Supporting Information

Catalytic hydrogenation of azobenzene in the presence of a

cuboidal Mo₃S₄ cluster via an uncommon sulfur-based H₂

activation mechanism

Eva Guillamón,^{a,1} Mónica Oliva,^{a,1} Juan Andrés,^a Rosa Llusar,^{*,a} Elena Pedrajas,

^a Vicent S. Safont, ^a Andres G. Algarra ^{*, b} and Manuel G. Basallote ^{*, b}

^a Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain. ^b Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, 11510 Cádiz, Spain.

*E-mails: rosa.llusar@uji.es, andres.algarra@uca.es, manuel.basallote@uca.es

Table of contents

Materials and Methods	.2
General procedure for the catalytic hydrogenation of azobenzene	.4
Cluster monitoring after the catalytic reaction	.6
Cluster monitoring under H2 pressure	.8
Crystal structure determination of [Mo ₃ CuS ₄ Cl ₄ (dmen) ₃](CuCl ₂)	.9
Computational details1	1
Experimental and optimized bond distances for $[Mo_3S_4Cl_3(dmen)_3]^+$ (1) and optimized bond distances for $[Mo_3S_2(SH)_2Cl_3(dmen)_3]^+$ (1-H ₂)1	3
Potential energy profile for the catalytic conversion of azobenzene to aniline1	4
Optimized structures of TS1, TS-2A, I-2 and TS-2B1	5
Microkinetic modeling1	6
Computational tests on alternative mechanistic pathways1	9
References	20
Cartesian coordinates of the optimized species	24

Materials and Methods

The $[Mo_3S_4Cl_3(dmen)_3]Cl (1Cl)$ cluster catalyst was prepared according to the published procedure replacing HBF₄ by HCl.¹ Complexes $[Mo_3S_4Cl_3(edpp)_3]Cl,^2$ $[Mo_3S_4Cl_3(dnbpy)_3](PF_6),^3$ $[Mo_3S_4Cl_3(dmpe)_3](PF_6),^4$ and $[Mo_3S_4H_3(dmpe)_3](BPh_4)^5$ were synthesized by literature methods. All other reagents were obtained from commercial sources and used as received.

[Mo₃S₄Br₃(dmen)₃]Br was obtained following the procedure employed for the synthesis of its chlorine analogue but using the [Mo₃S₄Br₄(PPh₃)₃(H₂O)₂] derivative as starting material.³ In this case, [Mo₃S₄Br₄(PPh₃)₃(H₂O)₂] (50.0 mg, 0.032 mmol) was reacted with 3.5 equivalents of dmen ligand (12.7 μ L, 0.112 mmol) in CH₃CN and after stirring, the reaction mixture was acidified with HBr. The desired product was precipitated with ether. (Yield: 90%) ¹H-NMR (CD₃CN): d = 2.85 (d, 9H, CH₃), 3.13 (m, 6H, CH₂), 3.65 (m, 3H, CH₂), 3.78 (d, 9H, CH₃), 3.88 ppm (m, 3H, CH₂). ESI(+)-MS (CH₃CN, 20V): m/z = 920 [M⁺]

 $[Mo_3S_4(tacn)_3]Cl_4$ (tacn = 1,4,7-triazacyclononane) was obtained by adapting the procedure employed for the synthesis of the $[Mo_3S_4Cl_3(dmen)_3]Cl$ cluster salt. A method for the preparation of this compound in low quantities has been already described but the procedure was tedious and difficult to scale up.⁶ In this case, $[Mo_3S_4Cl_4(PPh_3)_3(H_2O)_2]$ (40.0 mg, 0.029 mmol) was dissolved in 8 mL of DMF an reacted with an excess (56.0 mg, 0.435 mmol) of the tacn ligand under reflux conditions for four hours. The reaction mixture was allowed to cool down and the solid containing the desired product separated from the solution by filtration. The solid was washed with DMF and Et₂O, yielding 13 mg (47 %) of the $[Mo_3S_4(tacn)_3]Cl_4$ cluster. ¹H-NMR (D₂O): 3.20-3.35, 4.01-4.11 (m, 18H, - NCHH-HHCN-), 3.36-3.5, 3.51-3.59, 4.50-4.61 (m, 18H, - NCHH-HHCN-); ¹³C{¹H}-NMR (D₂O): 52.49 (s, CH₂), 52.90 (s, CH₂), 54.19 (s, CH₂); ESI(+)-MS (CH₃OH, 20V): m/z = 402 [M²⁺], 268 [M³⁺]

Mass spectra were registered using a triple quadrupole mass spectrometer with an orthogonal Z-spray electrospray source (Waters, Manchester). The temperature of the source block was set to 100 °C, and the desolvation temperature was set to 120 °C. A capillary voltage of 3.3 kV was used in the positive scan mode, and the cone voltage was set to Uc = 20 V. Sample solutions in CH₃CN or CH₃OH were injected with a syringe pump directly connected to the ESI source at a flow rate of 10 µLmin⁻¹. The observed

isotopic pattern of each compound perfectly matched the theoretical isotope pattern calculated from their elemental composition by using the MassLynx 4.1 program. Gas chromatography analyses were performed on an Agilent 7820A GC System equipped with a FID and a capillary column Agilent (HP-5, 30m x 0.32mm x 0.25 μ m). The GC yields were determined using *n*-hexadecane as an internal standard. ¹H NMR spectra were recorded on a Bruker Avance III HD 400 MHz spectrometer using D₂O or CD₃CN as solvent. High pressure ¹H NMR spectra were recorded on a Bruker Avance 500 Ultrashield spectrometer using a sapphire NMR tube fitted with a titanium head, shown in Figure S1. To avoid the possibility of H/D exchange with deuterated methanol, the high pressure spectra were recorded in CD₃CN. Sample solutions in CD₃CN (0,2 mL) were introduced and the tube pressurized with H₂ at 20 bars and spectra were registered at temperatures ranging between 70 and -25 ^oC. These high pressure NMR experiments were performed at the ICIQ of Tarragona (Spain) by Dr. Marta Giménez Pedrós (tube pressurization) and by the NMR section of the Institute (spectra recording).

Figure S1. High pressure NMR tube

General procedure for the catalytic hydrogenation of azobenzene

A 4 mL glass vial containing a stirring bar was sequentially charged with the trinuclear catalyst (4.2 mg, 0.005 mmol) of $[Mo_3S_4Cl_3(dmen)_3]Cl$, azobenzene (18.4 mg, 0.1 mmol), *n*-hexadecane (15 µL; added as an internal standard) and 2 mL of dry CH₃OH or CD₃OD. Afterwards, the reaction vial was capped with a septum equipped with a needle and set in the alloy plate, which was then placed into a 300 mL autoclave. Once sealed, the autoclave was purged three times with 20 bar of hydrogen, then pressurized to 10 bar and placed into an aluminum block, which was preheated at 60 °C. The reaction was monitored at different times from 0,5 up to 8 hours. After each time, the autoclave was cooled to room temperature and the hydrogen was released. Ethyl acetate (2 mL) was then added, and a sample was taken to be analyzed using GC.

For the reaction done in the presence of copper (I), CuCl (1 mg, 0,01 mmol) was added to the glass vial containing $[Mo_3S_4Cl_3(dmen)_3]Cl$ (4.2 mg, 0.005 mmol), azobenzene (18.4 mg, 0.1 mmol), *n*-hexadecane (15 µL; added as an internal standard) and 2 mL of dry CH₃OH. Addition of CuCl causes a color change from green to red due to the formation of the heterobimetallic $[Mo_3CuS_4Cl_4(dmen)_3]^+$ cluster as confirmed by single crystal X-ray diffraction experiments. (*Vide infra*)

For the reaction done in the presence of chloride, $(n-Bu_4N)Cl$ (4.2 mg/22.5 mg, 0.015 mmol/ 0.081 mmol) was added to a glass vial containing [Mo₃S₄Cl₃(dmen)₃]Cl (4.2 mg, 0.005 mmol), azobenzene (18.4 mg, 0.1 mmol), *n*-hexadecane (15 µL; added as an internal standard) and 2 mL of dry CH₃OH. Cluster integrity after the catalytic protocol was shown by electrospray ionization mass spectrometry ESI-MS (m/z=787).

For the reaction done in the presence of a base, pyridine (1 μ L/5 μ L, 0.012 mmol/0.060 mmol) or Et₃N (0.7 μ L/1.4 μ L/2.1 μ L, 0.005 mmol/0.010 mmol/0.015 mmol) was added to a glass vial containing [Mo₃S₄Cl₃(dmen)₃]Cl (4.2 mg, 0.005 mmol), azobenzene (18.4 mg, 0.1 mmol), *n*-hexadecane (15 μ L; added as an internal standard) and 2 mL of dry CH₃OH. Cluster integrity after the catalytic protocol was shown by electrospray ionization mass spectrometry ESI-MS (m/z=787) (Figure S3) for the reaction done in the presence of pyridine. In the case of Et₃N, partial substitution of the outer chlorine ligands by methoxo and hydroxo groups is observed (Figure S4).

The general catalytic protocol was adapted (Table 1, entries 8-13) when the $[Mo_3S_4Cl_3(dmen)_3]Cl$ cluster catalyst was replaced by $Mo_3S_4Br_3(dmen)_3]Br$ (5.1 mg,

0.005 mmol), $[Mo_3S_4Cl_3(dnbpy)_3]PF)_6$ (9.8 mg, 0.005 mmol), $[Mo_3S_4(tacn)_3]Cl_4$ (4.9 mg, 0.005 mmol), $[Mo_3S_4Cl_3(edpp)_3]Cl$ (6.2 mg, 0.005 mmol), $[Mo_3S_4Cl_3(dmpe)_3]BPh_4$ (6.6 mg, 0.005 mmol) and $[Mo_3S_4H_3(dmpe)_3]BPh_4$ (6.0 mg, 0.005 mmol). In the case of $[Mo_3S_4(tacn)_3]Cl_4$ (Table 1, entry 10), HBF₄·Et₂O (1µL, 0.007 mmol) was added to avoid ligand deprotonation in solution. For the $[Mo_3S_4H_3(dmpe)_3]BPh_4$ cluster hydride (Table 1, entry 13) THF was used as solvent due to its low solubility in MeOH. In all cases, cluster integrity after the catalytic protocol was shown by electrospray ionization mass spectrometry ESI-MS.

Cluster monitoring after the catalytic reaction

Figure S2. ESI mass spectrum of the catalyst in CH_3CN at 20 V after azobenzene hydrogenation in CH_3OH for experiment done with and without (*n*-Bu₄N)Cl.

Figure S3. ESI mass spectrum of the catalyst in CH₃CN at 20 V after azobenzene hydrogenation in CH₃OH in the presence of 12 equivalents of pyridine.

Figure S4. ESI mass spectrum of the catalyst in CH_3CN at 20 V after azobenzene hydrogenation in CH_3OH in the presence of 1 (a) and 2 (b) equivalents of Et_3N .

Cluster monitoring under H₂ pressure

Figure S5. ¹H-NMR spectrum of the catalyst in CD₃CN under 20 bar of hydrogen pressure in CD₃CN at 70 °C (blue) and at atmospheric pressure at 25 °C (red)

Crystal structure determination of [Mo₃CuS₄Cl₄(dmen)₃](CuCl₂)

Single crystals of [Mo₃CuS₄Cl₄(dmen)₃](CuCl₂) suitable for X-ray analysis were obtained by slow evaporation of a reaction mixture after the catalytic process. The diffraction data were collected on an Agilent Supernova diffractometer equipped with an Atlas CCD detector using Mo- K_{α} radiation ($\lambda = 0.71073$ Å). No instrument or crystal instabilities were observed during data collection. Absorption corrections based on the multiscan method were applied.⁷ A suitable crystal with dimensions $0.27 \times 0.21 \times 0.19$ mm³ was selected and kept at a steady T = 270(7) K during data collection. The structure was solved with the Superflip⁸ solution program using iterative methods and refined by the fullmatrix method based on F^2 with the program SHELXL-15 using the Olex2 software package.using Olex2 as the graphical interface.⁹ Hydrogen atoms were refined in their geometrically calculated positions using a riding model was used for this purpose. The refined value of the Flack parameter equals 0.54, so the crystal consists of a racemic mixture of the two enantiomers. (TWIN LAW (-1, 0, 0, 0, -1, 0, 0, 0, -1)). The structural figures were drawn using the Diamond visual crystal structure information system software.¹⁰ CCDC 1979773 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Crystal Data for [Mo₃CuS₄Cl₄(dmen)₃](CuCl₂). C₁₂H₃₆Cl₆Cu₂Mo₃N₆S₄, Mr = 1020.78 g/mol, cubic, space group $P2_13$, a = b= c 15.3959(3) Å, $\alpha = \beta = \gamma = 90^\circ$, V = 3649.3(2) Å³, T = 270(7) K, Z = 4, μ (Mo K α) = 2.832 mm⁻¹. Reflections collected/unique = 12094/2494 ($R_{int} = 0.0545$) which were used in all calculations. Final refinement converged with $R_I = 0.0548$ and $wR_2 = 0.1144$ for all data, GOF = 1.063, max/min residual electron density 0.7/-0.3 e/Å³.

Figure S6. ORTEP representation of $[Mo_3(CuCl)S_4Cl_3(dmen)]^+$ (ellipsoids at 50% probability) with the atom-numbering scheme. Hydrogen atoms have been omitted for clarity. Intermetallic distances: Mo – Mo = 2.746 Å, Mo – Cu = 2.829 Å, Mo – (μ_3 -S(1)) = 2.324 Å, Mo – (μ_3 -S)_{trans-N} = 2.316 Å, Mo – (μ_3 -S)_{trans-Cl} = 2.315 Å, Mo – N_{(trans-S(1))} = 2.262 Å, Mo – N_{(cis-S(1))} = 2.281 Å, Mo – Cl(1) = 2.467 Å, Cu – (μ_3 -S) = 2.295 Å, Cu – Cl(2) = 2.207 Å.

Computational details

DFT calculations were run with Gaussian 09 (revision B.01).¹¹ Geometry optimizations were carried out without symmetry restrictions at the BP86 level,¹² with Mo and S atoms described using the SDD relativistic ECP and associated basis set,¹³ with added polarization functions for the latter (ζ =0.503),¹⁴ and the remaining atoms described with the 6-31G(d,p) basis set.¹⁵ Solvent effects (methanol) were included in these optimizations through the PCM method.¹⁶ The electronic state of the system was checked by comparing the energies of the singlet and triplet states. This showed that in all cases the singlet state is more favourable, and therefore all reported data correspond to this state. Analytical frequency calculations were used to characterize each stationary point as a minimum or a transition state (TS). These calculations, carried out at 333.15 K and 10 atm, also allowed obtaining the thermal and entropic corrections required to calculated Gibbs energy differences. Additionally, the Intrinsic Reaction Coordinate paths¹⁷ were followed along both directions of each TS vector to confirm the nature of the species connected by a given TS.

The Gibbs energies discussed in the text were obtained by adding standard state, symmetry, and dispersion corrections to the previous energies. The standard state correction, employed to change the reference state from 10 atm to 1 M, was included by adding the term $RT \ln (2.45 \text{ L/mol} \cdot 1 \text{ mol/L}) = 0.59 \text{ kcal/mol}$ to the Gibbs energy of each species, where 2.45 corresponds to the volume of an ideal gas at 10 atm and 0 °C.¹⁸ The effect of the symmetry of the molecules on their rotational entropies was accounted for via the term $RT \ln(\sigma)$, where σ represents the symmetry number of the molecule.¹⁹ Specifically, a symmetry number of 3 was employed for the Mo₃S₄ clusters having a C₃ symmetry, and a symmetry number of 2 was used for azobenzene, 1,2-diphenylhydrazine and H₂. All the remaining species feature a symmetry number of 1 and therefore they do not require of symmetry correction. Finally, dispersion corrections were included via Grimme's D3 parameter set (with Becke-Johnson damping).²⁰

The pK_a of **1-H**₂ were computationally estimated via the isodesmic proton exchange reaction in Eq. 1, whereby acetic acid ($pK_a = 9.63$) has been used as reference Bronsted acid (HRef). The solution phase free energy (ΔG_{sol}^*) of such reaction is related to the pK_a of the studied species (HA) through Eq. 2.

 $HA + Ref \rightarrow A^- + HRef$ (Eq. 1)

$$pK_a(HA) = \frac{\Delta G_{sol}^*}{RTln(10)} + pK_a(HRef)$$
(Eq. 2)

Based on a recent computational benchmark on the prediction of pK_a values in methanol,²¹ these optimizations were carried out in the gas phase with the X3LYP functional²² and the def2-TZVP basis set.²³ Harmonic frequency calculations at the same level of theory were used to obtain the thermal corrections to the free energy, whereas single-point calculations including implicit solvation via the SMD method²⁴ provided the solvation contribution (CH₃OH).

Experimental and optimized bond distances for $[Mo_3S_4Cl_3(dmen)_3]^+(1)$ and optimized bond distances for $[Mo_3S_2(SH)_2Cl_3(dmen)_3]^+(1-H_2)$

Table S1. Selected experimental and optimized bond distances (Å) for $[Mo_3S_4Cl_3(dmen)_3]^+$ (1) and optimized bond distances (Å) for $[Mo_3S_2(SH)_2Cl_3(dmen)_3]^+$ (1-H₂)

	[Mo ₃ S ₄ Cl ₃ (dmen) ₃](BF ₄) experimental (ref. 1)	[Mo ₃ S ₄ Cl ₃ (dmen) ₃] ⁺ optimized	[Mo ₃ S ₂ (SH) ₂ Cl ₃ (dmen) ₃] ⁺ optimized
Mo-Mo	2 759[3]	2 797[2]	2 687 (x1) 2 776 (x2)
Mo-(µ ₃ -S1)) 2.335[4]	2.379[1]	2.381[4]
Mo-(μ-S) ^b	2.301[5]	2.337[1]	2.357
Mo-(μ-S) ^c	2.288[7]	2.322[1]	2.345
Мо-(<i>µ</i> -S-Н	[) ^b -	-	2.415[21]
Мо-(<i>µ</i> -S-Н	[) ^c -	-	2.417[20]
$Mo-N(1)^d$	2.278[6]	2.310[0]	2.329[4]
Mo-N(2) ^e	2.298[18]	2.335[1]	2.318[17]
Mo-Cl(1)	2.492[14]	2.531[0]	2.523[13]

^a Standard deviations for averaged values are given in square brackets. ^b Mo- μ -S distance *trans* to Mo-N bond. ^c Mo- μ -S distance *trans* to Mo-Cl bond.^d Distance *trans* to the Mo-(μ_3 -S) bond. ^e Distance *cis* to the Mo-(μ_3 -S) bond.

Potential energy profile for the catalytic conversion of azobenzene to aniline

Figure S7. Potential energy profile (kcal/mol) for the two-cycle catalytic conversion of azobenzene to aniline.

Figure S8. Optimised structures of TS-1, TS-2A, I-2 and TS-2B. Cl and dmen ligands are omitted for simplicity.

Microkinetic modeling

To test the validity of the computationally-derived mechanism in Figure 4, microkinetic modeling procedures²⁵ were used to calculate the concentration-time profiles for azobenzene, 1,2-diphenylhydrazine and aniline. These were then compared with the experimental curves in Figure 1. For that purpose, the programs Copasi²⁶ and Specfit²⁷ were used and both led to similar results. The initial concentrations of cluster (0.0025 M) and azobenzene (0.05 M) were used in the modeling experiment. The concentration of H₂ was taken as that corresponding to the solubility of H₂ in methanol at 60°C and 10 bar (0.049 M),²⁸ and it was kept constant during the reaction. The rate constants for each step were estimated from the free energies of activation in Figure 4 using the Eyring equation. Given the small energy differences involved, the formation of intermediate I-2 from the adduct resulting from H₂ addition to the cluster was considered to be a diffusion-controlled process, and so the rate constant for its formation was calculated using the equation $k_{diff} = (8 k_B T N_A)/(3 \eta)$,²⁹ which yields a value of 2.1×10^{10} M⁻¹ s⁻¹, whereas for the reverse process a value of 1.9×10^9 M⁻¹ s⁻¹ was taken, i.e. corresponding to a fast equilibrium with $K_e = 11$ M⁻¹ (the value for a free energy difference of -1.6 kcal mol⁻¹).

The concentration-time profiles obtained in this way are shown in Figure S9 and compared with the experimental ones in Figure 1 (percentages now expressed in concentrations and time in seconds). Figure S9 shows the sequential conversion of azobenzene to 1,2-diphenylhydrazine and then to aniline. In addition, the concentration of the cluster remains constant and the calculated concentration-time profiles for intermediates $1-H_2$ and I-2 (curves not shown) show that these species are formed at very low concentrations, so that they can be considered to exist under steady-state conditions. Thus, it can be considered that the mechanism in Figure 4 roughly reproduces the experimental kinetic features, but the time scale for the reaction is significantly different.

