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a b s t r a c t 

Only a limited number of households in the Amazon are served by sewage collection or treatment facili- 

ties, suggesting that there might be a significant emission of pharmaceuticals and other wastewater con- 

taminants into freshwater ecosystems. In this work, we performed a wide-scope screening to assess the 

occurrence of pharmaceuticals, illicit drugs and their metabolites in freshwater ecosystems of the Brazil- 

ian Amazon. Our study included 40 samples taken along the Amazon River, in three of its major tribu- 

taries, and in small tributaries crossing four important urban areas (Manaus, Santarém, Macapá, Belém). 

More than 900 compounds were investigated making use of target and suspect screening approaches, 

based on liquid chromatography coupled to high-resolution mass spectrometry with ion mobility sep- 

aration. Empirical collision-cross section (CCS) values were used to help and confirm identifications in 

target screening, while in the suspect screening approach CCS values were predicted using Artificial Neu- 

ral Networks to increase the confidence of the tentative identification. In this way, 51 compounds and 

metabolites were identified. The highest prevalence was found in streams crossing the urban areas of 

Manaus, Macapá and Belém, with some samples containing up to 30 - 40 compounds, while samples 

taken in Santarém showed a lower number (8 - 11), and the samples taken in the main course of the 

Amazon River and its tributaries contained between 1 and 7 compounds. Most compounds identified in 

areas with significant urban impact belonged to the analgesics and antihypertensive categories, followed 

by stimulants and antibiotics. Compounds such as caffeine, cocaine and its metabolite benzoylecgonine, 

and cotinine (the metabolite of nicotine), were also detected in areas with relatively low anthropogenic 

impact and showed the highest total prevalence. This study supports the need to improve the sanita- 

tion system of urban areas in the Brazilian Amazon and the development of follow-up studies aimed at 

quantifying exposure levels and risks for Amazonian freshwater biodiversity. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Amazon is the largest drainage basin in the world and 

ontains about 40% of the world’s remaining tropical rainforest. 

t plays a crucial role in maintaining global hydrology and cli- 

ate, and hosts about 25% of the global freshwater biodiver- 

ity ( Oberdorff et al., 2019 ; Tedesco et al., 2017 ; Tisseuil et al.,

013 ). The Amazonian freshwater ecosystems are threatened by 
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and use changes and habitat fragmentation related to several an- 

hropogenic pressures, such as mining, deforestation, damming or 

gricultural expansion ( Castello and Macedo, 2016 ; Jézéquel et al., 

020 ). One of the less investigated, although relevant, anthro- 

ogenic pressures over Amazonian ecosystems is urbanization. To- 

ay, about 80% of the Amazonian population live in cities, includ- 

ng the metropolitan areas of Manaus and Belém, with more than 

.5 million inhabitants each (IBGE, 2020 ). Urbanization contributes 

o air, soil, and freshwater contamination ( Ferreira et al., 2021 ; 

uppim de Oliveira et al., 2011 ; Shrivastava et al., 2019 ). Freshwa- 

er contamination in the Amazon is of critical relevance since more 

han 90% of households in the region are not served by any sewage 

https://doi.org/10.1016/j.watres.2021.117251
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2021.117251&domain=pdf
mailto:andreu.rico@imdea.org
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ollection or treatment facilities ( SNIS, 2020 ), and discharge tons 

f solid and liquid waste directly into the river network. In fact, 

rganic pollutants such as polycyclic aromatic hydrocarbons (dos 

antos Rodrigues et al. 2018), plastic additives ( Schmidt et al., 

019 ), or pharmaceuticals, illicit drugs and personal care products 

 Chaves et al., 2020 ; Thomas et al., 2014 ) have been reported in

ater and sediment samples collected in the Amazon Estuary and 

n water bodies with significant anthropogenic pressure. One of 

he main problems of freshwater contamination is that it tends 

o spread throughout the river basin, reaching protected areas of 

igh ecological value ( Saunders et al., 2002 ). Among them, flood- 

lains are of utmost importance, since they are key in sustaining 

sh reproduction and provide food resources for local populations 

 Hurd et al., 2016 ; Begossi et al., 2019 ). Therefore, the protection

f Amazonian freshwater ecosystems requires the understanding 

f the main contaminants that are currently emitted into the river 

etwork and their distribution in relation to their major emission 

oints. 

Advanced analytical methodologies allow the identification of 

 wide variety of contaminants in environmental samples. Mass 

pectrometry (MS) coupled to gas ( Canlı et al., 2020 ; Sotão Neto 

t al., 2020 ) and liquid chromatography ( Fonseca et al., 2019 ; 

