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In this paper, we propose two new representation formulas for the conditional marginal probability den-
sity of the multi-factor Heston model. The two formulas express the marginal density as a convolution
with suitable Gaussian kernels whose variances are related to the conditional moments of price returns.
Via asymptotic expansion of the non-Gaussian function in the convolutions, we derive explicit formu-
las for European-style option prices and implied volatility. The European option prices can be expressed
as Black-Scholes style terms plus corrections at higher orders in the volatilities of volatilities, given by
the Black-Scholes Greeks. The explicit formula for the implied volatility clearly identifies the effect of
the higher moments of the price on the implied volatility surface. Further, we derive the relationship
between the VIX index and the variances of the two Gaussian kernels. As a byproduct, we provide an ex-
planation of the bias between the VIX and the volatility of total returns, which offers support to recently
proposed methods to compute the variance risk premium. Via a series of numerical exercises, we anal-
yse the accuracy of our pricing formula under different parameter settings for the one- and two-factor
models applied to index options on the S&P500 and show that our approximation substantially reduces
the computational time compared to that of alternative closed-form solution methods. In addition, we
propose a simple approach to calibrate the parameters of the multi-factor Heston model based on the
VIX index, and we apply the approach to the double and triple Heston models.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

ston model is that it predicts a flattening of the curvature of the
implied volatility that is faster than that observed in the market
when time to maturity increases. To address these shortcomings,
a multi-factor extension of the Heston model has been proposed.

The well-known Heston (1993) model provides a natural gen-
eralization of the Black and Scholes approach to option pricing by
introducing stochastic dynamics for the volatility of returns. With
its ability to reproduce several empirical features in the dynam-
ics of asset prices, such as the leverage effect and the cluster-
ing of volatility, the Heston model has become one of the most
widely used stochastic volatility models in the derivatives market.
While the Heston model can generate smiles and smirks, it does
not provide sufficient flexibility to capture the shape of the im-
plied volatility surfaces, in particular, the largely independent fluc-
tuations in slope and level over time. Another drawback of the He-
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Christoffersen, Heston, and Jacobs (2009) were among the first to
show that at least two factors are needed to realistically capture
the implied volatility slope and level dynamics. Their results indi-
cate that one factor is strongly mean reverting, whereas the other
is slowly varying, providing more flexible modelling of the volatil-
ity term structure.

Exact analytical solutions for the price of vanilla European call
options under the Heston and multi-factor Heston model are avail-
able in terms of integrals in the complex plane that must be com-
puted by numerical integration over the characteristic functions
(Christoffersen et al., 2009; Cui, del Bano Rollin, & Germano, 2017;
Duffie, Pan, & Singleton, 2000; Fatone, Mariani, Recchioni, & Zir-
illi, 2009; 2013; Heston, 1993; Lewis, 2000; Recchioni & Sun, 2016;
Recchioni & Tedeschi, 2017; Veng, Yoon, & Choi, 2019).

Please cite this article as: M.C. Recchioni, G. lori, G. Tedeschi et al., The complete Gaussian kernel in the multi-factor Heston model:
Option pricing and implied volatility applications, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.11.050
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Here, we propose two new closed analytical solutions based on
two integral representation formulas for the conditional marginal
density function, which we express as a convolution with suitable
Gaussian kernels. These formulas provide a natural way to connect
the margins of the multi-factor Heston model to the probability
density function of the Black-Scholes model. Specifically, we ex-
tract two Gaussian kernels (Theorems 2.1 and 2.2). The first kernel,
Grys well known in the literature, has a variance I'y that is inde-
pendent of the volatilities of volatilities (vols of vols) and is given
by the integrated conditional mean of the point-in-time variance.
The other kernel, Gr,, is hidden in the marginal probability density
and has therefore not been explored in the literature. The variance
I'y coincides with the conditional variance of continuously com-
pounded returns. We show that Gr, is the “complete” kernel of
the Heston model and its multi-factor generalization. Our repre-
sentation formulas allow us to express the price of any derivative
contract, not just vanilla contracts, as the price in a Black-Scholes
world, with variance I'y or I'y, convolved with a suitable function
that does not depend on the specific payoff of the contract.