Figure S9. Concentration-time profiles for azobenzene (circles), 1,2-diphenylhydrazine (triangles) and aniline (squares) during the course of the cluster-catalyzed hydrogenation process. The symbols correspond to the experimental data (Figure 1 with the percentages converted to concentrations and times expressed in seconds), and the lines correspond to the concentrations calculated from the computed mechanism in Figure 4. The Figure at the right is an expansion showing the disappearance of azobenzene, the formation and disappearance of 1,2-diphenylhydrazine, and the formation of aniline at the early stages of the reaction.

At this point, the fitting capabilities of the Specfit program were used and a good agreement between the experimental and calculated kinetic profiles was obtained (Figure 5 of the main manuscript) by simply refining the rate constant for the initial step corresponding to H₂ activation, which yields a value of 1.31 ± 0.06 M⁻¹ s⁻¹. This rate constant corresponds to a free energy of activation of 19.4 kcal mol⁻¹, only 2.5 kcal mol⁻¹ larger than the computed value in Figure 4. Thus, the kinetic results can be well reproduced with the computed mechanism by simply introducing a minimal change in the free energy of activation of H₂ to the cluster, the difference being clearly below the experimental, computational and fitting errors and so, the microkinetic modeling provides strong support for the proposed mechanism.

Figure S10 shows the concentration-time profiles for all species participating in the reaction, both in the presence and in the absence of azobenzene. Of special relevance are the very low concentrations achieved by the species $1-H_2$ and I-2, which are typical of intermediates formed under steady-state conditions and consequently experimentally unobservable.

Figure S10. Calculated concentration-time profiles for all species in the reaction mixture in the presence (bottom) and the absence (top) of azobenzene. The concentrations were calculated from the computed mechanism in Figure 4 using the same conditions that those used for Figure 4 in the main text.

Computational tests on alternative mechanistic pathways

Figure S11. Computational tests on alternative mechanistic pathways. Activation ($\Delta G^{\#}$) and reaction (ΔG_r) free energies are reported for each elementary step.

References

1. Pedrajas, E.; Sorribes, I.; Junge, K.; Beller, M.; Llusar, R., A Mild and Chemoselective Reduction of Nitro and Azo Compounds Catalyzed by a Well-Defined Mo₃S₄ Cluster Bearing Diamine Ligands. *ChemCatChem* **2015**, *7*, 2675-2681.

2. Beltrán, T. F.; Safont, V. S.; Llusar, R., Synthesis, Structure, and Gas-Phase Fragmentation of Trinuclear Mo₃S₄ Clusters Bearing Aminophosphine Ligands: A Combined Experimental and Theoretical Study. *Eur. J. Inorg. Chem.* **2016**, 5171-5179.

3. Pedrajas, E.; Sorribes, I.; Gushchin, A. L.; Laricheva, Y. A.; Junge, K.; Beller, M.; Llusar, R., Chemoselective Hydrogenation of Nitroarenes Catalyzed by Molybdenum Sulphide Clusters. *ChemCatChem* **2017**, *9*, 1128-1134.

4. Estevan, F.; Feliz, M.; Llusar, R.; Mata, J. A.; Uriel, S., High yield synthesis of trinuclear $[M_3S_4X_3(diphos)_3]^+$ (M=Mo, W; X=Cl, Br and diphos=dmpe, dppe) molecular clusters from solid state materials. Synthesis and structure of $[W_3S_4H_3(dppe)_3](BPh_4)$. *Polyhedron* **2001**, *20*, 527-535.

5. Algarra, A. G.; Basallote, M. G.; Fernández-Trujillo, M. J.; Feliz, M.; Guillamón, E.; Llusar, R.; Sorribes, I.; Vicent, C., Chiral [Mo₃S₄H₃(diphosphine)₃]⁺ Hydrido Clusters and Study of the Effect of the Metal Atom on the Kinetics of the Acid-Assisted Substitution of the Coordinated Hydride: Mo vs W. *Inorg. Chem.* **2010**, *49*, 5935-5942.

6. Cotton, F. A.; Dori, Z.; Llusar, R.; Schwotzer, W., Oxidative fragmentation of the cuboid molybdenum-sulfur Mo_4S_4 cluster core: synthesis and structures of $[Mo_3(\mu_3-S)(\mu-S)_3([9]aneN_3)_3]^{4+}$ and $\{[MoO([9]aneN_3)]_2(\mu-S)_2\}^{2+}$ ([9]aneN_3 = 1,4,7-triazacyclononane). *Inorg. Chem.* **1986**, *25*, 3654-3658.

7. (a) CrysAlis, version 171.36.24, Agilent Technologies: Santa Clara, CA, 2012; (b) R.C. Clark, J. S. Reid, *Acta Crystallogr. A* 1995, *51*, 887-897.

8. Palatinus, L.; Chapuis, G. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. *J. Appl. Crystallogr.* **2007**, *40*, 786-790.

9. (a) Sheldrick, G., A short history of SHELX. *Acta Crystallogr. A* 2008, 64, 112-122;
(b) Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallogr. C* 2015, 71, 3-8; (c) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann,

H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.

10. Brandenburg, K.; Putz, H. DIAMOND; Crystal Impact GbR: Bonn, Germany, 2005.

Gaussian 09, Revision B.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc.: Wallingford CT, 2013.

12. (a) Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B* **1986**, *33*, 8822-8824; (b) Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behaviour. *Phys. Rev. A* **1988**, *38*, 3098.

13. Andrae, D.; Häubermann, U.; Dolg, M.; Stoll, H.; Preub, H., Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta* **1990**, *77*, 123-141.

Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Kohler,
 K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G., A Set Of D-Polarization Functions For
 Pseudo-Potential Basis-Sets Of The Main-Group Elements Al-Bi And F-Type
 Polarization Functions For Zn, Cd, Hg. *Chem. Phys. Lett.* 1993, 208, 237-240.

15. (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self---Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian---Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1972**, *56*, 2257-2261. (b)

Harihanan, P. C.; Pople, J. A., Influence of polarization functions on molecular-orbital hydrogenation energies. *Theor. Chim. Acta* **1973**, *28*, 213-222.

16. (a) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V., New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. *J. Chem. Phys.* **2002**, *117*, 43-54; (b) Tomasi, J.; Mennucci, B.; Cammi, R., Quantum mechanical continuum solvation models. *Chem. Rev.* **2005**, *105*, 2999-3093.

17. (a) Gonzalez, C.; Schlegel, H. B., Reaction path following in mass-weighted internal coordinates. *J. Phys. Chem.* **1990**, *94*, 5523-5527; (b) Gonzalez, C.; Schlegel, H. B., Improved algorithms for reaction path following: Higher-order implicit algorithms. *J. Chem. Phys.* **1991**, *95*, 5853-5860.

 Harvey, J.; Himo, F.; Maseras, F.; Perrin, L., Scope and Challenge of Computational Methods for Studying Mechanism and Reactivity in Homogeneous Catalysis. *ACS Catal.* 2019, *9*, 6803-6813.

19. (a) Fernández-Ramos, A., Ellingson, B. A., Meana-Pañeda, R., Marques, J. M. C., & Truhlar, D. G. (2007). Symmetry numbers and chemical reaction rates. *Theor. Chem. Acc.*, *118*, 813-826; (b) Gilson, M. K.; Irikura, K. K., Symmetry numbers for rigid, flexible, and fluxional molecules: theory and applications. *J. Phys. Chem. B* 2010, *114* (49), 16304-16317.

20. (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104; (b) Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465.

21. Miguel, E. L. M.; Silva, P. L.; Pliego, J. R., Theoretical Prediction of pKa in Methanol: Testing SM8 and SMD Models for Carboxylic Acids, Phenols, and Amines. *J. Phys. Chem. B* **2014**, *118*, 5730-5739.

22. (a) Xu, X.; Goddard, W. A., The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. *Proc. Natl. Acad. Sci. U.S.A.* **2004,** *101*, 2673-2677; b) Xu, X.; Zhang, Q.; Muller, R. P.; Goddard, W. A., An extended hybrid density functional (X3LYP) with improved

descriptions of nonbond interactions and thermodynamic properties of molecular systems. J. Chem. Phys. 2004, 122, 014105.

23. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

24. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.

25. Besora, M.; Maseras, F., Microkinetic modeling in homogeneous catalysis. *WIREs Computational Molecular Science* **2018**, *8* (6), e1372.

26. Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., Singhal M., Xu L., MendesP. and Kummer U., COPASI: a COmplex PAthway SImulator. *Bioinformatics* 2006, *22*, 3067-3074.

27. Binstead, R. A.; Jung, B.; Zuberbühler, A. D. SPECFIT-32; Spectrum Software Associates, Chapel Hill, NC, USA, 2000.

28. Liu; Takemura, F.; Yabe, A., Solubility of Hydrogen in Liquid Methanol and Methyl Formate at 20 °C to 140 °C. *Journal of Chemical & Engineering Data* **1996**, *41*, 1141-1143.

29. K. J. Laidler, Chemical Kinetics, 3rd Ed., Harper & Row, New York, 1987.

Cartesian coordinates of the optimized species

BP86-optimized structures

Azobenzene

E(UB-P86) = -572.764064606 a. u.Free energy= -572.621449 a. u. D3(BJ) dispersion correction = -0.04339292 a. u. Cartesian

С	3.719204	-4.058289	2.327515
С	4.401878	-3.772005	1.119832
С	5.428591	-4.633292	0.672901
С	5.773018	-5.768584	1.419713
С	5.093668	-6.050039	2.617436
С	4.067927	-5.192055	3.066883
Ν	4.141581	-2.655190	0.280919
Ν	3.208630	-1.884881	0.700032
С	2.948653	-0.767789	-0.138610
С	3.631530	-0.481320	-1.346113
С	3.283249	0.652823	-2.085128
С	2.257795	1.511034	-1.635475
С	1.578322	1.229458	-0.437845
С	1.922281	0.093772	0.308580
Н	2.927675	-3.380206	2.657679
Н	3.541578	-5.415691	4.000762
Н	5.359816	-6.935706	3.203312
Н	6.569179	-6.432812	1.069281
Н	5.939568	-4.388012	-0.263614
Н	1.411181	-0.151639	1.244997
Н	0.782424	1.893883	-0.087189
Н	1.992023	2.397002	-2.221064
Н	3.809730	0.876546	-3.018913
Н	4.422924	-1.159472	-1.676436

1

E(UB-P86) = -2434.50146471 a. u.Free energy = -2434.060137 a. u. D3(BJ) dispersion correction = -0.25410335 a. u. Cartesian Mo 1.582817 -0.305185 0.107855 Mo -1.062594 -1.215597 0.116353 -0.525090 1.530888 0.109482 Mo 3.232204 1.017203 -1.283910 Cl -0.746297 -3.313829 -1.263308Cl Cl -2.500408 2.299852 -1.274115 S -0.006255 -0.000700 -1.635470 S -1.984538 0.381386 1.528341 S 1.316588 1.535937 1.521702

S	0.669718	-1.899058	1.528490
Ν	3.561767	-0.785679	1.197938
Н	4.182544	-0.097809	0.741467
Ν	2.493609	-2.042411	-1.160975
Н	1.896862	-2.830220	-0.859853
Ν	-2.467672	-2.678986	1.220021
Н	-2.182034	-3.564892	0.772532
Ν	-3.022750	-1.142806	-1.149895
Н	-3.403738	-0.228898	-0.855056
Ν	-1.088960	3.487113	1.200858
Н	-1.996817	3.683839	0.749440
Ν	0.520126	3.184339	-1.165782
Н	1.502370	3.056940	-0.871438
C	3.691198	-0.603998	2.671869
H	3.459931	0.437672	2.933045
Н	4 717946	-0 844934	2 998959
Н	2 980904	-1 269504	3 184482
C	4 028657	-2 146947	0 790362
н	3 411525	-2 885984	1 328907
Н	5 080954	-2 297378	1.094154
C	3 896548	-2 310829	-0 715353
Ч	<i>J</i> .570340	-1.587483	-0.713353
н Ц	4 205810	3 3 2 6 0 2 6	1 010542
II C	4.203810	-3.320920	-1.019342
с u	2.423422	-2.012808	-2.031317
П Ц	1.372319	-2.030929	-2.902397
П	2.948/34	-2.889/30	-3.072001
П	2.900810	-1.089317	-3.012434
	-2.3/320/	-2.800823	2.093840
H	-1.354948	-3.183830	2.959027
H	-3.094441	-3.632439	3.031802
H	-2.594193	-1.913/98	3.198926
C	-3.880654	-2.40/463	0.811073
H	-4.535205	-3.243513	1.118905
H	-4.214492	-1.501900	1.345645
C	-3.957844	-2.219115	-0.695738
H	-4.992580	-1.979113	-0.999452
Н	-3.657743	-3.145267	-1.214017
С	-2.964004	-1.109466	-2.640772
Н	-2.462532	-0.185696	-2.958769
Н	-3.985031	-1.131679	-3.061048
Н	-2.398335	-1.983070	-2.995201
С	-1.303084	3.508252	2.675861
Н	-2.092819	2.791998	2.940601
Н	-1.599197	4.519671	3.005304
Н	-0.370759	3.219246	3.183233
С	-0.142554	4.569543	0.788709
Н	0.807763	4.403300	1.323913
Н	-0.535048	5.557081	1.093646
С	0.058884	4.535472	-0.717922
Н	-0.892854	4.738369	-1.237005

Η	0.785946	5.308270	-1.025434
С	0.518830	3.110643	-2.656414
Η	1.062389	2.209859	-2.971089
Η	1.015886	4.001217	-3.079955
Н	-0.520925	3.062841	-3.010601

${\rm H}_2$

Aniline

E(UB-P86) = -287.609705694 a. u.Free energy = -287.526877 a. u. D3(BJ) dispersion correction = -0.02051285 a. u. Cartesian С 6.339621 -0.854888 -0.039651 С 5.194924 -0.549900 0.709891 С 5.063836 0.711454 1.343372 С 6.114140 1.652103 1.195127 С 7.253257 1.335029 0.442229 С 7.379920 0.080913 -0.181888 Ν 3.955752 0.996963 2.148327 Η 6.027652 2.633280 1.676427 Η 8.049715 2.080743 0.340702 Η 8.270640 -0.161090 -0.769821 Η 6.414966 -1.836108 -0.521583 Η 4.391055 -1.288260 0.812293 Η 3.748907 1.989506 2.259364 Η 3.113912 0.465707 1.926285

1,2-Diphenylhydrazine

E(UB-P86) = -573.979931784 a. u.Free energy = -573.814071 a. u. D3(BJ) dispersion correction = -0.04791857 a. u. Cartesian C 6.379511 -1.318443 0.534419 C 5 196231 -0 792181 1 083732

-			
С	5.196231	-0.792181	1.083732
С	5.081156	0.577144	1.359002
С	6.162250	1.450390	1.089512
С	7.351157	0.925237	0.535801
С	7.449379	-0.447572	0.263882
Ν	6.045265	2.809508	1.446159
Н	8.181288	1.604495	0.324012

Н	8.377521	-0.838387	-0.167804
Н	6.464079	-2.387973	0.318631
Н	4.348116	-1.451932	1.296995
Н	4.154380	0.977709	1.786520
Ν	6.924473	3.730808	0.862436
С	6.513597	4.453436	-0.278233
С	7.163507	5.672770	-0.587277
С	6.810499	6.387455	-1.738561
С	5.805327	5.910552	-2.600609
С	5.159476	4.702650	-2.290690
С	5.503209	3.972549	-1.141295
Н	7.944012	6.053617	0.081582
Н	7.322125	7.330499	-1.959355
Н	5.530118	6.474087	-3.497320
Н	4.374440	4.315971	-2.949591
Н	4.998027	3.028286	-0.919618
Н	7.390591	4.301967	1.570408
Н	5.078127	3.144393	1.526912

TS-H₂

E(UB-P86) = -2435.65184479 a. u.Imaginary Frequency = 1090.90i cm⁻¹ Free energy = -2435.197874 a. u. D3(BJ) dispersion correction = -0.26425867 a. u. Cartesian

С	-1.692333 3.354077 2.622195
Ν	-1.412396 3.344341 1.159212
С	-0.516709 4.482367 0.789488
С	-0.276519 4.482633 -0.710678
Ν	0.279257 3.169860 -1.163245
С	0.301856 3.118905 -2.654832
Mo	-0.681932 1.429300 0.060500
S	1.099368 1.512798 1.646794
Mo	1.598306 -0.156945 0.066708
Ν	2.634538 -1.821738 -1.185320
С	2.595983 -1.765247 -2.676652
Mo	-0.961158 -1.263548 0.072968
Ν	-2.867677 -1.384775 -1.225813
С	-2.766946 -1.392063 -2.715265
Cl	-2.696993 2.023766 -1.312646
S	0.019852 -0.010773 -1.703897
S	-1.954715 0.197573 1.592167
Cl	3.143172 1.377178 -1.224267
S	0.783312 -1.687382 1.650545
Ν	3.622464 -0.496136 1.158333
С	4.156681 -1.837954 0.776282
С	4.044991 -2.017331 -0.727842
Cl	-0.347613 -3.385347 -1.165497
Ν	-2.263400 -2.841936 1.168422

С	-3.683371	-2.672231	0.737706
С	-3.739776	-2.514214	-0.772328
С	3.776414	-0.264496	2.622028
С	-2.176824	-3.041513	2.642203
Н	-2.310734	3.486920	0.670440
Н	1.267357	3.103057	-0.862017
Н	4.191063	0.214786	0.669619
Н	2.077765	-2.650697	-0.915150
Н	-1.904005	-3.699088	0.717389
Н	-3.321268	-0.490703	-0.967619
Н	-2.451451	2.595141	2.854727
Н	-2.057997	4.347923	2.935419
Н	-0.768928	3.119869	3.172761
Н	0.428132	4.359880	1.346436
Н	-0.969420	5.442702	1.098672
Н	-1.227824	4.633094	-1.249351
Н	0.405148	5.305526	-0.991619
Н	0.917698	2.268578	-2.975533
Н	0.731265	4.052059	-3.061015
Н	-0.727153	2.993788	-3.022247
Н	3.498034	0.771196	2.860679
Н	4.822072	-0.440946	2.929744
Н	3.119669	-0.953356	3.174416
Н	5.212392	-1.934549	1.090785
Н	3.570635	-2.599991	1.317763
Н	4.411856	-3.015574	-1.027239
Н	4.659760	-1.261982	-1.246689
Н	1.556240	-1.867915	-3.014067
Н	3.199104	-2.585962	-3.104276
Н	2.999455	-0.797269	-3.007759
Н	-1.144152	-3.298864	2.915021
Н	-2.852081	-3.855729	2.959183
Н	-2.463570	-2.111030	3.154119
Н	-4.084745	-1.781286	1.249938
Н	-4.287348	-3.545284	1.046915
Н	-3.364422	-3.426548	-1.266581
Н	-4.779926	-2.351029	-1.106058
Н	-2.334060	-0.440970	-3.051581
Η	-3.769195	-1.514531	-3.162425
Н	-2.118754	-2.225475	-3.023552
Н	0.459327	0.512181	2.740226
Н	0.360146	-0.573307	2.739428

1-H₂

E(UB-P86) = -2435.65909815 a. u.Free energy = -2435.201913 a. u. D3(BJ) dispersion correction = -0.26367570 a.u. Cartesian C -1.726070 3.374288 2.551115

