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Abstract. The space of Bloch functions on bounded symmetric domains is extended by
considering Bloch functions f on the unit ball BE of finite and infinite dimensional complex
Banach spaces in two different ways: by extending the classical Bloch space considering the
boundness of (1−‖x‖2)‖f ′(x)‖ on BE and by preserving the invariance of the correspondiing
seminorm when we compose with automorphisms ϕ of BE . We study the connection between
these spaces proving that they are different in general and prove that all bounded analytic
functions on BE are Bloch functions in both ways.

Introduction

The classical Bloch space B of analytic functions on the open unit disk D of C plays an
important role in geometric function theory and it has been studied by many authors. K.
T. Hahn and R. M. Timoney extended the notion of Bloch function by considering bounded
homogeneous domains in Cn, such as the unit ball Bn and the polydisk Dn (see [12, 18, 19]).
O. Blasco, P. Galindo and A. Miralles extended the notion to the infinite dimensional setting
by considering Bloch functions on the unit ball of an infinite dimensional Hilbert space (see
[4, 5, 6]) and C. Chu, H. Hamada, T. Honda and G. Kohr considered Bloch functions on
bounded symmetric domains which may be also infinite dimensional (see [8]).

In this article, we will deal with a finite or infinite dimensional complex Banach space
E and we will consider two possible extensions of the classical Bloch space. The first one
extends the classical Bloch space by considering the natural Bloch space Bnat(BE) of holo-
morphic functions f on BE such that ‖f‖nat = supx∈BE

(1 − ‖x‖2)‖f ′(x)‖ < ∞. The sec-
ond one extends the space defined in [8] by considering the invariant Bloch space Binv(BE)
of holomorphic functions f on the unit ball BE of a complex Banach space E such that
‖f‖inv = supϕ∈Aut(BE) ‖(f ◦ ϕ)′(0)‖ < ∞. The only known case where ‖ · ‖nat and ‖ · ‖inv
are equivalent seminorms and Bnat(BE) = Binv(BE) is when E is a finite or infinite di-
mensional Hilbert space (see [4, 18]). We will prove that there are spaces E satisfying
Binv(BE) ( Bnat(BE) and other ones such that Bnat(BE) ( Binv(BE). Finally we will
give a Schwarz-type lemma for complex Banach spaces and will prove that the space of
bounded analytic functions on BE given by H∞(BE) is strictly contained in both Binv(BE)
and Bnat(BE).

1. Background

1.1. The classical Bloch space. The classical Bloch space B (see [15]) is the space of
analytic functions f : D −→ C satisfying:

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)| <∞

endowed with the norm:

‖f‖Bloch = |f(0)|+ ‖f‖B <∞
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so that (B, ‖ · ‖Bloch) becomes a Banach space. The seminorm ‖ · ‖B is invariant by automor-
phisms of D, that is, ‖f ◦ ϕ‖B = ‖f‖B for any f ∈ B and ϕ ∈ Aut(D). Recall that:

H∞ = {f : D→ C : f is holomorphic and bounded }

is a Banach space endowed with the sup-norm ‖f‖∞ = supz∈D |f(z)|. It is well-known (see
for instance [21]) that:

Proposition 1.1. H∞ is properly contained in B and ‖f‖B ≤ ‖f‖∞ for any f ∈ H∞.

For further information and references about the classical Bloch space B, the reader is
referred to [3, 21].

1.2. Holomorphic functions on BE and the pseudohyperbolic distance. We will
denote by E,F complex Banach spaces. Given x ∈ E and r > 0, we will denote by B(x, r)
the ball given by y ∈ E such that ‖y−x‖ < r. We will denote by BE the open unit ball B(0, 1)
of E. A function f : BE → F is said to be holomorphic if it is Fréchet differentiable at every
x ∈ BE or, equivalently, if f(x) =

∑∞
n=1 Pn(x) for all x ∈ BE , where Pn is an n−homogeneous

continuous polynomial, that is, the restriction to the diagonal of a continuous n−linear form
on the n-fold space E×· · ·×E into F . We will denote by H(BE , F ) the space of holomorphic
functions from BE into F . If F = C, we just denote the space by H(BE). For further
information on holomorphic functions on complex Banach spaces, see [9] or [14].