ian et al., 2020 ) are nowadays the gold-standards for the iden- 

ification and quantification of organic contaminants in environ- 

ental samples ( Pérez and Barceló, 2007 ). In the last few years, 

ltra-High Performance Liquid chromatography (UHPLC) coupled 

o tandem MS (MS/MS), or to high-resolution MS (HRMS), have 

een widely used for accurate quantification of organic microp- 

llutants ( Boix et al., 2014 ; Gracia-Lor et al., 2011 ), or for wide-

cope screening ( Guardian et al., 2021 ; Hernández et al., 2015b , 

015 a; Llorca et al., 2021 ; Lotfi Khatoonabadi et al., 2021 ), respec- 

ively. The latter allows the full-data acquisition of all the ionizable 

ompounds present in the sample, enabling the possibility to per- 

orm target, suspect or non-target screening, also in a retrospec- 

ive way ( Choi et al., 2021 ; Hollender et al., 2017 ; Menger et al.,

020 ). The accurate-mass full-spectrum acquisition is highly valu- 

ble for the identification of suspect compounds, such as metabo- 

ites and transformation products, as there are not analytical refer- 

nce standards available for many of them, and therefore identifi- 

ation must be based on accurate mass fragmentation ( Boix et al., 

016a , 2016 b), among other MS data. UHPLC-HRMS provides a 

arge amount of complex analytical data; therefore, appropriate 

orkflows are needed for compounds identification based on chro- 

atographic separation, accurate-mass measurements and frag- 

entation information ( Schymanski et al., 2014 ). In the last few 

ears, the use of HRMS with ion mobility separation (IMS-HRMS) 

as significantly increased in different research fields, such as the 

nalysis of natural compounds or food safety ( Canellas et al., 2019 ). 

owever, IMS has been less explored in environmental analysis 

 Hinnenkamp et al., 2019 ). LC-IMS-HRMS provides an extra iden- 

ification parameter, in addition to chromatographic retention time 

nd accurate mass. The collision cross-section (CCS) value provided 

y IMS and derived from the drift time is unique and unaffected 

y the matrix or chromatographic separation. Experimental CCS 

alues have been proven useful in identifying various target com- 

ounds. Moreover, in wide-scope screening approaches, the utiliza- 

ion of predictive CCS models facilitate and give more reliability to 

he tentative identification of suspect compounds ( Bijlsma et al., 

017 , 2019 ; Mullin et al., 2020 ). In front of this scenario, a refined

orkflow for target and suspect environmental analysis using IMS- 

RMS data has been proposed (Celma et al., 2020 ), including com- 

lementary identification levels criteria for IMS and updating the 

riteria previously reported on confidence levels ( Schymanski et al., 

014 ). 

In this work, a combined target and suspect UHPLC-IMS-HRMS 

creening has been applied for the identification of pharmaceu- 
2 
icals, illicit drugs and their metabolites in water samples col- 

ected from 40 sampling sites in the Amazon River network, which 

ave different level of anthropogenic impact. To facilitate suspect 

creening analyses, a data processing procedure has been proposed 

ltering the candidates based on different LC-IMS-HRMS param- 

ters, including predicted CCS values. Therefore, the objectives of 

he present work were: (i) to implement a novel UHPLC-IMS-HRMS 

ata processing workflow for identification of suspect compounds, 

acilitating data treatment; (ii) to identify pharmaceuticals and re- 

ated products in the Amazon River water samples by the applica- 

ion of an advanced target and suspect screening strategy based on 

HPLC-IMS-HRMS; (iii) to evaluate the obtained results as regards 

o different levels of urban pressure. 

. Materials and methods 

.1. Chemicals and materials 

HPLC-grade water was obtained by purifying demineralized wa- 

er using a Milli-Q system from Millipore (Bedford, MA, USA). LC- 

S grade methanol, LC-MS grade acetonitrile, and LC-MS grade 

ormic acid were purchased from Scharlau (Scharlab, Barcelona, 

pain). 

.2. Amazon River water samples 

Surface water samples (n = 40) were collected between Novem- 

er 16 th and December 8 th of 2019, during the low water season, 

rom different locations of the Brazilian Amazon ( Fig. 1 ). Samples 

ere taken from the Amazon River (upper and lower reach, I and 

I, respectively, n = 11), from three major tributaries (Negro River 

n = 5), Tapajos River (n = 2) and Tocantins Rivers (n = 2)), and

rom smaller tributaries and streams crossing the urban areas of 

anaus (n = 8), Santarém (n = 3), Macapá (n = 3) and Belém 

n = 6). The samples in the Negro River included two locations in 

he Anavilhanas National Park (N1 and N2), which is a relatively 

ristine area. Most samples from the Amazon River were collected 

elatively close to small urban areas, while some samples from the 

ain tributaries were taken near the discharge area of major cities. 

or example, samples from the Negro River (N4 and N5) corre- 

pond to the dilution area of Manaus, while the sample TO2, taken 

n the Tocantins River, was collected downstream of Belém. Fur- 

her details on the sampling sites, such as sampling date, GPS co- 

rdinates or name of the stream/river, are provided in the Supple- 

entary Information file (Table S1). Grab sampling was done from 

oats or urban bridges by using a pre-washed metal bucket and 

ollecting water from a depth of approximately 20 - 30 cm. Water 

amples (2 L) were introduced into amber glass bottles and stored 

t - 4 °C (under dark conditions) for a maximum of 48 h until ex-

raction. 