The convolution formulas can be computed by solving the
integrals numerically. While numerical integration methods are
extremely powerful in terms of accuracy, they do not provide an
explicit link between the structural properties of the model and
the characteristics of the prices. In addition, while closed-form
solutions are particularly useful for model calibration, common
practice is to calibrate the implied volatility observed in the
market, rather than the option prices, because implied volatility
is a standardized measure of option prices that makes them
comparable even when the underlying assets are not the same.
Unfortunately, exact closed-form solutions for implied volatilities
are not available in the Heston and multi-factor Heston framework.
Therefore, easy-to-implement analytical approximations based on
perturbation and asymptotic methods have become popular. Ap-
proximations not only help to accelerate the calibration to market-
observed quantities but also enhance the understanding of the
analytical features of the model and the implied volatility surface.

1.2. Literature review

The earliest and best known asymptotic results are from Lewis
(2000), who derived an asymptotic expansion for small values of
the vols of vols. This result was followed by Lee (2001), who obtain
similar results assuming a slow mean reversion of volatility, and
Fouque and Lorig (2011), who assume fast mean-reverting volatil-
ity. Additionally, Antonelli and Scarlatti (2009) make an expan-
sion around zero correlation. Friz, Gerhold, Gulisashvili, and Sturm
(2011) derive an asymptotic expansion for the implied volatility
of the Heston model for a large strike price. Forde and Jacquier
(2009) obtain the small-time behavior of the implied volatility
in the Heston model (with correlation), while Forde and Jacquier
(2011) use large deviation techniques to obtain the small-time
behavior of the implied volatility for general stochastic volatility
models with zero correlation. Kristensen and Mele (2011) do not
approximate the asset price directly but develop a power series ex-
pansion of the expected bias that would arise if the Black-Scholes
model was used to price derivatives when the true market dy-
namics obeyed the Heston model. Drimus (2011) follows a simi-
lar approach using a different series expansion and shows how the
convexity in volatility, measured by the Black-Scholes Volga, and
the sensitivity of delta with respect to volatility, measured by the
Black-Scholes Vanna, impact option prices in the Heston model.
Fouque, Papanicolaou, Sircar, and Solna (2011) derive an asymp-
totic expansion for general multiscale stochastic volatility models
using combined singular and regular perturbation theory. Bergomi
and Guyon (2011) also consider multi-factor stochastic volatility
models and derive an approximation for the volatility smile at the
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second order in the vols of vols. Their results coincide with those
of Lewis (2000) in the case of the Heston model. Lorig, Pagliarini,
and Pascucci (2017) derive a family of asymptotic expansions for
European-style option prices and implied volatilities for a general
class of local stochastic volatility models.

Some authors have derived asymptotic expansions in a jump-
diffusion stochastic volatility setting (see Berestycki, Busca, & Flo-
rent, 2004; Medvedev & Scaillet, 2007). More recently, Jacquier and
Lorig (2014) provide an explicit implied volatility approximation
for any model with an analytically tractable characteristic func-
tion, which includes both affine stochastic volatility and exponen-
tial Lévy models. Nicolato and Sloth (2012) and Takahashi and
Yamada (2012) develop asymptotic expansions around the Black-
Scholes model for stochastic volatility models with jump diffu-
sion. Pagliarini and Pascucci (2013) add jumps to a local-stochastic
volatility model.

