to varieties of products

from same mission. Research community has been using UAV in the domain

of building extraction[15], crop monitoring, weed monitoring [32], informal

settlement [12, 17, 21] and several other domains. However, the applicability

of UAV is partly limited by availability of spectral information in only visible

bands. Additionally, high resource requirement for processing on larger extent

is questionable issue. But, at the same time, we can take advantage of 3D point

cloud and DSM [16].

A number of authors have published their work with contribution on sev-

eral aspects of informal settlement using UAV using deep learning. [21] and

[9] experimented on extraction of informal settlement from low to medium
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resolution images. On the other hand, [12],[19], and [18] conducted their work

on enhancement of segmentation result of UAV images from deep learning by

incorporation of vertical information in form of DSM, nDSM or point cloud.

Applicability of transfer learning and its limitations has been analysed by [22]

in 2019. They observed that, despite the availability of large number of pre-

trained images and models, their transerability and generalizability is limited

[5] especially from RGB domain to extended domain as SAR[22] or DEM based

products.

One of the the major researches on integration of high resolution images

and deep learning approach has been made by [21]in 2017. It was observed that

having deeper network and larger window allowed training model for complex

scene and using larger context window. In their case study from Tanzania, CNN

with kernel size of 7x7, patch size of 129 among[65,99,129,165] and network

of five convolution layers performed best on extraction of both informal as

well as other areas. CNN with five convolution layers yield overall accuracy of

91.71% compared to baseline method of SVM +LBP with accuracy of 90.48%.

Interestingly, drop in accuracy by 0.18 % was observed on increasing depth

by one more layer. It is attributed by less number of samples to learn from,

relative to number of parameters to be learnt.

Next year, in 2018, applicability and transfer-ability of segmentation model

SegNet on extraction of buildings was assessed by [15]. The architecture was

able to segment buildings with accuracy of more than 90 % in UAV datasets

from two riverbank of different scenarios. Confusion between ground and

buildings were however observed in small buildings. The performance of the

model was verified independently in Postdam dataset and led to promising

results.

As these images are expensive and resource-hungry, [9] in 2019 proposed

two machine learning models called cost-effective model and cost-prohibitive

model for slum extraction. While cost- effective method used Canonical Corre-

lation Forests(CCF), to deal with low resolution image, cost prohibitive method

were designed to perform segmentation on very high resolution DigitalGlobe

image. Segmentation architecture of DeepLabl V3+ built on top of Xception

65 as backbone, trained and tested on 30-50 cm resolution image resulted on

IoU of upto 83% compared to its counterpart CCF limited to 74.0% . This

highlighted the advantage of using high resolution images as well as context

information at the same time to enhance performance of the model.
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However,all of these were based on 2D products, and did not consider ver-

tical dimension.

2.3 Enhancement of Feature Extraction with

Height Information

Having information on vertical dimension provides opportunity for segregat-

ing features with similar spectral characteristics, but lying on different plane

[17]. Availability of 3D point cloud has been proven to greatly reduce mis-

classification due to shadows [12, 17, 19] and extract precise building foot-

prints. Segmentation with region growing algorithm with 3D point cloud were

able to segment roof structures of a building, which look similar in spectral

domain, as observed by [17]. [19] also noticed that including DSM could help

identify narrow gaps between buildings, which are not distinguishable with

2D products.

But,[18] claims that adding DSM to a RGB image as additional channel

does not necessarily increase the performance of deep learning models. They

suggest the better way of enhancing segmentation accuracy using nDSM is to

perform a multi-stage training with DSM as a separate backend. They propose

to correct errors of false top-hat and false ground on initial output of RGB

segmentation through the morphological filters and use DSM as backend. This

offers the advantage of removing the erroneous segmentation from the first

stage in the second stage. In their research, FCN constructed on top of Resnet,

with Maximum Fusion Strategy(MFS) resulted in accuracy of 90.6 % in ISPRS

Vaihingen dataset, showing 2 % improvement compared to using RGB only .

Interestingly, DSM added as additional channel had reduced accuracy by 0.9%

. Authors claim the homogeneity in DSM values in smooth areas restrict the

model from learning when the height itself has been added as channel.

[19] in 2020 tested the performance of building extraction with integra-

tion of RGB images with additional channels of DSM, Visible Band Difference

Vegetation Index (VDVI). Outputs from two different sites with different char-

acteristics showed that having higher number of indices in addition is always

beneficial. However, the contribution of the indices might differ in magnitude

according to site characteristics. For example, integration of DSM was more

significant in the region with large buildings where VDVI didnot contribute

on accuracy. In contrast, RGB with both nDSM and VDVI was observed to
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INFORMATION

perform superior in site with small buildings. The result was validated using

Postdam dataset. They observed more than 4 % increment in per-class IoU for

building as well as non-building features yielding overall accuracy of 97.14 %

in contrary to 95.79 % with RGB image.

The work very similar to our proposed work was performed by [12] in 2017.

They observed that including 3D and 2.5D information to UAV could segment

informal settlement with accuracy upto 95.2%, which is limited to 73.8% for

only radiometric properties. UAV-borne products were categorized into radio-

metric, textural, 2D segment, 2.5D topographic, 3D spatial binning,3D spatial

binning and 3D point-based features. Using support vector machine, the model

was trained with different combination of these features.

Results from two sites(Kigali and Maldonado) were consistent despite the

difference in settlement characteristics. They however found that the ma-

jor contributor might differ for features to features and scene to scene. For

an instance,buildings, may it be high or low, were better segmented using

RT2S3(radiometric, textural,2D segment and 3D features) and bare surface

using DSM. Despite the use of these features, confusion between corrugated

zinc roof and terrain were persistent in all experiments, which were obviously

less in magnitude than with planimetric features only.

While normalized DSM represents the height of feature above terrain, set-

ting a threshold and segmenting them helps limit the range of concern. While

these help to exclude the irrelevant range of height out of study, it extends the

region of concern to cover the available DN range of image. Thus, we have

proposed the study on impact of height information on informal segmentation

with variation in threshold height.
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3
Theoretical Background

This chapter delivers the theoretical concept of neural networks, CNN, seman-

tic segmentation.Section 3.1 delivers basic concept of Artificial intelligence,

machine learning and deep learning. In section 3.2, we discuss briefly the

architecture of CNN. If is followed by discussion on parameters and hyperpa-

rameters associated with ML model and their optimization, in section 3.3 and

3.4. This chapter ends with discussion of accuracy metrics and architectures of

semantic segmentation in section 3.6, where we discuss of architectures chosen

for the research,with focus on their backbone architectures.

3.1 Artificial Intelligence, Machine Learning and

Deep Learning

Artificial intelligence has been popular in recent days among analysts and data

scientists due to its capacity to learn from data and process complex data as

well. It mimics the performance of human brain [33]. Machine learning is

known as subset of Artificial Intelligence, which learns from data themselves

without being programmed to perform explicitly the particular task. Deep

learning are specific type of machine learning which get their name from being

deeper, and thus learning complex systems.

Building blocks of neural network are the interconnected neurons,forming

the highway for flow of information from input to the output. A generalized

neural network has been shown in figure 3.1. It mainly consists of an input
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layer, one or more hidden layers and a output layer. While input layer is anal-

ogous to dendrites of human neuron, the output layer corresponds to axons

of human system. The information between these two layers is carried by a

number of hidden layers, equivalent to neuron of human brain [2].

Figure 3.1: General Structure of Artificial Neural Network (ANN)

There is not a strict boundary between deep and shallow neural network

however. But a universally accepted fact is deeper neural network learn com-

plex things better. Processing and resource cost also increases with it, making

it unsuitable for simpler problems.

3.2 Architecture of Convolutional Neural Network

Convolutional Neuron Network (CNN) is a type of neural network with spe-

cialized hidden layers. It gets the name from ‘convolution’ operation applied

in hidden layers. These are specialized in a sense that these area able to detect

patterns, features and objects of interest for the purpose. So, these are more

suited for image data. While shallow layers of the CNN detect edges, deeper

networks detect complex objects and features [34].

The convolution operation can be defined as dot product between weight

matrix and part of source image. Moving a single weight kernel throughout

the whole image offers computational flexibility and parameter sharing. Con-

volutional layers perform main operations of (i) convolution and (i)pooling,
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Figure 3.2: Illustration of CNN . Width and height of feature map reduces on
going deeper while depth increases.

Number of filters are applied at convolution layer to change depth of feature

map, which is subjected to linear or non-linear activation. The resulted fea-

ture map’s dimension is further reduced using a pooling windows, usually 2x2,

that calculates maximum(or average) score of the window and write to a new

feature map.

At the end, the the fully connected layer comes after a series of convolution

and pooling layer which calculates the class score for each pixel (figure 3.2).

Following section describes details of the components of a convolutional layer

3.2.1 Convolution

Mathematically, Convolution is the dot product of two matrices, the first being

the kernel with weights, and second the part of image with same dimension

and overlapping with it. If k number of square filters of size l span a source

image of dimension( width x height) W*H, the resultant feature map has a

dimension of (W-l+1) * (H-l+1) * k, if the convolution is applied without jump,

i.e. with stride =1. However if the stride of s is applied, the size of resultant

feature map is further reduced to (W−ks + 1) ∗ (W−ks + 1) ∗ k [35].

Convolution reduces the width and height of feature map. If required, p

pixels with zero values can be padded on each side of the image, which after

convolution results on a feature map of dimension (W+2p−k
s +1)∗ (W+2p−k

s +1)∗k.

Conversely, if the image dimension is to be preserved,and stride of 1 is used

with a kernel of dimension l, l−1
2 pixels need to be added on each side of the

image to preserve dimension. This approach of padding is called same padding.