.3. Sample treatment 

Water samples were pre-filtered through a 0.7 μm glass fibber 

lter (Merck Millipore, Cork, IRL) and subjected to solid-phase ex- 

raction (SPE). For this, the sample pH was adjusted to 8 - 9 by 

dding few drops of NH 4 OH at 32 %. Then, SPE cartridges (Oasis 

LB, 200 mg / 6 cc, Waters, Mildford, MA, USA) were precondi- 

ioned with 6 mL of methanol, 6 mL of ultrapure water and 6 mL 

f ultrapure water at basic pH (8 - 9). The water samples (100 mL) 

ere passed through the SPE cartridges using a vacuum manifold, 

insed with 10 mL of ultrapure water, and dried for 10 min. The 

oaded SPE cartridges were properly labelled, sealed and shipped 

t - 20 °C to the Spanish laboratories. Afterwards, the SPE cartridges 

ere eluted with methanol (three aliquots of 4 mL). The extracts 

ere evaporated to dryness at 45 °C, 0.2 Torr using a SpeedVac 
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Fig. 1. Map of sampling locations. Letters in sample codes refer to: N: Negro River; MS: streams in Manaus; A: Amazon River; TA: Tapajós River; S: streams in Santarém; 

MA: streams in Macapá; TO: Tocantins River; B: streams in Belém. 
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oncentrator (Thermo Scientific, Massachusetts, USA), reconstituted 

ith 1 mL of methanol:water (10:90, v/v), and vortex stirring for 1 

in. Finally, they were centrifuged for 5 min at 13,0 0 0 rpm (Min-

Spin centrifuge, Eppendorf, USA) and transferred into amber glass 

ials. 

.4. Instrumentation 

Samples were analyzed using a Waters Acquity I-Class UPLC 

ystem (Waters Corp., Milford, MA, USA) coupled to a Vion IMS 

TOF mass spectrometer (Waters Corp., Wilmslow, Manchester, 

K), using an electrospray ionization (ESI) interface operating in 

oth positive and negative ionization modes. 

The chromatographic separation was performed using a Cortecs 

18 2.1 ×100 mm, 2.7 μm fused core column (Waters Corp., Wex- 

ord, Ireland), maintained at 40 ºC. Gradient elution was performed 

t a flow rate of 0.3 mL/min, using water (A) and methanol (B) 

oth with 0.01 % formic acid, changing as follows: 10 % B at 0.0 

in, 90 % B at 14.0 min, 99 % B at 14.1 min, 99 % B at 16.0 min,

0 % B at 16.1 min, with a total run time of 18 min. The volume

njection was 5 μL. 

The ESI was operated with a capillary voltage of 1.0 kV in ESI + 

nd 1.5 kV in ESI −, using in both cases a cone voltage of 30 V.

he source temperature was set to 120 ºC, while the desolvation 

emperature at 650 ºC, using nitrogen as desolvation gas at 1200 

/h and cone gas at 250 L/h. Nitrogen ( ≥ 99.999 %) was used as 

rift gas, with an IMS wave velocity of 250 m/s and wave height 

amp of 20 - 50 V. The TOF resolution was ~ 36,0 0 0 FWHM ( m/z

56) in positive ionization mode and ~ 38,0 0 0 FWHM ( m/z 554) in

egative. Calibration was performed using the “major mix IMS/TOF 

alibration solution” (Waters Corp) following manufacturer’s rec- 

mmendations. Leucine enkephalin (100 μg/L in water:acetonitrile 
3 
0:50 containing 0.01 % of formic acid) was used for continuous 

ass correction during all chromatographic run. Two independent 

can functions were acquired sequentially: a low-energy (LE) func- 

ion using a collision energy of 6 eV, and a high-energy (HE) us- 

ng a ramp of 28-56 eV for high energy (HE). Nitrogen ( ≥ 99.999 

) was used as collision-induced dissociation (CID) gas. Both func- 

ions were acquired in the range of m/z 50 - 10 0 0 with a scan time

f 0.3 s. Data were acquired and processed using the UNIFI infor- 

atics platform (v 1.9) from Waters. 

.5. Screening strategy 

The wide-scope screening applied for identification of il- 

icit drugs, pharmaceuticals and their metabolites in Amazon 

iver samples was performed using an in-house built compound 

atabase (available in Fonseca et al., 2020 ). This database con- 

ained information about the chromatographic retention time (RT), 

CS value, and elemental composition (including fragment ions) of 

90 target compounds. For the remaining ones (631 suspect com- 

ounds, including most of the metabolites), only information about 

he elemental composition was available. When available, fragment 

ons previously reported in the literature were also included. Two 

ifferent data treatment procedures were employed, one for target 

creening and another one for suspect screening ( Fig. 2 ). In both 

ases, compound identification was based on the 5-confidence lev- 

ls recently proposed for IMS-HRMS-based methods, including cri- 

eria for the CCS parameter ( Celma et al., 2020 ). 