Benhamou, Gobet, and Miri (2009) employ Malliavin calculus
to develop an approximation formula under the one-factor Hes-
ton model with time-dependent parameters. Their option prices
are given by a Black-Scholes term plus corrections related to the
Greeks of the option. Nagashima, Chung, and Tanaka (2014) extend
these results to the general multi-factor Heston model with time-
dependent parameters and find a similar expansion but with an
extra term that captures the interaction between the different vari-
ance factors. Al6s et al. (2012) use Malliavin calculus to study the
short-term behavior of implied volatility for jump-diffusion mod-
els with stochastic volatility. Veng et al. (2019) derive an asymp-
totic expansion for put prices, extending the results of Benhamou
et al. (2009) to the general multi-factor Heston model with time-
dependent parameters.

Considerable attention has also been devoted to approximat-
ing the risk-neutral density, as proposed by Abadir and Rockinger
(2003), Ait-Sahalia (2002), Egorov, Li, and Xu (2003), and Yu
(2007).

In line with this literature, we propose an asymptotic expan-
sion of the conditional marginal density for small values of the
vols of vols. The main difference with respect to the literature is
that the expansion is done after extracting the Gaussian kernels,
i.e.,, we expand only the function that is convolved with the Gaus-
sian kernels. This approach yields particularly interesting results
when the Gr, kernel is used, given that its dependence on the
vols of vols is fully retained. With our approach, we naturally ob-
tain option prices that can be expressed as the Black-Scholes price
plus correction terms related to the Greeks of the options. Sim-
ilarly, the implied volatility can be written as the square root of
the integrated conditional variance plus corrections due to higher-
order risks. These decompositions provide a clear understanding of
how option prices and implied volatility respond to changes in the
model parameters and underlying quantities, which is very impor-
tant in practice for hedging purposes.

1.3. Main contribution

Our paper contributes to the existing literature in several
respects. First, we provide two new exact formulas for the
conditional marginal density of the multi-factor Heston model
(Theorems 2.1 and 2.2). As mentioned above, each formula ex-
presses the marginal probability density as a convolution of a
Gaussian kernel whose variance is related to the price-return pro-
cess. While we do not compute these formulas numerically, this
approach avoids some numerical challenges in computing the com-
plex integrals involved in option pricing in the multi-factor Heston
model.

Second, following the approach of Zhang, Shu, and M. (2010);
Zhang, Zhen, Sun, and Zhao (2017), we derive analytical formulas
for the higher-order cumulants in the multi-factor Heston frame-
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work. These formulas show that the variance of the Gaussian ker-
nel, gr,, is given by the variance of the continuously compounded
return.

Third, we provide explicit approximation formulas for the
marginal density function as a Gaussian kernel plus corrections us-
ing an asymptotic expansion for the non-Gaussian term in the con-
volution that defines the marginal probability. With this expansion,
we obtain explicit formulas for European vanilla call and put op-
tions prices that can be expressed as the Black-Scholes price plus
corrections at higher orders of the vols of vols (see Proposition 3.1).
These formulas satisfy the put-call parity equation at any order
of approximation. The formulas using the Gaussian kernel Gr,,
while derived with a different approach, are equivalent to those of
Bergomi and Guyon (2011) for the Heston model and are similar
to those of Veng et al. (2019) for the multi-factor Heston model.
However, these authors explicitly compute the first-order correc-
tions in the slow and fast time scales, so they do not capture the
effect of price skewness on the convexity of the implied volatility.
The formulas using the Gaussian kernel gr, are new and outper-
form those obtained using the Gaussian kernel gr, for out-of-the-
money options.

Finally, we derive an approximation for the implied volatility
from a second-degree polynomial function of the forward money-
ness. This formula allows the effect of price skewness on the asym-
metry of the volatility smile to be clearly identified, in addition to
the level, slope, and curvature of the implied volatility smirk. For
the Heston model with zero drift, our formula is analogous to that
of Bergomi and Guyon (2011), and is in line with the approxima-
tion formula in a non-parametric setting proposed by Zhao, Zhang,
and Chang (2013). The key insight of our formula is explicit expres-
sions for the level, slope and convexity in terms of the cumulative
uncertainty of the asset price and the integrated volatility process.
This is a new result that has not been reported in the literature.