Ν	-1.442551 3.341568 1.089645
С	-0.566752 4.488962 0.703560
С	-0.323524 4.470529 -0.795571
Ν	0.255059 3.160583 -1.227243
С	0.285014 3.094042 -2.718220
Мо	-0.688180 1.417524 0.007997
S	1.134123 1.582224 1.609043
Мо	1.587083 -0.158510 0.020336
Ν	2.611005 -1.813410 -1.241210
С	2.567540 -1.744138 -2.732440
Мо	-0.971465 -1.254239 0.020777
Ν	-2.859976 -1.360058 -1.287351
С	-2.748798 -1.378699 -2.775856
Cl	-2.717047 1.976781 -1.357118
S	0.018741 -0.014608 -1.758254
Ŝ	-1.935196 0.195810 1.591919
Cl	3.111257 1.416077 -1.234255
S	0 789075 -1 771960 1 612466
Ñ	3 619461 -0 505012 1 101397
C	4 153262 -1 842344 0 705486
Č	4 026926 -2 008547 -0 798367
Cl	-0 333708 -3 386822 -1 189366
N	-2 295723 -2 831086 1 102800
C	-3 710592 -2 634146 0 670729
C	-3 756668 -2 472409 -0 838597
C	3 786253 -0 283516 2 565205
C	-2.217101 -3.051722 2.573597
н	-2.342798 3.460555 0.598052
Н	1 244261 3 115058 -0 923611
Н	4 183739 0 210294 0 613971
Н	2 060955 -2 650165 -0 979473
Н	-1 947371 -3 687949 0 642528
Н	-3 298545 -0 454690 -1 037003
Н	-2.458024 2.594140 2.799862
Н	-2.125959 4.361998 2.841565
Н	-0.796310 3.186986 3.109039
Н	0 379252 4 390860 1 263352
Н	-1 036070 5 446294 0 997182
Н	-1 276076 4 596623 -1 338446
Н	0 344537 5 300715 -1 087788
Н	0 916774 2 251417 -3 027619
Н	0.699106 4.030355 -3.133319
Н	-0 740330 2 946533 -3 087897
Н	3 509611 0 750369 2 813390
Н	4 834860 -0 461126 2 862430
H	3 135461 -0 976652 3 119205
H	5 212276 -1 938966 1 008803
H	3 574781 -2 610378 1 246569
Н	4 393869 -3 002578 -1 111296
H	4 634126 -1 246273 -1 316169

Н	1.527935	-1.851414	-3.068416
Н	3.175515	-2.556773	-3.168732
Н	2.963199	-0.770356	-3.056031
Н	-1.191676	-3.339163	2.844362
Н	-2.912214	-3.853742	2.878896
Н	-2.482072	-2.121053	3.096838
Н	-4.095191	-1.736102	1.183348
Н	-4.332249	-3.496546	0.975247
Н	-3.397322	-3.391799	-1.332188
Н	-4.791229	-2.287941	-1.178425
Н	-2.301323	-0.436053	-3.116258
Н	-3.749500	-1.491141	-3.229136
Н	-2.109343	-2.222783	-3.073670
Н	0.551717	0.916344	2.697641
Н	0.390184	-0.982058	2.700972

TS-1

E(UB-P86) = -3008.40862723 a. u.Imaginary Frequency = 534.62i cm⁻¹ Free energy = -3007.791632 a.u. D3(BJ) dispersion correction = -0.33161125 Cartesian С 4.657972 -2.779889 -0.817935 С 4.521144 -1.850337 0.240252 С 5.421226 -1.880603 1.335496 С 6.454443 -2.822808 1.343817 С 6.624723 -3.710034 0.262742 С 5.727923 -3.682775 -0.819679 Ν 3.350663 -1.048351 0.193758 Ν 3.254995 0.120816 0.670012 С 4.308524 0.979089 1.105180 С 5.488825 1.152104 0.343791 С 6.414453 2.125239 0.735535 С 6.187092 2.909231 1.883324 С 5.008754 2.738043 2.630140 С 4.052952 1.792899 2.231825 S 0.010193 -2.054713 -0.199184 Mo -1.391551 -0.459340 0.960614 S 1.095167 1.200144 0.433611 Mo -0.905334 1.698484 -0.720776 S -2.944423 0.468345 -0.575449 Mo -1.298217 -0.753603 -1.775105 Cl -2.436175 -0.011819 -3.922632 Ν 0.507146 3.515977 -1.050588 С 0.257475 4.075072 -2.410891 С -1.238804 4.203721 -2.638997 Ν -1.932258 2.897982 -2.414762 С -3.407826 3.112239 -2.413340 С 1.966366 3.439944 -0.774915 Cl -1.991965 3.492482 0.741594

S	0.574130	0.640321	-2.199508
Ν	-0.394573	-2.236670	-3.334014
С	1.072185	-2.385666	-3.528516
Ν	-2.870148	-2.477758	-1.893347
С	-4.328240	-2.163858	-1.921241
С	-1.035628	-3.573504	-3.160801
С	-2.538806	-3.408804	-3.014643
Ν	-0.587168	-1.324319	2.967938
С	-0.890845	-0.363006	4.068138
Ċ	-2.322562	0.125133	3.934529
Ň	-2.561613	0.721997	2.584613
C	-4 020620	0 982103	2 415031
Cl	-3.054176	-2.322232	1.446050
C	0.796864	-1.852563	3.103298
Н	-0.782065	-1.814033	-4.193176
Н	-2.701804	-2.961163	-0.993065
Н	-1.236822	-2.122380	3.063070
Н	-2 094071	1 643772	2 540289
H	0.092120	4 167808	-0 364658
H	-1.728386	2.264021	-3.209265
Н	1.512980	-1.405224	-3.754680
Н	1.283783	-3.088104	-4.354744
Н	1.521289	-2.775642	-2.602562
Н	-0.595340	-4.039953	-2.262682
Н	-0.811351	-4.225044	-4.026302
Н	-2.963733	-2.969421	-3.933661
Н	-3.019767	-4.391390	-2.856746
Н	-4.607306	-1.673173	-0.979762
Н	-4.918645	-3.091032	-2.037208
Н	-4.529506	-1.488859	-2.766246
Н	0.961280	-2.644131	2.359509
Н	0.956632	-2.263279	4.116481
Н	1.515360	-1.038179	2.929311
Н	-0.746513	-0.844671	5.053462
Н	-0.175076	0.472976	3.987997
Н	-2.555352	0.859014	4.727551
Н	-3.023893	-0.720423	4.041646
Н	-4.170924	1.631509	1.542852
Н	-4.428459	1.480284	3.313498
Н	-4.536943	0.023651	2.257251
Н	2.123561	3.174641	0.279340
Н	2.449810	4.411775	-0.981842
Н	2.416127	2.665328	-1.413424
Н	0.716763	3.388528	-3.142311
Н	0.739640	5.065032	-2.517608
Н	-1.671897	4.923406	-1.922872
Н	-1.444210	4.576653	-3.658727
Н	-3.912900	2.140679	-2.488354
Н	-3.702342	3.742507	-3.271689
Н	-3.692707	3.608163	-1.473619

Н	1.289823	-1.495808	-0.299661
Н	1.831477	0.557152	0.805605
Н	5.660768	0.548589	-0.551074
Н	6.923438	3.659358	2.186571
Н	4.825554	3.348936	3.519038
Н	3.125156	1.661061	2.796317
Н	5.290147	-1.201317	2.180804
Н	3.930577	-2.762459	-1.634550
Н	7.134753	-2.865825	2.199664
Н	5.848637	-4.380153	-1.653751
Н	7.446422	-4.432390	0.275033
Н	7.320308	2.274243	0.140207

TS-2A

E(UB-P86) = -3009.6348324 a.u.Imaginary frequency = 682.61i cm⁻¹ Free energy = -3008.990592 a.u. D3(BJ) dispersion correction = -0.33863220 a.u. Cartesian С 5.196868 1.336055 -0.356650 С 4.902694 0.698245 0.865987 С 0.976510 5.684277 2.006293 С 6.739792 1.896928 1.925014 С 7.040046 2.530737 0.707513 С 2.241379 -0.4293346.266866 Ν 3.760924 -0.155283 1.006487 Ν 3.503109 -1.117206 -0.047557 С 4.555912 -2.086652 -0.315989 С 4.801205 -3.093328 0.636701 С 5.793368 -4.051919 0.383925 С 6.526518 -4.014583 -0.815699 С 6.268617 -3.011798 -1.764446 С 5.286529 -2.038490 -1.516732 S 0.901497 0.127367 -1.902930 Mo -0.677837 -1.521595 -1.269926 S -2.586166 -0.481843 -0.304846 Mo -0.828570 1.093038 -0.597043 Cl -2.284973 2.831159 0.570681 -0.955609 -0.819213 Mo 1.384665 Cl -2.250298 -2.877179 2.139877 S 0.767111 -2.287379 0.507940 Ν 0.321350 -2.427784 2.779028 С -3.898874 0.232065 2.544674 Ν -0.106469 -1.185325 3.523755 С 1.341443 -1.403806 3.777739 S 1.070578 1.398338 0.549305 С -2.139954 0.010763 4.212757 С -0.647797 -0.144322 4.445778 Ν -1.968804 1.786824 -2.488588

С	-3.455903	1.693012	-2.550387
Ν	0.225454	3.086292	-1.180241
С	1.658884	3.335194	-0.871473
С	-1.542236	3.164714	-2.884633
С	-0.063037	3.377395	-2.614282
Ν	0.506968	-3.042185	-2.588290
С	1.968889	-2.937720	-2.824229
Ν	-1.897701	-3.514395	-1.099216
С	-3.386994	-3.502188	-1.172393
Cl	-1.884916	-1.386090	-3.502653
С	0.144566	-4.430453	-2.178115
C	-1.363541	-4.544383	-2.040542
H	0 033748	-2 849705	-3 486577
Н	-1 658357	-3 786200	-0 128493
Н	-0.596373	-2 071522	3 730495
Н	-2.168475	1 305698	2 590681
Н	-0 335964	3 740789	-0.610930
Н	-1 599133	1 108624	-3 178823
Н	2 207401	-1 933217	-3 200091
H	2.207401	-3 693379	-3 560217
H	2.270415	-3.112175	-1.878798
н Ц	0.651209	-1 638130	-1.070770
н Ц	0.031209	-4.038130	-1.220323
11 Ц	1 847258	-3.101270	-2.924007
П U	-1.64/556	-4.309309	-3.01/114
П U	-1.044103	-3.338703	-1.702089
П	-3./8392/	-2.929920	-0.324201
П	-3./814/9	-4.555/50	-1.129927
Н	-3.691922	-3.028593	-2.11/380
H	1.69/661	-2.2415/0	3.162363
H	1.519008	-1.630/95	4.844382
H	1.895018	-0.490030	3.512919
H	-0.45/282	-0.423271	5.499089
H	-0.109837	0.797365	4.240922
H	-2.553884	0.797597	4.869216
H	-2.660895	-0.933291	4.448482
H	-4.137796	0.692587	1.577169
Н	-4.446962	0.762618	3.344438
Н	-4.193388	-0.827729	2.533743
Н	1.816650	3.259669	0.213325
Н	1.960171	4.340984	-1.215664
Н	2.273916	2.577063	-1.378016
Н	0.556521	2.697116	-3.223286
Н	0.219267	4.417710	-2.863511
Н	-2.143123	3.871131	-2.286009
Н	-1.771310	3.345574	-3.950391
Н	-3.752771	0.637723	-2.497176
Н	-3.827474	2.128347	-3.495563
Н	-3.881015	2.242196	-1.697216
Н	2.211826	-1.645709	0.254039
Н	1.811945	0.588901	1.021276

Н	4.596838	1.138859	-1.250451
Н	7.870844	3.239661	0.643850
Н	7.337926	2.105359	2.817726
Н	5.465330	0.472415	2.954170
Н	4.219927	-3.131383	1.563582
Н	5.093307	-1.249283	-2.250131
Н	5.987066	-4.834747	1.123425
Н	6.838230	-2.976067	-2.697973
Н	7.296733	-4.767111	-1.009578
Н	6.490899	2.725916	-1.384903
Н	3.229234	-0.579961	-0.889363
Н	3.787375	-0.670258	1.892825

I-2

E(UB-P86) = -3009.64012052 a.u.Free energy = -3008.994303 a.u. D3(BJ) dispersion correction = -0.33472550 a.u. Cartesian

4 ((0 0 0 0 1 0 0 0 7 0 1 0 1 0 2 (0
4.660099 -1.2880/2 -1.212369
3.693927 -1.520257 -0.221449
3.661940 -2.708424 0.527134
4.627315 -3.692332 0.266188
5.603187 -3.480282 -0.723483
5.618348 -2.283957 -1.460004
2.691037 -0.484141 0.077042
3.000792 0.450586 1.192859
4.204399 1.213691 1.000146
4.259337 2.183117 -0.022650
5.405965 2.977201 -0.163695
6.484654 2.833680 0.727456
6.417681 1.880274 1.756009
5.288128 1.056523 1.885387
-0.220810 -1.662385 0.615541
-2.011218 -0.295889 1.440077
-0.550318 1.619601 1.442106
-1.925230 1.613592 -0.538766
-0.948760 3.648181 -1.123837
-1.196523 3.898649 -2.572521
-2.655408 3.618855 -2.889536
-3.038851 2.233263 -2.482327
-4.518176 2.082299 -2.582971
-0.114739 0.696825 -1.773166
-1.640237 -1.015388 -1.179218
-2.798190 -0.949547 -3.470869
-3.618247 -0.033010 -0.287256
-0.375604 -2.502566 -2.459133
-0.684680 -3.897293 -2.031185
-2.190133 -4.076145 -1.927672
-2.796212 -3.050156 -1.028216

Cl	-3.484335	3.314785	0.582921
Cl	-3.276662	-2.387838	2.209593
Ν	-3.542367	0.804028	2.815512
С	-3.250525	0.520720	4.252672
С	-1.754144	0.417582	4.494366
Ν	-1.170599	-0.614800	3.589383
С	0.283087	-0.777497	3.851229
С	-5.006204	0.661528	2.569734
С	0.455416	3.978525	-0.766676
С	1.080134	-2.339020	-2.691653
Н	-0.853274	-2.339832	-3.361472
Н	-2.572802	-3.284275	-0.044129
Н	-1.631860	-1.514925	3.801125
Н	-3.314656	1.793081	2.612533
Н	-1.566809	4.279165	-0.587216
Н	-2.624567	1.557857	-3.148451
Н	1 278323	-1 325813	-3 068272
Н	1 444849	-3 083050	-3 423193
Н	1 616618	-2 489654	-1 743367
Н	-0 193708	-4 063275	-1 057176
Н	-0 271428	-4 625762	-2 754632
Н	-2 654363	-3 946690	-2 920857
Н	-2 433365	-5 094877	-1 573720
Н	-4 725451	-2 519829	-0 328104
Н	-4 637290	-4 144187	-1 088295
Н	-4 573671	-2 663129	-2 113634
Н	0.671920	-1 605842	3 242841
Н	0.465792	-0.986206	4 921084
Н	0.805144	0 150955	3 573693
Н	-1 560483	0 160759	5 553131
Н	-1 247456	1 374508	4 279638
Н	-3 692869	1 299677	4 900661
Н	-3 739738	-0 438070	4 497268
Н	-5 247889	1 090344	1 588283
Н	-5 581957	1 191803	3 350596
Н	-5 265525	-0 407489	2 580090
Н	0.582168	3 906791	0 322559
Н	0 711918	5 000754	-1 099467
Н	1 127558	3 257701	-1 255810
Н	-0 528207	3 232214	-3 144520
Н	-0.948203	4 944578	-2.835123
Н	-3 303581	4 311078	-2.324175
Н	-2 854567	3 774960	-3 965557
Н	-4 776511	1 017854	-2 512622
Н	-4 881505	2 482405	-3 547366
H	-4 987871	2.402405	-1 754203
H	1 709205	-0 902070	0 320656
H	0 682279	1 113795	1 009774
H	3 407004	2 327099	-0 694863
H	7 371661	3 465144	0.620430
11	1.5/1001	J. 103144	0.020730

Η	7.252660	1.760962	2.453085
Н	5.243950	0.298265	2.674460
Н	2.893209	-2.867631	1.289773
Η	4.667030	-0.353600	-1.780799
Н	4.612251	-4.625802	0.835778
Н	6.376663	-2.120313	-2.230829
Η	6.352752	-4.251790	-0.922532
Н	5.447490	3.724265	-0.962101
Н	2.476069	0.111047	-0.747026
Н	3.086301	-0.150934	2.022491

TS-2B

E(UB-P86) = -3009.63064595 a.u.Imaginary frequency = 290.1024i cm⁻¹ Free energy = -3008.990202 a.u. D3(BJ) dispersion correction = -0.33087970 a.u. Cartesian

$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	5.719201	-1.509037	-1.216327
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	4.700874	-1.840404	-0.294333
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	4.724228	-3.074422	0.397666
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	5.754118	-3.984191	0.136845
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	6.764664	-3.665934	-0.791540
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	6.745692	-2.431186	-1.462523
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ν	3.694676	-0.893983	0.010358
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ν	4.113096	0.355253	1.401447
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	5.401993	0.835328	1.198931
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	5.573260	1.982843	0.370579
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	6.839622	2.545429	0.204919
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	7.955977	1.984967	0.861032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	7.803064	0.848339	1.676710
S 0.632898 -2.141685 0.5 Mo -1.133431 -0.775860 1 S 0.327280 1.146349 1.3 Mo -1.084367 1.111157 -0 N -0.114213 3.130041 -1.7 C -0.391203 3.353114 -2.7 C -1.855960 3.067120 -3.4 N -2.231461 1.688871 -2.7 C -3.712216 1.534592 -2.4 S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 CI -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	С	6.543137	0.260238	1.830479
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S	0.632898	-2.141685	0.554313
S 0.327280 1.146349 1.3 Mo -1.084367 1.111157 -0 N -0.114213 3.130041 -1.1 C -0.391203 3.353114 -2.2 C -1.855960 3.067120 -3.4 N -2.231461 1.688871 -2.2 C -3.712216 1.534592 -2.4 S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2.4 C 0.184831 -4.419926 -2.4 C -1.320347 -4.604842 -1	Mo	-1.133431	-0.775860	1.382924
Mo -1.084367 1.111157 -0 N -0.114213 3.130041 -1.1 C -0.391203 3.353114 -2.1 C -1.855960 3.067120 -3.1 N -2.231461 1.688871 -2.2 C -3.712216 1.534592 -2.4 S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	S	0.327280	1.146349	1.326681
N -0.114213 3.130041 -1. C -0.391203 3.353114 -2. C -1.855960 3.067120 -3. N -2.231461 1.688871 -2. C -3.712216 1.534592 -2. S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	Mo	-1.084367	1.111157	-0.633054
C -0.391203 3.353114 -2.2 C -1.855960 3.067120 -3.0 N -2.231461 1.688871 -2.2 C -3.712216 1.534592 -2.0 S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2.0 C -1.320347 -4.604842 -1.	Ν	-0.114213	3.130041	-1.275285
C -1.855960 3.067120 -3.0 N -2.231461 1.688871 -2. C -3.712216 1.534592 -2.0 S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2.0 C -1.320347 -4.604842 -1.	С	-0.391203	3.353114	-2.723385
N -2.231461 1.688871 -2. C -3.712216 1.534592 -2. S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	С	-1.855960	3.067120	-3.007324
C -3.712216 1.534592 -2.4 S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2.4 C 0.184831 -4.419926 -2.4 C -1.320347 -4.604842 -1.	Ν	-2.231461	1.688871	-2.568316
S 0.691009 0.176609 -1.8 Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	С	-3.712216	1.534592	-2.640211
Mo -0.790964 -1.538900 -1 Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2.7 C 0.184831 -4.419926 -2.9 C -1.320347 -4.604842 -1.	S	0.691009	0.176609	-1.881505
Cl -1.969121 -1.522703 -3. S -2.762509 -0.542103 -0. N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	Мо	-0.790964	-1.538900	-1.230816
S -2.762509 -0.542103 -0.7 N 0.492928 -3.026776 -2.7 C 0.184831 -4.419926 -2.7 C -1.320347 -4.604842 -1.7	Cl	-1.969121	-1.522703	-3.513718
N 0.492928 -3.026776 -2. C 0.184831 -4.419926 -2. C -1.320347 -4.604842 -1.	S	-2.762509	-0.542103	-0.327550
C 0.184831 -4.419926 -2.9 C -1.320347 -4.604842 -1.	Ν	0.492928	-3.026776	-2.480760
C -1.320347 -4.604842 -1.	С	0.184831	-4.419926	-2.045129
	С	-1.320347	-4.604842	-1.943879
N -1.930748 -3.578235 -1.	Ν	-1.930748	-3.578235	-1.047940
C 3 /15/20 3 638003 1	С	-3.415429	-3.638903	-1.154689
Cl	-2.617072	2.828733	0.487647	
----	-----------	------------------	-----------	
Cl	-2.400508	-2.844428	2.202224	
Ν	-2.633720	0.353854	2.770088	
С	-2.316968	0.090087	4.205714	
С	-0.816659	-0.017404	4.421086	
Ν	-0.255153	-1.066101	3.520574	
С	1.202817	-1.233985	3.756969	
С	-4.102089	0.213791	2.550612	
С	1.299521	3.459615	-0.952681	
С	1.954393	-2.853521	-2.676632	
Н	0.035078	-2.877856	-3.395397	
Н	-1.697384	-3.802626	-0.064405	
Н	-0.716873	-1.960270	3.755231	
Н	-2.406353	1.339007	2.549259	
Н	-0.717547	3.775330	-0.739187	
Н	-1 828460	1 001748	-3 229117	
Н	2 153263	-1 846306	-3 068070	
Н	2 344522	-3 609911	-3 381829	
Н	2 463846	-2.971575	-1 709439	
Н	0.673331	-4 577901	-1 068491	
Н	0.603763	-5 151773	-2 761756	
Н	-1 784362	-4 480058	-2.937625	
Н	-1 559292	-5 623385	-1 586398	
Н	-3 857466	-3 049453	-0.341031	
Н	-3 764858	-4 684869	-1 077494	
Н	-3 718616	-3 218906	-2.125295	
Н	1 572267	-2.080308	3 161764	
Н	1 405242	-1 418268	4 827726	
Н	1 728029	-0.318247	3 445320	
Н	-0.604776	-0.260293	5 479630	
Н	-0 309113	0.933700	4 183857	
Н	-2 743337	0.880605	4 850360	
Н	-2 806270	-0.862547	4 473092	
Н	-4 357706	0.628227	1 566524	
Н	-4 662890	0.758706	3 332229	
Н	-4 365085	-0.853883	2 582041	
Н	1 441793	3 426898	0 136475	
Н	1 558191	4 467511	-1 325193	
Н	1 959929	2 716364	-1 424314	
Н	0.266235	2 677110	-3 296589	
Н	-0 149054	4 394082	-3 009933	
Н	-2 493861	3 769115	-2 442401	
н	-2.075251	3 203710	-4 082114	
н	-3 967540	0.471019	-2 548233	
H	-4 093094	1 918543	-3 604325	
H	-4.168569	2 097711	-1.812436	
Н	2 776223	_1 277570	0 349863	
Н	1 539667	0.631165	0.866847	
Н	4 603850	2 <u>4</u> 19661	-0 113103	
Н	8 944667	2.119001	0 735308	
**	0.717004	<u></u>	0.,55500	