If D is the depth of input image, then the pixel value of the (i,j) position on
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the kth channel of the output feature map is calculated as:

xk(i, j) =
D∑
d=1


l−1∑
p=0

l−1∑
q=0

xd(i.s+ p, j.s+ q).hk(p,q))

+ bc (3.1)

where xd(i, j) is the value of input pixel at (i,j) in dth channel, s is the stride,

hk(p,q) is the weight value at (p, q) at kth filter, bk is the bias parameter of kth

filter.

It can be inferred from previous discussions that the effective receptive field

increases on going deeper, as it is the result of a number of convolutions. This is

the reason for deeper layers being able to detect features instead of just edges.

3.2.2 Activation

Values from convolution need to be converted to standard range and distribu-

tion, which is obtained by activation functions. These take input from convolu-

tion and transform them step-wise, linearly or non-linearly using mathematical

functions. These activation functions are linked to neurons and normalize data

between range of 0 and 1 or -1 and 1. Activation functions can be broadly cate-

gorized as binary, linear and non-linear. Some commmon activation functions

used in ANN are sigmoid,TanH,ReLu and Softmax [36].

Sigmoid or logistic activation function transforms input value between 0

and 1 non-linearly, and so are used on fully connected layer to predict class

probabilities. Being non-linear, these are differentiable and thus can learn from

back-propagation, unlike binary activation. If xij is the input value to sigmoid

activation, output value after activation is calculated as:

A(xij) =
1

1 + exij
(3.2)

Due to flatter shape at extreme ends, it’s gradient tends to be zero for very high

and low input and cannot learn from input.This is termed vanishing gradient

and is common limitations of sigmoid activation in deeper networks [36].

Another activation function very similar to sigmoid activation is hyperbolic

tangent or tanh activation, except it returns the hyperbolic tangent as:

A(xij) = tanh(xij) (3.3)

and transforms input to range of [-1,1].

Vanishing gradient problem of these saturating sigmoid functions is solved

by introduction of Rectified Linear Unit (ReLU) activation. It transforms nega-

tive value to zero, preserving non-negative activations. Thus, it is monotonic
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and can compute efficiently on any input value. ReLu activation is mathemati-

cally expressed as:

A(xij) =max(0,xij) (3.4)

One pronounced limitation of this activation is found in data with significant

proportion of negative inputs, which are immediately converted to zero and

cannot learn further. This cause the neurons to be dead and never activated

again. Leaky ReLU addresses this issue of dying ReLU by introducing a very

small gradient near zero, that keeps the neurons active for learning and propa-

gation [35].

Most commonly used activation in classification problems is softmax acti-

vation. It converts the vector of values from convolution to the corresponding

vector of probabilities of same size. Thus it results in per-class probability

score, between 0 and 1, one probability per class. If (x1(i, j),x2(i, j), ......,xK (i, j))

be the vector of inputs at a pixel at position (i,j) in the input, its corresponding

activation or probability at kth channel is calculated as:

A(xk(i, j)) =
exk(i,j)∑K
d=1 e

xd(i,j)
(3.5)

where K is the number of channels (or number of classes). This is applied by

applying exponential function to each element and normalizing each value by

their exponential sum that adds up to 1. This is used in the output layer.

3.2.3 Pooling

Dimensional reduction of image after convolution is obtained using pooling.

This summarizes the information available within a window of source image

into a single pixel of new feature map using statistical measures. Maximum is

the most commonly used statistics, making max pooling the common pooling.

This reduces the size of output by the factor of size of pooling window. Pooling

with window of 2 x 2 is commonly used. This increases equivalent receptive

field, while preserving dominant signal or feature from the previous layer.

Figure 3.3 shows a shematic representation of max pooling. The key benefit of

using pooling is local translative invariance,which helps the network to identify

the features even after translation.

One or many fully connected layers(s) follow convolution layer. While con-

volution layer is responsible for encoding information in compact form or fea-

ture extraction, fully connected layers compute scores for classification. The

final layer feature maps are represented as vector of values passed to the fully
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Figure 3.3: Schematic Diagram of Pooling mechanism, after [35]

connected layers. These values are then converted to prediction score, or nu-

merical value using appropriate classifier discussed in section 3.2.2 .

Some standard architectures VGG and Alexnet have two to four fully con-

nected layers. Attempt have been made in recent years towards decreasing

computational expense on this part by use of global average pooling.

3.3 Loss Functions and Optimizers

Deep learning models are capable of learning from the label data. This means,

the initial weights of a kernel are estimated randomly or by some normally dis-

tributed values. The predicted value of the label at end of iteration compared

to label value quantifies error made in prediction of each pixel. These losses

are expressed using mathematical functions called loss functions. Magnitude of

loss calculated at any epoch is thus subjected to choice of loss functions.

Losses are used to evaluate the error in prediction and update the weights ,

using optimizers. Optimizers are the functions those are used to minimize the

loss. These seek the new value of weight, which is propagated back through

the process of back-propagation unless the user specified number of epochs or

user-defined condition is met.

Choice of loss functions is guided by the purpose, and accuracy of a model

is determined by the chosen loss function. For example, while mean squared

error is used commonly in regression problem, binary cross entropy better suits

binary classification. Similarly, use of cross-entropy is recommended for multi-

class classification. In addition, several other loss functions such as dice loss ,

focal loss, etc. have been introduced for class imbalance problems and semantic

segmentation. Cross-entropy is simply the sum of log of mis-classification score

and is expressed as :
c∑
i=1

tilog(si) (3.6)
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where c is the number of classes, ti is the ground truth value for class i and si
is the predicted score or probability calculated for that class. If binary classifi-

cation is considered, equation 3.6 reduces to the form:

CE = −
C′=2∑
i=1

tilog(si) = −t1log(s1)− (1− t1)log(1− s1) (3.7)

where C1 and C2 are the two classes,t1[0,1] and ,s1 are the groundtruth and the

score for C1, and t2 = 1− t1 and s2 = 1− s1 are the groundtruth and the score for

C2.

Binary cross-entropy and categorical cross-entropy commonly used assume

class balance. These tend to minimize overall loss by assigning equal weights

to loss of each of the classes. However in imbalanced class,mis-classification of

one class might be more significant than that of other class[37]. So, focal loss

and dice loss perform better in class-imbalanced, where the relative importance

of each of the classes is specified and loss computed accordingly.

These losses are optimized by optimizers, which approximate the hyper-

paramters for next iteration from the current weights and assigned learning

rate. Gradient Descent is one of the common optimizers used in deep learning,

and is expressed as:

θ = θ −α.OJ(θ) (3.8)

But this traditional optimizer is too slow and may trap at local minima. To

overcome it, stochastic gradient descent(SGD) is introduced. The key difference

is that SGD updates model parameters after each sample as:

θ = θ −α.OJ(θ;x(i);y(i)) (3.9)

where x(i) and y(i) are the ith samples of training examples. Considering ev-

ery sample, it is subjected to more calculcation and more varience. A mid-

way between gradient descent and SGD is provided by mini-batch gradient

descent, that splits training sample into mini-batches of some images and up-

date weights after each mini-batch.

Sometimes momentum is introduced in optimizer, that helps to direct the

loss function to head to the relevant direction. But, choice of high momentum

might impose risk of the loss function missing the minima.

All over this is Adaptive Moment Estimation (Adam), which works with

momentum of first and second order. It is appreciated for its rapid convergence.
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3.4 Hyperparameters

Hyperparameters are the model configuration those tune or influence the per-

formance of the model. Some of the hyper-parameters used in deep learning

has been discussed briefly here.

Learning rate is an important hyperparameter governing the rate at which

the weights will be updated. With higher learning rate, the model updates

the weights fast but the risk of skipping minima is always there. In contrast,

despite smoother learning, lower learning rate may lead to very long training

time, making it too slow that the minima might not be reached.

Number of epoch defines the number of iterations considered for optimiz-

ing weights. It is selected in synchronization with learning rate, such that the

loss curve remains stable, and the model stops learning.

Mini-batch size refers to the number of training samples to be considered

as one batch for updating weights. While large batch size might yield visually

pleasant learning curve, it is also more generalized. But the computational cost

increases as larger number of samples need to be scanned. In contrast, smaller

batch size may capture too much details including noise, limiting generalisabil-

ity of the model.

Activation functions influence the output of a model, as has been seen

earlier. So, the choice of appropriate function is another consideration in hy-

perparameter tuning.

Regulariziers are used with optimizers to make the model generalized, i.e.

to prevent overfitting. An overfitting model performs perfect in training data

but poorly on unseen data. Common optimizers used for regularization include

L1 regularizer, L2 regularizer and dropout.

• L1 regularizer and L2 regularizer penalize the possible biases due to

large errors. While L1 regularizer take into consideration the magnitude

of error, L2 takes the square of error and penalize for it. As square of

large errors tend to be high and can be avoided, L2 regularizer is more

popular in choice [38].

• Another way of ensuring generalise-ability is the use of dropout. As the

complexity of model increases with number of neurons and connections,

dropping some neurons randomly and their connection simplifies the

model avoiding overfitting [33]. However,excess dropping might make

the model too simple and not enough to capture complexity of the subject

matter.
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• Data augmentation comes as handy tool for overfitting when the train-

ing data volume is less. By applying flip, rotation, minor scaling, or their

combination, complexity is added to the data and to make it more repre-

sentative to general scenario [39].

• Early stopping also prevents overfitting by stopping training at the point

where loss curve of validation data diverges from that of training curve.

This is controlled by monitor and patience as parameters, where moni-

tor assigns the metrics to be used to check of overfitting, and patience

specifies the number of epochs to watch for.

Selection of a best performing model is quite significant. Hyperparameter

tuning consists of selecting combination of hyperparamters and picking the

best performing combination. Grid search is one of the methods for it. Using

appropriate accuracy measures discusses in section 3.5, the best performing

combination of configurations can be further used.

3.5 Accuracy Metrics

Accuracy metrics evaluate the performance of a model. A good model is the one

yielding good result on test as well as validation and external dataset. Accuracy

metrics should be chosen considering purpose and data distribution.