.5.1. Target screening analysis 

A database built with 290 reference standards was used, in- 

luding pharmaceuticals, illicit drugs, and several of their main 
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Fig. 2. Data processing workflow for UHPLC-IMS-HRMS target and suspect screen- 

ing. 
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etabolites ( Celma et al., 2020 ). Compound filtering was per- 

ormed based on experimental RT, CCS, mass accuracy and frag- 

entation. Briefly, a compound confirmed with the highest reli- 

bility (Level 1) should present a chromatographic RT deviation 

ower than 0.1 min, CCS deviation ≤ 2%, mass error lower than 

 ppm for the (de)protonated molecule, and at least 1 fragment 

on being observed. If one of these requirements was not achieved, 

he compound was considered as identified at Level 2. In absence 

f a reference standard, isotope pattern and fragment ions pre- 

iously reported for these compounds (in literature or MS spec- 

ra databases) were used for identification, as well as RT and CCS 

alues from databases or predicted from computational models 

 Bade et al., 2015 ; Bijlsma et al., 2017 ). 

.5.2. Suspect screening analysis 

For suspect screening, an in-house database containing 631 

ompounds was used, including pharmaceuticals, hormones, illicit 

rugs, as well as metabolites and transformation products previ- 

usly found in water samples. For the suspect compounds, no an- 

lytical reference standards were available at our laboratory, while 
4 
nformation about their fragmentation was only available for 85 of 

hem. 

To simplify data evaluation, a three-step workflow was applied 

ncluding compound filtering by accurate mass, chromatographic 

eak shape and predicted CCS values, with the aim to reduce the 

umber of false positives. The first filtering was based on the ac- 

urate mass of the ions detected in the LE function (typically the 

de)protonated molecule), focusing the subsequent tentative iden- 

ification on those compounds that presented a mass error lower 

han 5 ppm with respect to the theoretical exact mass. Then, those 

andidates also detected in procedural blanks or those that did 

ot present appropriate peak-shape in the chromatogram were dis- 

arded. In a second step, CCS values were predicted using Artifi- 

ial Neural Networks ( Bijlsma et al., 2017 ) for the remaining com- 

ounds, and candidates were filtered based on experimental CCS, 

onsidering only those compounds with a deviation below 6% re- 

pect to the predicted value (95% confidence interval). In the last 

tep, the accurate mass fragments were justified based on the can- 

idate structure. In the case of metabolites, the presence of com- 

on fragments shared with the unaltered compounds was also 

sed as an identification parameter. Fig. 2 shows a schematic rep- 

esentation of the screening procedure applied. Further details on 

ata processing can be found in the Supplementary Information. 

. Results and discussion 

The combination of target and suspect screening using HRMS 

s nowadays one of the most powerful approaches for screening 

 large number of organic micropollutants in water. The comple- 

entary use of gas and liquid chromatography coupled to HRMS, 

ogether with a sample treatment based on SPE with a polymeric- 

ased cartridge, such as Oasis HLB, has been described as one 

f the most universal approaches to that aim ( Hernandez et al, 

015 b). However, a “true universal” method does not exist, as there 

re always a number of compounds that can be lost along the pro- 

ess (e.g. highly polar compounds). Thus, the previous SPE treat- 

ent applied in this work can be a limiting step, as some com- 

ounds may be not retained and/or not eluted from the cartridge. 

n addition, some compounds cannot be ionized in the ESI inter- 

aces of LC-MS, and persistent organic pollutants, of low polarity, 

uch as many organochlorine compounds, do not fit well with LC- 

S based analysis. Despite these limitations, the methodology ap- 

lied in this work provides a realistic overview of the occurrence 

f about 1,0 0 0 organic micro-pollutants in Amazonian waters, tak- 

ng into account that the majority of pharmaceuticals, illicit drugs 

nd metabolites are commonly analyzed by LC-MS. 

.1. Target screening results 

Table 1 shows the compounds identified in water samples by 

arget screening. Most of the detected compounds were identified 

t the confidence Level 1. However, in some samples only Level 2 

ould be reached, a fact that could be explained by the differences 

n the water matrix samples and/or in their contamination levels. 

hus, samples collected in streams near the main urban areas com- 

only presented much higher MS signals for the compounds under 

tudy, which notably facilitated their identification. 

For several compounds identified at Level 2, the detection in 

oth positive and negative ionization modes increased the confi- 

ence. This was the case of acetaminophen and sucralose. For the 

ater, the typical isotope pattern of the three chlorine atoms was 

bserved in ESI + (as sodium adduct, Fig. 3 A ) and ESI − (as deproto-

ated molecule, Fig. 3 B ). Sucralose presents poor fragmentation in 

SI-, as shown in the MS spectra available at MassBank, acquired 

n ESI − at 20 eV collision energy ( Lege and Zwiener, 2015 ). This

rtificial sweetener has been previously reported in surface water 
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Table 1 

Compounds detected by UHPLC-IMS-HRMS target screening. Ionisation mode has been included, as well as the number of identifications in 

the river samples (n = 40) and the confidence level (1 and 2). Metabolite compounds are shown in italics. 