Н	8.670988	0.416310	2.183987
Н	6.417345	-0.626356	2.461557
Н	3.933435	-3.312418	1.116302
Н	5.692555	-0.550371	-1.743075
Н	5.769618	-4.945814	0.657848
Н	7.530459	-2.184563	-2.183306
Н	7.566060	-4.383283	-0.991354
Н	6.964463	3.431086	-0.425312
Н	3.494706	-0.206379	-0.728573
Н	4.150034	-0.387055	2.119342

TS for the elimination of HCl from 1

E(UB-P86) = -2434.437395 a.u.		
Imaginary frequency = $335.3175i \text{ cm}^{-1}$		
Free energy	gy = -2434.005931 a.u.	
D3(BJ) di	spersion correction = -0.244247 a.u.	
Cartesian		
S	-1.08653600 -1.57007300 -1.58495500	
Mo	0.78463800 -1.34244900 -0.06276400)
S	1.88947200 0.17148300 -1.52943000	
Mo	0.64738800 1.48217900 -0.07901200)
S	-0.10147300 0.03254400 1.66824100	
Mo	-1.70870200 0.04434700 -0.09190100)
Cl	-3.08605300 1.67243900 1.36325100	
Ν	1.64341800 3.29756500 -1.09462400	
С	1.07191000 4.55273300 -0.51510600	
С	1.07454700 4.44683400 0.99899200	
Ν	0.36394200 3.20387400 1.44376700	
С	0.59323900 2.98701200 2.90585400	
С	1.71823000 3.38977500 -2.58376100	
Cl	4.94206100 0.39863500 0.54727000	
S	-1.14060400 1.94442100 -1.38392100	
Ν	-3.73507400 -0.00201400 -1.17862000	
С	-3.84334000 0.26579700 -2.64072800	
Ν	-2.92358400 -1.47984700 1.13654500	
С	-2.86897700 -1.47777000 2.62711000	
С	-4.43779100 -1.27274500 -0.82162800	
С	-4.34676000 -1.50071800 0.67803900	
Ν	1.77022100 -3.03776000 -1.26450500	
С	3.16231400 -3.18386300 -0.75767100	
С	3.13302000 -3.03446100 0.75319200	
Ν	2.32604500 -1.85839400 1.13170300	
С	2.52075200 -1.58366900 2.55922500	
Cl	-0.33622900 -3.46009400 1.02840500	
С	1.72861900 -3.09236900 -2.75109700	
Н	-4.21289400 0.76663500 -0.68003400	
Н	-2.44346600 -2.35077900 0.83561900	
Н	1.21803900 -3.83232800 -0.90098100	
Н	3.75033100 -0.03585000 0.18825700	
Н	2.61762800 3.22943000 -0.75954900	

Н	-0.65319600	3.34872500	1.32141800
Η	-3.42550500	1.25688300	-2.86416700
Н	-4.90057500	0.23430400	-2.95809500
Н	-3.27472600	-0.49727400	-3.19280700
Н	-3.95323200	-2.08992700	-1.38192500
Н	-5.49768200	-1.22439300	-1.13265500
Н	-4.86956100	-0.69331000	1.21842200
Н	-4.82243500	-2.45917900	0.95271100
Н	-1.84166800	-1.69578400	2.94746800
Н	-3.54560400	-2.25284600	3.02870000
Н	-3.17555300	-0.48831100	2.99571900
Н	0.68361000	-3.08946200	-3.08949400
Н	2.23095400	-4.00613500	-3.11545400
Н	2.24087200	-2.20903600	-3.16105300
Н	3.59177600	-4.15730000	-1.05831800
Н	3.76496000	-2.38277300	-1.21815000
Н	4.16449900	-2.92942600	1.14127900
Н	2.69862700	-3.94011900	1.23045600
Н	2.05206300	-0.63530300	2.85015700
Н	3.60128600	-1.53205000	2.79365100
Н	2.08274000	-2.39813800	3.17315900
Н	2.21402300	2.49317900	-2.97929900
Н	2.28405400	4.28939300	-2.88120100
Н	0.69857100	3.44736400	-2.99172600
Н	0.04864900	4.66711700	-0.91058000
Н	1.66193500	5.43113100	-0.83399100
Н	2.10912700	4.38261000	1.37811300
Н	0.60759800	5.33795800	1.45366000
Н	-0.08813100	2.20872900	3.27161500
Н	0.41071500	3.92392700	3.46009700
Н	1.63322100	2.66714400	3.06829200

Complex between HCl and the cluster resulting from the HCl elimination

E(UB-P86)	= -2434.43947	'7 a.u.	
Free energy	v = -2434.00882	9 a.u.	
D3(BJ) disp	persion correction	n = -0.243658	3 a.u.
Cartesian			
S	-1.03862900	-1.56778100	-1.60029100
Мо	0.76594100	-1.36791800	0.01325600
S	1.95894600	0.14193900	-1.41646200
Мо	0.65599800	1.46738200	-0.00928100
S	-0.18799300	0.01954800	1.69575600
Мо	-1.70920000	0.05399600	-0.13884600
Cl	-3.12603300	1.70817300	1.25195900
N	1.69333000	3.28843100	-0.98746100
С	1.09778900	4.53755300	-0.41925700
С	1.05620000	4.42168100	1.09367800
N	0.33629500	3.17363300	1.51384900
С	0.54606500	2.94077700	2.97671300
С	1.81736600	3.38451300	-2.47281600

Cl	5.02071400	0.39307500	0.09957400
S	-1.05653100	1.94707800	-1.39831700
N	-3.68226900	0.04708200	-1.31919100
С	-3.71400400	0.32005200	-2.78389700
N	-3 00511100	-1 44570400	1 02915500
C	-3 01976800	-1 43945200	2 52113300
C	-4 42366300	-1 21112300	-0 99828300
C	-4 40589300	-1 44380100	0.50395000
N	1 78464800	-3 07356500	-1 14526400
C	3 15603900	-3 22654700	-0 58709700
C C	3.07572800	-3 05224000	0.91947600
N	2 25914600	-1 86869800	1 24887400
C	2.23714000	-1.49806200	2 64801500
Cl	-0.42770100	-3 46054900	1 05003500
C	1 79996300	-3 12720900	-2 63302000
н	-1 16712700	0.82/38600	-0.8/133500
и Ц	-4.10/12/00	-2 32519800	0.75308100
и П	1 21//2000	3 86500700	0.75508100
и П	3 70776600	0.28133200	0.47200200
н Ц	2 65608600	3 22380000	-0.47200200
и Ц	-0.67918000	3 32103800	1 37721200
и Ц	-3.27/37000	1 30721700	-2 982/13700
и Ц	-4 75407600	0.30209100	-2.78243700
и Ц	-4.75407000 -3.12622700	-0.44734200	-3 30023000
и И	-3.02803100	-0.44734200	-3.30723700 -1.53729300
и И	-5.72005100	-1.1/366200	-1.35682200
и Ц	-1 9/205200	-0.63064400	1 02235700
и Ц	-4.94203200	-0.03004400 -2.39611400	0.75260100
и Ц	-2.01100000	-1.66825600	2 89008900
Н	-3 72394900	-2 20465700	2.89008900
н	-3 33049800	-0.44462800	2.8736800
н	0 76911300	-3 11509400	-3 01223200
н	2 30891600	-4 04459500	-2 97858100
и И	2.30071000	-7.24760500	-3.0215/300
и И	3 58556700	-2.24700300	-0.85880100
н	3 78330200	-7.43640900	-1.03251300
н	4 09300100	-2 94212800	1 34021600
н	2 62041300	-3 94660100	1 39819000
н	1 95344700	-0.57798000	2 91333400
н	3 57044900	-0.37790000 -1.34471200	2.91555400
Н	2 15215000	-2 31220000	3 32355100
н	2 31979000	2 48528000	-2 85377400
н	2.31779000	4 28148400	-2.85577400
н	0.81226000	3 44905700	-2.74728500
и Ц	0.08649500	<i>J</i> .44905700 <i>A</i> 64005700	-2.91403700 -0.84487200
н Ц	1 60206300	4.04993700 5.42073000	-0.34487200
Н	2 08000500	<u>4</u> 35773300	1 50112200
Н	0 5730/1000	5 30820300	1 54083700
Н	-0 1456/300	2 16400700	3 37705300
Н	0 36474300	3 87445700	3 53672900
**	0.00171500	5.07775700	5.55012700

E(UB-P86) = -1973.601391 a.u.		
Free energy = -1973.173645 a.u.		
D3(BJ) di	spersion correction = -0.233736 a.u.	
Cartesian	-	
S	0.648930 -1.728146 -1.556907	
Mo	1.551581 -0.218217 -0.022169	
S	1.474340 1.706079 -1.361239	
Мо	-0.507737 1.712494 -0.124088	
S	-0.086461 0.133728 1.643801	
Mo	-1.093211 -1.049944 -0.181056	
Cl	-3.288816 -0.998037 1.070544	
Ν	-0.873209 3.637858 -0.682586	
С	-2.243785 4.125815 -0.452423	
С	-2.633752 3.794156 0.975797	
Ν	-2.298883 2.365996 1.255771	
С	-2.300505 2.123184 2.727085	
С	-0.202787 4.437715 -1.713867	
S	-1.878127 0.687874 -1.613839	
Ν	-2.330103 -2.569936 -1.394102	
С	-2.478381 -2.444834 -2.871322	
Ν	-0.854486 -3.006782 1.042607	
С	-0.924526 -2.984858 2.532098	
С	-1.898418 -3.950353 -1.014791	
С	-1.772580 -4.056511 0.497991	
Ν	3.616690 -0.584747 -1.020493	
С	4.618030 0.389777 -0.488948	
С	4.463924 0.531834 1.016732	
Ν	3.067597 0.947147 1.353471	
С	2.873257 0.988821 2.831138	
Cl	2.437666 -2.148400 1.363689	
С	3.744380 -0.706360 -2.500380	
Н	-3.258645 -2.410758 -0.970574	
Н	0.120289 -3.254643 0.801637	
Н	3.839148 -1.505905 -0.609874	
Н	2.948372 1.908512 1.005555	
Н	-3.043300 1.768200 0.860299	
Н	-2.921614 -1.468690 -3.111786	
Н	-3.127446 -3.247593 -3.263518	
Н	-1.487537 -2.514840 -3.344621	
Н	-0.934325 -4.147860 -1.513506	
Н	-2.628834 -4.695594 -1.380950	
Н	-2.756138 -3.898660 0.972116	
Н	-1.416171 -5.062772 0.782573	
Н	-0.100964 -2.369842 2.918412	
Н	-0.834116 -4.009607 2.934173	
Н	-1.887904 -2.550172 2.835573	

Cluster resulting from the HCl elimination

Н

Η	3.095963	-1.517947	-2.857714
Н	4.790767	-0.922766	-2.779963
Н	3.431341	0.237417	-2.971399
Н	5.643676	0.058210	-0.734266
Н	4.445848	1.354929	-0.996105
Н	5.187332	1.270980	1.406195
Н	4.651100	-0.430420	1.521221
Н	1.921180	1.487663	3.058516
Н	3.699581	1.541471	3.312391
Н	2.844489	-0.041324	3.214810
Н	0.869191	4.198091	-1.759706
Н	-0.314435	5.518734	-1.496793
Н	-0.642794	4.251362	-2.716746
Н	-2.949877	3.661973	-1.176857
Н	-2.299700	5.221111	-0.601161
Н	-2.032793	4.406040	1.669449
Н	-3.703223	3.987298	1.174227
Н	-2.272921	1.043183	2.921898
Н	-3.215010	2.548295	3.178264
Н	-1.418855	2.603785	3.176993

HCl

TS for the hydrogenation of the Cluster resulting from the HCl elimination

E(UB-P86) = -1974.749595 a.u.Imaginary frequency = 908.3501i cm⁻¹ Free energy = -1974.307682 a.u. D3(BJ) dispersion correction = -0.241570 a.u. Cartesian S -1.18330200 -1.93330900 -1.29728500 Mo 0.74342300 -1.57995600 -0.04243900 S 2.01125500 -0.37488400 -1.53870000 Mo 0.90758100 1.19856300 -0.17240700 S 0.04714400 -0.04249200 1.66710200 Mo -1.59792500 -0.00693700 -0.04002700 Cl -2.80153800 1.79774400 1.25815500 Ν 2.86329300 -1.39290100 1.94688900 С 1.33558500 4.17984000 -1.03463500 С 1.17048800 4.28310500 0.47319900 Ν 0.38038900 3.12963900 1.00698500 С 0.39829100 3.14398200 2.49952100 С 2.11766900 2.74685900 -2.86899600 Cl 3.06234400 1.46520400 1.14577900 S -0.88257500 1.56782300 -1.60351800

N	-3.65325900	-0.00810300	-1.10431800
С	-3.74792600	0.05553000	-2.59137000
N	-2.94940100	-1.35119700	1.34351600
С	-2.82015300	-1.28134000	2.82771000
С	-4.49850700	-1.12325500	-0.57676800
С	-4.38104900	-1.19891300	0.93690800
Ν	1.57505500	-3.46271900	-0.76324600
С	3.00979600	-3.55778300	-0.50644400
С	3.25736100	-3.25829400	0.96477600
Ν	2.56613100	-1.98440000	1.35078700
С	2.43464800	-1.90325100	2.83517800
С	1.17042200	-4.10121800	-2.01248200
Н	-4.04008900	0.87218400	-0.72818300
Н	-2.65155000	-2.29599700	1.06148400
Н	0.62391900	-3.47719900	0.51257700
Н	3.15396700	-1.18182000	1.06545900
Н	2.88688700	2.83254700	-0.96589000
Н	-0.60848200	3.24992800	0.73116300
Н	-3.22946400	0.95357300	-2.95406400
Н	-4.80552800	0.09044300	-2.90686400
Н	-3.27015500	-0.83572800	-3.02487900
Н	-4.15086800	-2.05714500	-1.05092400
Н	-5.55480700	-0.97194100	-0.86591700
Н	-4.75377500	-0.27165600	1.40225800
Н	-4.98078800	-2.04202300	1.32471100
Н	-1.80804100	-1.59249900	3.11967400
Н	-3.55922900	-1.94638400	3.30823500
Н	-2.99129200	-0.24414400	3.14998300
Н	0.07464400	-4.21486700	-2.04928000
Н	1.62212900	-5.11099200	-2.08985500
Н	1.47977800	-3.52209500	-2.91066800
Н	3.37735800	-4.58105200	-0.72721700
Н	3.59536700	-2.85852700	-1.14899300
Н	4.33317300	-3.19065100	1.20368600
Н	2.81634200	-4.05898900	1.58281100
Н	2.13576100	-0.88715100	3.12376900
Н	3.39952300	-2.14677800	3.31328400
Н	1.67039400	-2.61968900	3.17231300
Н	2.67556900	1.82931200	-3.10059900
Н	2.66757000	3.62015700	-3.26179500
Н	1.12759600	2.69467500	-3.34584700
Н	0.36164000	4.24592000	-1.54881800
Н	1.96846500	5.00943100	-1.40011300
Н	2.15456000	4.25539400	0.97051400
Н	0.68138500	5.23703300	0.73999100
H	-0.36155700	2.44492100	2.87308200
H	0.17098000	4.15894900	2.87072900
Н	1.39440800	2.83543800	2.84824200
Н	0.11048900	-3.07416700	1.13681700

 $[Mo_3S_4Cl_2H(dmen)_3]^+$ E(UB-P86) = -1974.806915 a.u. Free energy = -1974.357706 a.u. D3(BJ) dispersion correction = -0.240960 a.u. Cartesian

S	1.492148597734	1.473134903804	1.458395831302
Mo	1.550038996575	-0.430292468425	0.143317714166
S	0.538580539341	-2.085730907745	1.511871620141
Mo	-1.134296824125	-1.204169790369	0.137391860571
S	-0.002575527691	-0.046886903256	-1.609917567206
Mo	-0.442410805081	1.511376101394	0.132226169521
Cl	-2.365532537035	2.388692260206	-1.264631814566
Ν	-2.654951867643	-2.569868903165	1.210956137273
С	-4.041528287531	-2.175674000170	0.813975695233
С	-4.110166366368	-1.951319863301	-0.688693248515
Ν	-3.095971296321	-0.945589256804	-1.130640165700
С	-3.050321422863	-0.889187052110	-2.619662576099
С	-2.570586647624	-2.788655281334	2.682145946371
Cl	-1.016292007238	-3.288053509324	-1.306501690242
S	-1.939498169477	0.453007329797	1.575089866728
Ν	-0.910669278321	3.495284827288	1.225835655158
С	-1.071407560456	3.528984912733	2.707374356193
Ν	0.677265259166	3.138633305308	-1.147867891442
С	0.730412523747	3.036395660804	-2.633815905376
С	0.041900985890	4.558031256570	0.779346967161
С	0.223362948922	4.499751347148	-0.729256508244
Ν	3.540482588437	-0.932980286426	1.207789702554
С	4.001861737396	-2.282664835882	0.760068091705
С	3.832830627245	-2.412578834280	-0.743320068796
Ν	2.410666687732	-2.179961443824	-1.138349483319
С	2.298835132842	-2.141022832902	-2.623954049099
С	3.638269044097	-0.817442331769	2.691966192788
Н	-1.828332597592	3.712559074966	0.805225092599
Н	1.639901121075	3.015094160092	-0.804762982512
Н	4.189536087898	-0.242685186901	0.807314655649
Н	1.849802168856	-2.986031511520	-0.820040530949
Н	-2.442614819221	-3.467105708038	0.745661933892
Н	-3.397283816561	-0.008803894097	-0.814441623098
Н	-1.870301330024	2.835697030421	3.004275775043
Н	-1.326819659058	4.549499362270	3.043550558538
Н	-0.129092696908	3.216216705652	3.181375754237
Н	0.998555493021	4.387698230041	1.302691730774
Н	-0.331695769472	5.555542782988	1.075839707113
Н	-0.732312973406	4.695942731930	-1.242754091804
Н	0.951731460081	5.264121318125	-1.055569449738
Н	1.254720990815	2.112443677965	-2.913350630526
Н	1.266140854967	3.903563332271	-3.059222086794
Н	-0.296666609219	3.007916427999	-3.025603920435