The simplest accuracy metrics used in classification and segmentation is

overall or pixel-wise accuracy. It is expressed as a ratio of correctly mapped

pixels relative to the total number of pixels. Being unable to address issue with

class imbalance, it is not suitable for all cases.

So, precision and recall are commonly used in semantic segmentation as

accuracy metrics. While precision indicates the fraction of true positive among

positively predicted values [33], recall indicates the fraction of positive labels

those were correctly predicted as positive. Thus, these are expressed as:

P recision =
T rueP ositive

T rueP ositive+FalseP ositive
(3.10)

Recall =
T rueP ositive

T rueP ositive+FalseNegative
(3.11)

Equations 3.10 and 3.11 suggest that precision value is more influenced by

false positive while false negative has impact on recall. Both of these have

mathematical range from 0 to 1. Having both values higher is ideally not
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Figure 3.4: Illustration of Intersection over Union(IoU)

possible as the correct classification of one class comes with cost of incorrect

classification of another one.

So , a term F-score or Dice score is introduced, that measures the weighted

harmonic mean of precision and recall, with default weight being same for

both classes. The weight is controlled by term β. If equal weight is assigned for

precision and recall, F1 score is calculated as

F1− score =
2 ∗ P recision ∗Recall
P recision+Recall

=
2 ∗ T P

2 ∗ T P +FP +FN
(3.12)

where TP,FP and FN refer to True Positive, False Positive and False negative

respectively. In binary classification, the converse of Precision and Recall are

negative predictive value and specificity respectively,and are calculated the

same way as precision and recall.

Positively correlated with Dice score is IoU (Intersection over Union), cal-

culated class-wise from confusion matrix. It is the expressed as the ratio of

area of overlap between true and predicted class normalized by total area cov-

ered by them. Mathematically, IoU for positive and negative class in binary

classification is calculated as:

IoUpositive class =
T P

T P +FP +FN
, IoUnegative class =

TN
TN +FN +FP

(3.13)

This is more popular in semantic segmentation and object detection, as it offers

calculation of IoU per class and also works well with class imbalance too. In

our study, we will analyse accuracy using this metrics. Figure 3.4 illustrates it

graphically.

3.6 Segmentation

Beyond classification problem is segmentation. Segmentation is the computer

vision algorithm of assigning pixels or their continuous group to a prede-

fined class. These deal with what is in the image, as well as where they are.
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So,localization is crucial in segmentation [35]. Segmentation comes in two

forms. While semantic segmentation assigns each pixel to predefined class

without identifying individual object in scene, instance segmentation also iden-

tifies individual of them. Semantic segmentation architecture is composed of

Figure 3.5: Schematic Diagram of Encoder-Decoder network in Semantic Seg-
mentation , after [40]

encoder or the contraction path and decoder or upsampling path. Encoder path

is composed of convolution and pooling layers. Going deeper into the network

extracts high level features or semantics. This is followed by decoder or decon-

volution path that symmetrical up-samples the output till the original image

shape is reconstructed. These replace fully connected layer of CNN. Each layer

of deconvolution layers receives features from its counterpart in encoder part

through skip connection . These are combined in some way and in number of

stages to prepare labelled output in same dimension as input image.

History of semantic segmentation dates back to the fully Convolutional

Network (FCN), on which updates have been made to achieve popular models

such as Unet, FPN and PSPNet. These segmentaion models have been discussed

in section ??.

3.7 Overview of Architectures used

First part of semantic segmentation model come from standard encoders those

act as feature extractor. The later part or the decoder performs deconvolution

to prepare segmented map.

VGG16 is the model submitted to LLSVRC-2014. It reduces the processing

cost of previously existing architectures such as AlexNet by using series of

smaller kernel of 3x3 instead of large-sized kernels[41]. This provides increase

in receptive field, reducing number of parameters to be learnt at the same time.

Convolution layers consist of maxpooling layers after each block consisting of
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a number of convolutions. With progression, while the size is halved, depth

of feature space is doubled. The use of three non-linear layers in the fully

connected layers instead of a single makes the model more descriminative.

Original architecture, trained on 224 x 224 RGB images resulted in remarkable

performance with top 1 validation error of 23.7%, top 5 test and validation

error of 6.8 % . Varying the number of weight layers gives rise to different

variants of VGG such as VGG16 and VGG19.

Though convolution networks learn better on going deeper, the training er-

ror increases on going very deep. Residual network or Resnet offers solution

on it by adding back ’identity block’ to the network through skip connections, as

shown in figure 3.6. Adding the identity shortcut feeds low level information

from shallow layers to deeper layer after some layer helping to preserve detail.

Residual networks are easy to optimize despite their deeper depth. Adding

Figure 3.6: Schematic diagram of identity block of Resnet, after [42]

the identity block does not add computational complexity or number or pa-

rameters. Rather it helps to retain features. While training error increases on

plain networks, residual networks rather had improved performance of deeper

network. It’s basic architecture is also inspired by that of VGG. When trained

on 224 x 224 image randomly resized from source 256 x 480 image, it resulted

in top 5 validation error of 4.49 %.
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4
Dataset Preparation

4.1 Study Area

Nine sites from three provinces of Nepal are chosen for the purpose of this

thesis. These nine sites of informal settlements have their unique character-

istics and vary in terms of roofing material, context, distribution and extent.

Figure 4.1 shows the location of the study sites along with their orthophotos.

In Kathmandu, figure shows the whole stretch of Bagmati river,containing four

informal settlement blocks.

Study sites(figure 4.1) and their characteristics have been listed in table

4.2. Each of these sites contain very less percentage of informal settlement

ranging between 6.5 to 15.21 percent (table 4.1). This is because the informal

settlements in Nepal are small clusters distributed in different geographical

region, in contrast to those in big cities such as Dharabi, Mumbai [9].We discuss

briefly about each of these sites in following paragraphs.

Kathmandu, capital city of Nepal has large number of informal settlements,

majority of them along the bank or Bagmati river. Our study area has four

informal settlements at Balkhu, Teku, Thapathali and Shankhamul. All of

these, except those at Thapathali are characterized by corrugated zinc roofed

clusters along the bank of Bagmati river. Informal settlements in Thapathali

has mixed roof of plastic and zinc roofs. These are separated from formal

settlements by a narrow and dirty road. Though some vegetation can be seen

around settlement, inner part of settlement has no vegetation at all.

Simpani is located along the bank of Seti River, Pokhara of Gandaki province.
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Table 4.1: General Description of informal settlements in study area

Location
E-W N-S Total

Coverage Percentage

Extent Extent Area Informal
Settle-
ment

Formal
Settle-
ment

Others

(m) (m) (Hectares)

Balkhu 330 510 9.31 15.21 16.9 67.88
Chhorepatan 428 311 8.13 11.99 4.53 83.48
Indrawati 223 257 3.53 15.58 0 84.42
Kataan 272 452 5.95 6.5 16.75 76.75
Shankhamul 407 428 5.92 13.56 16.8 69.64
Saalghari 680 342 17.63 7.87 8.46 83.67
Simpani 845 527 17.76 12.22 11.28 76.5
Teku 320 340 3.88 18.44 13.47 68.09
Thapathali 534 432 10.18 7.26 14.3 78.44

Table 4.2: Characteristics of Informal settlements in study areas

Location Terrain Type Roofing Material Settlement Characteristics

Balkhu Flat Corrugated zinc Densely constructed, isolated
chhorepatan Flat to mild slope Corrugated zinc Densely constructed,mixed
Indrawati Flat to mild slope Corrugated Zinc Spaced, isolated
Kataan Flat Straw Sparse,mixed
Sankhamul Flat Straw Densely constructed, isolated
Saalghari Flat Corrugated zinc Sparse,mixed
Simpani Flat to mild slope Corrugated Zinc Densely constructed,mixed
Teku Flat Corrugated Zinc Densely constructed, isolated
Thapathali Flat Plastic Densely constructed, isolated

It is characterized by mixed settlement on flat to mild slope. While all of the

informal buildings are single-storey and roofed with corrugated zinc, formal

buildings are mostly multi-storey and roofed with concrete or corrugated zinc.

Roofs are visible in orthophoto and has very less vegetation.

Chhorepatan in Pokhara of Gandaki province is located on slope land in

form of clustered buildings. Buildings are roofed with corrugated zinc and

partly covered by vegetation. Settlement contains narrow and low quality road,

and are separate from formal settlement.

Kataan lies in Far-western Province of the country, and is located on flat

terrain. Clustered single-storey informal buildings with straw roof are sur-

rounded by formal single to multi-storey concrete buildings. Settlement con-

tains little vegetation, and informal building tops are partly covered with green
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cultivated vegetable leaves.

Indrawati is informal settlement from modereate slope land in Sindhu-

palchowk district,Bagmati province. It contains a small village of spaciously

constructed single-storey buildings with zinc roof.

Saalghari consists of single storey straw-roofed buildings covered partly by

green vegetation. Informal settlements are separated from concrete single to

multi-storey buildings by road.

4.2 Data Preparation

4.2.1 UAV Data Acquisition

We acquired very high resolution UAV images of study area except Kathmandu

ourselves, using registered UAV with flight permission from authorities. DJI

Mavic 2 pro equipped with 20 megapixel RGB camera with FOV of 77°and

equivalent focal length of 35 mm [43] was used. Flight planning was performed

using open source mobile application DroneDeploy[44]. It offers better flexi-

bility on flight configuration and customization compared to its counterparts

such as Pix4DCapture [45].