The space H∞(BE) is given by {f : BE → C : f is holomorphic and bounded } and it
becomes a Banach space when endowed with the sup-norm ‖f‖∞ = supx∈BE

|f(x)|.

1.3. The automorphisms on BE. We will denote by Aut(BE) all the automorphisms of
BE , that is, all the bijective biholomorphic maps ϕ : BE → BE . It is well-known that if BE
is a bounded symmetric domain (including the unit ball of a Hilbert space and the finite or
infinite dimensional polydisc) then BE is homogeneous, that is, it acts transitively on BE .
Hence, if BE is a bounded symmetric domain, then {ϕ(0) : ϕ ∈ Aut(BE)} = BE . Kaup and
Upmeier (see [13]) proved that:

Proposition 1.2. Let E be a complex Banach space and let BE be its open unit ball. Then
there exists a closed subspace V of E such that V ∩BE is a bounded symmetric domain in V
and V ∩BE = {ϕ(0) : ϕ ∈ Aut(BE)}.

1.4. The pseudohyperbolic and the hyperbolic distance. If E is a complex Banach
space, the pseudohyperbolic distance ρE for x, y ∈ BE is defined by:

ρE(x, y) = sup{|f(x)| : f ∈ H∞(BE), ‖f‖∞ < 1, f(y) = 0}.(1.1)

For z, w ∈ D, we will denote the pseudohyperbolic distance by ρ and is given by:

ρ(z, w) =

∣∣∣∣ z − w1− z̄w

∣∣∣∣ .
We recall the following well-known results:

Proposition 1.3. Let E be a complex Banach space and x, y ∈ BE. Then:

a) ρ(f(x), f(y)) ≤ ρE(x, y) for any f ∈ H∞(BE) such that ‖f‖∞ < 1.
b) ρE(ϕ(x), ϕ(y)) ≤ ρE(x, y) for all holomorphic mappings ϕ : BE → BE. The equality

is satisfied if and only if ϕ ∈ Aut(BE).

The hyperbolic distance βE for x, y ∈ BE is defined by:

βE(x, y) =
1

2
log

(
1 + ρE(x, y)

1− ρE(x, y)

)
.
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WhenBE is a bounded symmetric domain, it was proved that any f ∈ Binv(BE) is Lipschitz
for the hyperbolic distance (see [5] and [8]), that is, there exists M > 0 such that for any
x, y ∈ BE :

|f(x)− f(y)| ≤MβE(x, y).

1.5. The space of Bloch functions on bounded symmetric domains. The study of
Bloch functions on bounded symmetric domains of Cn was extended by Hahn [12] and Tim-
oney by using the Bergman metric (see [18, 19]). In particular, this study includes the unit
euclidean ball Bn and the polydisc Dn. The study of Bloch functions on bounded symmet-
ric domains of infinite dimensional Banach spaces was introduced by Blasco, Galindo and
Miralles for the Hilbert case (see [4]) and by Chu, Hamada, Honda and Kohr for general
bounded symmetric domains by means of the Kobayashi metric (see [8]). If we consider these
domains as the unit ball BE of a JB∗−triple E, the corresponding Bloch space is the set of
holomorphic functions on BE which satisfy that supx∈BE

Qf (z) <∞. In this case:

Qf (z) = sup
x∈X\{0}

|f ′(z)(x)|
k(z, x)

and k(z, x) is the infinitesimal Kobayashi metric for BE (see [8] for more details). It was
proved that:

sup
x∈BE

Qf (x) = sup
ϕ∈Aut(BE)

‖(f ◦ ϕ)′(0)‖

so the Bloch space on a bounded symmetric domain can be described in terms of the auto-
morphisms of BE . The authors also proved that H∞(BE) is strictly contained in the Bloch
space.

2. The space of Bloch functions on BE

2.1. Two different definitions. Let E be a complex Banach space and consider its open
unit ball denoted by BE . Bearing in mind the definition of the classical Bloch space taking
the supremum of (1 − |z|2)|f ′(z)| for z ∈ C, |z| < 1, we can extend it for f ∈ H(BE) by
defining what we call the natural Bloch seminorm:

‖f‖nat = sup
x∈BE

(1− ‖x‖2)‖f ′(x)‖

where f ′(x) ∈ E∗ denotes the derivative of f at the point x. The space Bnat(BE) is given by

Bnat(BE) = {f ∈ H(BE) : ‖f‖nat <∞}.