Н	3.409765176653	0.213599348030	2.994225309677
Н	4.654584811947	-1.083885317102	3.032612380327
Н	2.907209358153	-1.496611323794	3.155204724128
Н	5.059806586526	-2.442121127839	1.039130151402
Н	3.393417925132	-3.033031011354	1.293129809785
Н	4.168542717458	-3.409607891779	-1.082519679360
Н	4.442052245683	-1.654795078697	-1.266067691502
Н	1.237561588852	-2.155365765542	-2.905456100249
Н	2.805706441189	-3.016127522270	-3.068868998772
Н	2.766270232321	-1.216293777675	-2.993358741441
Н	-1.579224840866	-3.190307455786	2.933000160175
Н	-3.350629673083	-3.497406303890	3.012296928091
Н	-2.708560686047	-1.827271617330	3.199047702777
Н	-4.296989235476	-1.255873174609	1.367210263804
Н	-4.762823890534	-2.960214108834	1.108972861171
Н	-3.886865692639	-2.889172128919	-1.224600052660
Н	-5.125874739218	-1.627262691042	-0.979687607803
Н	-2.459979744716	-0.015986960652	-2.927298795781
Н	-4.071927694713	-0.799184430798	-3.030847229559
Н	-2.580057003243	-1.808942908288	-2.996030861203
Н	2.697092260059	0.230438330017	-0.991816633234

 $[Mo_3S_4Cl_2(dmen)_3]^{2+}$ E(UB-P86) = -1974.057058 a.u. Free energy = -1973.612998 a.u. D3(BJ) dispersion correction = -0.235985 a.u. Cartesian

С	0.085184 -0.452842 -0.038796
Ν	0.037323 -0.202551 1.435664
Mo	1.957206 -0.269442 2.692554
S	2.821188 1.259520 1.179055
Mo	4.520413 0.877194 2.744976
Ν	5.761159 2.338475 1.454512
С	5.987855 2.069266 0.003611
С	-0.999131 -1.063978 2.088553
С	-1.057773 -0.727987 3.566700
Ν	0.304394 -0.853045 4.188596
С	0.287591 -0.268050 5.567830
S	2.398159 -2.215534 1.647953
Mo	4.174356 -1.852182 3.175357
Ν	5.097233 -3.825195 2.419730
С	5.037033 -4.208286 0.978508
S	3.393265 -0.103835 4.594799
Ν	5.959687 -2.168375 4.603250
С	6.537929 -3.536699 4.402266
С	6.498959 -3.930776 2.935384
Cl	3.123003 -3.475330 4.771127
S	5.623128 -0.858746 1.652281
С	5.817313 -1.880312 6.062778

Ν	4.001953	2.989064	3.639423
С	4.983123	3.994649	3.122681
С	5.269150	3.739195	1.652343
Cl	6.492674	1.214764	4.239858
С	3.803796	3.157601	5.109313
Η	-0.272824	0.776055	1.547096
Η	0.515830	-1.859977	4.295480
Η	4.526093	-4.505656	2.946727
Н	6.630428	-1.472169	4.237594
Η	6.675372	2.266944	1.928867
Η	3.097272	3.191641	3.190956
Η	0.814370	0.225838	-0.501079
Η	-0.910538	-0.283926	-0.482038
Н	0.392317	-1.492678	-0.219482
Н	-0.716055	-2.116633	1.920471
Н	-1.986812	-0.897741	1.622801
Н	-1.386919	0.314633	3.715079
Н	-1.773111	-1.383878	4.091497
Н	1.201597	-0.556634	6.101636
Η	-0.590317	-0.643216	6.120211
Η	0.232713	0.827730	5.497551
Η	3.988230	-4.271426	0.658275
Η	5.523164	-5.187093	0.825025
Н	5.553537	-3.447405	0.375202
Η	6.871413	-4.964127	2.813887
Н	7.133075	-3.268133	2.322552
Н	7.573783	-3.567874	4.782912
Н	5.931083	-4.232949	5.004594
Н	5.608325	-0.811095	6.199099
Н	6.754498	-2.136641	6.586361
Η	4.989798	-2.480729	6.466060
Η	6.467995	1.088955	-0.117366
Η	6.635326	2.850386	-0.430691
Η	5.021911	2.065026	-0.522385
Η	4.356857	3.861134	1.043488
Н	6.020308	4.459613	1.281440
Η	5.900895	3.896665	3.724894
Η	4.588888	5.016851	3.262281
Η	2.947208	2.551166	5.433478
Η	3.612302	4.218055	5.348472
Η	4.710097	2.819726	5.632104

TS for hydrogenation of [Mo₃S₄Cl₂(dmen)₃]²⁺

E(UB-P86) = -1975.203798 a.u.Imaginary frequency = 1071.0529i cm⁻¹ Free energy = -1974.749634 a.u. D3(BJ) dispersion correction = -0.247114 a.u. Cartesian

C 2.123514 -3.507544 -2.255037

Ν	2.230092	-3.130611	-0.812551
С	3.662846	-2.922183	-0.427275
С	3.739527	-2.659099	1.064745
Ν	2.829882	-1.532321	1.455273
С	2.646667	-1.532514	2.941212
Mo	0.972135	-1.412325	0.081934
S	0.024829	-0.024737	1.769359
Mo	0 641573	1 315950	-0 107781
S	-1 112289	1 332719	-1 644181
Mo	-1 564534	-0 248123	0 004764
Cl	-3 061110	1 255575	1 289426
S	-0 723127	-1 965176	-1 448566
Š	1 860915	-0 124527	-1 600696
N	-3 582577	-0 617349	-1 092263
C	-4 183051	-1 897975	-0 604411
Č	-4 054567	-1 994553	0 905603
Ň	-2 615770	-1 893543	1 310400
C	-2 505328	-1 854638	2 799234
Č	-3 702098	-0 525827	-2 576171
Ň	1 400282	3 102413	-1 373092
C	0.560253	4.296797	-1.052138
Ċ	0.382132	4.400797	0.452199
N	-0.193733	3.133863	1.011608
C	-0.154164	3.178156	2.505304
Cl	2.767286	1.884734	1.100494
С	1.620904	2.993402	-2.844493
Н	1.893287	-3.948092	-0.276237
Н	3.289764	-0.634686	1.218295
Н	2.323993	3.248538	-0.934155
Н	-1.193009	3.083806	0.747600
Н	-4.139915	0.153393	-0.690717
Н	-2.157349	-2.762389	0.999968
Н	1.082315	-3.763754	-2.492335
Н	2.771503	-4.374559	-2.467503
Н	2.442517	-2.658254	-2.876902
Н	4.046569	-2.071237	-1.014140
Н	4.262079	-3.813554	-0.686235
Н	3.409987	-3.551662	1.624581
Н	4.777083	-2.439469	1.370452
Н	2.208596	-0.576304	3.254931
Н	3.620873	-1.666326	3.442436
Η	1.974656	-2.355138	3.227601
Н	2.360275	2.206547	-3.047177
Н	1.994231	3.951868	-3.244803
Н	0.673095	2.736889	-3.339943
Н	1.036477	5.215848	-1.439527
Н	-0.408544	4.173802	-1.565258
Н	-0.267629	5.255809	0.708162
Н	1.356529	4.554335	0.945999
Н	-0.784581	2.374314	2.906799

Η	-0.534171	4.151401	2.861021
Η	0.884921	3.041345	2.837820
Η	-3.376674	0.467941	-2.911351
Η	-4.749355	-0.691109	-2.883760
Η	-3.065109	-1.291487	-3.043395
Η	-3.651721	-2.727689	-1.102169
Η	-5.246846	-1.955702	-0.898351
Η	-4.591090	-1.166528	1.397969
Η	-4.486466	-2.944774	1.266808
Η	-1.455025	-1.976284	3.093925
Η	-3.107198	-2.663398	3.249151
Η	-2.871338	-0.880513	3.154895
Η	0.704626	-0.373255	-2.679806
Η	-0.199942	-1.024543	-2.620710

$[Mo_3S_2(SH)_2Cl_2(dmen)_3]^{2+}$

E(UB-P86) = -1975.209392 a.u.Free energy = -1974.751312 a.u. D3(BJ) dispersion correction = -0.246736 a.u. Cartesian С 2.107827 -3.008832 -2.752203 Ν 2.102542 -2.941486 -1.258253 С 3.505458 -2.930266 -0.732638 С 3.460452 -2.963774 0.781757 Ν 2.607431 -1.850575 1.312525 С 2.313302 -2.108492 2.758047 Mo 0.870207 -1.357368 -0.120026 S -0.176436 -0.330554 1.753392 Mo 0.720361 1.346938 0.306548 S -0.832112 1.855174 -1.375891 Mo -1.571235 0.009199 -0.151881 Cl -3.080394 1.303721 1.322234 S -0.740944 -1.487631 -1.890067 S 2.074844 0.218762 -1.378687 Ν -3.494614 0.118556 -1.470625 С -4.257600 -1.163005 -1.354261 С -4.277334 -1.633788 0.089088 Ν -2.877398 -1.799790 0.595338 С -2.895506 -2.154200 2.045991 С -3.459644 0.563523 -2.893364 3.325205 -0.408204 Ν 1.704253 С 0.892404 4.465476 0.114905 С 0.559818 4.219828 1.575436 Ν -0.132634 2.901267 1.753945 С -0.2407792.588059 3.211689 Cl 2.750424 1.456006 1.781154 С 2.084983 3.560657 -1.830552 Η 1.670898 -3.823515 -0.933983 Η 3.151248 -0.969314 1.285723 Η 2.578494 3.291227 0.141433

Η	-1.101933	2.987327	1.399409
Η	-4.015676	0.833751	-0.938738
Η	-2.481288	-2.610272	0.097235
Η	1.081166	-3.140473	-3.119105
Η	2.728078	-3.856436	-3.089728
Η	2.524844	-2.074907	-3.156366
Η	3.996651	-2.017436	-1.108394
Η	4.064284	-3.802447	-1.116691
Η	3.010793	-3.911544	1.126127
Η	4.477156	-2.904774	1.206721
Η	1.923545	-1.191804	3.218919
Η	3.235260	-2.414008	3.282499
Η	1.564249	-2.910061	2.841427
Η	2.804786	2.794221	-2.149323
Η	2.547382	4.556983	-1.940009
Η	1.188131	3.504608	-2.464717
Η	1.450648	5.413892	0.010858
Η	-0.020373	4.537879	-0.500418
Η	-0.071563	5.033568	1.972645
Η	1.482574	4.180025	2.178785
Η	-0.953368	1.765472	3.353084
Η	-0.597468	3.476711	3.760596
Η	0.750433	2.293480	3.585837
Η	-3.009898	1.563277	-2.956106
Η	-4.482804	0.595490	-3.306570
Η	-2.857488	-0.142166	-3.484590
Η	-3.764126	-1.904793	-2.005746
Η	-5.290627	-1.026951	-1.722852
Η	-4.774329	-0.893236	0.737264
Η	-4.827933	-2.587570	0.173948
Η	-1.888227	-2.454558	2.362887
Η	-3.600841	-2.983545	2.229240
Н	-3.207679	-1.270335	2.621266
Н	1.289248	0.426683	-2.529493
Н	-0.291924	-0.567061	-2.848476

TS for H transfer from [Mo₃S₂(SH)₂Cl₂(dmen)₃]²⁺ to [Mo₂(MoH)S₃(SH)Cl₂(dmen)₃]²⁺ E(UB-P86) = -1975.179058 a.u.Imaginary frequency = 255.0191i cm⁻¹ Free energy = -1974.721506 a.u. D3(BJ) dispersion correction = -0.245768 a.u. Cartesian 0.108788 -0.078944 0.122941 С Ν 0.087767 -0.020717 1.617441 С 1.478867 -0.055566 2.170032

С	0.259590	0.838926	5.638039
Mo	-1.109162	1.580223	2.749326
S	-2.187118	2.607593	4.613535
Mo	-1.230573	4.238126	3.160593
S	-2.864461	4.745853	1.537460
Mo	-3.652485	2.954031	2.759013
Cl	-5.127861	4.124977	4.312122
S	-2.924702	1.364112	1.041796
S	0.334063	3.156630	1.609989
Ν	-5.591858	3.073523	1.486831
С	-6.314522	1.763390	1.547470
С	-6.294626	1.212703	2.963840
Ν	-4.884898	1.070430	3.450469
С	-4.873160	0.675378	4.891928
С	-5.570958	3.587486	0.085642
N	-0.256597	6.219817	2.426327
С	-1.070487	7.360566	2.946496
Ċ	-1.408436	7.123607	4.406800
N	-2 127796	5 820264	4 587992
C	-2 256147	5 525970	6 047584
Cl	0 756394	4 386873	4 689172
C	0 105609	6 450936	0 998274
Ĥ	-0 375735	-0.891818	1 924922
Н	1 152372	1 939244	4 171288
H	0.622818	6 197066	2 967836
Н	-3 087586	5 932066	4 223004
Н	-6 135582	3 745931	2 050666
Н	-4 462260	0 286685	2.030000
н	-0.918551	-0 163452	-0 257542
Н	0.691312	-0.953343	-0 212691
Н	0.575572	0.834663	-0 273220
Н	2 011696	0.833636	1 795261
н	2.011090	-0.953604	1 809890
Н	0.910377	-0.997392	4 029033
Н	2 407315	-0.037676	4 130114
H	-0.106996	1 769618	6 089551
Н	1 169362	0.511915	6 170263
Н	-0 511045	0.058130	5 719475
Н	0.855832	5 712520	0.684220
Н	0.527255	7 463252	0.871286
H	-0 791998	6 350837	0.370341
H	-0.512943	8 309030	2 838698
и П	1 081858	7 432085	2.838078
и П	2 02/132	7.951602	2.528547 A 700767
П Ц	-2.024132	7.951092	4.799707
П Ц	-0.480934	1.009090	5.010525
н Ц	-2.770733	н. / 10032 6 /72/06	6 582700
н Ц	-2.012301	0.423490 5 778171	6 126062
11 Ц	-1.2/1909 5 105940	J.2204/1 1610550	0.430303
П	-3.193802	4.019338	0.080084
п	-0.388399	5.300304	-0.341329

Н	-4.905380	2.959828	-0.524762
Н	-5.817786	1.072526	0.843952
Н	-7.358057	1.888581	1.206326
Н	-6.810453	1.898880	3.655591
Н	-6.811316	0.237400	3.002604
Н	-3.852480	0.396958	5.185074
Н	-5.548766	-0.181912	5.057083
Н	-5.205886	1.529042	5.499823
Н	-0.220516	3.364878	0.358249
Н	-1.635688	1.970203	0.890051

[Mo₂(MoH)S₃(SH)Cl₂(dmen)₃]²⁺

E(UB-P86) = -1975.188514 a.u.Free energy = -1974.731178 a.u. D3(BJ) dispersion correction = -0.243164a.u.Cartesian С 2.290352 -2.501283 -2.991728 Ν 2.084992 -2.786896 -1.539192 С 3.364779 -3.205122 -0.884707 С 3.127096 -3.388871 0.603677 Ν 2.592219 -2.121258 1.204922 С 2.231015 -2.347529 2.639045 Mo 0.990326 -1.246694 -0.223034 S -0.062198 -0.254302 1.685777 Mo 0.787486 1.429757 0.238271 S -0.882144 1.870725 -1.311553 Mo -1.576807 -0.042873 -0.145083 Cl -3.089135 1.321887 1.312816 S -0.822171 -1.613184 -1.687132 2.906050 0.341826 -0.682412 S N -3.506203 -0.012918 -1.417778 C -4.270486 -1.283446 -1.210609 С -4.285638 -1.648718 0.264939 N -2.886376 -1.753235 0.786255 С -2.891172 -1.980580 2.261485 С -3.458959 0.338889 -2.867286 Ν 1.669421 3.427491 -0.468637 С 0.780500 4.533767 0.009015 С 0.385349 4.290582 1.455554 Ν -0.248009 2.940023 1.633167 С -0.417097 2.657141 3.090658 2.575210 Cl 1.780651 1.996889 С 2.042274 3.632496 -1.898440 Η 1.449117 -3.598146 -1.492892 Η 3.361053 -1.434032 1.197178 Η 2.536849 3.466360 0.091086 2.965240 Η -1.203866 1.237942 Η -4.025227 0.736514 -0.933341Η -2.465655 -2.589023 0.357621

Η	1.323504	-2.272270	-3.459969
Η	2.745695	-3.373198	-3.491425
Η	2.960950	-1.637148	-3.102521
Η	4.113896	-2.418286	-1.073918
Η	3.735794	-4.143874	-1.333171
Η	2.382089	-4.182190	0.786322
Η	4.061542	-3.683830	1.112199
Η	2.042435	-1.380490	3.123188
Η	3.058179	-2.861519	3.158408
Η	1.325867	-2.969401	2.696566
Η	2.787835	2.883507	-2.196387
Η	2.468666	4.640646	-2.039803
Η	1.147284	3.523942	-2.528301
Η	1.301327	5.504560	-0.076975
Η	-0.101603	4.561848	-0.651933
Η	-0.312907	5.073548	1.799343
Η	1.273938	4.315030	2.107232
Η	-1.072083	1.785543	3.216095
Η	-0.881516	3.529181	3.582281
Η	0.568777	2.460711	3.533742
Η	-3.022631	1.339813	-2.986673
Η	-4.476824	0.329941	-3.294022
Η	-2.833920	-0.391959	-3.400921
Η	-3.781976	-2.069201	-1.812219
Η	-5.304709	-1.169454	-1.582778
Η	-4.797923	-0.870832	0.854347
Η	-4.820776	-2.602725	0.418300
Η	-1.879071	-2.250196	2.592383
Η	-3.588098	-2.797101	2.518864
Η	-3.206038	-1.055202	2.764849
Η	2.807746	0.432907	-2.041664
Η	0.891606	-0.177548	-1.503918

Cŀ

E(UB-P86) = -460.390584 a.u. Free energy = -460.405234 a.u. D3(BJ) dispersion correction = 0.000000 a.u.

TS for the partial decoordination of one of the dmen ligands of [Mo₃S₄Cl₃(dmen)₃]⁺

E(UB-P86) = -2434.451719 a.u.Imaginary frequency = 133.2590i cm⁻¹ Free energy = -2434.014223 a.u. D3(BJ) dispersion correction = -0.246347 a.u. Cartesian С -0.332852 3.657152 2.676514 Ν -0.061746 3.595913 1.210880 Mo -0.004700 1.587184 0.101632 S -1.778919 0.817252 1.425455 -1.256414 -0.907115 -0.014388 Mo Ν -4.455375 -1.834562 1.234675

С	-4.449371	-1.726465	2.688870
С	1.163542	4.383316	0.864139
С	1.421781	4.309147	-0.632476
Ν	1.516957	2.886534	-1.091036
С	1.565455	2.830662	-2.582645
S	1.691120	1.062660	1.595972
Мо	1.516540	-0.777154	0.170308
Ν	3.236113	-1.758997	1.347423
С	3.316393	-1.632405	2.831988
Cl	-1.617439	2.874341	-1.345986
S	0.165324	-0.036515	-1.652432
Ν	1.971818	-2.724042	-1.053918
С	3.259149	-3.317122	-0.574781
C	3.369884	-3.192709	0.936339
Cl	3.498109	0.025768	-1.158349
S	0.110067	-2.052916	1.500717
Ĉ	1.923188	-2.710534	-2.545552
Ň	-3 085907	-0 184214	-1 325352
C	-4 460191	-0 706761	-0.985606
Č	-4 851368	-0 643183	0 492021
Cl	-1 829187	-2 996115	-1 130417
C	-2 915049	-0 271563	-2 809567
Ĥ	-0.859397	4 040240	0 728261
Н	2 412272	2 493013	-0 757931
Н	4 039885	-1 249459	0 946442
Н	1.208037	-3.341492	-0.740212
Н	-3.702624	-2.392030	0.826212
Н	-3.074519	0.826684	-1.102928
Н	-1 301761	3 185036	2 888262
Н	-0.354370	4.707402	3.015892
Н	0.457716	3.116160	3.217058
Н	2.005357	3.961265	1.438673
Н	1.037714	5.437337	1.171940
Н	0.589578	4.771366	-1.189274
Н	2 347380	4 854540	-0 889099
Н	1.859546	1.819656	-2.894737
Н	2.304848	3.556318	-2.964542
Н	0.569912	3.071262	-2.982129
Н	3.345582	-0.569565	3.107411
Н	4.225216	-2.133440	3.208173
Н	2.429422	-2.098523	3.285765
Н	4 339924	-3 596833	1 278447
Н	2 570294	-3 759431	1 443210
Н	3 326481	-4 377615	-0 876946
Н	4 075452	-2 767314	-1 071542
Н	0.901458	-2.471948	-2.871632
H	2.209277	-3.699462	-2.944442
H	2.618993	-1.945464	-2.918870
H	-3.822474	-0.892393	3.072276
Н	-4.084760	-2.668570	3.126954

Η	-5.480229	-1.560321	3.053029
Η	-4.444008	0.290268	0.946028
Н	-5.954123	-0.541437	0.544044
Η	-4.510694	-1.748198	-1.347596
Η	-5.186107	-0.118919	-1.576011
Н	-2.749728	-1.320853	-3.093308
Н	-2.052023	0.334717	-3.114357
Н	-3.818505	0.108326	-3.318481

$[Mo_3S_4Cl_3(dmen)_3]^+$ with one of the dmen ligands partially decoordinated E(UB-P86) = -2434.452153 a.u.