Compounds Use 

Ionisation 

mode 

Number of identifications (% of 

samples) 

Level 1 Level 2 

Drugs of abuse and metabolites 

Cocaine Stimulant ESI + 17 (43) 11 (30) 

Benzoylecgonine Stimulant ESI + 19 (48) 6 (15) 

Pharmaceuticals and metabolites 

4-AA Analgesic ESI + 1 (3) 11 (28) 

4-AAA Analgesic ESI + 15 (38) 4 (10) 

4-FAA Analgesic ESI + 13 (33) 8 (20) 

Acetaminophen 1 Analgesic ESI + - 14 (35) 

ESI − - 14 (35) 

Atorvastatin Cholesterol ESI − 1 (3) - 

Carbamazepine Anticonvulsant ESI + 18 (45) - 

Clarithromycin Antibiotic ESI + - 1 (3) 

Clopidogrel carboxylic acid Antiplatelet ESI + 2 (5) 3 (8) 

Codeine Analgesic ESI + - 7 (18) 

Diclofenac Analgesic ESI + 12 (30) - 

Iopamidol Contrast agent ESI − - 2 (5) 

Irbesartan Hypertensive ESI + 5 (13) - 

Ketoprofen Analgesic ESI + 5 (13) 5 (13) 

Levamisole Anthelmintic ESI + 9 (23) 5 (13) 

Lidocaine Anesthetic ESI + - 11 (28) 

Lincomycin Antibiotic ESI + 1 (3) - 

Losartan Hypertensive ESI + 17 (43) - 

ESI- 17 (43) 1 (3) 

Losartan carboxylic acid Hypertensive ESI + 16 (40) - 

ESI − 17 (43) - 

Mefenamic acid Analgesic ESI + 13 (33) - 

Metoprolol Hypertensive ESI + - 12 (30) 

Naproxen Analgesic ESI + 11 (28) 3 (8) 

Oxacillin Antibiotic ESI + - 1 (3) 

Oxycodone Analgesic ESI + - 1 (3) 

Phenazone Analgesic ESI + 1 (3) 16 (40) 

Sulfamethoxazole Antibiotic ESI + 1 (3) 15 (38) 

Telmisartan Hypertensive ESI + 3 (8) - 

ESI − 1 (3) 1 (3) 

Trimethoprim Antibiotic ESI + 13 (33) - 

Valsartan 1 Hypertensive ESI + 13 (33) 3 (8) 

ESI − 15 (38) 3 (8) 

Venlafaxine Antidepressant ESI + - 1 (3) 

Venlafaxine O-desmethyl Antidepressant ESI + - 12 (30) 

Other compounds 

Sucralose 1,2 Sweetener ESI + - 1 (3) 

ESI − - 19 (48) 

Methylparaben Preservative ESI − - 7 (18) 

Propylparaben Preservative ESI − 3 (8) 13 (33) 

Benzophenone-3 UV filter ESI + 12 (30) 6 (15) 

Compound identified at Level 2 of confidence, but detected in ESI + and ESI − . 

No fragment ions were observed. The identification was performed by accurate mass and the presence of the Cl 3 isotope pattern. 
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amples (urban estuary) by LC-HRMS (ESI −) based on the presence 

f the deprotonated molecule and the fragment ion correspond- 

ng to 37 Cl − ion ( m/z 36.9686) ( Tian et al., 2020 ). In our work,

RMS operated in the m/z 50-10 0 0 mass range (typically used in 

RMS wide-scope screening strategies), and therefore the fragment 

on corresponding to chlorine was not acquired and consequently 

ould not be observed. In addition, sucralose presented in most 

ases a RT deviation higher than 0.1 min when compared to its an- 

lytical standard. RT shifts have been associated to analyte interac- 

ion with matrix interferences during chromatographic separation 

 Celma et al., 2020 ), reducing the confidence on compound identi- 

cation. At this point, it is worth noticing the usefulness of IMS, as 

t provides a matrix-independent parameter for compound identi- 

cation. The fact that CCS values are not affected, even in complex- 

atrix samples, gives higher confidence to the identification pro- 

ess in HRMS-based screening strategies, especially in cases such 

s sucralose detected in Amazon water samples. As shown in this 

ork, CCS together with the isotope pattern and accurate mass can 
5 
olve identification of compounds in cases where the RT does not 

t with the reference standard. 

Even when standards were available, some compounds were 

nly identified at Level 2, as no fragment ions were detected (prob- 

bly due to the low concentration levels in samples or due to 

ariations in the RT), as previously explained. In the case of the 

ontrast medium compound iopamidol, detected in ESI −, no frag- 

ent ions were observed in two samples. This limited our capac- 

ty to differentiate between iopamidol and iomeprol (another con- 

rast medium), as both compounds are structurally similar. In addi- 

ion, CCS values for both compounds are rather similar (205.65 Å 

2 

or iopamidol and 211.20 Å 

2 for iomeprol, for the deprotonated 

olecules) Thus, CCS deviations calculated for both compounds 

ere below 2% (experimental CCS 207.54 Å 

2 , CCS deviation 0.92% 

or iopamidol and - 1.73% for iomeprol), making identification trou- 

lesome. In this case, the compound could be identified as iopami- 

ol based on RT, as the suspect compound had a RT deviation of - 

.07 min, while for iomeprol was -0.40 min. Therefore, despite the 
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Fig. 3. Level 2 identification of sucralose in ESI + ( A ) and ESI − ( B ) in a water sample. EIC and LE spectra are shown for each ionization mode, identifying the Cl 3 isotope 

pattern. 
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M

reat potential of IMS in HRMS methodologies, LC data provided 

ivotal information for the identification of isomeric compounds. 

herefore, the power of LC-IMS-HRMS comes from the combina- 

ion of the different useful information provided: chromatographic 

T, CCS values and accurate-mass data. 