It is clear that ‖ · ‖nat is a seminorm for Bnat(BE) and this space can be endowed with the
norm ‖f‖nat−Bloch = |f(0)|+ ‖f‖nat. Hence (Bnat(BE), ‖ · ‖nat−Bloch) is a Banach space.

On the other hand, bearing in mind the definition of the Bloch space in [8] and to preserve
the invariance of the corresponding seminorm when composing with an automorphism, we
define for f ∈ H(BE), the invariant Bloch semi-norm by:

‖f‖inv = sup
ϕ∈Aut(BE)

‖(f ◦ ϕ)′(0)‖

and the space B̂inv(BE) will be given by:

B̂inv(BE) = {f ∈ H(BE) : ‖f‖inv <∞}.

Let ‖f‖inv−Bloch = |f(0)|+ ‖f‖inv. If BE is a bounded symmetric domain, then ‖ · ‖inv−Bloch
is a norm for B̂inv(BE). Nevertheless, if we deal with general Banach spaces E, ‖f‖inv−Bloch
fails to be a norm since Proposition 1.2 does not assure that the closed subspace V of E
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satisfies V ∩BE = BE if BE is not a bounded symmetric domain. We consider the quotient
space:

Binv(BE) = B̂inv(BE)/ ∼
where f ∼ g in B̂inv(BE) if and only if ‖f‖inv = ‖g‖inv and f(0) = g(0). Hence Binv(BE) is
a vector space and we can endow it with the norm given by ‖[f ]‖inv−Bloch = ‖f‖inv−Bloch for
any [f ] ∈ Binv(BE). Then Binv(BE) becomes a Banach space. We will write f to refer to [f ]
if there can be no possible confusion. If we deal with bounded symmetric domains BE , the
space of Bloch functions Binv(BE) coincides with B̂inv(BE) defined in [8].

As we have mentioned, the seminorms ‖ · ‖nat and ‖ · ‖inv are equivalent if E is a finite
or infinite dimensional Hilbert space, so we have that Bnat(BE) = Binv(BE) in this case.
Dealing with bounded symmetric domains, it was proved (see Corollary 3.5 in [8]):

Corollary 2.1. Let BE be a bounded symmetric domain and f ∈ Binv(BE). Then for any
x ∈ BE we have:

‖f ′(x)‖ ≤ ‖f‖inv
1− ‖x‖2

.

Hence, it is clear that ‖f‖nat = supx∈BE
‖f ′(x)‖(1− ‖x‖2) ≤ ‖f‖inv. So we obtain:

Proposition 2.2. Let E be a complex Banach space such that BE is a bounded symmetric
domain. Then, Binv(BE) ⊆ Bnat(BE) and ‖f‖nat ≤ ‖f‖inv.

In this section, we will give examples where these spaces are different even for some bounded
symmetric domains. Indeed, for general Banach spaces E we will show that it is not true
that B̂inv(BE) ⊆ Bnat(BE) or Bnat(BE) ⊆ B̂inv(BE).

2.2. The case E = (Cn, ‖ · ‖∞) and E = c0. Let E = (Cn, ‖ · ‖∞) or E = c0, whose open
unit ball is a bounded symmetric domain so-called (finite or infinite dimensional) polydisc
and which is usually denoted by Dn and Bc0 respectively. Bloch functions on the finite or
infinite polydisc were studied in [18] and [8] respectively. We prove that the Bloch spaces
defined with each of the seminorms ‖ · ‖nat and ‖ · ‖inv are different even if BE is the bidisc
D2.

For any f ∈ H(BE) and x ∈ BE we have that f ′(x) belongs to `n1 or `1 respectively, so

we can identify f ′(x) by
(
∂f
∂x1

(x), ∂f∂x2 (x), · · ·
)

and ‖f ′(x)‖ =
∑n

k=1

∣∣∣ ∂f∂xk (x)
∣∣∣, where n can be

finite or infinite.