Free energy = -2434.014505 a.u.

D3(BJ) dispersion correction = -0.245135 a.u.

Cartesian

С	-0.196953 3.669091 2.645841
Ν	0.060067 3.593821 1.178224
Mo	0.088509 1.573923 0.087497
S	-1.679077 0.839307 1.432027
Mo	-1.175826 -0.919276 0.011805
Ν	-4.497575 -2.102883 1.162897
С	-4.635879 -2.038608 2.619971
С	1.288820 4.367779 0.814025
С	1.534439 4.277319 -0.683855
Ν	1.613974 2.849753 -1.129983
С	1.648771 2.779624 -2.621324
S	1.801164 1.055361 1.566476
Mo	1.595987 -0.801596 0.167108
Ν	3.319908 -1.787728 1.331159
С	3.421525 -1.644747 2.812945
Cl	-1.518507 2.861339 -1.359079
S	0.230775 -0.070636 -1.647729
Ν	2.010797 -2.765597 -1.041981
С	3.296652 -3.369883 -0.572241
С	3.430992 -3.227928 0.935511
Cl	3.565967 -0.033862 -1.195198
S	0.195320 -2.042912 1.535249
С	1.947012 -2.764979 -2.533304
Ν	-3.036308 -0.234391 -1.285640
С	-4.391592 -0.832744 -0.987158
С	-4.820429 -0.842368 0.484615
Cl	-1.713991 -3.012319 -1.109569
С	-2.843967 -0.261818 -2.769914
Н	-0.738161 4.040746 0.698989
Н	2.509033 2.452503 -0.800983
Н	4.124276 -1.292465 0.913833
Н	1.241944 -3.370828 -0.715943
Н	-3.587571 -2.483682 0.883367
Н	-3.076689 0.765946 -1.027083
Н	-1.168652 3.208615 2.870072
Н	-0.204611 4.722055 2.977219

Η	0.592907	3.124074	3.183367
Η	2.131736	3.944594	1.386073
Η	1.173677	5.425576	1.112843
Η	0.701891	4.741479	-1.238405
Η	2.462646	4.812259	-0.952742
Η	1.930314	1.762923	-2.926576
Η	2.391749	3.494450	-3.016471
Η	0.652128	3.026314	-3.014228
Η	3.463226	-0.579129	3.075604
Η	4.331161	-2.149292	3.182314
Η	2.537157	-2.098299	3.284163
Η	4.401269	-3.639034	1.268419
Η	2.632652	-3.778798	1.461338
Η	3.345662	-4.434908	-0.861614
Η	4.113243	-2.837711	-1.087556
Η	0.924548	-2.518451	-2.850978
Η	2.217802	-3.760718	-2.925827
Η	2.647547	-2.011361	-2.920749
Η	-4.041451	-1.226419	3.094426
Η	-4.331326	-3.000132	3.062954
Η	-5.696215	-1.867249	2.878384
Η	-4.395450	0.050085	1.003140
Η	-5.918595	-0.712550	0.520785
Η	-4.385591	-1.862015	-1.384189
Η	-5.128778	-0.257559	-1.575948
Η	-2.624336	-1.291755	-3.086299
Η	-2.010083	0.397886	-3.042636
Η	-3.759646	0.089807	-3.277431

 $[Mo_3(\mu_3-S)(\mu-S)_3Br_3(dmen)_3]^+$ E(UB-P86) = -8768.82269631 a.u. Free energy = -8768.38574731 a.u. D3(BJ) dispersion correction = -0.26606871 a.u. Cartesian

С	-3.493067	-1.274071	2.859746
Ν	-3.485832	-1.067552	1.383364
С	-4.560528	-0.110089	0.976562
С	-4.543207	0.076074	-0.532342
Ν	-3.188213	0.499598	-1.006947
С	-3.139366	0.472299	-2.498950
Mo	-1.529922	-0.523296	0.276163
S	-1.528563	1.317588	1.686906
Mo	0.311885	1.586277	0.276404
Ν	2.026505	2.512470	-1.007250
С	1.978882	2.483481	-2.499271
Mo	1.218583	-1.062704	0.276558
Ν	1.163110	-3.010707	-1.006624
С	1.162028	-2.953846	-2.498630
S	0.000124	-0.000295	-1.471205

S	-0.378179	-1.985090	1.685402
S	1.907379	0.665793	1.686009
Ν	0.817253	3.552168	1.383923
С	2.183065	4.005618	0.976253
С	2.335990	3.897869	-0.532659
Ν	2.667838	-2.483337	1.384207
С	2.378105	-3.893172	0.976795
С	2.208162	-3.971544	-0.532107
С	0.644004	3.660416	2.860794
С	2.848902	-2.386653	2.860949
Н	-3.700293	-1.976345	0.941087
Н	-3.035449	1.487857	-0.737603
Н	0.136210	4.192214	0.943382
Н	2.806810	1.887326	-0.737454
Н	3.562321	-2.213475	0.943214
Н	0.231395	-3.373529	-0.736958
Н	-2.780766	-2.068739	3.120560
Н	-4.503283	-1.560302	3.201061
Н	-3.190813	-0.341875	3.359566
Н	-4.375403	0.842597	1.500984
Н	-5.549385	-0.487055	1.296464
Н	-4.778483	-0.875674	-1.038096
Н	-5.302621	0.818615	-0.836027
Н	-2.224011	0.975627	-2.838033
Н	-4.017431	0.996873	-2.915079
Н	-3.136261	-0.574030	-2.836889
Н	-0.400447	3.442373	3.122379
Н	0.903089	4.677671	3.202979
Н	1.299416	2.931023	3.359379
Н	2.349856	5.050657	1.296059
Н	2.916383	3.369947	1.500662
Н	3.358734	4.185087	-0.835994
Н	1.629154	4.576984	-1.038715
Н	1.961217	1.439018	-2.838270
Н	2.870667	2.984802	-2.914860
Н	1.069568	3.000804	-2.837709
Н	3.182815	-1.373098	3.121760
Н	3.600156	-3.119750	3.203316
Н	1.889617	-2.588670	3.360061
Н	1.461269	-4.211047	1.501473
Н	3.200146	-4.559728	1.296380
Н	3.149712	-3.698799	-1.038093
Н	1.945652	-5.000813	-0.835545
Н	0.266733	-2.415207	-2.837066
Н	1.149629	-3.976270	-2.915556
Н	2.065000	-2.425004	-2.836230
Br	3.466426	-0.685969	-1.155834
Br	-2.328052	-2.659425	-1.154998
Br	-1.140330	3.343784	-1.154916

 $[Mo_3(\mu_3-S)(\mu-S)(\mu-SH)_2Br_3(dmen)_3]^+$ E(UB-P86) = -8769.98125455 a.u. Free energy = -8769.52839855 a.u. D3(BJ) dispersion correction = -0.27569298 a.u. Cartesian

С	-1.660477	3.342966	2.820025
Ν	-1.402428	3.335150	1.353380
С	-0.522397	4.480925	0.972522
С	-0.314761	4.492096	-0.532017
Ν	0.226595	3.180801	-1.005935
С	0.218973	3.146807	-2.498510
Мо	-0.675679	1.418609	0.230278
S	1.160094	1.559629	1.818478
Мо	1.599219	-0.161695	0.209479
Ν	2.631630	-1.791208	-1.079802
С	2.605795	-1.695479	-2.570189
Мо	-0.969906	-1.256741	0.219450
Ν	-2.860926	-1.375459	-1.080973
С	-2.763562	-1.417808	-2.570345
S	0.014328	-0.001910	-1.556598
S	-1.909747	0.184216	1.810736
S	0.802834	-1.790351	1.789420
Ν	3.631945	-0.539947	1.290188
С	4.151027	-1.879457	0.882632
С	4.038193	-2.022809	-0.624753
Ν	-2.300912	-2.825927	1.313416
С	-3.718438	-2.609339	0.900460
С	-3.781776	-2.458649	-0.609519
С	3.793806	-0.334010	2.756861
С	-2.203062	-3.048416	2.782896
Н	-2.310947	3.475100	0.882384
Н	1.225802	3.114317	-0.732423
Н	4.211377	0.172289	0.815783
Н	2.064182	-2.626320	-0.843102
Н	-1.972679	-3.690052	0.851152
Н	-3.280324	-0.453676	-0.846495
Н	-2.395088	2.564716	3.067036
Н	-2.046946	4.328392	3.135046
Н	-0.723349	3.137947	3.358886
Н	0.435038	4.360562	1.507939
Н	-0.974111	5.436550	1.297512
Н	-1.276765	4.651534	-1.049175
Н	0.364345	5.314278	-0.821310
Н	0.812417	2.289744	-2.842902
Н	0.655929	4.077325	-2.902662
Н	-0.819497	3.042610	-2.846007
Н	3.532039	0.702056	3.012185
Н	4.838015	-0.530055	3.057767
Н	3.129859	-1.021617	3.301950

5.205394	-1.994460	1.195408
3.556535	-2.646652	1.407227
4.385798	-3.020863	-0.946899
4.669123	-1.268326	-1.125739
1.567182	-1.767322	-2.919240
3.194835	-2.517814	-3.014045
3.031438	-0.727628	-2.873426
-1.177186	-3.348940	3.037508
-2.903033	-3.842472	3.097519
-2.448746	-2.115512	3.311442
-4.081912	-1.702012	1.411943
-4.349058	-3.459875	1.219536
-3.456970	-3.392601	-1.100114
-4.815266	-2.247205	-0.936492
-2.283310	-0.497828	-2.928307
-3.772016	-1.497560	-3.012919
-2.158895	-2.289444	-2.862014
0.577582	0.885123	2.902789
0.419856	-1.004570	2.886778
-0.287196	-3.519705	-1.054697
-2.870100	2.009613	-1.160447
3.205733	1.539029	-1.082743
	5.205394 3.556535 4.385798 4.669123 1.567182 3.194835 3.031438 -1.177186 -2.903033 -2.448746 -4.081912 -4.349058 -3.456970 -4.815266 -2.283310 -3.772016 -2.158895 0.577582 0.419856 -0.287196 -2.870100 3.205733	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$[Mo_3(\mu_3-S)(\mu-S)_3Cl_3(dnbpy)_3]^+$

E(UB-P86) = -3113.21216469 a.u. Free energy = -3112.82061069 a.u. D3(BJ) dispersion correction = -0.3030287 a.u. Cartesian S 1.136802 -1.680840 1.456641 Mo -0.728762 -1.470842 0.070271 S -2.024738 -0.146149 1.455356 Mo -0.910101 1.366684 0.071536 S 0.885266 1.824396 1.458613 0.072732 Mo 1.638843 0.105070 2.966194 Cl 1.738045 -1.295333 S 0.001121 0.001117 -1.668400 Cl -2.986411 1.698973 -1.298895 Cl -3.435744 -1.298303 0.022626 С -0.929955 4.432852 -0.576474 С 0.205935 3.285679 -2.278563 С 0.421442 4.464899 -2.999689 С -0.054653 5.671407 -2.473302 С -0.736184 5.652133 -1.251389 С -1.668544 4.337243 0.699418 С -2.485926 2.947432 2.400229 С -3.025603 4.030837 3.099555 С -2.874210 5.318055 2.567994 С -2.187307 5.467833 1.359813 Η 0.564867 2.326637 -2.652516

Н	0.954025	4.422332	-3.952539
Н	0.094192	6.615386	-3.004380
Н	-1.121365	6.583481	-0.833818
Н	-2.577136	1.931384	2.788126
Н	-3.548340	3.853958	4.042382
Н	-3.277904	6.192868	3.084473
Н	-2.052428	6.463485	0.935173
Ν	-0.447603	3.259577	-1.092578
Ν	-1.826799	3.081760	1.222978
С	4.306764	-1.405693	-0.577093
С	2.747396	-1.814413	-2.281348
С	3.665208	-2.580765	-3.007529
С	4.950535	-2.764496	-2.484347
С	5.271377	-2.170187	-1.258874
С	4.588231	-0.728426	0.705400
С	3.790651	0.669082	2.409311
С	4.994149	0.584036	3.115403
С	6.031132	-0.195782	2.587224
С	5.820858	-0.857753	1.374184
Н	1.736115	-1.649516	-2.653619
Н	3.364050	-3.017347	-3.962562
Н	5.698004	-3.355180	-3.020694
Н	6.272745	-2.294823	-0.844450
Н	2.957217	1.258501	2.795506
Н	5.100253	1.119800	4.061511
Н	6.986055	-0.293905	3.110200
Н	6.613113	-1.478263	0.953190
Ν	3.048811	-1.240272	-1.092305
Ν	3.580713	0.038300	1.227555
С	-2.924596	-3.610364	0.699566
С	-1.317571	-3.617345	2.405532
С	-1.991936	-4.619151	3.109616
С	-3.183596	-5.129621	2.578816
С	-3.651274	-4.616192	1.365705
С	-3.370225	-3.026352	-0.582244
С	-2.943376	-1.470204	-2.285071
С	-4.065918	-1.880759	-3.011901
С	-4.868694	-2.901592	-2.489446
С	-4.515176	-3.477777	-1.264274
Н	-0.391701	-3.188998	2.793534
Н	-1.581691	-4.978834	4.056059
Н	-3.744607	-5.909821	3.099944
Н	-4.582801	-4.994466	0.942463
Н	-2.294785	-0.676606	-2.656535
Н	-4.292883	-1.400648	-3.966551
Н	-5.754374	-3.252166	-3.026057
Н	-5.125081	-4.281868	-0.850031
Ν	-1.758250	-3.119918	1.223653
Ν	-2.597509	-2.019372	-1.096322

$[Mo_3(\mu_3-S)(\mu-S)(\mu-SH)_2Cl_3(dnbpy)_3]^+$

E(UB-P86) = -3114.36769735 a.u.Free energy = -3113.96016335 a.u. $D_2(D_1)$ discovering correction = -0.21252177 a.u.

D3(BJ) dispersion correction = -0.31253177 a.u. Cartesian

Ν	0.548757	3.161629	-1.115530
С	0.488009	4.420863	-0.576318
С	1.120350	5.509271	-1.205278
С	1.799773	5.319428	-2.413988
С	1.829824	4.037924	-2.974550
С	1.201627	2.990936	-2.291639
С	-0.318628	4.579921	0.653342
С	-0.450562	5.819221	1.309907
С	-1.263425	5.929038	2.441878
С	-1.938895	4.789167	2.894521
С	-1.758138	3.584669	2.207552
Ν	-0.963636	3.464103	1.116175
Mo	-0.534488	1.509928	0.006758
Cl	-2.398473	2.377948	-1.370334
S	-1.912186	0.437154	1.578601
Mo	-1.127248	-1.154843	0.061870
Ν	-2.633891	-2.410673	1.208956
С	-3.887430	-2.499919	0.668254
С	-4.916867	-3.196664	1.330232
С	-4.662356	-3.820756	2.555100
С	-3.372261	-3.739286	3.093823
С	-2.394963	-3.026315	2.392422
С	-4.085590	-1.844637	-0.640692
С	-5.303381	-1.914680	-1.341375
С	-5.420261	-1.320212	-2.602426
С	-4.307208	-0.666893	-3.143272
С	-3.125854	-0.620844	-2.396351
Ν	-3.004425	-1.186004	-1.169388
S	1.325240	1.486618	1.571766
Mo	1.597004	-0.356783	0.046718
Ν	3.474665	-0.976405	1.176231
С	4.164419	-2.045313	0.673765
С	5.316774	-2.533982	1.320591
С	5.777305	-1.918980	2.487738
С	5.073729	-0.815222	2.987691
С	3.933919	-0.381796	2.305286
С	3.645212	-2.628831	-0.578510
С	4.296982	-3.686747	-1.238991
С	3.800615	-4.165444	-2.455438
С	2.653837	-3.565916	-2.988757
С	2.038459	-2.531489	-2.277622
Ν	2.503826	-2.061464	-1.090769
S	0.028278	-0.044375	-1.723549
S	0.600525	-1.838182	1.646418

Cl	3.341994	0.939721	-1.179167
Cl	-0.824093	-3.370802	-1.055341
Н	1.138939	-2.053322	-2.663246
Н	2.225662	-3.887316	-3.941175
Н	4.307034	-4.982834	-2.975523
Н	5.198658	-4.129281	-0.813359
Н	3.363134	0.475186	2.665180
Н	5.390658	-0.289983	3.891585
Η	6.670648	-2.295317	2.993174
Η	5.854784	-3.391385	0.914339
Н	-2.237585	-0.123467	-2.785314
Η	-4.337599	-0.194924	-4.127937
Н	-6.363534	-1.377765	-3.152136
Η	-6.156568	-2.442149	-0.912976
Η	-1.380284	-2.943462	2.783339
Η	-3.112744	-4.213263	4.043286
Η	-5.458193	-4.361239	3.074264
Η	-5.915196	-3.252231	0.894243
Η	-2.260651	2.673621	2.536989
Η	-2.595473	4.815992	3.767272
Η	-1.367450	6.888922	2.954688
Η	0.078321	6.698455	0.939926
Η	1.204003	1.978960	-2.695786
Η	2.331008	3.835476	-3.923905
Н	2.284480	6.164299	-2.910602
Н	1.070213	6.507201	-0.767940
Н	0.313483	-0.997336	2.729607
Н	0.685830	0.934942	2.686891

 $[Mo_3(\mu_3-S)(\mu-S)_3(tacn)_3]^{4+}$ E(UB-P86) = -1451.53546448 a.u. Free energy = -1450.92221748 a.u. D3(BJ) dispersion correction = -0.28965536 a.u. Cartesian

С	3.605449	-1.910582	1.953745
С	2.329228	-2.657163	2.307906
Ν	1.512735	-2.913296	1.073453
С	1.979846	-4.040436	0.190704
С	3.133123	-3.608249	-0.707503
Ν	2.929430	-2.212395	-1.266042
С	4.221721	-1.440911	-1.307769
С	4.435952	-0.606237	-0.014599
Ν	3.311700	-0.801173	0.969672
Mo	1.297190	-1.012647	-0.193632
S	1.866813	0.757134	-1.592961
Mo	0.218095	1.596802	-0.198754
Ν	-1.035893	3.188768	0.968497
С	-1.597285	4.140468	-0.052220
С	-0.473352	4.668207	-0.941188

Ν	0.517247	3.578398	-1.308289
С	1.936022	4.029067	-1.098030
С	2.243747	4.064486	0.396253
Ν	1.676741	2.850848	1.111134
С	1.003010	3.216913	2.401730
С	-0.316417	3.909056	2.087513
Mo	-1.505761	-0.647837	-0.234013
Ν	-3.328154	-1.427414	-1.379465
С	-4.423509	-0.401356	-1.298089
С	-4.668920	-0.027242	0.161575
Ν	-3.367572	0.118362	0.929547
С	-3.425520	-0.540185	2.276090
С	-3.375154	-2.050575	2.078570
Ν	-2.343305	-2.409541	1.031560
С	-2.837451	-3.441828	0.056813
С	-3.807725	-2.796047	-0.929660
S	-0.020611	-0.028471	1.562576
S	-0.226084	-2.008523	-1.625433
S	-1.557380	1,193742	-1.646178
Ĥ	1.110378	-4.341460	-0.413123
Н	2.283784	-4.905600	0.805613
Н	4 084716	-3 617616	-0 159333
Н	3 241886	-4 321282	-1 539967
Н	4 176209	-0 768592	-2.176602
Н	5 055977	-2 140753	-1 477071
Н	5 390743	-0.860717	0 473491
Н	4 472958	0 462687	-0 269353
Н	-3 333345	-4 271541	0 590694
Н	-1 955265	-3 846930	-0 459874
Н	-3 938280	-3 447444	-1 807232
Н	-4 802365	-2 674508	-0 473939
Н	-5 352173	-0 792479	-1 749823
Н	-4 103813	0 471465	-1 885113
Н	-5 238692	0.912631	0 218809
Н	-5 273582	-0 795249	0.665930
Н	-4 343947	-0.250556	2.815928
Н	-2 560003	-0.184152	2.853723
Н	-3 136701	-2 555456	3 027034
Н	-4 348523	-2 440151	1 744660
Н	2 091075	5 028279	-1 541587
Н	2.091079	3 319598	-1 623423
Н	3 331469	4 112378	0 557009
Н	1 813676	4.963649	0.862217
H	1.651569	3 875281	3.005986
н Н	0.838627	2 285832	2 962772
н Н	-0.05/02/	3 9/3//6	2.902772
Н	_0 1510/1	<u>4</u> 950183	1 771877
Н	_2 113610	4 979057	0 447061
Н	-2.113010	3 500070	-0 646058
Н	_0 807137	5 103420	_1 850007
11	0.07/154	J.10JT40	1.00/0//