Our work also contributes to the growing literature that
explores the bias between the VIX index and the integrated
conditional mean of the point-in-time variance, and it provides
a possible interpretation of the variance risk premium. Defining
the variance risk premium as the positive difference between the
second cumulants in the physical and risk-neutral measures (in
line with Zhao et al., 2013), we compute the premium explicitly
in the multi-factor Heston model. In particular, we show that
the risk-neutral second cumulant coincides with the square root
of I'y/T, which is an implied volatility. Furthermore, we show
that the VIX index can be associated not only with I'y (i.e., the
integrated conditional variance) but also with T"; (i.e., the variance
of the compounded return in the risk-neutral measure) opening
the opportunity to calibrate the parameters of the multi-factor
Heston model directly from the VIX. This result also provides
support to recently proposed methods to compute the variance
risk premium from model-free option-implied volatility measures.
We also propose an explanation for the bias usually observed
between the VIX index and the volatility of total returns. This
topic is discussed further in Section 3.3.

Finally, we provide a one-dimensional integral representation
formula for European call and put options in the multi-factor He-
ston model following the approach in Recchioni and Sun (2016).
These formulas are used as an exact benchmark against which to
test the accuracy of our option price approximations.

The rest of this paper is organized as follows. In Section 2, we
review the multi-factor Heston model, derive the main results of
the paper, i.e., the two representation formulas for the conditional
marginal density function, and introduce the two Gaussian kernels
Gr, and Gr,. In Section 3, we derive approximation formulas, in
powers of the vols of vols, for option prices and implied volatility,
and we provide an interpretation of the volatility smile. We then
derive the relationship between the variances of the two kernels

[m5G;December 23, 2020;19:58]

European Journal of Operational Research xxx (XxXxx) Xxx

and the VIX index. In Section 4, we present two simulation stud-
ies to assess the accuracy of our approximated formulas, and in
Section 5, we present empirical analyses to assess the effectiveness
of our approach in terms of model calibration and forecasting op-
tion prices one day ahead. In Section 6, we show empirically that
the squared VIX is better approximated by I'; than I'y, and we use
the VIX index to calibrate the parameters of the double and triple
Heston models. Our results suggest that the dynamics of the third
factor may be influenced by changes in macroeconomic conditions.
Section 7 concludes. The proofs of the main results are given in
Appendix A, while Appendices B and C report the derivation of the
formulas for the option pricing with the expansion based on the
Gaussian kernel gr; (Appendix B) and the true marginal density
(Appendix B). Supplementary material with detailed proofs and
some additional results is available online.

2. Multi-factor Heston model treatment

In this section, we present the multi-factor Heston stochastic
volatility model and the main theoretical results of the paper. The
final goal is to derive an explicit, approximate expression for the
price of European call and put options and for the implied volatil-
ity in the multi-factor Heston framework. The key results are two
representation formulas for the conditional marginal density func-
tion (which is the starting point for the derivation of the option
prices) associated with the multi-factor Heston model. The first
representation formula shows that the conditional marginal den-
sity can be expressed as the convolution of a Gaussian kernel, that
does not depend on the Heston vols of vols parameters, and a
function that includes all the effects of the vols of vols. The second
formula reveals the complete Gaussian kernel, i.e., the one that in-
cludes all the effects of the vols of vols and is able to fully capture
the process dynamics.

The multi-factor Heston model (Christoffersen et al., 2009) as-
sumes the following stochastic volatility model:

10 n

dX[ = r(t) — i ZUN dt + Z Uj.tdzj,l" t > 0, (1)
=1 j=1

dvj,t = Xj(U}f - vj_t)dt + Vi Uj,[de_t, t >0, (2)

where x; denotes the log-price variable, vy, ..., vn is the cor-
responding variances, r(t) is the instantaneous risk-free rate (as-
sumed to be known in advance), x;, v3, and y; are positive con-
stants, and Z;;, W;;, j=1,2,...,n, are standard Wiener processes.
All correlations among the Wiener processes are zero, except for
E(dZ;;,dW;j;) = pjdt, where p; e (-1,1), j=1,2,...,n are con-
stant correlation coefficients. Dividends are not included. The sys-
tem of Eqs. (1)-(2) is equipped with the following initial condi-
tions:

Xo = logSo, (3)
Vjo = Vjo, (4)
where SNO and 5j,o~ j=1,2,...,n, are the initial spot price and vari-

ance respectively, which are assumed to be random variables con-
centrated at a point with probability one.