.2. Suspect screening results 

For suspect screening, an in-house database containing 631 

ompounds was used, including parent compounds and metabo- 

ites and transformation products previously found in water 

amples. As stated in the Section 2.5.2 , a three-step workflow was 

eveloped to simplify data evaluation and minimize the number 

f false positives, including the CCS predicted as an important 

arameter related to ion mobility, and applying different confi- 

ence levels to the tentative identifications (following Celma et al., 

020 ). 

A total of 15 compounds were tentatively identified at differ- 

nt confidence levels in the suspect screening. Table 2 shows the 

ist of compounds identified, indicating the ionization mode, the 

onfidence level, and the number of identifications. As illustra- 

ive example, Fig. 4 shows the identification of the antiretroviral 

tazanavir (1.7 ppm mass error) at Level 2. LE and HE spectra 

ESI + ) are shown without ( A ) and with ( B ) drift alignment. After

rift alignment, only those fragment ions with the same drift time 

han the protonated molecule remained. The experimental CCS had 

 -1.85% deviation with respect to the predicted one, and up to 4 

ccurate mass fragments (below -3.6 ppm mass error) were justi- 

ed based on compound structure ( Fig. 4 B ). The lack of reference

tandard made the identification at Level 1 unfeasible. However, 

here was relevant and abundant information to consider its iden- 

ification as reliable. 

Several identifications were made at the confidence Level 3. 

his level included compounds with plausible accurate-mass frag- 

ents and CCS deviations ≤ 6% of the predicted values. The Level 

 also included compounds which RT, CCS, fragmentation data 

nd isotope pattern might be compatible with different structures. 

his was the case of the hydroxylated metabolite of diclofenac 

 Table 2 , “Diclofenac, (3,4,5)-hydroxy”), as the exact position of the 
6 
ydroxyl group in one of the aromatic rings could not be sta- 

lished based on the observed fragmentation. Fig. 5 shows the 

rift-aligned LE/HE spectra for the hydroxylated metabolite of the 

nly chromatographic peak observed ( Fig. 5 A ), as well as the chro- 

atogram and drift-aligned LE/HE spectra ( Fig. 5 B ) for parent di- 

lofenac, both compounds detected in the same water sample. The 

xperimental CCS (161.01 Å 

2 ) was below 2% deviation with re- 

pect to all predicted CCS values for the different positions of 

he hydroxyl group (3-hydroxy 159.94 Å 

2 , 4-hydroxy 160.08 Å 

2 , 5- 

ydroxy 161.39 Å 

2 ). Under these conditions, it was unfeasible to 

dentify the right isomer present in the sample. The hydroxyl moi- 

ty can be located in one of the aromatic rings, as the fragment 

on observed for this metabolite ( Fig. 5 A , right) presents a 16 Da

hift respect to the diclofenac fragment ion ( Fig. 5 B , right). More- 

ver, the isotope pattern corresponding to two chlorine atoms was 

bserved for both protonated molecules (parent and metabolite) as 

ell as the isotope pattern of one chlorine for fragment ions, sup- 

orting the metabolite identification. Nevertheless, only Level 3 of 

onfidence could be reached, as the exact position of the hydroxyl 

ould not be unequivocally stablished. 

At identification Level 4, only the (de)protonated molecule was 

etected (no fragment ions were observed), but the predicted CCS 

resented a deviation ≤ 6%. As shown in Table 2 , norcocaethylene, 

tazanavir, phenytoin and cotinine were identified at Level 4 in 

ome samples, but at Level 3 and 2 in others. Detections at Level 

 presented the same RT than positives identified at Level 3 and 

, therefore increasing the confidence on the compound identifica- 

ion despite the absence of fragment ions. This was surely related 

o the low analyte concentrations in certain samples. 

.3. Contamination patterns in the Amazon River 

Through this study we have identified 51 compounds at differ- 

nt confidence levels, 36 in target screening ( Table 1 ) and 15 in

he suspect screening ( Table 2 ), belonging to 18 different chem- 

cal use categories. Samples taken in the urban streams show a 

ignificantly higher number of compounds as compared to those 

aken in the Amazon River and its main tributaries, particularly in 

anaus, Belém and Macapá, with compound mixtures formed by 
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Table 2 

Compounds detected by UHPLC-IMS-HRMS suspect screening. Ionisation mode has been included, as well as the number of identifications in the river samples (n = 40) and 

the confidence level (2-4). Metabolite compounds are shown in italics. 