Η	0.081199	5.472054	-0.433999
Н	0.594117	-3.210519	1.421787
Н	3.246145	0.060195	1.523052
Н	2.617880	-2.317109	-2.239061
Н	-3.057802	-1.501397	-2.367838
Н	-3.237823	1.121427	1.096395
Н	-1.556982	-2.828433	1.538054
Н	-1.830882	2.704558	1.400268
Н	0.408860	3.383646	-2.311009
Η	2.476329	2.261364	1.366741
Η	1.699461	-2.051503	2.977748
Н	2.564834	-3.607066	2.818304
Н	4.065279	-1.490816	2.862683
Н	4.349266	-2.580451	1.502613

$[Mo_3(\mu_3-S)(\mu-S)(\mu-SH)_2(tacn)_3]^{4+}$

E(UB-P86) = -1452.69708429 a.u.Free energy = -1452.06603629 a.u. D3(BJ) dispersion correction = -0.2987101 a.u. Cartesian С 0.695314 3.283188 2.345130 С 3.136862 2.148654 2.200690 Ν 1.072203 2.502882 2.114603 С 3.569346 2.575608 0.116509 С 2.988789 -0.830080 3.622267 Ν 1.599267 3.233384 -1.293775 С 4.379375 -1.194006 0.633754 С 0.265806 4.613018 0.268816 Ν 0.035106 3.302782 0.997619 Mo 0.717209 1.417841 -0.191174 S -1.098120 1.569577 -1.786922 Mo -1.628785 -0.128297 -0.183836 Ν -2.904884 -1.628977 1.006948 С -3.726973 -2.407255 0.018261 С -4.506283 -1.436750 -0.865228 Ν -3.643893 -0.262621 -1.283058 С -4.358101 1.050225 -1.125642С -4.432397 1.414772 0.353371 Ν -3.123531 1.116563 1.060736 С -3.344335 0.421447 2.374935 С -3.749296 -1.024951 2.111960 Mo 0.945200 -1.280623 -0.187997 Ν 2.150403 -2.897580 -1.293036 С 1.398319 -4.196209 -1.238997С 1.043798 -4.524056 0.209022 Ν 0.573163 -3.291290 0.957299 С -3.184689 2.320254 1.193013 С -2.781563 2.654280 2.160632 Ν -1.692828 2.793858 1.117788

С	3.943949	-1.931053	0.178583
С	3.576698	-3.043958	-0.799802
S	-0.038720	-0.000280	1.603999
S	1.924028	0.159377	-1.751572
S	-0.830481	-1.725773	-1.787915
Н	0.281848	2.430333	2.902764
Н	0.470898	4.206704	2.907480
Н	2.654527	4.091955	1.845142
Н	2.683736	2.839101	3.091654
Н	3.912091	1.692066	-0.440598
Н	4.430280	2.990348	0.669529
Н	2.922886	4.603743	-0.336324
Н	3.649515	3.747787	-1.701399
Н	-0.253076	4.117412	-1.788662
Н	1.075239	5.294531	-1.626640
Н	1.066898	5.155653	0.792930
Н	-0.636863	5.239390	0.335701
Н	4.854638	-2.198756	0.742646
Н	4.132926	-0.987530	-0.353502
Н	4.267896	-3.033856	-1.656216
Н	3.673471	-4.031257	-0.323309
Н	2.001662	-5.011298	-1.676434
Н	0.493593	-4.077855	-1.852245
Н	0.260491	-5.296976	0.239812
Н	1.914173	-4.935469	0.741938
Н	1.117056	-4.142575	2.864751
Н	0.628154	-2.423981	2.879703
Н	3.064992	-2.433610	3.120583
Н	3.269273	-3.636420	1.841770
Н	-5.373101	0.991041	-1.556236
Н	-3.792412	1.803740	-1.692201
Н	-4.683923	2.480058	0.468486
Н	-5.226974	0.845181	0.857769
Н	-4.124734	0.937271	2.962066
Н	-2.400324	0.472399	2.936667
Н	-3.641457	-1.622721	3.029797
Н	-4.806038	-1.092493	1.812067
Н	-4.419836	-3.090440	0.540572
Н	-3.037381	-3.018695	-0.582499
Н	-4.880964	-1.956997	-1.759697
Н	-5.385706	-1.042502	-0.333839
Н	2.874521	1.288477	1.552762
Н	-0.974430	3.230366	1.161346
Н	1.662415	2.974474	-2.285433
Н	2.192310	-2.611971	-2.278465
Н	-0.433291	-3.412990	1.105332
Н	2.995525	-0.826792	1.628933
Н	-2.274380	-2.295680	1.462167
Н	-3.437392	-0.373765	-2.282783
Н	-2.695841	2.021813	1.278999

Η	-0.401157	-0.948298	-2.878393
Н	-0.546069	0.872033	-2.876916

$[Mo_3(\mu_3-S)(\mu-S)_3Cl_3(edpp)_3]^+$				
E(UB-P	86) = -3440.40	020224 a.u.		
Free ene	rgy = -3439.7	220634 a.u.		
D3(BJ)	dispersion cor	rection $= -0.43$	3355585 a.u.	
Cartesia	n			
Mo	-1.593336	-0.259226	-1.075320	
Cl	-2.667036	-1.994962	-2.561177	
Mo	0.571396	1.504985	-1.076113	
Cl	-0.400106	3.299472	-2.564171	
Mo	1.018691	-1.253541	-1.078881	
Cl	3.056230	-1.313038	-2.568046	
S	-0.725088	-1.918967	0.323016	
S	-0.002432	-0.002572	-2.838264	
S	-1.293407	1.584149	0.325907	
S	2.020225	0.323400	0.322668	
Р	2.256837	-3.137318	0.183575	
Р	-3.843419	-0.375741	0.189013	
Р	1.591825	3.514686	0.184409	
Ν	0.580356	-3.094411	-2.397891	
Ν	2.379490	2.044515	-2.401717	
Ν	-2.964637	1.040177	-2.398335	
С	-4.868466	-1.920416	0.079454	
С	-3.961986	0.062097	1.990589	
С	-4.792991	0.981181	-0.695098	
С	-4.445083	0.969789	-2.185198	
С	4.109135	-3.233063	0.084426	
С	1.574910	-4.643795	-0.706778	
С	1.396158	-4.333382	-2.194444	
С	2.036632	3.397417	1.984341	
С	1.931321	-3.466644	1.982841	
С	3.238905	3.667011	-0.704377	
С	3.055543	3.364415	-2.193270	
С	0.758567	5.171356	0.080081	
Н	3.902826	2.924484	-0.228983	
Н	3.694834	4.659946	-0.563021	
Н	4.033139	3.367257	-2.705777	
Н	2.419589	4.126286	-2.671065	
Н	0.603214	-4.857249	-0.228891	
Н	2.216069	-5.529034	-0.568965	
Н	2.370128	-4.154783	-2.676378	
Н	0.914387	-5.184977	-2.705539	
H	-4.936012	1.814975	-2.698070	
H	-4.790741	0.037790	-2.659513	
Н	-2.619296	2.009907	-2.299135	
Н	-2.765455	0.779406	-3.372465	
Н	0.691213	-2.791140	-3.373817	

Н	-0.428493	-3.290509	-2.286236
Н	-4.471501	1.924898	-0.221741
Н	-5.880943	0.888799	-0.548309
Н	3.048460	1.262418	-2.301576
Н	2.053044	1.998950	-3.375333
С	4.786578	-4.203201	-0.681012
С	6.191790	-4.217097	-0.717365
С	6.928493	-3.266440	0.006415
С	6.256845	-2.297390	0.772565
С	4.854662	-2.277417	0.810399
Н	4.236309	-4.956265	-1.251979
Η	6.707138	-4.977223	-1.313017
Η	8.022481	-3.281169	-0.023114
Н	6.824222	-1.555777	1.343874
Н	4.342110	-1.518109	1.410982
С	1.604427	-2.406186	2.853508
С	1.408262	-2.652599	4.223294
С	1.526379	-3.957562	4.729151
С	1.850068	-5.017743	3.864686
С	2.058994	-4.775816	2.497577
Н	1.500501	-1.388179	2.463469
Н	1.158950	-1.822980	4.892157
Н	1.367764	-4.149008	5.795048
Н	1.944539	-6.036471	4.253602
Η	2.324271	-5.610859	1.841517
С	-0.450598	5.342484	0.790717
С	-1.124127	6.572394	0.753953
С	-0.602030	7.640840	0.003524
С	0.598119	7.474776	-0.705205
С	1.279190	6.245463	-0.668923
Н	-0.867213	4.516800	1.377828
Н	-2.056992	6.695556	1.313348
Н	-1.128518	8.599945	-0.025549
Н	1.012969	8.302668	-1.288871
Н	2.213810	6.143067	-1.227524
C	3.096616	4.172868	2.503869
C	3.407817	4.112459	3.871603
C	2.658637	3.290804	4.731691
С	1.597459	2.525446	4.220854
C	1.288689	2.572902	2.850490
H	3.680347	4.829234	1.850983
H	4.234823	4.712240	4.264433
Н	2.901473	3.248801	5.798099
H	1.009342	1.885754	4.886234
Н	0.467092	1.965476	2.456295
C	-2.875668	-0.184159	2.856015
C	-2.987306	0.102103	4.227511
C	-4.177376	0.644030	4.740332
C	-5.261875	0.892316	3.881102
C	-5.160356	0.597347	2.512165

Н	-1.941642	-0.597090	2.460509
Н	-2.140746	-0.095751	4.892357
Н	-4.261063	0.871499	5.807664
Н	-6.192184	1.313082	4.275409
Н	-6.019530	0.782723	1.859898
С	-6.064457	-1.996696	-0.661620
С	-6.792812	-3.198534	-0.701802
С	-6.335522	-4.327563	-0.004384
С	-5.143725	-4.255097	0.738463
С	-4.411222	-3.059492	0.779065
Н	-6.444005	-1.130358	-1.210679
Н	-7.721436	-3.245803	-1.279385
Н	-6.906435	-5.260817	-0.036174
Н	-4.783084	-5.129901	1.288896
Η	-3.483236	-3.014435	1.359558

 $[Mo_3(\mu_3-S)(\mu-S)(\mu-SH)_2Cl_3(edpp)_3]^+$ E(UB-P86) = -3441.55261545 a.u. Free energy = -3440.85362745 a.u. D3(BJ) dispersion correction = -0.44226055 a.u. Cartesian

С	4.232274	-3.202893	0.172436
С	3.193876	-4.147143	0.017456
С	3.516370	-5.509064	-0.154979
С	4.860558	-5.918170	-0.176249
С	5.889577	-4.976311	-0.014243
С	5.572891	-3.618539	0.163738
Р	1.437693	-3.546320	0.148117
С	0.357799	-4.818525	-0.710442
С	0.284205	-4.491210	-2.202357
Ν	-0.216366	-3.097206	-2.411869
Mo	0.685715	-1.402572	-1.141863
S	-1.143064	-1.623866	0.463967
Mo	-1.639729	0.104852	-1.115579
Ν	-2.670477	1.661245	-2.433868
С	-4.105590	2.003639	-2.180920
С	-4.360775	2.185281	-0.683793
Р	-3.863686	0.607532	0.193353
С	-5.312756	-0.552511	0.084975
С	-5.080055	-1.930727	0.287285
С	-6.152903	-2.835429	0.295962
С	-7.464475	-2.376297	0.085849
С	-7.700246	-1.008258	-0.125744
С	-6.631231	-0.096252	-0.121030
Cl	2.640403	-1.903838	-2.609374
Mo	0.882203	1.282821	-1.131720
Ν	2.677382	1.406789	-2.520930
С	3.699038	2.478896	-2.301177
С	4.041330	2.601032	-0.815776

Р	2.461257	2.934627	0.133427
С	2.892070	2.689392	1.926657
С	1.865403	2.816195	2.888579
С	2.148099	2.653956	4.253421
С	3.457630	2.360140	4.672718
С	4.483093	2.237865	3.721558
С	4.205791	2.403215	2.352945
S	1.913961	-0.148572	0.432154
S	-0.079703	0.010354	-2.919234
Cl	-3.081241	-1.453974	-2.453120
S	-0.879178	1.754096	0.469384
Cl	0.202407	3.327765	-2.434357
С	2.168962	4.772021	0.050966
С	3.202643	5.692153	-0.220544
С	2.941360	7.072975	-0.205282
С	1.653216	7.546383	0.091427
C	0.620333	6.634117	0.367723
Ċ	0.873196	5.253997	0.339915
Ċ	1 076719	-3 763299	1 962300
Č	1.589128	-2.814948	2.875466
Ċ	1.362766	-2.963639	4.253061
Ċ	0.621072	-4.056829	4.733361
Ċ	0 112174	-5 004537	3 830544
Ċ	0 339285	-4 863272	2 450498
Č	-3.817574	1.027504	2.005599
C	-4.142104	2.311847	2.491134
C	-4.091700	2.577722	3.870884
C	-3.721263	1.569019	4.774625
Ċ	-3.405249	0.285121	4.296750
Ċ	-3.451561	0.014795	2.920465
H	-3.720022	2.989179	-0.282579
Н	-5 407815	2 465017	-0 488996
Н	-4 374665	2 922913	-2 729519
Н	-4 714993	1 177913	-2 582810
Н	4 438383	1 644201	-0 435564
Н	4.807674	3.374042	-0.650401
Н	3 271054	3 419965	-2 683378
Н	4 606364	2 254303	-2 888111
Н	-0 376162	-5 209842	-2 718375
Н	1 282058	-4 553182	-2 666090
Н	-1 244828	-3 044848	-2 292460
Н	-0.054724	-2 834973	-3 392250
Н	2 312307	1 492556	-3 477913
Н	3 110366	0 464863	-2.478315
Н	-0 643224	-4 737872	-0 251977
H	0.713537	-5.848726	-0.554018
H	-2.074391	2.508384	-2.402270
H	-2.588654	1.309964	-3.396704
H	4.217893	5.350198	-0.440714
Н	3.751270	7.776730	-0.422084

Н	1.453807	8.622557	0.105543
Н	-0.387851	6.995335	0.594865
Н	0.057475	4.549507	0.530454
Н	0.841708	3.049652	2.577434
Н	1.343748	2.757429	4.988577
Н	3.677717	2.232435	5.737204
Н	5.507150	2.018348	4.039972
Н	5.024060	2.313298	1.633263
Н	-4.058713	-2.299003	0.424426
Н	-5.960839	-3.901220	0.455789
Н	-8.299989	-3.083400	0.084853
Н	-8.718859	-0.643162	-0.290836
Н	-6.842564	0.965842	-0.274243
Н	-4.443603	3.111400	1.809137
Н	-4.349472	3.577156	4.235444
Н	-3.684571	1.779690	5.847960
Н	-3.123489	-0.509450	4.994787
Н	-3.211559	-0.992632	2.563911
Н	2.160935	-1.954714	2.512692
Н	1.765867	-2.222134	4.950129
Н	0.443759	-4.171085	5.807355
Н	-0.460823	-5.862520	4.196335
Н	-0.057915	-5.620891	1.769451
Н	2.732518	-6.263510	-0.268710
Н	5.099329	-6.977312	-0.315682
Н	6.935470	-5.298942	-0.028147
Н	6.370168	-2.878300	0.285970
Н	3.989995	-2.141051	0.286467
Н	-0.470598	0.977237	1.563182
Н	-0.570123	-0.956851	1.556538

 $[Mo_{3}(\mu_{3}-S)(\mu-S)_{3}Cl_{3}(dmpe)_{3}]^{+}$ E(UB-P86) = -2381.3685054 a.u. Free energy = -2380.8390884 a.u. D3(BJ) dispersion correction = -0.36356697 a.u. Cartesian

С	-1.289233	3.535959	3.208314
С	-1.197367	5.094277	0.718270
С	-0.941509	5.039760	-0.795094
С	0.331387	3.606951	-3.054677
Mo	-0.675837	1.487220	0.043208
S	1.161691	1.687935	1.442565
Mo	1.626480	-0.158347	0.044375
С	2.956670	-2.086599	-3.056074
Mo	-0.950117	-1.329338	0.043272
С	-3.287188	-1.516093	-3.055492
Cl	-2.544934	2.125030	-1.557578
S	0.000858	-0.000163	-1.713147
S	-2.042393	0.163536	1.441158

Cl	3.113670	1.143412	-1.555245
S	0.879293	-1.852274	1.441245
С	5.009977	-1.513038	0.717432
С	4.835090	-1.704022	-0.796448
Cl	-0.567915	-3.267538	-1.557231
С	-3.814896	-3.581596	0.717970
С	-3.894449	-3.334188	-0.795684
С	3.708053	-0.654400	3.208603
С	-2.418721	-2.882824	3.208159
Н	-1.653456	2.632142	3.721329
Н	-1.760777	4.426943	3.653114
Н	-0.196368	3.595468	3.322134
Н	-0.281303	5.381680	1.263115
Н	-1.974930	5.835189	0.971277
Н	-1.874007	4.861964	-1.354102
Н	-0 492594	5 981275	-1 156788
Н	1 132562	2 909858	-3 344630
Н	0 558688	4 616158	-3 433860
Н	-0.628266	3 255402	-3 460563
Н	3 109546	0 114192	3 722278
Н	4 715699	-0.694009	3 652486
Н	3 211131	-1 629593	3 322428
Н	6.040581	-1 211566	0 971497
Н	4 799930	-2 451067	1 260206
Н	5 425784	-2 562768	-1 160206
Н	5 147312	-0.806331	-1 353492
Н	1 952701	-2 433023	-3 345866
Н	3 717877	-2.455025	-3 436454
н Н	3 130/10	-1.0789/13	-3.450454
н Н	-1.453651	-1.078743 -2.746402	3 720774
и П	2 05/707	3 736082	3.653670
и П	-2.034707	1 065732	3 321550
и П	4 520007	2 030245	1 261024
н Ц	-4.320907	-2.930243	0.071854
н Ц	-4.009347	-4.024803	1 353658
н Ц	-3.274483	-4.055890	-1.555058 1 1581 42
и П	3 086786	-5.415511	2 3//886
и П	-5.000780	1 826458	3 435508
П Ц	-4.273720	-1.820438	-3.433308
П D	-2.300032	-2.109092	-5.400/10
r D	-1.721200	3.418000	1.403907
r D	0.227394	3.020409	-1.202/44
r D	-3.233383	-1.010103	-1.203390
P D	3.026647	-2.008488	-1.204134
P D	-2.101595	-3.199329	1.403982
P C	3.822037	-0.220957	1.404482
	4.821393	1.343933	1.43549/
H	5.066920	1.041231	0.405//9
H	4.221266	2.141551	1.903487
H	5.742035	1.182449	2.018203
C	2.815138	-3.783970	-0.688648

Н	3.021041	-3.886764	0.387397
Н	1.776064	-4.086614	-0.886288
Н	3.512284	-4.416469	-1.262137
С	-4.685174	-0.545545	-0.686657
Н	-4.428061	0.505870	-0.883204
Н	-5.581486	-0.832643	-1.260353
Н	-4.876963	-0.674008	0.389384
С	-1.244070	-4.847969	1.435519
Н	-1.845838	-5.563069	2.018842
Н	-1.111258	-5.208776	0.405963
Н	-0.254873	-4.725583	1.903217
С	1.870161	4.330754	-0.685156
Н	2.069272	5.251652	-1.257218
Н	1.855529	4.558925	0.391226
Н	2.652190	3.582836	-0.883524
С	-3.577917	3.498389	1.435441
Н	-3.965533	2.581221	1.905361
Н	-3.897303	4.378001	2.016832
Н	-3.956928	3.561050	0.405783

 $[Mo_3(\mu_3-S)(\mu-S)(\mu-SH)_2Cl_3(dmpe)_3]^+$ E(UB-P86) = -2382.5181725 a.u. Free energy = -2381.9729075 a.u. D3(BJ) dispersion correction = -0.37539172 a.u. Cartesian