As specified in Heston (1993), the quantities x; are the speeds
of mean reversion, v}f represents the long-term means, and y; de-
notes the local variances (or volatilities of volatility) of each volatil-
ity process v;. These parameters are assumed to be positive, so the
process is well defined.

Notably, if the Feller condition is enforced, ie., 2; v;f/yjz > 1,
the variances v;, are positive for any t > 0 with probability one
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(stationary volatility) and vjq = v] 0>0, j=1,2,...,n (see Revuz
and Yor [25, Chapter XI] for the Bessel process)

Furthermore, we use y, v to denote the vectors contain-
ing the vols of vols, ¥ = (¥1,¥2..... ¥n), and the variances,
v= (Vq,Vq,..., V), respectively. The transition probability density
function (pdf) associated with the stochastic differential system
(1), (2) is denoted by ps(x,v.t, ¥, 7. t"), (x,v), (X,V) eRx R,
t,t' >0, t' —t >0, where R denotes the set of real numbers, R" is
the n-dimensional Euclidean vector space, and R"" the positive or-
thant. We also introduce the processes X;; and Y;, associated with
the multi-factor Heston model (1):

tn

Xo = / > ez, (5)
j=1

tn

v [ Z[vﬂ E(v; |F)ldt, (6)

where F; is the information set, i.e., the continuous o -algebra gen-
erated by the point-in-time volatility processes, and E(v;s|F;) is
the conditional mean of the point-in-time variance given by

E@je|F) = vjee 00 + 0351 t<t. (7)

According to Zhang et al. (2017), X,; measures the cumulative un-
certainty of the asset return and Y;,! is the uncertainty of the in-
tegrated variance process over the time interval [t,t']. Rg/ is the
continuously compounded return defined as

—e X0y,

/ v 1< -
RE =X —x = /t r@ -5 D vie JdT+ >\ idz;.
j=1 j=1

(8)
with
, v 1¢
ERY | F) = /[ r() — 5 Y E@se | R |dT
j=1
which is related to processes X, and Y, as follows
) , 1
R —ER | Ft) = Xo = 3Yo (9)

In the following, we provide a representation formula for the
conditional marginal density function, which enables extraction
of the Gaussian kernel underlying the multi-factor Heston model
(Theorems 2.1 and 2.2). Specifically, we use G to denote the Gaus-
sian kernel with variance I'(t,t’), t < t/, that is:

1 e 21‘(::/ (y f[ r(s)yds+1T(t, t’))

V2D (¢, t)
_ L/*“’e [y 7 r(s)ds+d r(rr)] 1T ()R
2 J_

Gryt,t)=

dk. (10)

We extract two Gaussian kernels?, identified in Theorems 2.1 and
2.2, that we denote as the zero-order kernel gr, and the second-
order kernel gr,. As we show later, the terms “zero-order” and
“second-order” reflect the fact that they contain, respectively, no
powers of y and all terms of second degree in y.

Theorem 2.1 shows that the marginal probability density of the
log-price variable can be written (see Eq. (18)) as the convolution
of the Gaussian kernel gr, (independent of the vols of vols) and
the function £,,, which accounts for the vols of vols effect.