Table 4.3: UAV and flight configurations used

UAV Specifications Mission parameters

Parameter Value Parameter Value

UAV DJI mavic 2 Pro Mission Type Double grid
Camera Resolu-
tion

20 Megapixels Flying Height 60 m above takeoff
level

FOV 77 ° Foreward over-
lap

80 % or higher

Image size 5472 x 3648 pixels Lateral overlap 70 % or higher
Positioning Sen-
sors

GPS +GLONASS Image Acquisi-
tion Date

September - Octo-
ber 2020

Sensor Type RGB

Double grid missions were used with flying height of 60 to 80 meters above

takeoff level. This resulted in effective flying height of 40 to 120 meters be-

cause of terrain undulation. Unidirectional flight paths suffer hindered objects,

especially on densely vegetated or builtup area. This tends to reduce density

of point cloud and hence accuracy of orthophoto and DSM. We overcame this

possible limitation using double grid mission having perpendicular flight lines

30



4.2. DATA PREPARATION

with minimum longitudinal overlap and lateral overlap of 80 % and 70 % re-

spectively. Overlap was kept higher in area with low texture variation and

presence of water bodies, to ensure better image matching and sufficiently

dense point cloud. Figure 4.2 shows one instance of flight plan for the project.

Detailed UAV specification and image acquisition configuration are listed in

table 4.3.

Figure 4.2: Flight planning for UAV using DroneDeploy. Green lines represent
flight path for the user-specified configuration

Oblique images were acqired along the peripheral flightl line in addition to

regular nadir images. This ensures reliable DSM throughout the area reducing

gaps and stretches on peripheral region due to no or less overlapping images.

Geotagged 8 bit RGB JPEG images, each of 5472 x 3648 pixels were obtained.

As UAV is equipped with GPS and GLONASS, geolocation accuracy is expected

to be precise enough for the purpose. Thus, no ground control points(GCPs)

were used.

Orthophoto, DSM and dense point cloud of informal settlements along Bag-

mati river in Kathmandu valley was obtained from NAXA [46]. It contains

four informal settlements at Shankhamul, Teku, Thapathali and Balkhu. Sec-

ondary source was preferred also because of permission issues for UAV flight

in kathmandu.

4.2.2 UAV Image processing

UAV image processing was performed using open source application WebODM

[47]. WebODM is popular among UAV user community due to its support

on any operating system, for command line users as well as interface-users.
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Built as native to Linux, it runs on docker for windows users [47]. We used a

computer with 16 GB ram and 6 GB Nvidia GTX1060 graphics for processing

of UAV images. Each of these processing took up to 25 hours depending on

number of images.

Geotagged images were uploaded to WebODM and project configured to

process on high resolution. Rest of the work was automated, as no GCPs were

used. Due to lack of processing report options, outputs were assessed visually

for possible distortion.

Figure 4.3: Workflow for generation of products from raw UAV images with
webODM

General flow of UAV processing with webODM and other application is

shown in figure 4.3. The application first reads EXIF data of each image to

gather camera information such as camera position and orientation at the time

of image acquisition. These quantify camera distortion. It next proceeds with

OpenSfM library pipeline [32], where the EXIF data along with its image is

used to extract key points from matching images. Bundle block adjustment

follows next. Here the error is distributed in the model. Automatic tie-points

and sparse point cloud is finally created as a preliminary model of scene [48].

On availability of GCPs, co-ordinates of GCPs are read,and point cloud is

reoriented using user-entered coordinates of GCPs. The re-optimized point

model is next used to extract further dense point cloud through Multi-view

stereo reconstruction [49]. Density of dense point cloud is a function of surface

texture variation, with denser point clouds being created in more heteroge-

neous scene. Next, dense point cloud constructs a three-dimensional polygonal

model of surface,called textured mesh. This mesh along with dense point cloud

finally form DSM and orthomosaic of the whole scene.
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Successful processing of raw images from each site ended with (i) 8 bit

RGB orthophoto with average resolution of 3 centimeters, (ii) DSM at same

resolution as orthophoto, and (c) Dense point clouds. All of these outputs are

in metric coordinate system using Universal Transverse Mercator projection.

As Nepal lies in UTM zones 44 and 45, some of the products were projected in

UTM44 and others on UTM45.

4.2.3 Image Data Pre-processing

One aim of our work is to see how inclusion of height and setting height thresh-

old influences segmentation accuracy of informal settlement. As UAV image

processing provides DSM with features, we started process with attempt to

extract bare ground points, which could later be used to generate DTM and

finally nDSM. Figure 4.4 summarizes the overall workflow. CloudCompare

[50] was used for filtration of point cloud.

Cloth Simulation Filtering(CSF) plugin in CloudCompare offers segmenta-

tion of point clouds to retain only ground points or non-ground points. Seg-

mentation algorithm is based on the work of [51]. The algorithm first inverts

the point cloud vertically, and try to fit a rigid cloth above inverted cloth. The

surface thus obtained by interaction of point cloud with simulated cloth defines

the points lying on ground. The output of the algorithm is highly subjected

Figure 4.4: Workflow for preprocessing of image data

to choice of parameters tabulated in table 4.4. As not a single configuration

works best in all scenarios, we tested the performance of each configuration by

hit and trial method. Slope processing with steep scenes with cloth resolution

of 2m and threshold of 0.3 m with 200 iterations offered the optimum result in
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Table 4.4: Parameters governing output of CSF filtering,[52]

Parameter Details

Scenes Nature of Scene to be filtered (steep slope, relief or flat)
Cloth Resolu-
tion

Resolution of simulating cloth : Smaller size means
higher resolution

Max iterations No. of iterations for simulation
Classification
Threshold

threshold distance to classify point as ground and non-
ground

most of the cases. Very rare or no point cloud on filtered point cloud can be an

issue, especially in dense settlement [12]. This situation was not observed in

our study area, firstly because of smaller extent of continuous settlement and

second due to the presence of open space within the settlement. We completed

automatically extracted point clouds by manually segmenting point clouds on

some parts, and removing left non-ground points. Digital terrain model(DTM)

representing the bare earth surface at same resolution as DSM was then created

interpolation using segmented ground point clouds.

Normalized DSM (nDSM) represents the height of feature above ground,

and is calculated using DTM and DSM as in equation 4.1.

normalized DSM(nDSM) =DSM −DTM (4.1)

where DSM and DTM refer to Digital Surface Model and Digital Terrain Model

respectively. But one challenge with getting precise nDSM is the undulation in

terrain and distance between extracted point cloud. It is not abnormal to have

some negative values in nDSM due to filtering of point clouds. Small negative

values were replaced with zero height, while no large negatives were observed.

As the research aims to see the effect of threshold value on segmentation ac-

curacy, a number of threshold height were selected to threshold and normalize

height data. All heights above the threshold are converted to 255 (maximum

DN value for a 8 bit image) and those within threshold are stretchted to DN

range of orthophoto using equation 4.2.

8 bit nDSM =
nDSM

threshold nDSM
∗DNmax (4.2)

where,DNmax= maximum DN value for selected bit, corresonds to 255 in 8 bit

image. The purpose os stretching is (i) to see the height difference in larger dy-

namic range, (ii) to make it uniform with existing RGB image for mosaiking as

fourth channel. Figure 4.4 illustrates it graphically. In addition to normalized

channels, nDSM in meters was also directly concatenated.
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Furthermore,Visible Band Difference Vegetation Index(VDVI) was calcu-

lated using visible bands, after [15] as in equation 4.3.

VDV I =
2ρgreen − (ρred + ρblue)

2ρgreen + (ρred + ρblue)
(4.3)

where ρred , ρgreen, ρblue are DN values in red, green and blue band respectively.

As the products we used up to this stage were in resolution of 2 to 4 cen-

timeters, we downsampled the product to 25 cm resolution. In order to get rid

of aliasing error because of very high downsampling ratio, downsampling was

performed in multiple stages with downsampling ratio of 0.5 using cubic con-

volution. We ended our image data preprocessing with a set of multi-channel

composite ,with channels as in table 4.5.

Table 4.5: Band Description for multi-channel orthomosaic

Band Description

1,2,3 visible RGB
4 Absolute Height above ground(nDSM)
5 to 11 nDSM threshold and normalized by 5, 7.5, 10, 12.5, 15, 20 and

30 meters respectively
12 VDVI

4.2.4 Ground Truth Data Preparation

Cadastral data of the area are maintained by the respective cadastral survey

offices. Especially for the informal settlements, these map showed only cadas-

tral boundaries without buildings or their clusters digitized. Cadastral maps

in modified UTM projection (used by Nepal for cadastral mapping) were trans-

formed to UTM projection and overlaid over corresponding orthomosaic. In

the region without buildings being mapped, buildings were digitized manually.

For the purpose of binary classification, the features were labelled as 1 and

2, 1 referring to informal settlements and 2 to all other features. We rasterized

these buildings at same extent and resolution as orthomosaic. Table 4.6 shows

the labelling scheme used for labelling ground truth data.
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Table 4.6: Class definition for segmentation

Label Class

1 Informal settlement
2 formal settlement and others

Figure 4.5: Sample data from Simpani, Balkhu, Thapathali and Kataan (left to
right). First row: RGB Image, Second row: Multiclass ground truth, third row:
Binary Ground truth, last row: normalized DSM in red channe. Multiclass
label has not been used in study
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5
Methodological Framework

In this chapter, we discuss on the framework for selection of model and experi-

mental arrangement. Data preparation for model has been discussed in section

5.1.In section 5.2,we briefly discuss the overall experimental framework and

architectures in consideration.

It is followed by the experimentation and observations of choice of model,

parameters and hyper-parameters in section 5.3, including performance anal-

ysis in section 5.7. Finally we talk of test for optimum threshold height and

integration strategy in last section of this chapter.

5.1 Data Tiles Extraction

Multiple channel orthophotos( RGB, nDSM and scaled nDSM with variable

threshold, VDVI) at resolution of 25 centimeters, and of variable extents were

prepared from study areas mentioned in section 4.1. The label data of same

extent and resolution were also prepared already (see section 4.2.4) with 1

referring to informal settlements and 2 to all other features. To account for

distortions on orthophoto and class imbalance, images to the extreme edges

were avoided.

A patch size of 384 x384 ,compatible with all segmentation models is adopted.