С	-1.397736	3.481908	3.157222
С	-1.098972	5.058491	0.708155
С	-0.696702	5.015669	-0.772968
С	0.738119	3.616261	-2.934332
Mo	-0.681659	1.434954	-0.026491
S	1.144023	1.569869	1.577697
Mo	1.610310	-0.210970	0.006418
С	2.726946	-2.229418	-3.050853
Mo	-0.976418	-1.268465	0.006928
С	-3.262126	-1.306502	-3.119134
Cl	-2.389991	2.223850	-1.666386
S	0.042540	-0.031387	-1.790458
S	-1.943227	0.206200	1.556744
Cl	3.166563	1.132455	-1.502612
S	0.804279	-1.795768	1.606620
С	5.019093	-1.627058	0.566093
С	4.734534	-1.825427	-0.929141
Cl	-0.654574	-3.291831	-1.487121
С	-3.973668	-3.361820	0.625067
С	-3.993108	-3.099281	-0.887784
С	3.808011	-0.894414	3.129733
С	-2.657956	-2.744461	3.167554
Н	-1.811250	2.584094	3.642334
Н	-1.876818	4.380881	3.577052

Н	-0.313219	3.522909	3.339558
Н	-0.233426	5.320049	1.341430
Н	-1.879075	5.816530	0.893789
Н	-1.574948	4.877657	-1.423433
Н	-0.186399	5.948115	-1.071907
Н	1.535030	2.897467	-3.177507
Н	1.031415	4.629548	-3.253061
Н	-0.195280	3.317181	-3.434004
Н	3.235632	-0.158475	3.715795
Н	4.832248	-0.961113	3.530694
Н	3.316237	-1.875918	3.206728
Н	6.059800	-1.305946	0.742737
Н	4.868766	-2.568585	1.122268
Н	5.285912	-2.695491	-1.326613
Н	5.016402	-0.934551	-1.512324
Н	1.692338	-2.526322	-3.280579
Н	3.431184	-2.977487	-3.449062
Н	2.932747	-1.241930	-3.490332
Н	-1.716822	-2.667928	3.734155
Н	-3.260193	-3.573904	3.571811
Н	-3.211337	-1.798649	3.264726
Н	-4.667048	-2.682427	1.150761
Н	-4.286350	-4.393682	0.860307
Н	-3.393438	-3.845839	-1.432370
Н	-5.024271	-3.125589	-1.281599
Н	-2.986680	-0.280243	-3.406257
Н	-4.261126	-1.551220	-3.514219
Н	-2.515248	-2.011248	-3.513805
Н	0.566582	0.874374	2.655064
Н	0.390365	-1.000017	2.695191
Р	-1.723752	3.388622	1.327670
Р	0.467129	3.573221	-1.099288
Р	-3.254614	-1.411909	-1.267481
Р	2.895946	-2.100142	-1.208043
Р	-2.269237	-3.064373	1.376122
Р	3.859901	-0.358307	1.347329
С	4.872838	1.198004	1.449847
Н	5.095578	1.553664	0.434617
Н	4.290618	1.966724	1.981257
Н	5.804735	0.992042	2.000305
С	2.692149	-3.854590	-0.617424
Н	2.906702	-3.911589	0.460864
Н	1.653313	-4.169844	-0.793522
Н	3.386144	-4.511234	-1.167066
С	-4.639561	-0.284655	-0.744547
Н	-4.814855	-0.397464	0.335831
Н	-4.353469	0.756131	-0.952844
Н	-5.554078	-0.547073	-1.300955
С	-1.508587	-4.761122	1.460544
Н	-2.167607	-5.428258	2.039055
Η	-1.366183	-5.150208	0.443101
---	-----------	-----------	-----------
Н	-0.528547	-4.687037	1.956942
С	2.060287	4.235405	-0.396302
Н	2.321678	5.171790	-0.915655
Н	1.940274	4.434121	0.679457
Н	2.852653	3.487267	-0.542939
С	-3.576194	3.540411	1.264184
Н	-4.019630	2.624986	1.685788
Н	-3.893734	4.414423	1.855136
Η	-3.899667	3.647788	0.219605

$[Mo_3(\mu_3-S)(\mu-S)_3H_3(dmpe)_3]^+$			
E(UB-P8	(36) = -1002.32	2401324 a.u.	
Free ene	rgy = -1002.6	4513354a.u.	
D3(BJ) o	dispersion cor	rection $= -0.32$	211203 a.u.
Cartesian	n		
С	-3.343252	-2.168257	-3.042288
С	-3.776115	-3.528548	-0.474785
С	-3.579042	-3.498229	1.047357
С	-2.042354	-2.457342	3.308509
Mo	-1.410116	-0.804201	-0.075929
S	0.011993	-2.213157	-1.377823
Мо	1.402596	-0.818786	-0.075998
С	3.152214	-0.540046	3.309240
Mo	0.009183	1.621831	-0.075128
С	-1.112992	2.994837	3.309223
Н	-2.696980	-0.543659	1.073429
S	0.000059	-0.001689	1.690590
S	-1.919540	1.096199	-1.380853
Н	1.821853	-2.063988	1.072375
S	1.912018	1.117707	-1.376218
С	4.946017	-1.498398	-0.475803
С	4.821960	-1.343559	1.046398
Н	0.877220	2.605241	1.075485
С	-1.174738	5.030362	-0.474724
С	-1.249530	4.844552	1.047341
С	3.552890	-1.811175	-3.042380
С	-0.202977	3.979271	-3.040383
Н	-3.250092	-1.207596	-3.572643
Н	-4.254453	-2.688869	-3.378703
Н	-2.456382	-2.782682	-3.260683
Н	-3.074258	-4.236058	-0.950861
Н	-4.800084	-3.838200	-0.747358
Н	-4.329913	-2.849033	1.530942
Н	-3.672986	-4.504835	1.490195
Н	-1.057287	-2.161331	3.701075
Н	-2.394466	-3.358458	3.836033
Н	-2.751320	-1.629758	3.462956
Н	2.675659	-2.214176	-3.572407

Н	4.460922	-2.338493	-3.377138
Η	3.638983	-0.736200	-3.263202
Н	5.727522	-2.228477	-0.749606
Η	5.205088	-0.536067	-0.951781
Н	5.739879	-0.919157	1.488630
Н	4.638252	-2.319100	1.529808
Н	2.402725	0.162922	3.704352
Н	4.109313	-0.393601	3.835389
Н	2.792436	-1.568840	3.462506
Н	0.584088	3.418089	-3.568128
Н	-0.197509	5.028482	-3.377424
Н	-1.177663	3.517997	-3.261802
Н	-2.136667	4.773180	-0.952532
Н	-0.933501	6.072647	-0.747003
Н	-0.314332	5.174257	1.532864
Н	-2.077694	5.426099	1.488010
Н	-1.349337	1.994171	3.702723
Н	-1 718527	3 750716	3 834850
Н	-0.042177	3 195877	3 464967
P	-3.415056	-1.837217	-1.213534
P	-1.891236	-2.790261	1.486695
P	-1.474815	3.028291	1.487029
P	3.362170	-0.239879	1.487570
P	0 114560	3 875898	-1 210610
P	3.301730	-2.035612	-1.213131
C	3.326368	-3.887036	-1.024452
H	3.353246	-4.142661	0.045742
Н	2.402379	-4.297673	-1.460398
Н	4.203117	-4.316501	-1.535512
C	4.096226	1.473946	1.447350
H	4.425123	1.707806	0.423407
Н	3.315390	2.195233	1.734251
Н	4.949049	1.541052	2.142117
С	-3.325854	2.805668	1.444640
Н	-3.559800	1.769190	1.733473
Н	-3.811280	3.511732	2.137724
Н	-3.691875	2.971284	0.420010
С	1.704878	4.824225	-1.020706
Н	1.638419	5.797902	-1.532588
Н	1.911756	4.976364	0.049542
Н	2.523266	4.229596	-1.455488
С	-0.777361	-4.285367	1.446156
Н	-1.147915	-5.056725	2.140631
Н	-0.739564	-4.686807	0.422141
Н	0.238311	-3.972557	1.734086
С	-5.028994	-0.928927	-1.028295
Н	-4.918958	0.076212	-1.464238
Н	-5.839611	-1.471517	-1.541062
Н	-5.266078	-0.823601	0.041328

$[Mo_3(\mu_3-S)(\mu-S)(\mu-SH)_2H_3(dmpe)_3]^+$ E(UB-P86) = -1003.46410096 a.u. Free energy = -1002.90126696 a.u.

D3(BJ) dispersion correction = -0.33184763 a.u.

Cartesian

С	2.007130	-3.479175	-2.974097
Р	1.619579	-3.483291	-1.153795
С	0.591807	-5.028271	-0.980901
С	3.262623	-3.966916	-0.372275
С	3.234995	-3.716756	1.142216
Р	2.668308	-1.960249	1.516690
С	4.246295	-0.978602	1.353064
Mo	0.697905	-1.418832	-0.006438
S	-1.128951	-1.649024	-1.678689
Mo	-1.608714	0.074537	-0.006970
Р	-3.876169	0.419834	-1.136937
С	-4.631630	2.109114	-0.933670
S	2.053431	-0.142097	-1.528777
Mo	0.936267	1.277961	0.014008
Р	2.385452	3.036099	-1.090121
С	4.216698	2.865022	-0.804175
S	-0.054451	0.001481	1.795977
S	-0.895143	1.848669	-1.547704
Р	0.312191	3.368169	1.391317
С	-1.257289	4.302122	1.011280
Р	-3.106946	-1.356848	1.439645
С	-3.116356	-3.207240	1.188160
С	2.413550	-2.000975	3.357352
С	-2.978173	-1.217605	3.290175
С	-4.905406	-0.894589	1.123631
С	-5.160030	-0.729089	-0.380409
С	0.259842	3.236139	3.243883
С	1.642982	4.665491	1.094176
С	1.990325	4.744243	-0.399561
С	-4.068201	0.120901	-2.964598
С	2.294868	3.303567	-2.929695
Н	0.336283	-2.753128	1.082673
Н	2.140613	1.725184	1.187486
Н	-2.476985	1.225486	0.994859
Н	1.069719	-3.344806	-3.536568
Н	2.479676	-4.429618	-3.270740
Н	2.679685	-2.637284	-3.198159
Н	4.034701	-3.345152	-0.859717
Н	3.487147	-5.021925	-0.607763
Н	2.518288	-4.391665	1.642177
Н	4.226516	-3.881898	1.598647
Н	2.196313	-0.981526	3.711390
Н	3.314494	-2.384695	3.863042
Н	1.551545	-2.647102	3.583087

Η	2.609369	2.378469	-3.437498
Н	2.952714	4.134604	-3.231697
Н	1.255262	3.529908	-3.212747
Η	2.842037	5.421401	-0.585933
Η	1.131908	5.124287	-0.981722
Η	1.294114	5.639272	1.479930
Η	2.520928	4.361488	1.690719
Н	-0.578238	2.582608	3.530683
Н	0.126287	4.231494	3.697707
Н	1.200108	2.784763	3.595489
Н	-3.436462	0.837562	-3.512800
Η	-5.119255	0.252248	-3.268678
Η	-3.735193	-0.901122	-3.201676
Η	-5.065837	-1.696315	-0.905144
Н	-6.171088	-0.336500	-0.586108
Н	-5.086235	0.051789	1.662710
Н	-5.561940	-1.664941	1.564498
Η	-1.990412	-1.583324	3.609836
Η	-3.768657	-1.812782	3.775485
Н	-3.075099	-0.159167	3.575971
Н	4.417153	2.875524	0.277970
Н	4.546160	1.898002	-1.214987
Н	4.764007	3.685507	-1.295889
Н	-1.274412	4.583558	-0.053191
Н	-2.111440	3.637405	1.212059
Н	-1.324024	5.208158	1.635327
Н	-2.117488	-3.592688	1.445399
Н	-3.882680	-3.685312	1.820580
Н	-3.315074	-3.433160	0.128828
Н	-5.606733	2.160439	-1.444779
Н	-4.755747	2.321846	0.138791
Н	-3.947362	2.856833	-1.363917
Н	5.043235	-1.417842	1.975097
Н	4.556705	-0.961605	0.297100
Н	4.044047	0.056365	1.669706
Н	-0.400532	-4.842744	-1.421185
Н	1.072607	-5.875962	-1.495949
Н	0.464729	-5.260742	0.087274
Н	-0.465831	1.126050	-2.665177
Н	-0.577458	-0.925703	-2.749966

X3LYP-optimized structures

Acetic acid

 $E_{gas}(X3LYP/ def2-TZVP) = -229.088243171 a. u. G_{gas}(X3LYP/ def2-TZVP) = -229.0538772 a. u.$

 $\begin{array}{ll} E_{methanol}(X3LYP/\ def2\ TZVP(SMD)) = -229.104834074\ a.\ u. \\ Cartesian \\ C & -1.368922 & -0.051875 & -0.000139 \\ C & 0.130157 & 0.140890 & -0.000605 \end{array}$

0	0.862516	-1.005541	0.000213
Н	-1.857189	0.917870	-0.017106
Н	-1.681763	-0.629132	-0.873076
Н	-1.681686	-0.597006	0.893314
0	0.683142	1.199915	0.000053
Н	0.287964	-1.780819	-0.000790

Acetate anion

 $E_{gas}(X3LYP/def2-TZVP) = -228.529399799 a. u.$ $G_{gas}(X3LYP/def2-TZVP) = -228.5093038 a. u.$ $E_{\text{methanol}}(X3LYP/\text{ def2-TZVP(SMD)}) = -228.640519306 \text{ a. u.}$ Cartesian -1.348380 С -0.047837 -0.001044 С -0.002364 0.212827 0.001235 0 0.701225 1.153686 0.000448

Н	-1.722081	-1.071419	-0.073585
Н	-1.724287	0.408679	0.920015
Н	-1.737778	0.545688	-0.833550
0	0.798458	-1.104104	0.000497

1-H₂

 $E_{gas}(X3LYP/def2-TZVP) = -3986.78583754 a. u.$ $G_{gas}(X3LYP/def2-TZVP) = -3986.301549 a. u.$ $E_{methanol}(X3LYP/def2-TZVP(SMD)) = -3986.87413571 a. u.$ Cartesian

С	-1.911277	3.313042	2.584171
Ν	-1.602526	3.281840	1.140482
С	-0.786302	4.454156	0.753794
С	-0.513523	4.439983	-0.731691
Ν	0.135334	3.177317	-1.155292
С	0.186809	3.116764	-2.636544
Mo	-0.744356	1.366927	0.073827
S	1.088319	1.630011	1.649616
Mo	1.584858	-0.085988	0.074715
Ν	2.700240	-1.693510	-1.213784
С	2.630945	-1.625057	-2.694048
Mo	-0.900227	-1.287673	0.079495
Ν	-2.790835	-1.479351	-1.242455
С	-2.680982	-1.480343	-2.721554
Cl	-2.751099	1.844265	-1.297027

S	0.025992	-0.010578	-1.659453
S	-1.918819	0.101548	1.622696
Cl	3.028602	1.549916	-1.157652
S	0.888626	-1.746751	1.646521
Ν	3.673881	-0.350257	1.125318
С	4.265711	-1.635963	0.698284
С	4.117801	-1.796733	-0.795163
Cl	-0.186651	-3.361277	-1.122769
Ν	-2.174130	-2.946311	1.144750
С	-3.575118	-2.812611	0.693024
С	-3.616694	-2.632236	-0.805855
С	3.862572	-0.135584	2.573583
C	-2.103902	-3.181003	2.601047
H	-2.484181	3.332041	0.631462
Н	1.108651	3.176691	-0.843612
Н	4 157310	0 399315	0 630622
Н	2 210856	-2 548463	-0 947332
Н	-1 768666	-3 756815	0.677637
Н	-3 265897	-0.610690	-0.987879
H	-2.598568	2 509051	2.829753
Н	-2.362189	4 269843	2.859998
Н	-0.995469	3 182279	3 157295
Н	0 143357	4 414816	1 323459
Н	-1 298268	5 382909	1 024404
Н	-1 450200	4 520312	-1 284741
Н	0.105825	5 298183	-1 007074
Н	0.857564	2 320408	-2 940208
H	0.559129	4 062051	-2.940200
н Н	-0.812314	2 027153	-3.037341
н Н	3 537863	0.866283	2 8/0515
и П	1 01/1510	0.251804	2.846585
и П	3 276038	0.862706	2.040505
и П	5 32/588	1 680572	0.071754
н Ц	3.524588	-1.080372	1 235070
н Ц	J.754331 A 542334	2.430739	1.235070
и П	4.542554	-2.751919	1 200883
и П	1 600586	1 700381	3 015580
и П	2 273010	2 380534	3 137573
П Ц	2 057817	-2.369334	-3.137373
п u	2.93/01/	-0.041400	-3.022203
п u	-1.079922	-5.411524	2.002100
П	-2.747070	-4.01/2/7	2.000907
П	-2.420900	-2.200310	3.131013
П	-4.010803	-1.934192	1.203973
П	-4.130330	-3.09098/	0.972202
H II	-3.214238	-3.51/513	-1.300114
п	-4.048/32	-2.300398	-1.143434
п	-2.294019	-0.323/81	-5.05542/
п	-3.0043/0	-1.038913	-3.1/0302
П	-2.008822	-2.2/81/6	-3.028084
Н	0.365424	1.011900	2.133833

a. u.

1-H ₂ after deprotonation of a S-H moiety				
$E_{gas}(X3LYP/def2-TZVP) = -3986.38615225 a. u.$				
$G_{gas}(X3LYP/def2-TZVP) = -3985.912398 a. u.$				
E _{methanol} (2	X3LYP/ def2	-TZVP(SMD)) = -3986.87413571	
Cartesiar	1			
С	-1.129194	-3.664225	2.558597	
Ν	-1.348704	-3.404033	1.127863	
Mo	-0.544530	-1.452679	0.085088	
S	1.247060	-1.448850	1.591928	
Mo	1.556773	0.293669	0.105999	
Ν	3.616770	0.547201	1.191382	
С	3.688279	0.821862	2.636179	
С	-2.762130	-3.590486	0.756993	
С	-2.939513	-3.396084	-0.732318	
Ν	-2.445862	-2.077080	-1.171088	
С	-2.395471	-2.021816	-2.647255	
S	-1.869543	-0.327951	1.742219	
Mo	-1.025298	1.180403	0.079553	
N	-2 273274	2 892883	1 129957	
C	-2 544345	2 877945	2 576048	
C1	0 550775	-3 347183	-1 277835	
S	0.009684	0.001816	-1 657173	
N	-0 587243	3 114079	-1 211467	
C	-1 490020	4 203013	-0 789988	
C C	-1 728213	4 193843	0.703345	
Cl	-3 241809	1 173829	-1 201304	
S	0.646514	1 828642	1.201304	
C	-0 549122	3 038676	-2 685708	
N	3 052298	-1.065466	-1 139866	
C	1 132569	-0.833669	-0.673807	
C	4.432307	-0.833007	0.817508	
Cl	7 600310	2 008030	1 20/055	
C	2.099319	2.098939	-1.294033	
с u	0.770611	-1.090293	-2.013436	
П П	-0.779011	-4.034883	0.383880	
П U	-3.090994	-1.34/301	-0.67/941	
П	-3.140491	2.720078	0.030430	
П	0.300004	3.312838	-0.8931/9	
П	3.924420	1.3/0331	0.084334	
П	2./21808	-1.9/4990	-0.815/54	
П	-0.000083	-3.010294	2.//022/	
H	-1.515540	-4.649535	2.840688	
H	-1.639163	-2.904/12	3.148/10	
H	-3.351889	-2.864231	1.319/43	
H	-3.110995	-4.5910/1	1.039/99	
H	-2.361222	-4.148685	-1.2/0915	
H	-3.991935	-3.529649	-1.005587	
H	-2.253/11	-0.992251	-2.959085	
Н	-3.330558	-2.395852	-3.077378	

Н	-1.563293	-2.628779	-2.996569
Η	-3.072563	1.964370	2.834779
Η	-3.151285	3.741136	2.869739
Η	-1.602564	2.903436	3.121221
Η	-2.414021	5.007890	0.967525
Н	-0.795384	4.355681	1.245909
Н	-1.091774	5.176648	-1.096312
Η	-2.435481	4.054811	-1.314565
Н	0.277533	2.405695	-2.990242
Η	-0.409650	4.035073	-3.118290
Н	-1.485341	2.615599	-3.044136
Н	3.130046	1.726563	2.859200
Η	4.727988	0.944168	2.957945
Н	3.237376	-0.003767	3.182770
Н	4.155323	-1.456050	1.373782
Η	5.529404	-0.377150	1.109789
Η	4.807574	0.038711	-1.211250
Η	5.076709	-1.681809	-0.930828
Η	2.041740	-1.472840	-2.933168
Н	3.792217	-1.740803	-3.012633
Н	3.144544	-0.079534	-2.992708
Н	-0.978257	-0.170808	2.784289