1 The conditional moments of the process Y, are also known as risk-neutral cu-
mulants (see, Zhao et al., 2013).

2 We refer the reader to the supplementary material for a discussion of an addi-
tional Gaussian kernel Gr,.
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Theorem 2.1. The marginal probability density of the log-price vari-
able conditioned on v, = v is given by

M(x.v.t. X t) = /R pr(x vt XV, t)dv

1 /+°° ezk[(x/—x)—jf, r(s)ds+%I‘o(t.t/)]— 1To(t.t)R
27
Fourier trans form of Gaussian kernel

2
Y Ey | ]~})|:%BJZ.(k.s,t’)ﬂkpjijj(k.s,t’)i|dS |
e <,

contribution fromvols of vols
X, X eR, veR" t,t'>0,t/ =t >0, (11)

where 1 is an imaginary unit and E(vj| F¢) is the conditional mean
(7). Here, Bj is given by

Bi(k.t.t)) = + (k% — 1K) 1-e8t0 (12)

ikt t")y==(k*—1 —,

! 2 (¢ + )+ (g — vje2a@

where gj and v; are the following quantities:

gi(k) = (4v + (k- lk)) (13)
1

vi(k) = 5 (tkp;y; + x;)- (14)

Furthermore, M can be written as:

+o0

M, v, t, X t') = Gr,(X —x—y,t,t')C, (y.t,t")dy,  (15)

where T'g(t,t") is given by:
n t

Lo(t.t) = [ Bl 7ds (16)
=17t

where Gr, is the Gaussian kernel in (10), computed for rt)=
Io(t,t"), and L, is a function that accounts in full for the effects
of the vols of vols:

"y — L * tky
Lyt t) = 7 /_me
Proof. See Appendix A. O

ot v? ,
ez;':] Ji E(ys |}})|:%B§ (k.s.t')+1kp;y;Bj (k.s.t )]ds

dk. (17)

Building from the previous result, we derive Theorem 2.2,
which provides an alternative representation of the marginal den-
sity function expressed as the convolution of the Gaussian kernel

gr, and the function L.

Theorem 2.2. The marginal probability density of the log-price vari-
able conditioned on v, = v is given by

M(x, v, t.x't)

+o00 n 4 o ' - ’ ’
_ ZL/' exk[(x 00— [ r)ds+ 1T (&0 )]7%12@,[ W 0 By | Ry (s s g
T

+oo
= [ o —x-yegy 0.y, (18)
where Ly is:
1 o n ot 7
L, o.tt) = E/ kYo J Ewie | FHy(ks.t)ds g (19)

Here, 'y is defined by
I (¢, t/) = Fg(t, f,) — 25 (t, t/) + 25, (t, t,)

n t’
=3 [ Ewl 7
=17t

2
Vi (-
x | (- ’01)+<2 j( _e X s))_pj) ds, (20)
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and S, and S, are given by:

/ 1o (1 (t'—s)
51(”):527,-/t Eis| F)(1— e 0€=9)ds, 1)
=1
noyz ot R
S, (t.t) :Zﬁ/{ E(ie| 7)(1 — e 009 ds, (22)
j=1 A}

while H; is given by:

2
Hj(k.t,t') = %’Bf(k, t.t') +1kp;y;Bi(k,t,t')

2
1 PiYi —xj@-0y 17 ;@ -0\?
a2 k)| P e )+7—<1fe j ) .

(23)

Furthermore, the following expansion holds:
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where Ey and E*)‘, are the Fourier transforms of the functions £,
and £, with respect to the log-price, respectively.

To provide intuition for the two Gaussian kernels, we derive the
relationship between their variances, I'g and I'y, and the processes
X;, Y and RY', defined by Eq. (5), Eq. (6) and Eq. (8).