Each of these represent 96 m x 96 m on ground. Considering irregular bound-

ary of study area, tiles above size of 64 x64 were extracted during tiles extrac-

tion. Non-data part of the images are later handled during patch extraction
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such that the patch were only extracted when the tile contained no data with

NoDATA value.

During extraction of patch, overlap of 48 pixels was maintained between

successive patches. This ensures sufficient overlap between successive patches,

and also roughly balances the number of training samples taken, irrespective

of the patch size.

Dataset was divided into train, test and validation dataset using train test

split functionality of keras [53]. Due to variation in the scene,higher percentage

of test and validation data were used. Whole data set was split into train and

test data with 60% and 40 % with 30 % of train data further split as validation

data.

Table 5.1 lists the number of tiles used for training, testing and validation

for patch size of 128 pixels by 128 pixels.

Table 5.1: Number of image tiles used(patch size of 148. No. of images are
subjected to change with patch size)

Training Test Validation Out
(full tile 384 x384)

1352 1289 580 7

5.1.1 Data Augmentation

Due to relatively less number of image tiles available compared to complexity

of case, we performed augmentation of train images, whereas test and valida-

tion data were note augmented.

Figure 5.1: Augmented Images after five times augmentation with Positive
Class Annotated

Data augmentation favors training in two ways: (i) it adds complexity to the

data making it capable to know complex context, (ii) it increases the number

of trainable images. In contrast, risk of unusual validation loss compared to
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training loss is always there due to validation data being too simple compared

to train data.

We applied five times augmentation as shown in figure 5.1. Rotation, mir-

roring, flipping, slight scaling and their combination were applied to generate

complex images, and their corresponding label data.

5.2 Architecture

For the first phase of experimentation, two well-known architectures: Resnet18

and VGG16 with pretrained weights are chosen as backbone, on top of which,

four segmentation models UNet, LinkNet, PSPNet and FPN are built.

(a) Unet (b) Linknet

(c) PSPnet
(d) Feature Pyramid Network

Figure 5.2: Segmentation models used (after [54]). Gray blocks represent fea-
ture space from downsampling path, blue from upsampling path

Figure 5.2 shows overview of architectures of these segmentation mod-

els. Unet (figure 5.2a), gets it’s name from U-shaped architecture in terms

of encoder-decoder path. Upsampling or deconvolution path are symmetric to

downsampling path. At each level, details is regained from contraction path
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and concatenated to double the number of channels. This is then subjected to

convolution and upsampling until the same size as input is reconstructed[55].

Very similar to Unet is Linknet(see figure 5.2b). The major difference is

that instead of appending extra channels from encoder path, the feature space

is directly added to output from decoder path. This has an additional benefit

of using identity blocks in the encoder path of Resnet encoder, enabling better

remembering details from encoder[56] .

Another segmentation architecture, Pyramid Scene Parsing Network (PSP-

net), takes benefit of use of pooling layer with multiple filters of varying size.

Pooling layer consists of multiple filters of size 1x1, 2x2, 3x3 and 6x6, applied

to the output of final encoder layer from resnet backbone (see figure 5.2c).This

use of multiple size filters, followed by upsampling and concatenation to in-

put helps preserve global to local context at same time [57]. This segmentation

model requires input image with size multiple of 48 pixels on width and height.

Feature Pyramid Network(FPN) is composed of bottom up path for down-

sampling, top-down path for upsampling and lateral connection between these

[58]. Bottom up path reduces the size by factor of 2, doubling depth of fea-

ture map that forms pyramid shape. At every stage of top-down path, feature

map is formed by merging 2x upsampled output from immediate higher level

of pyramid, merged with 1x1 convolved output obtained from same level of

bottom-up path. This way, both semantically strong part and spatially strong

part are merged together to form better output.

For the second phase for the choice of integration strategy, a customized

Fully convolutional network (FCN) with 1, 2 and three branches, as shown in

figure 5.3 is used. Model is trained and tested in three different ways as follows:

• Single branch model: All channels passed to a single branch

• Dual branch model: Two identical branches, first learning from RGB

input, and second learning from height and VDVI. Outputs are merged

after final convolution of encoder.

5.3 Test for Architecture

One of our aims is to select the best performing architecture from the list of

available options. We performed number of trials on selecting the best model.

General layout of experimental setup is shown in figure 5.4.
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(a) Fully Convolutional Network

(b) Multi-branch model

Figure 5.3: Dual-branch Fully Convolutional Network for Parallel Learning.
This model is used for test of best height integration approach

The experiment was accomplished in two phases, (i) first phase on selection

of model parameters, hyperparameters and tuning, that ended with the opti-

mum model identification and (ii) height threshold and integration approach

test, where the optimum limiting height and integration method for extraction

of informal settlement was tested.

Table 5.2 lists the combinations of parameters used for testing. In order

to limit processing time and resource, test criteria is narrowed down through

multi-stage test, reducing the number of combinations, starting from input

patch size to then loss function and then model(see figure 5.4. Hyperparam-

eters testing was then done on the selected model composed of selected back-

bone architecture, segmentation model and loss function respectively. In the

second stage, selected model is utilized to perform height related experiments,

with additional verification from custom model.
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Table 5.2: Combinations tested for Network Configuration

Parameter Selected Values

Model Parameters

Backbone Architecture VGG16, Resnet18
Segmentation Model UNET, FPN, Linknet, PSPNet
Loss Functions Categorical Cross Entropy, Categorical Cross

Entropy + Dice Loss, Categorical Cross En-
tropy+ Focal Loss

Hyperparameters

Learning Rate 0.0001, 0.001,0.005,0.01
Optimizers Stochastic Gradient Descent, Adam
Number of epochs Variable
Mini batch size 8,16,32
Final Activation Sigmoid, Softmax

Additional Parameters

Channels as listed in 5.7
Patch size 64,96,128,192

Figure 5.4: Experimental Setup: In first phase, optimum model is selected, and
in second, optimum height and best height integration method is tested.

5.3.1 Test for Patch size

Among four segmentation models in use, three of them are compatible with

patch size multiple of 32 while that of PSPNet is compatible with multiple of

48. So, patch size of 64, 96 128 and 192 pixels are considered for test, where

PSPNet is tested at patch size of 96 and 192 only, while all three networks are
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Figure 5.5: Model performance at various batch size: Larger patch size per-
formed better. Performance was better with RGBH than RGB

tested on all patch sizes.

Running a combination of each segmentation model, with each backbone

architecture, and loss function gives theoretically 108 combinations each for

RGB and RGBH channel respectively, making total 216 combinations. Better

mean IoU were observed with increasing patch size. The observation is valid for

both RGB as well as RGBH data (see table 5.3). However, agreement between

observations was poorer at larger patch size. Similar trend was observed by [21].

While larger patch size allowed to learn from larger context, higher variance

comes from reduced number of images relative to number of parameters to be

learnt. Increasing range of 95% confidence interval in figure 5.5 can be seen

graphically in figure 5.5.

Table 5.3: Models Performances Summary relative to patch size. Larger patch
size showed higher accurarcy with low consistency.

Patch size
RGB RGBH

mean IoU Standard Deviation mean IoU Standard Deviation

64 0.653 0.010 0.711 0.007
96 0.662 0.010 0.722 0.008

128 0.694 0.014 0.750 0.008
192 0.705 0.025 0.794 0.016
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Ensuring generalizability of the model is essential. It was assessed qualita-

tively that the performance was observed better on larger patch size on left out

tiles as well. Batch size of 128 is finally chosen considering (i) Image context,

as it provides larger mid-range context, (ii) Number of samples available, it

is able to generate sufficiently enough samples. Further experimentation and

analysis is based on patch size of 128 pixels.

5.3.2 Test for Loss Function

As found in the literature, categorical cross-entropy is used commonly. But

for the cases of semantic segmentation to address extreme class imbalance,

we compared the performance of these loss functions(Dice Loss, Focal Loss

and Categorical Crossentropy) over all selected combinations of patch size,

backbone, architecture and channels. Both of these loss functions yield better

Figure 5.6: (Left)Changes in F1-score with Dice Loss(top) and focal
loss(bottom) compared to Categorical Cross-entropy.Positive indicates the cho-
sen loss performed better, and negative means categorical cross-entropy pro-
vided better result.(Right) Channel wise difference by corresponding loss func-
tions

result in most of the cases, and majority of the differences were less than 1 %

.While differences in RGB channel only was more or less symmetric, that on

RGBH channel displayed right-skewed distribution with peak around 0.5%.

From figure 5.4 and table 5.6 we can infer that both of these functions have

improvement in both cases, with more contribution while using RGBH channel.

Due to slightly better performance on RGBH channel, focal loss is adopted for

further experimentation.
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Table 5.4: Summary of difference in IoU by Dice Loss and Focal Loss with
categorical cross-entropy as reference

Loss Function Average Increment Standard Deviation of Increment

Dice Loss 0.44 1.133
Focal Loss 0.61 1.27

5.3.3 Test for Backbone and Segmentation Architectures

As we had two backbones and four segmentation models, eight different type of

combinations are available. In the preliminary stage, each of these combination

is compared in terms of IoU and F1-score by each of them under different patch

size, from the experiment mentioned in section 5.3.1 Findings from table 5.5

Table 5.5: IoU for combination of backbone architecture and segmentation
model(patch size=64. The best-perfroming loss function for each configuration
has been highlighted)
CCE= Categorical Cross Entropy, Dice Loss = CCE + Dice Loss, Focal Loss = CCE
+ Focal Loss

Model
RGB RGBH

CCE Dice Loss Focal Loss CCE Dice Loss Focal Loss

Resnet18+FPN 0.652 0.657 0.660 0.706 0.706 0.713
Resnet18+LINKNET 0.646 0.627 0.662 0.713 0.720 0.723

Resnet18+UNET 0.642 0.659 0.652 0.703 0.715 0.721
VGG16+FPN 0.645 0.648 0.648 0.699 0.702 0.700

VGG16+LINKNET 0.662 0.648 0.668 0.718 0.718 0.710
VGG16+UNET 0.653 0.661 0.662 0.713 0.715 0.715

provide favor for the use of focal loss in futher experimentation. Remaining

experiment is conducted with Resnet18 as backbone and Unet as segmentation

model.