2.2.1. Automorphisms on E = (Cn, ‖ · ‖∞) and E = c0. Consider for any z ∈ D the auto-
morphism ϕz : D→ C given by

ϕz(w) =
w − z
1− z̄w

,

which satisfies that ϕ′z(0) = −(1 − |z|2). It is well-known that any ϕ ∈ Aut(D) is given by
ϕ(w) = eiαϕz(w) for some z ∈ D and α ∈ [0, 2π[.

Now let x = (x1, x2, · · · ) ∈ BE and consider the automorphism ϕx : BE → BE given by

ϕx(y) =

(
x1 − y1
1− x̄1y1

,
x2 − y2
1− x̄2y2

, · · ·
)
·

It is well-known that any ϕ ∈ Aut(BE) is given by ϕ = (ϕ1, ϕ2, · · · ) where ϕk ∈ Aut(D) (see
[16] and [11] for the finite and infinite dimensional case respectively).

We are interested in the calculation of ‖(f ◦ ϕ)′(0)‖ in order to calculate ‖f‖inv, where
f : BE → C is a holomorphic function and ϕ is an automorphism of BE , so we can con-
sider, without loss of generality, that ϕ = ϕx since |eiαz| = |z| for z ∈ D, α ∈ [0, 2π[ and
(eiα1z1, e

iα2z2, · · · ) ∈ BE for any (z1, z2, · · · ) ∈ BE and α1, α2, · · · ∈ [0, 2π[.
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Proposition 2.3. Let f ∈ H(BE) for E = (Cn, ‖ · ‖∞) or E = c0. If x ∈ BE, then:

‖(f ◦ ϕx)′(0)‖ =
n∑
k=1

(1− |xk|2)
∣∣∣∣ ∂f∂xk (x)

∣∣∣∣ ,
where n can be finite or infinite.

Proof. It is clear that:

ϕ′x(0) =


−(1− |x1|2) 0 · · ·

0 −(1− |x2|2) · · ·
0 0 · · ·
· · · · · · · · ·


Since f ◦ ϕx is well-defined on BE and bearing in mind that ϕx(0) = x, we have:

f ◦ ϕx)′(0) = f ′(ϕx(0)) ◦ ϕ′x(0) =(
∂f
∂x1

(x) ∂f
∂x2

(x) · · ·
)
◦

 −(1− |x1|2) 0 · · ·
0 −(1− |x2|2) · · ·
0 0 · · ·


so:

‖(f ◦ ϕx)′(0)‖ =
n∑
k=1

(1− |xk|2)
∣∣∣∣ ∂f∂xk (x)

∣∣∣∣ ,
where n can be finite or infinite. �

Hence:

Corollary 2.4. For any f ∈ Binv(BE), we have that:

‖f‖inv = sup
x∈BE

‖(f ◦ ϕx)′(0)‖ = sup
x∈BE

n∑
k=1

(1− |xk|2)
∣∣∣∣ ∂f∂xk (x)

∣∣∣∣
where n can be finite or infinite.

Proposition 2.5. Let E = (C2, ‖ · ‖∞) and consider the bidisc BE = D2. Then:

Binv(D2)) ( Bnat(D2).

Proof. It is clear that Binv(D2) ⊆ Bnat(D2) by Proposition 2.2. To prove that these spaces

are different, consider f(z, w) = (w + 1) log(z − 1). Then, ∂f
∂z = w+1

z−1 and ∂f
∂w = log(z − 1).

Notice that:

|f‖nat = sup
(z,w)∈D2

(1− sup{|z|, |w|}2)
(∣∣∣∣∂f∂z (z, w)

∣∣∣∣+

∣∣∣∣ ∂f∂w (z, w)

∣∣∣∣)
so:

‖f‖nat ≤ sup
|z|<1

(1− |z|2)
(∣∣∣∣w + 1

z − 1

∣∣∣∣+ |log(z − 1)|
)
≤ 2 sup

|z|<1
(1− |z|)

(
2

1− |z|
+ |log(z − 1)|

)
≤

4 + sup
|z|<1
|z − 1|| log(z − 1)|

It is clear that w logw is bounded on the set of complex numbers w such that |w| ≤ 2 since
|w logw| ≤ |w|| log |w|+ i argw| ≤ |w|(log |w|+2π) and t log t→ 0 when t→ 0 so there exists
a constant M > 0 such that ‖f‖nat ≤ 4 +M <∞ and conclude that f ∈ Bnat(D2).
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Now we calculate ‖f‖inv. Notice that:

‖f‖inv = sup
(z,w)∈D2

(1− |z|2)
∣∣∣∣∂f∂z (z, w)

∣∣∣∣+ (1− |w|2)
∣∣∣∣ ∂f∂w (z, w)

∣∣∣∣ ≥
sup

(z,w)∈D2

(1− |z|)
∣∣∣∣w + 1

z − 1

∣∣∣∣+ (1− |w|) |log(z − 1)| .