Proposition 2.3. Let t <t’ and X, Yy, and R’ be the processes in

(5), (6) and (8). We have the following expressions for the conditional

moments of X, and Y, :
E(XZ | Fi) = To(t. T),
E(Y2 | F) = 8S,(t, 1)),

E(X3 | F) = 651 (¢, t'),

EXpYy | Fr) =251 (L, t), (30)

EQGYy | Ft) = 4S5c(t, ') 4+ 8Sy(t,t'), E(XyY?) = 8S3(t, t).
(31)

£;«/ (y’ t, t/) _ % /oo elkyesl (t.t/)(lk3+lk)+SZ(t,t’)(k“—21k3—1k)+SZE(t,t’)(k4—1k3)—1k(k2—1k)253c(t.t/)—1k(k“—lk3)S3d(t,t’)+o(||ZH3)dk’

lyll— 0%,

where S; and S, are given in Egs. (21) and (22), while Sy¢, S3c and
S3q are:

nyie} ot o [ e
St t)=3" 2])(1 f[ E(vjs | Fo)e 1 —s)/ (en®= _1)dzds
=1 " s

(25)

n y3pi ot
Sict.t) = 302 [T Byl 7
o X e

1, (t'=$) /9y e it Yis,t')
x {gwj (s,t’)+47xj(e KW= _ e =)  TI2 -2 Ads,

4Xj
(26)
n yipd ot
Sua(t.t) = 35 [ Ewil 7
FZ] 2x; Je 3
(NG =8 e =9 e |
Xj Xj 2
(27)
where v; is given by:
_ e~ Xt'=t)
Yt t) = M’ t <t (28)

J
Proof. See Appendix A. O

We note that the expansion of H; in powers of y;, as y; — 0F,
with degree greater than two involves polynomial functions of k
with degree greater or equal to three (see Appendix A). Thus, the
function £;, contains only terms of order k or k" with n > 3. All

terms of order k? are absorbed in gr,- Therefore, we call gr, the
complete kernel of the multi-factor Heston model, and formula
(18) is used to derive the option prices and implied volatility ap-
proximations in the next section of this paper>.

Te functions £, in (17) and £ in (24) satisfy the following
equation: N

ZZ — e~ (R=k)(S2(t.t)-5 (“/))Z*L’ (29)

3 Higher-order Gaussian kernels have been discussed in Wand and Schucany
(1990).

(24)

where T'g, S1, S2. Sy¢, and Ss. are given in (16), (21), (22), (25) and
(26)*. Finally, in the multi-factor Heston model (1), the conditional
variance of the continuously compounded return R{’ and the price
skewness formula, as defined in Das and Sundaram (1999), are:

var(R{ | 7t) = E((Rf — E:(R))* | i) = Ta(t. 1)), (32)
and

EX3 /
Skewnessps = o 170 P EILGLY (33)

3/2 3/2°
[Eog|F]” To® )

where I'; is given in (20).

Proof. The proof follows using the approach proposed in Zhang
et al. (2017). A detailed proof is given in the supplementary ma-
terial online. O

Notably, the proposed formulas hold for the expectation both
in the risk-neutral and physical probability measures. This distinc-
tion is necessary in the discussion of the variance risk premium (in
Section 3.3).

Interestingly, the variance of the Gaussian kernel Gr, is given by
the second-order conditional moment of the process X; in (5) and
is independent of the vols of vols, while the variance of the Gaus-
sian kernel Gr, coincides with the conditional variance of the con-

tinuously compounded return Rf and, through its dependence on
the vols of vols, y;, fully captures the dynamics of the multi-factor
Heston model. This makes gr, the most natural kernel representa-
tion of the conditional marginal M.

Furthermore, Eq. (33) shows that the function S; is responsi-
ble for the price skewness and the mixed moment between the
cumulative uncertainty of the asset return and the uncertainty of
the integrated variance process over the time interval [t, t’]. In the
next section, we show that the price skewness, Skewnessps, given
n (33), appears in the coefficient of the second-order term of the
implied volatility in Eq. (63) and may cause the “volatility smile”
convexity to change.

As a corollary of Theorem 2.2, we provide expansions of the
conditional marginal density M in powers of the vols-of-vols vector
y up to the third order.

4 The explicit formula for the conditional moment E;(Y?) is derived in the sup-
plementary material. Notably, E;(Y;) is a homogeneous function of degree four in
the vols of vols.