5.3.4 Hyperparameter Tuning

Hyperparameter tuning was limited to top two selected models due to two

reasons: (i) the primary goal of research is to see the difference due to incorpo-

rating height, and (ii) There are large number of combinations possible, and

each of these combination took hours to train model, running out of time.

Table 5.6 lists the hyperparameters selected from hyperparameter tuning.

After all trials, following combination was chosen for further work.
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Table 5.6: Parameters and Hyperparameters chosen for final model

SN Parameter/hyperparameter Selected Value

1 Encoder Architecture Resnet18
2 Segmentation Architecture Unet
3 Loss Function Categorical cross-entropy+focal loss
4 Activation Function on Dense Layer Softmax
5 Optimizer Adam
6 Learning Rate 0.0005

5.4 Test for Effect of Height

Second aim of calculating the optimum height for delineating informal settle-

ment from others was performed on the selected model only. This was further

verified with experimentation on a custom FCN-8s as in figure 5.3. The model

gets input of 3 or more number of bands from source image, which is fed to sin-

gle branch for single branch model and two parallel branches in dual-branch

model. Channels and their description has been listed in table 4.5.

Combinations of channels as shown in 5.7 are input to the model to see the

impact of absolute height, height threshold and vegetation index from visible

band. Impact of height and indices were tested using combination listed in

table 5.7. Performance analysis were based on metrics and process described

in section 5.7.

Table 5.7: Channel names used in analysis

Dataset Channels

RGB RGB
RGBHAbs RGB, Absolute Height
RGBH050 RGB, Height threshold by 5 m
RGBH075 RGB, Height threshold by 7.5 m
RGBH100 RGB, Height threshold by 10 m
RGBH125 RGB, Height threshold by 12.5m
RGBH150 RGB, Height threshold by 15 m
RGBH200 RGB, Height threshold by 20 m
RGBH300 RGB, Height threshold by 30 m
RGBVDVI RGB, VDVI
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5.5 Test for Height Integration Approach

Literature from [59] and [18] suggest that the quantitative contribution of

height is subjective to the method of integration. Both of these noticed better

performance on training height along separate branches followed by concatena-

tion of result in multiclass classification, compared to concatenation of height

as additional channel in image.

In our case,this is tested using Fully convolutional network (FCN8s) struc-

ture as shown in figure 5.3. One to three identical Resnet18 branches are

trained in parallel, with their outputs added, convolved and resampled as in

FCN8s model.

Single branch model takes only one input with RGB and other additional

bands. Dual branch model takes two inputs: first branch training on RGB

input, and second branch taking height (and VDVI) as input. Similarly, triple

branch model has third channel that trains on VDVI separately.

In dual branch model, features maps from same level of each of these

branches are added before upsampling. In all of these models, outputs after

third, fourth and fifth pooling are upsampled to original image size using cubic

convolution,and are concatenated. Final outputs come as result of additional

1*1 convolution with softmax activation at end.

5.6 Model Generalisability Assessment

We performed 5-fold cross-validation to ensure the model is generalised enough.

Five fold was chosen in contrary to usually used ten fold, due to limited data

volume. On using higher number of folds, it was likely to reduce the volume

of test data, reducing reliability of metrics.Table 5.8 shows the outputs from

five-fold cross validation. Four out of five folds had pretty consistent result.

5.7 Evalution Metrics

For each of the model, overall and per-class metrics are computed. Execution

of model writes four text files, each of these containing information on:

• Overall statistics of model: Overall Precision, Overall, Recall, F1-score

and mean IoU.

• Confusion matrix for test data
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Table 5.8: Results from five-fold cross validation of custom dual-branch FCN8s.
Four out of five models performed significantly consistent, while one saw slight
deviation numerically. On visual inspection, it was consistent with others
despite slight variation in numerical value.

Fold
Informal Settlement Others

Precision Recall IoU Precision Recall IoU
(%) (%) (%) (%) (%) (%)

1 91.3 91.3 84.0 99.1 99.1 98.2
2 88.3 82.9 74.7 98.1 98.8 96.9
3 91.6 93.8 86.4 99.3 99.1 98.4
4 93.1 93.3 87.3 99.3 99.3 98.6
5 86.7 95.1 83.0 99.4 98.3 97.7

• Confusion matrix for left-out tiles

• spreadsheet with elements of confusion matrix, computed per image for

left-out tiles. This is later used to assess generalisability of model

Corresponding heatmap for confusion matrices are also generated.Precision

and recallcan also be used,but these cannot take into account false negative(type

II error) and false positive(type I error) respectively and both need to be con-

sidered. So, using confusion matrix, we calculated class-wise IoU as optimum

accuracy metric. Per class IoU, and mean IoU is further supported with preci-

sion and recall whenever necessary.Mathematical expression of these metrics

has been included in section 3.5.
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6
Results and Discussion

This chapter discusses the observations found from the experimentation on

segmentation and impact of including height and vegetation index in semantic

segmentation of informal settlements. We start with general findings on 6.1.

It is followed by comparitive study on absolute and relatie height, in section

6.2. We then proceed to the difference observed in results on use of absolute

and relative height in section 6.3, where we also analyse the optimum height

threshold in overall and scene specific context. Finally, we end this chapter

with analysis of the effect of vegetation index in 6.5.

6.1 General observations

In overall, larger patch size led to better segmentation, by offering extraction

of contextual information from larger area. Including height always enhanced

performance of segmentation, in any scene or patch size. Both absolute and

threshold height yield equivalent result from qualitative and quantitative as-

pect.

Furthermore, using vegetation indices might not always be beneficial, as it

helps to differentiate vegetation from buildings, while the mis-classification in

informal settlement extraction is between formal and informal buildings. It

was found to increase the accuracy of semantic segmentation in some specific

situations only. But when height has already been included, it cannot make

further contribution. Table 6.1 summarizes general findings frome experiment.

49



CHAPTER 6. RESULTS AND DISCUSSION

Table 6.1: class-wise IoU for various schemes(Test Data)

Dataset IoU Informal IoU Others
(%) (%)

RGB 77.92 97.47
RGBHAbs 83.71 98.10
RGBH050 84.67 98.27
RGBH075 84.34 98.19
RGBH100 83.89 98.17
RGBH125 85.51 98.33
RGBH150 85.62 98.39
RGBH200 85.99 98.44
RGBH300 84.86 98.26
RGBVDVI 73.75 96.85

6.2 Contribution of Absolute Height

Having information regarding feature height in any form, absolute or relative

has been observed to increase segmentation performance, as in table 6.1. In

terms of absolute height, around 6 % increase in IoU for informal settlement

was obtained by introducing absolute height.

The nature of error with RGB data is mixed type. Though in most of the

cases, informal settlements are over-predicted, cases of incomplete segments

and voids within segment were also observed. Thorough inspection of test

images and predicted outputs showed that, using RGB had underprediction

on informal settlement with small buildings with straw roofing, while they

overpredicted in dense area with zinc-roofed buildings (figure 6.1).

But the rectification is not complete even with addition of height. While

majority of underprediction on the straw-roofed settlements were filled, over-

predictions on the top of formal buildings were persistent in many cases (figure

6.1e and 6.1f). This can be attributed to spectral similarity between roofing

material, and DTM error caused due to point cloud filtering.

Aforementioned observations are confirmed visually based on their predic-

tion on the left out tile the model has not seen. Figure 6.2 shows predicted

map from RGB and RGBHAbs from two sites. Greater difference can be ob-

served between 6.2b and 6.2c, on a settlement with small scattered huts. While

6.2b contained large number of small patches but omitted some whole build-

ings, these have been fixed in figure 6.2c. But, in the mixed settlement with

zinc-roofed building, change is not very much significant.

Statistically, table 6.2 shows a significant rise in recall value from RGB to
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(a) Ground Truth (b) RGB (c) RGBHAbs

(d) Groundtruth (e) RGB (f) RGBHAbs

(g) Groundtruth (h) RGB (i) RGBHAbs

Figure 6.1: Comparison of RGB vs RGBHAbs data on test data: RGBHAbs rec-
tified underprediction on low buildings, while overpredictions on zinc-roofed
buildings are preserved

Table 6.2: Comparision of class-wise Precision, Recall and IoU for RGB and
RGBHAbs. Both test and out data saw improvement in IoU of informal settle-
ment by at least 6 % from RGB to RGBHAbs.

Dataset
Informal Others

Precision Recall IoU Precision Recall IoU
(%) (%) (%) (%) (%) (%)

RGB Test 89.423 85.830 77.919 98.510 98.928 97.470
RGBHAbs Test 88.993 93.383 83.714 99.298 98.780 98.095
RGB Out 69.719 76.643 57.502 96.760 95.446 92.490
RGBHAbs Out 76.189 93.152 72.148 99.034 96.017 95.126
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(a) Groundtruth (b) RGB (c) RGBHAbs

(d) Groundtruth (e) RGB (f) RGBHAbs

Figure 6.2: Prediction map from model trained on RGB vs RGBH data on
external tile. (c),Omitted small buildings has been included by RGBHAbs, (f)
overprediction of informal settlements corrected by RGBHAbs in dense area
reduced by RGBHAbs

RGBHAbs for both test as well as out data. This is an indicator of reduced false

negatives,leading to reduced under-prediction on using RGBHAbs.

The concluding point on impact of absolute height is significant improve-

ment on segmentation result, that counts to 6 % in our case. The trend is

however dependent on site.