Compounds Use 

Ionisation 

mode 

Number of identifications (% of samples) 

Level 2 Level 3 Level 4 

Drugs of abuse and metabolites 

Norcocaethylene Stimulant ESI + 4 (10) 4 (10) 3 (8) 

Pharmaceuticals and metabolites 

Atazanavir Antiretroviral ESI + 10 (25) 3 (8) 1 (3) 

Atorvastatin, 4-hydroxy Cholesterol ESI − - 3 (8) - 

Codeine Analgesic ESI + - - 2 (5) 

Diclofenac, (3,4,5)-hydroxy 1 Analgesic ESI + - 14 (35) - 

Fluconazole Antifungal ESI + 16 (40) - - 

Hydrochlorothiazide Diuretic/Hypertensive ESI − 9 (23) 6 (15) - 

Losartan carboxaldehyde Hypertensive ESI + 13 (33) - - 

Meclofenamic acid Analgesic ESI + 13 (33) 3 (8) - 

Metoprolol acid Hypertensive ESI + 9 (23) 4 (10) - 

Phenytoin Anticonvulsant ESI + - 14 (35) 2 (5) 

Sulfociprofloxacin Antibiotic ESI − 7 (18) 5 (13) - 

Other compounds 

Caffeine Stimulant ESI + 23 (58) 17 (43) - 

Paraxanthine Stimulant ESI + 14 (35) 4 (10) - 

Cotinine Alkaloid ESI + - 7 (18) 16 (40) 

1 The exact position of the hydroxyl group in the chlorinated aromatic ring could not be stablished. 

Fig. 4. Comparison of LE/HE spectra for atazanavir (Level 2 identification) without using drift alignment ( A ) and resolved spectra using drift alignment ( B ) in a water sample. 

Fragment ions are identified in HE resolved spectrum. 
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p to 35-40 different substances, belonging to 15 different com- 

ound categories ( Fig. 6 ). These samples contain a relatively similar 

omposition, regarding the number and type of substances identi- 

ed, except for sample B2 (taken in Belém), which was taken in 

n area with notable dilution by the Tocantins River and affected 

y marsh tides. Our results also indicate that the samples taken in 

antarem show a lower number of compounds (8-11) as compared 

o those taken in the other urban areas. This can be explained by 

he smaller population of this city, which represents approximately 

5% of the population of Manaus and Belém, and the higher dilu- 

ion potential ( Fig. 6 ). 

We observed that the predominant substance groups (in terms 

f number of compounds) in the samples taken in areas with sig- 

ificant urban impact were analgesics and anti-hypertensives, fol- 

owed by stimulants and antibiotics ( Fig. 6 ). The most frequently 
7 
etected analgesics were acetaminophen, phenazone, mefenamic 

nd meclofenamic acids, diclofenac, naproxen, codeine, ketopro- 

en, as well as the human metabolites of metamizole (4-AA, 

-AAA, 4-FAA). The group of anti-hypertensives was dominated 

y valsartan, losartan, metoprolol and their metabolites. Regard- 

ng stimulants, the compounds with the highest detection rates 

n samples with urban impact were caffeine and its metabolite 

paraxanthine), and cocaine and its metabolite (benzoylecgonine). 

s for antibiotics, the highest detection rate was found for sul- 

amethoxazole, trimethoprim, and the metabolite of ciprofloxacin 

sulfociprofloxacin). Other compounds that showed high fre- 

uency of detection ( ≥30% of samples) were the anticonvulsant 

arbamazepine, the UV filter benzophenone-3, the antifungal flu- 

onazole, and the metabolites of nicotine (cotinine) and the an- 

idepressant venlafaxine (venlafaxine O-desmethyl). For a detailed 
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Fig. 5. Level 3 identification of a hydroxylated metabolite of diclofenac ( B ) and comparison with Level 1 diclofenac identification ( A ) in the same water sample. The proto- 

nated molecule and fragment ion for both compounds are highlighted, illustrating the 16 Da shift corresponding to a hydroxylation. 

Fig. 6. Number of compounds identified in the different samples. Letters in sample codes refer to: N: Negro River; MS: streams in Manaus; A: Amazon River; TA: Tapajós 

River; S: streams in Santarém; MA: streams in Macapá; TO: Tocantins River; B: streams in Belém. 
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t

escription of the compounds found in each sample, see Tables S2 

nd S3 in the Supplementary Information. 

The results of the screening performed in urban streams does 

ot show marked discrepancies with other wide-scope screen- 

ng exercises performed in rivers of Europe ( Fonseca et al., 2020 ; 

ico et al., 2019 ), suggesting that the consumption patterns of the 

ajor pharmaceutical groups and other drugs may be rather sim- 

lar. For instance, Rico et al. (2019) found that caffeine, nicotine, 

alsartan, carbamazepine, acetaminophen, diclofenac, ketoprofen, 

ulfamethoxazole and trimethoprim, were amongst the most fre- 

uently detected substances in rivers with significant anthro- 

ogenic impact of Central Spain. The results of quantitative anal- 

ses and preliminary risk assessments performed in other coun- 

ries of Latin America point at compounds such as carbamazepine, 

cetaminophen, sulfamethoxazole and trimethoprim as posing po- 

ential hazards for freshwater ecosystems ( Valdez-Carrillo et al., 

020 ). Furthermore, the statistical comparisons made by these au- 

hors show no differences between exposure patterns of treated 

nd untreated wastewaters, pointing to a need to improve the san- 
8 
tation system and the treatment technologies in Brazil and other 

egions of South America ( Valdez-Carrillo et al., 2020 ). Given to the 

act that most of the wastewaters emitted within the sampled ur- 

an areas are discharged untreated into the Amazon river or its 

ributaries, it is of utmost importance to quantify exposure lev- 

ls and conduct chemical prioritization studies to determine sub- 

tances with potential contribution to freshwater biodiversity loss 

ear urban areas. 