Evaluating at w = 0:

‖f‖inv ≥ sup
|z|<1

{
(1− |z|) 1

|z − 1|
+ |log(z − 1)|

}
and taking zn = 1− 1/n we have:

‖f‖inv ≥ sup
n∈N

{
(1− |zn|)

1

|zn − 1|
+ |log(zn − 1)|

}
= sup

n∈N

{
1

n

1
1
n

+ | log

(
−1

n

)
|

}
≥

sup
n∈N

{
1 +

∣∣∣∣log

(
1

n

)∣∣∣∣}
and since 1 +

∣∣log
(
1
n

)∣∣→∞ when n→∞ we have that ‖f‖inv =∞ so f /∈ Binv(D2). �

Hence, we have:

Corollary 2.6. Let E be (Cn, ‖ · ‖∞) for n ≥ 2 or c0. Then, Binv(BE) ( Bnat(BE).

Proof. It is clear that Binv(BE) ⊆ Bnat(BE) because of Proposition 2.2. Consider f ∈ H(D2)
given in Proposition 2.5. The function g(x1, x2, x3, · · · ) = f(x1, x2) belongs to Bnat(BE) but
g /∈ Binv(BE). �

2.3. The case E = Lp(Ω, µ). L. L. Stachó and E. Vesentini (see [17] and [20]) proved that
for measure spaces E = Lp(Ω, µ), 1 ≤ p <∞, p 6= 2 and µ(Ω) <∞, we have:

Aut(BE) = {U |BE
: U is a surjective linear isometry of E}.

Hence ϕ′(0) = ϕ and ϕ(0) = 0 for any ϕ ∈ Aut(BE). We will prove that the behaviour of
the unit ball BE of these spaces is completely different to bounded symmetric domains when
we deal with spaces of Bloch functions on BE .

Proposition 2.7. Let E = Lp(Ω, µ), 1 ≤ p <∞, p 6= 2 and µ(Ω) <∞. Then:

Bnat(BE) ( B̂inv(BE).

Proof. Let f ∈ Bnat(BE) and ϕ ∈ Aut(BE). Since ϕ is the restriction of a surjective linear
isometry to BE , we have:

‖(f ◦ ϕ)′(0)‖ = ‖f ′(ϕ(0)) ◦ ϕ′(0)‖ = ‖f ′(0) ◦ ϕ′(0)‖ = ‖f ′(0)‖ ≤ sup
x∈BE

(1− ‖x‖2)‖f ′(x)‖

so Bnat(BE) ⊆ B̂inv(BE). However, J. M. Ansemil, R. Aron and S. Ponte (see [1] and [2])
proved that given any two disjoint balls in an infinite dimensional complex Banach space E,
there exists an entire function on E which is bounded on one and unbounded on the other.
We consider the balls B1 = 1

2BE = {x ∈ E : ‖x‖ < 1
2} and B2 = B(x0,

1
5) := {x ∈ E :

‖x−x0‖ < 1
5} for a fixed x0 ∈ E such that ‖x0‖ = 3

4 . Then, there exists an entire function f
on E such that f |B1 is bounded and f |B2 is unbounded, so there exists (xn) ⊂ B2 such that
|f(xn)| → ∞ when n→∞. By the Mean Value Theorem (see Theorem 13.8 in [14]) we have
that:

|f(xn)− f(0)| ≤ ‖xn‖ sup
0≤λ≤1

‖f ′(λxn)‖,
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so:
|f(xn)| − |f(0)|

‖xn‖
≤ |f(xn)− f(0)|

‖xn‖
≤ sup

0≤λ≤1
‖f ′(λxn)‖

and since ‖xn‖ ≤ 3
4 + 1

5 = 19
20 , we have that:

|f(xn)| − |f(0)|
‖xn‖

≥ 20

19
(|f(xn)| − |f(0)|)→∞

when n → ∞, so we can take a sequence (λn) ⊂ [0, 1] such that ‖f ′(λnxn)‖ → ∞ when
n→∞. Hence:

(1− ‖λnxn‖2)‖f ′(λxn)‖ ≥ (1− ‖λnxn‖)‖f ′(λnxn)‖ ≥ (1− ‖xn‖)‖f ′(λnxn)‖ ≥
1

20
‖f ′(λnxn)‖ → ∞

when n → ∞. Since B1, B2 ⊂ BE , we conclude that ‖f‖nat = ∞ but, as we have observed

above, ‖f‖inv = ‖f ′(0)‖ <∞ so Bnat(BE) ( B̂inv(BE). �

2.4. Bloch functions and Lipschitz functions for the hyperbolic metric. As we have
mentioned in Subsection 1.4, any f ∈ Binv(BE) is Lipschitz for the corresponding hyperbolic
distance βE on BE for any Banach space E such that BE is a bounded symmetric domain
(see [8]). We will prove that this is no longer true if we deal with BE which are not bounded
symmetric domains. Consider the spaces Lp from Subsection 2.3. Then:

Proposition 2.8. Let E = Lp(Ω, µ), 1 ≤ p < ∞, p 6= 2 and µ(Ω) < ∞. Then there exists

f ∈ B̂inv(BE) which is not Lipschitz for the corresponding hyperbolic distance βE on BE.

Proof. Look at the proof of Proposition 2.7. Take the balls B1, B2, f the function which
is defined there and the sequence (xn) ⊂ BE such that |f(xn)| → ∞ when n → ∞. So
|f(xn)− f(0)| ≥ |f(xn)| − |f(0| → ∞ when n→∞ but:

βE(xn, 0) =
1

2
log

(
1 + ‖xn‖
1− ‖xn‖

)
which is bounded on (xn) since 1− ‖xn‖ ≥ 1− 19

20 = 1
20 . �

3. Bounded functions on BE are Bloch functions

In [4] and [8] it was proved that H∞(BE) ( Binv(BE) when E is a Hilbert space or BE
is a bounded symmetric domain respectively. In this section, we will prove that this result
remains true if we deal with any complex Banach space E and any Bloch space, that is, and
H∞(BE) ( Bnat(BE) and H∞(BE) ( B̂inv(BE).

First we recall the following result which is an application of the Schwarz lemma (see page
641 in [7]).

Theorem 3.1. If g : B(x0, r)→ C is analytic and g(x0) = 0, then:

|g(y)| ≤ ||g||∞
‖y − x0‖

r
if ‖y − x0‖ < r,

where ‖g‖∞ denotes the sup-norm of g on B(x0, r).

As consequence, it is clear by the definition of the pseudohyperbolic distance on BE given
by (1.1) that:

Corollary 3.2. Let E be a complex Banach space and x, y ∈ BE. Then:

ρE(y, x) ≤ ‖y − x‖
r

for all y ∈ B(x, r).
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Proposition 3.3. Let f ∈ H∞(BE) such that ‖f‖∞ ≤ 1. Then, for any x0 ∈ BE, we have
that:

(1− ‖x0‖)‖f ′(x0)‖ ≤ 1− |f(x0)|2.

Proof. First we consider that ‖f‖∞ < 1 and let x0 ∈ BE . Applying Corollary 3.2, for r > 0
such that ‖x0‖+ r < 1, we have that:

ρE(y, x0) ≤
‖y − x0‖

r
for all y ∈ B(x0, r).

Taking limits when r → (1− ‖x0‖)− we get:

ρE(y, x0) ≤
‖y − x0‖
1− ‖x0‖

for all y ∈ B(x0, 1− ‖x0‖).

Notice that for any x0 ∈ BE , f ′(x0) is the functional on E satisfying:

lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)
‖x− x0‖

= 0,

so given ε > 0, there exists δ > 0 such that:∣∣∣∣f(x)− f(x0)− f ′(x0)(x− x0)
‖x− x0‖

∣∣∣∣ < ε

if ‖x − x0‖ < δ. Without loss of generality, we can choose δ such that x0 + B(x0, δ) ⊂ BE .
For x such that ‖x− x0‖ < δ we have that:∣∣∣∣f ′(x0)(x− x0)‖x− x0‖

∣∣∣∣ < ε+
|f(x)− f(x0)|
‖x− x0‖

.