6.3 Absolute Versus Relative Height

At a first glance, table 6.1 shows no significant difference on using absolute

height or threshold height. If very small difference are not considered, a con-

stant improvement of around 6 % was observed for each of the threshold height.

As this is the overall summary of the model, and dataset includes heteroge-

neous scenes, scene specific difference needs to be further analysed, that has

been covered in section 6.4.1.

From this results, key conclusion to draw is that setting a threshold and

normalizing data can definitely improve over RGB data , but the results are

almost identical numerically for all of these cases. Table 6.3 shows that both
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Table 6.3: Accuracy metrics for Informal Settlement for variable threshold
height on test and out data

Dataset
Test Data Out Tile

Precision Recall IoU Precision Recall IoU
(%) (%) (%) (%) (%) (%)

RGB 89.4 85.8 77.9 69.7 76.6 57.5
RGBHAbs 89.0 93.4 83.7 76.2 93.2 72.1
RGBH050 92.1 91.3 84.7 85.0 90.2 77.8
RGBH075 90.1 93.0 84.3 81.4 92.7 76.4
RGBH100 91.2 91.3 83.9 84.9 91.3 78.5
RGBH125 90.7 93.7 85.5 80.3 92.8 75.6
RGBH150 93.1 91.5 85.6 85.4 88.6 76.9
RGBH200 93.4 91.5 86.0 84.5 89.7 77.0
RGBH300 90.5 93.2 84.9 82.3 91.1 76.1

test and out data showed similar trend. Larger variation and inconsistency in

out data is however due to smaller volume of external data. As class imbalance

exists in our data,a small variation in majority class influences minority class

more, that introduced larger difference.

Visual inspection also shows no remarkable difference on output images

with different threshold value, and absolute feature height as well.

6.4 Optimum Threshold Height

Table 6.3 suggests uniform trend on precision and recall for all of the height

types.Comparable value of precision and recall for positive class also confirms

similar trend of mis-prediction for all of the chosen threshold height as well as

absolute height. As it is the observations from larger data over heterogeneous

area, it would be meaningful to see trend with nature of settlement.This has

been covered in section 6.4.1.

On visual inspection, all of the combinations are observed to suffer mis-

predictions, but with different trend. Predicted output map from Saalghari

(figure 6.3), an area characterized by small isolated buildings shows large num-

ber of small segments and void within segment with RGB channel. Missing

small buildings as a whole were also observed on prediction using RGB chan-

nel.These are improved with height,with smaller noisy segments omitted, miss-

ing informal buildings partly covered. With use of change of threshold height

and increasing them,some minor noises were observed to re-appear.
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(a) Ground truth (b) RGB (c) RGBHAbs

(d) RGBH050 (e) RGBH150 (f) RGBH300

Figure 6.3: Ground truth and predicted outputs on low-height scattered infor-
mal settlement using different channels. RGB suffers under-prediction of small
buildings and large number of noisy segments, while others predict it well with
similar visual outputs

.

6.4.1 Accuracy as Function of Settlement Nature

With assumption that the optimally performing threshold might be subjected

to texture and relative difference in height betweeen formal and informal set-

tlements, the study area has been split into three categories as in table 6.4 and

trend analysed for each type.

Table 6.4: Informal Settlement Type Classification

Type Characteristics Out Tiles

Type A Separated, Dense, High height difference be-
tween formal and informal

Balkhu, Thap-
athali, Simpani

Type B Mixed formal and informal settlement, Compa-
rable Heights, Zinc roof

Simpani

Type C Separate formal and informal, sparsely con-
structed, straw roof

Saalghari,
Kataan

Table 6.5 shows that, irrespective of threshold or number of channels, in-

formal settlements in the city, separated from concrete formal buildings were
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Table 6.5: Accuracy of Informal Settlement of types from table 6.4. Type A
settlement are segmented with better accuracy. Type C got better advantage
from height information, while those of type B are more challenging to segment

Dataset
Type A Type B Type C

Precision Recall IoU Precision Recall IoU Precision Recall IoU

RGB 82.2 87.7 73.7 56.0 83.8 50.5 85.7 44.9 41.8
RGBHAbs 87.0 95.5 83.6 69.1 95.5 66.9 91.5 85.5 79.1
RGBH050 92.0 92.4 85.6 77.7 93.6 73.8 92.3 81.5 76.3
RGBH075 85.9 95.2 82.3 74.9 94.9 72.0 91.3 84.8 78.4
RGBH100 91.4 94.6 86.9 79.7 93.6 75.5 93.1 81.7 77.1
RGBH125 89.8 96.2 86.7 76.2 94.0 72.7 89.2 84.1 76.4
RGBH150 88.8 89.6 80.5 87.0 92.2 81.1 91.8 81.9 76.4
RGBH200 92.9 91.8 85.8 85.1 92.9 80.0 90.3 81.4 74.9
RGBH300 90.1 92.3 83.8 80.0 95.2 76.9 89.7 83.6 76.2

distinguished with highest accuracy, whereas mixed results were obtained be-

tween mixed(type B) and sparse settlement. The building with mixed settle-

ment is found to be most challenging, probably due to presence of buildings

with similar nature mixed to each other.

Interestingly, settlement with straw-roofed building (Type C) saw great im-

provement in IoU with height information. One instance of this type of set-

tlement has been shown visually in figure 6.3 and had better result at low

threshold.

While informal settlements of Type A are better segmented around mid-

range threshold of around 10 meters, those in mixed settlement were better

extracted at higher threshold of 15 meters. In contrast, scattered settlement

with straw roofs are observed to be better segmented using relatively lower

threshold height. The results form the base for interpretation that segmen-

tation results are function of chosen threshold, configuration and nature of

settlement.

6.5 Effect of Vegetation Index

It was observed by [15] that using visual band difference vegetation index

(VDVI) calculated as equation 4.3 enhanced segmentation of building in vege-

tated area. The test in our case yields no or limited advantage of using VDVI

in segmentation of informal settlement (table 6.6).

On visual assessment of predicted map with and without using VDVI, major-

ity of the misclassifation was found not between building to vegetation. Rather
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it was among informal and formal buildings. As these two have similar VDVI,

use of VDVI would not contribute to it.

Table 6.6: Comparison of IoU for informal settlement with and without VDVI.
No systematic or significant change is observed with use of VDVI

Channel
IoU Informal Settlement

Without VDVI with VDVI

RGB 77.919 73.748
RGBHAbs 83.714 83.357
RGBH050 84.673 85.461
RGBH075 84.343 84.500
RGBH100 83.886 84.994
RGBH125 85.513 85.744
RGBH150 85.623 85.446
RGBH200 85.994 85.330
RGBH300 84.862 85.135

But in some specific cases, especially in scenario of Type C(see table 6.4)

settlement, slight improvement was observed with VDVI. The main reason

might be that these settlements have vegetation partly covering the building

roof. Using VDVI at those places must have helped correct reclassification on

those part. Instead of improving the segmentation, cases were found where

sand piles and boulders on river were classified as informal settlement while

using VDVI(figure 6.4). This leads us to the conclusion that using VDVI in

segmentation of informal settlement are always not a good choice.

6.6 Best Height Integration Approach

In contrary to the observations made by previous authors, we observed that

integration of height as additional band outperformed training along multiple

branches followed by fusion(figure 6.5) . We tested this using custom FCN8s

with Resnet18 as encoder. Around 5% better result was obtained with single

branch model compared to its counterpart on dual channel model (table 6.7).

However accuracy did not vary within a single model for absolute or thresh-

old heights(see table 6.7), in agreement with findings from section 6.4. The

outputs from dual branch model, in fact contained more mis-prediction than

RGB image trained on a single branch.
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(a) Ground truth (b) RGB (c) RGBVDVI

(d) Groundtruth (e) RGB (f) RGBVDVI

Figure 6.4: Cases of mis-prediction and prediction with VDVI. (top row)a pile
of sand mis-classified as informal settlement, (bottom row) missing building
with straw roof completed with VDVI. VDVI suffered more erroneous over-
predictions on large sand piles, rooftops, but rectified missing small buildings
in vegetated area

.

Table 6.7: Accuracy Metrics of Informal Settlement for Single Branch and Dual
Branch FC8s Model. Single Branch Model performed better in all band combi-
nations.

Dataset
Single Branch Model Dual Branch Model

Precision Recall IoU Precision Recall IoU
(%) (%) (%) (%) (%) (%)

RGB 84.3 86.2 74.3 - - -
RGBHAbs 90.2 88.5 80.7 82.7 91.0 76.4
RGBH050 89.4 92.3 83.2 88.1 85.8 76.9
RGBH075 90.2 90.5 82.4 83.7 91.3 77.5
RGBH100 90.0 91.6 83.1 84.3 91.1 77.9
RGBH125 91.4 89.3 82.4 85.8 88.3 77.0
RGBH150 88.3 92.8 82.6 84.6 90.5 77.7
RGBH200 87.3 93.2 82.1 83.6 89.5 76.1
RGBH300 85.8 92.9 79.0 87.0 88.0 77.8
RGBVDVI 80.5 87.0 71.9 81.7 84.2 70.8

57



CHAPTER 6. RESULTS AND DISCUSSION

Activation maps of dual-branch model further illustrated the probable cause

for mis-prediction. Activation for a particular location in input image is differ-

ent for two branches, which are then added at the end. Addition of activation

maps from two branches led to higher value at regions moderately activated

in both branches, which necessarily would not be informal settlement. Unnec-

essary patches especially on top of moderate height zinc-roofed building were

thus generated, reducing the accuracy of model.

Consequently, the prediction on the external tiles with dual branch saw

over predictions in high magnitude in tiles containing zinc-roofed moderate

height formal settlement. In the locations with different materials or larger

difference in height, predictions are quite similar with single branch as well as

dual branch model.

Thus, concatenating height as additional band and training along a sin-

gle branch had advantage of multiple bands input,and learning from each of

these bands simultaneously. This also reduced the need for merging of outputs

from two branches, eliminating risk of higher cumulative sum on moderately

activated zones.