Our study shows that the number of compounds identified in 

he Amazon River and its main tributaries was significantly lower 

s compared to the urban streams ( Fig. 6 ), indicating a notable di- 

ution potential of the contaminated wastewaters and/or dissipa- 

ion of the test substances. In this way, samples taken in the di- 

ution area of Manaus (N4 and N5) only contained a limited num- 

er of compounds (2-3). The highest number of compounds was 

etected in samples A2 (7 compounds) and TO2 (6 compounds), 

hich correspond to the dilution area of the city of Iranduba (ca. 

0,0 0 0 inhabitants) and Belém, respectively. The compounds with 

he highest prevalence in the Amazon River and its tributaries 
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B
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ere caffeine, cocaine and its metabolite benzoylecgonine, which 

ere detected in a large number of samples, including those taken 

n the Anavilhanas National Park (N1 and N2). 

The detection of benzoylecgonine in the water cycle has been 

eported in the literature ( Thomas et al., 2014 ; van der Aa et al.,

013 ̧ Hernandez et al., 2015 a), including urban wastewater, which 

llowed the estimation of cocaine consumption rates in the popu- 

ation of specific geographical regions or cities ( Bijlsma et al., 2016 ; 

ernández et al., 2015a ; Maldaner et al., 2012 ). Most studies deal- 

ng with the investigation of illicit drugs in environmental and 

astewater samples report the presence of benzoylecgonine, and 

ess frequently its parent compound (cocaine), revealing cocaine 

onsumption in the area under study. However, in the present 

ork cocaine was detected in 73% of the samples, while benzoylec- 

onine was in 63%. The higher frequency of detection of the unal- 

ered drug might be related to the production or processing labo- 

atories of cocaine in various areas of the Amazon ( Dávalos et al., 

016 ), and subsequent discharges of the drug into the river. In this 

egard, Thomas et al. (2014) found cocaine and benzoylecgonine in 

ost samples taken from two streams crossing the urban area of 

anaus with concentrations up to 5.9 and 3.6 μg/L, respectively, 

nd found higher concentrations of cocaine as compared to those 

f its metabolite in several sampling sites. 

The antidepressant venlafaxine and its main urinary metabolite, 

 -desmethyl venlafaxine, were also detected in several samples, 

ainly the metabolite (found in 12 samples). The presence of this 

harmaceutical has been reported in environmental water samples 

n other parts of the world ( Fonseca et al., 2020 ; Hernández et al.,

014 ; Kern et al., 2009 ). Both compounds, venlafaxine and its O -

esmethyl metabolite, as well as some of the antibiotics detected 

ere (sulfamethoxazole, trimethoprim) have been recently included 

n the Watch List of substances that should be controlled in Eu- 

ope ( European Commission, 2020 ), illustrating the concern about 

he presence of these compounds in the aquatic environment and 

he need to have more detailed information on their exposure and 

isks. Furthermore, the detection of several metabolites in Ama- 

onian waters (e.g. O -desmethyl venlafaxine, losartan carboxylic 

cid, losartan carboxaldehyde, hydroxy diclofenac, 4-hydroxy ator- 

astatin, sulfociprofloxacin) supports the need to include them in 

urther monitoring and risk assessment studies, particularly since 

hey might be biologically active and exert long-term toxicity to a 

ide range of living organisms ( Pereira et al., 2020a , 2020 b). 

. Conclusions 

This study provides the first wide-scope monitoring of phar- 

aceuticals, illicit drugs, and metabolites in different areas of 

he Amazon basin. Here we show that the combination of tar- 

et and suspect screening, based on LC-IMS-HRMS, is a power- 

ul tool for assessing the presence of these substances in sam- 

les with an ample gradient of anthropogenic pressure. Data pro- 

ided by IMS-HRMS have increased the confidence on compound 

dentification by the use of CCS as identification parameter, as 

ell as the fragment ions drift alignment with the correspond- 

ng ionized molecule, which is of particular relevance in tentative 

dentifications (i.e., suspect screening). The results of this study 

howed relevant presence of pharmaceuticals in the Amazon River 

nd tributaries, with 51 different com pounds and metabolites be- 

ng identified. This study demonstrates that analgesics and anti- 

ypertensive drugs are commonly found in areas with significant 

rban impact, and some stimulants such as caffeine or illicit drug 

cocaine) residues may also be found in relatively remote areas. 

he suspect screening also allowed the identification of metabo- 

ites, some of which should also be included in further ecotoxi- 

ological evaluations. Finally, our study supports the need to im- 

rove the sanitation system of urban areas in the Amazon to re- 
9 
uce chemical emissions, and recommends performing follow-up 

tudies to quantify chemical exposure levels and to assess risks for 

mazonian freshwater ecosystems. 
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