Choose a sequence (εn) of positive numbers such that εn → 0 when n → ∞ and con-
sider their corresponding (δn) sufficiently small to satisfy that x0 + B(x0, δn) ⊂ BE and
supn∈N {‖x0‖+ δn} < 1. Since:

‖f ′(x0)‖ = sup
y∈BE

|f ′(x0)(y)|,

we choose vectors (yn) ⊂ BE , ‖yn‖ → 1 such that ‖f ′(x0)‖ = limn→∞ |f ′(x0)(yn)| and define
xn ∈ BE by:

xn = x0 + δn
yn
‖yn‖

.

It is clear that xn ∈ BE since x0 +B(x0, δn) ⊂ BE and supn∈N {‖x0‖+ δn} < 1. We have:∥∥∥∥ xn − x0
‖xn − x0‖

− yn
∥∥∥∥ =

∥∥∥∥ yn
‖yn‖

− yn
∥∥∥∥→ 0

when n→∞ since ‖yn‖ → 1. Hence:

‖f ′(x0)‖ = lim
n→∞

|f ′(x0)(yn)| = lim
n→∞

|f ′(x0)(xn − x0)|
‖xn − x0‖

.

Notice that:

|f ′(x0)(xn − x0)|
‖xn − x0‖

< εn +
|f(xn)− f(x0)|
‖xn − x0‖

≤ εn +

∣∣∣∣∣ f(xn)− f(x0)

1− f(x0)f(xn)

∣∣∣∣∣
∣∣∣1− f(x0)f(xn)

∣∣∣
‖xn − x0‖

.

Since the pseudohyperbolic distance is contractive for f , we have that:

|f ′(x0)(xn − x0)|
‖xn − x0‖

< εn + ρE(xn, x0)

∣∣∣1− f(x0)f(xn)
∣∣∣

‖xn − x0‖
.
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Next observe that there is no loss of generality in assuming δn → 0, so we can consider
that δn ≤ 1− ‖x0‖. Hence by Corollary 3.2:

ρE(xn, x0) ≤
‖xn − x0‖
1− ‖x0‖

.

so: ∣∣∣∣f ′(x0)(xn − x0)‖xn − x0‖

∣∣∣∣ < εn +
‖xn − x0‖
1− ‖x0‖

|1− f(x0)f(xn)|
‖xn − x0‖

= εn +
|1− f(x0)f(xn)|

1− ‖x0‖
.

Taking limits when n→∞, we have:

‖f ′(x0)‖ ≤
1

1− ‖x0‖
(1− |f(x0)|2)

and we are done. Suppose now that ‖f‖∞ = 1. Then, there exists a sequence of functions
(fn) ⊂ H∞(BE) (for instance, fn(x) = (1 − 1/n)f(x)) such that fn converges uniformly to
f on BE . We apply the inequality to the functions (fn) and taking limits when n→∞, we
are done. �

Proposition 3.4. Let E be a complex Banach space. Then H∞(BE) ⊆ Bnat(BE) and the
map Id : (H∞(BE), ‖ · ‖∞)→ (Bnat(BE), ‖ · ‖nat−Bloch) is continuous.

Proof. Let f ∈ H∞(BE). Then f/‖f‖∞ has sup-norm 1 and we can apply Proposition 3.3.
Then, for any x ∈ BE we have:

‖f ′(x)‖
‖f‖∞

≤ 1

1− ‖x‖

(
1− |f(x)|2

‖f‖2∞

)
≤ 1

1− ‖x‖
,

so (1 − ‖x‖2)‖f ′(x)‖ = (1 + ‖x‖)(1 − ‖x‖)‖f ′(x)‖ ≤ 2‖f‖∞ and we obtain that H∞(BE) ⊂
Bnat(BE). Adding up |f(0)| to the left term we obtain that ‖Id(f)‖nat−Bloch ≤ 3‖f‖∞, so
bounded functions are Bloch functions and the inclusion is continuous. �

Now we prove that the same result remains true if we deal with B̂inv(BE) instead of
Bnat(BE).