6.7 Comparison With Other Works

A number of works were found from literature review which have worked in

multi-class classification including building, vegetation, etc. However, no bi-

nary classification for informal settlement, and that using nDSM and threshold

concept was found to be worked in the past. So, we were unable to make

comparison with previous works.

Despite this limitation,our model performance has been cross-verified by

5-fold cross-validation, multiple models on same data and prediction on ex-

ternal tiles. Through consistent trend and results being in agreement to each

other,this provides us a confidence that our model is generalized and transfer-

able to other developing countries as well. Also because the major contribution

of our work is on use of additional UAV outputs, it has been verified experi-

mentally.

6.8 Limitations

This work has been conducted to perform segmentation of informal settlement

in complex scenario of Nepal using existing architectures. We have been able
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(a) Ground truth (b) Single Branch Model (c) Dual Branch Model

(d) Ground truth (e) Single Branch Model (f) Dual Branch Model

(g) Ground truth (h) Single Branch Model (i) Dual Branch Model

Figure 6.5: Predictions on test data(RGBHAbs) by single and dual branch
FCN. Dual branch model suffered overprediction and contained noisy patches,
mainly on top of modereate height zinc-roofed buildings

.

to answer our research question on application of deep learning for complex

scenes,and have tested a proposed approach of setting threshold height as ad-

ditional channel in informal settlement segmentation.

However, due to wide range of heterogeneity among informal settlements,our

model, as any other models, is not applicable to all types of informal settlement.

It has not be tested and is more likely to be unable to segment particular type

of informal settlements, which just lack tenure right, but are not different from

formal settlement in any other aspect.

The reason behind this is, those settlements, like formal settlements have
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big multi-storey buildings, with proper space and context perfectly matching

formal settlements. Only the way they are informal is they are not registered.

So, the dataset, nature and model we are using wont be able to segment those.

Additionally, we have used nDSM instead of DSM, that needs point cloud

cloud filtering. One possible challenge, and also experienced fact in this ap-

proach, is lack of terrain point clouds in densely constructed area, which some-

times tend to mis-interpolate terrain.Fortunately, it has not been experienced

in our case, due to open space within settlement.
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7
Conclusion

This chapter summerizes the findings and conclusion from our study.

7.1 Conclusion

Working on segmentation of informal settlement, and using different combina-

tion of dataset, we come to an conclusion that, standard segmentation models

trained end-to-end can be applied to segment out informal settlement from

complex and unique scenarios like Nepal,and can provide promising results.

Unet on top of Resnet,including height channel and trained end to end is

found to be the best among tested model for extraction of informal settlement

from our experiment. Despite smooth learning curve, transfer learning with

pre-trained weights suffers random noises and produces numerous tiny patches.

On this basis,transfer learning has not been found to offer any advantage in

this specific case of informal settlement extraction in our study area.

In terms of standard encoders, network with Resnet as the backbone trained

faster with less noisy output compared to their counterpart using VGG as back-

bone. On the choice of decoders,Unet outperformed FPN, PSPNet and Linknet

by a narrow margin, despite no clearly distinguishable difference in statistical

results.

IoU of 77.9% for informal settlement using RGB channel, in the complex

scene we are applying is a remarkable result,despite dominance of negative

class in scene. In this context,advantages of very high resolution UAV or-

thophoto has been proven, enabling detection of features finely. Nevertheless,
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noisy outputs and misclassifications of mainly the zinc-roofed formal settle-

ments as informal ones while using RGB channels provides favor on use of

additional outputs from UAV.

We obtained a 6% gain on IoU of building using height information. Using

nDSM , may it be absolute height above ground or its value normalized using

a threshold showed improved accuracy in more or less same magnitude. Major

improvements are observed in rectification of misclassified rooftop pixels.

Training RGB image and other information(height, VDVI) along separate

branches followed by merging of outputs did not enhance segmentation of in-

formal settlement. Rather, it tends to overestimate informal settlements due to

different trend of activation in separate branches. So, concatenating height as

additional band is recommended for noise-free and precise extraction of infor-

mal settlement. This also reduces the processing time and resource due to less

number of parameters. So, point cloud or its equivalent on vertical dimension

can be a valuable asset available without additional need of resources.

Vegetation indices derived from visible band does not boost the segmen-

tation accuracy, with exception to sites with straw-roofed small buildings in

vegetated area. This is firstly because misclassification is among buildings and

not vegetation, where VDVI cannot contribute. Secondly, the model is already

using its version of NDVI in some way already, leaving no or less space for

improvement with use of VDVI. In majority of the scenarios, vegetation index

reduced the segmentation accuracy instead of increasing it.

Our initial assumption of further enhancement of IoU with threshold height

was not proven to be valid, as no difference were observed in result with abso-

lute and normalized height, and also with varying threshold height.

Segmentation accuracy, and optimally performing threshold value are how-

ever subjected to settlement type. While isolated densely constructed informal

settlement are segmented with better accuracy, those on mixed settlement or

partly covered by vegetation suffer larger prediction error. In terms of thresh-

old height, choice of lower threshold value of 5 to 7.5 meters performed better

for isolated small buildings. In contrast, mixed and core urban informal settle-

ment are slightly better segmented at higher threshold around 20 meters.

So, the optimum model and hyperparameters vary from site to site. Thus,

slight modifications on model parameters to fit the scene under consideration

is always necessary to achieve the best result.

In nutshell, UAV orthophoto and it’s products on vertical dimension is
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found to contribute on better segmentation of informal settlements in com-

plex scenes from Nepal, and it is recommended to utilize height information

as additional band from UAV for better segmentation accuracy.

Our framework is ready to implement by government agencies and develop-

ment organizations working in informal settlement upgrading, as it has been

trained and tested on diverse type of data including samples from most of

the prevalent informal settlement types found in Nepal. Considering smaller

extent of informal settlements in Nepal, our model is capable to extract infor-

mal settlement efficiently in new area. This keeps to potential to substitute

ground-based methods, provided it is obstruction-free.
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A
Point Cloud Filtering and Feature

Height Derivation

Figure A.1: Sample Point cloud before and after filtering. Top: Original Point
Cloud, Bottom: Filtered point cloud
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APPENDIX A. POINT CLOUD FILTERING AND FEATURE HEIGHT

DERIVATION

(a) DSM (b) DTM

(c) nDSM (d) nDSM threshold by 5 meters

Figure A.2: Sample Height maps from Chhorepatan: DSM, DTM, nDSM and
Feature Height Normalized by 5 meters. All heights above 5 meters are con-
verted to 254 and all other values are scaled proportionally in subfigure ??

.
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x

B
Model Performance

(a) Sample Training and
Validation Loss for dual-
branch FCN8s(lr=0.0001)

(b) Loss curve for a model
trained end to end

(c) Loss curve for same
model trained with pre-
trained weights

(d) ROC curve for infor-
mal settlements from dual-
branch RGBH050 model

(e) Confusion Matrix for
Test Data

(f) Heatmap representation
for confusion matrix

Figure B.1: Sample model performance visualisation for dual-branch RGH050
model. Using pretrained weights from imagenet had smooth loss curve. How-
ever, the visual outputs were noisy and statistically poorer

75



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INFORMAL SETTLEMENT SEGMENTATION USING VHR RGB AND 

HEIGHT INFORMATION FROM UAV IMAGERY: A CASE STUDY OF 

NEPAL 
 

 

Ganesh Prasad Sigdel 



                    

IN
F

O
R

M
A

L
 S

E
T

T
L

E
M

E
N

T
 S

E
G

M
E

N
T

A
T

IO
N

 U
S

IN
G

 V
H

R
 R

G
B

 A
N

D
 H

E
IG

H
T
  

IN
F

O
R

M
A

T
IO

N
 F

R
O

M
 U

A
V

 I
M

A
G

E
R

Y
: 

A
 C

A
S

E
 S

T
U

D
Y

 O
F

 N
E

P
A

L
 

 

2021 

G
a

n
e

s
h

 P
ra

s
a

d
 S

ig
d

e
l 



Guia para a formatação de teses Versão 4.0 Janeiro 2006 

 

 

 


	ACKNOWLEDGMENTS
	ABSTRACT
	KEYWORDS
	INDEX OF FIGURES
	INDEX OF TABLES
	Acronyms
	Introduction
	Contextual Background
	Motivation and Problem Statement
	Aims and Objectives
	Methodology
	Contribution
	Thesis Structure

	Literature Review
	Conventional Approaches for Informal Settlement Extraction
	Deep Learning and UAV in Informal Settlement
	Enhancement of Feature Extraction with Height Information

	Theoretical Background
	Artificial Intelligence, Machine Learning and Deep Learning
	Architecture of Convolutional Neural Network
	Convolution
	Activation
	Pooling

	Loss Functions and Optimizers
	Hyperparameters
	Accuracy Metrics
	Segmentation
	Overview of Architectures used

	Dataset Preparation
	Study Area
	Data Preparation
	UAV Data Acquisition
	UAV Image processing
	Image Data Pre-processing
	Ground Truth Data Preparation


	Methodological Framework
	Data Tiles Extraction
	Data Augmentation

	Architecture
	Test for Architecture
	Test for Patch size
	Test for Loss Function
	Test for Backbone and Segmentation Architectures
	Hyperparameter Tuning

	Test for Effect of Height
	Test for Height Integration Approach
	Model Generalisability Assessment
	Evalution Metrics

	Results and Discussion
	General observations
	Contribution of Absolute Height
	Absolute Versus Relative Height
	Optimum Threshold Height
	Accuracy as Function of Settlement Nature

	Effect of Vegetation Index
	Best Height Integration Approach
	Comparison With Other Works
	Limitations

	Conclusion
	Conclusion

	Bibliography
	Appendices
	Point Cloud Filtering and Feature Height Derivation
	Model Performance