Proposition 3.5. Let E be a complex Banach space and BE its open unit ball. Then
H∞(BE) ⊆ B̂inv(BE) and the map Id : (H∞(BE), ‖ · ‖∞)→ (Binv(BE), ‖ · ‖Bloch) is contin-
uous.

Proof. Let f ∈ H∞(BE). For any ϕ ∈ Aut(BE) it is clear that f◦ϕ ∈ H∞(BE) and ‖f◦ϕ‖∞ =
‖f‖∞ since ϕ(BE) = BE . So by the proof of Proposition 3.4 we have ‖(f ◦ ϕ)′(0)‖ ≤ 2‖f‖∞
and hence ‖f‖inv ≤ 2‖f‖∞. We conclude that H∞(BE) ⊆ B̂inv(BE) and in addition:

‖f‖inv−Bloch = |f(0)|+ ‖f‖inv ≤ 3‖f‖∞
so Id is also continuous. �

Finally we prove that H∞(BE) is strictly contained in Bnat(BE) and B̂inv(BE).

Proposition 3.6. For any inifinite dimensional complex Banach space E, we have that
H∞(BE) ( Bnat(BE).

Proof. We proved that H∞(BE) ⊆ Bnat(BE) in Proposition 3.4. Let x0 ∈ E and ‖x0‖ = 1.
By the Hahn-Banach Theorem, there exists L ∈ E∗ such that ‖L‖ = L(x0) = 1. The function
f(x) = log(1− L(x)) satisfies that f ∈ Bnat(BE) \H∞(BE) since:

(1− ‖x‖2)‖f ′(x)‖ = (1− ‖x‖2) ‖L‖
|1− L(x)|

≤ (1− ‖x‖2) 1

1− ‖x‖
≤ 2
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but there exists (xn) ⊂ BE such that xn → x0 and limn→ |f(xn)| = | log(1−L(xn))| =∞, so
f /∈ H∞(BE). �

Proposition 3.7. For any inifinite dimensional complex Banach space E, we have that
H∞(BE) ( B̂inv(BE).

Proof. We proved that H∞(BE) ⊆ B̂inv(BE) in Proposition 3.5. Let V be the closed subspace
of E given by Proposition 1.2 satisfying that:

BV = V ∩BE = {ϕ(0) : ϕ ∈ Aut(BE)}.
If V = {0}, then any automorphism ϕ would satisfy ϕ(0) = 0 and hence ϕ is the restriction
of a linear isometry of E (see Proposition 1 in [10]). Then for any f ∈ H(BE) we have that

‖f‖inv = ‖f ′(0)‖ <∞ so any f ∈ H(BE) belongs to B̂inv(BE) but it is well-known that there
are unbounded holomorphic functions on BE and we are done. If V 6= {0}, there exists a
continuous linear map L : V → C and x ∈ V such that ‖L‖ = 1, ‖x‖ = 1 and L(x) = ‖L‖. By
the Hahn-Banach Theorem, there exists a continuous linear map L1 on E such that L1|V = L
and ‖L1‖ = ‖L‖. We consider the map f : BE → C given by f(x) = log(1−L1(x)). It is clear

that f is unbounded on BE since BV ⊂ BE . Now we prove that f ∈ B̂inv(BE). Notice that for
any ϕ ∈ Aut(BE) we have that L ◦ϕ ∈ H∞(BE) since ϕ(BE) ⊂ BE and ‖L ◦ϕ‖∞ ≤ ‖L‖=1.
Let h : D → C given by h(z) = log(1 − z), so f(x) = (h ◦ L)(x). For any ϕ ∈ Aut(BE) we
have that:

‖(f ◦ϕ)′(0)‖ = ‖(h ◦L ◦ϕ)′(0)‖ ≤ ‖h′(L(ϕ(0))‖‖(L ◦ϕ)′(0)‖ ≤ ‖h‖B
1− |(L ◦ ϕ)(0)|2

‖(L ◦ϕ)′(0)‖

where ‖h‖B denotes the Bloch seminorm for the classical Bloch space B and it is clear that
h ∈ B. Apply Proposition 3.3 to L ◦ ϕ at x0 = 0 and conclude that ‖(f ◦ ϕ)′(0)‖ ≤ ‖h‖B for
any ϕ ∈ Aut(BE) so ‖f‖inv <∞. �
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