JID: EOR

M.C. Recchioni, G. lori, G. Tedeschi et al.
Corollary 2.4. The following expansion of the conditional marginal M
in (11) in powers of y as ||y |l — 0 holds:
M, v,t,X,t") = Gr, X —x,t,t') + My (x, v, t, X, t)
+ Ma(X, v, 6, X, 1) + Ma(x, v, 6% ) +o(lly II),
Iyl = o0, (34)

where Gr, is the Gaussian kernel defined in (10), M, is given by

Mi(x, v, t,x,t)

d3gr,

=5 (t, t/) [— ax3 (X/ — X, t, t/) + gl"z

X —x.t, t)] (35)

M, is given by

My, v, t, X, t") =S, (t, t)

d4gr2 / / d3gr2 / ’ dgl"; ’ ’
X [ T X —xt,t')y+2 FE (x —X,t,l’)—W(X —x.tﬁt)]
+Szf(tt)[ grz(x— tt)+dgr2(x—xtt):|
+ Sz(t t)[d 9 (¢ _xt,t) -2 & Grz & —xt,t)+ ¢ Qrz * - x,t,t’)],
(36)
and M3 is given by
Mz(x, v, t,x,t)
d? d* d>
= S3c|:_mgl“2 - zmgr‘z - mgrz}
d* d®
+ S3d |:_Cl)(7gr2 - wgl“z}
1 d° d’ d?
+ gs?[ dx Foadr +3 dx 307 9T d /sgrz dx/3grz:|
d’ d4 d?
+ S152 |:—d)77gr X’G GFZ X/S grz X’4 gF WGFZ}
d’ dé d> d*
+ 5152¢ [—Wgr xs gr, + x5 gr, + e grz]- (37)

In Eq. (37), we have dropped the arguments on the right side to keep
the notation simple. Here, I'y, Sy, Sz, Sac, S3c and S34 are given in
(20), (21), (22), (25), (26) and (27), respectively.

Proof. The proof is based on the expansion in powers of the vols
of vols of the function £, and it is available in the Supplementary
material online. O B

We denote the approximations of the marginal density up to
the third order as
Mo(x, v, t, X, t") = Gr, (X' —x,t,t'),
My, v, 6%, t') = Gr, (X =X, £, 1) + My(x,1,£,X, 1),
My(x,v.t.x,t") = Gr, X —x,t,t")
+ Mi(x, v, 6 X, ) + Ma(x, 0.8, X, t),
Ms(x,v,t,%,t") = Gr,(X —x,t,t') + My (x,v, £, t)

Mo (x, v, 6, X, ) + M3 (x, v, 6, X, t). (38)
Proposition 2.5 below shows that the approximations of the
marginal density in Eq. (38) satisfy the conditions that guarantee
mass conservation, the martingale property (i.e., the asset price
should be a martingale in the multi-factor Heston model) and
the so-called symmetry condition. These conditions avoid norm-

defecting and martingale-defecting pdfs, as discussed in Lewis
(2000) Chapter 2.
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Proposition 2.5. Let My, My, M, and M3 be given in (38). The fol-
lowing equations then hold

+00

M (x,v,t,x',t"hdx =1,1=0,1,2,3, (39)

+0o0 ¢
/ e M(x, v, t, X, t)dx = e‘e T8 [-0,1,2,3, (40)
and

+oo t 1

/ x’—x—f r(s)ds + in(t, t) )M (x, v, t, %', t')dx = 0,

—00 t

1=0,1,2,3, (41)

which represent mass conservation (39), the martingale property
(40) and the symmetry condition (41). These properties also hold for
the marginal density M in (11).

Proof. See the supplementary material online. O

We conclude this section by emphasizing that Corollary
2.4 shows that the third-order expansion of the marginal density
continues to involve only the Gaussian kernel Gr,, confirming that
Gr, is the complete Gaussian kernel of the multi-factor Heston
model.

In the next section, we use Corollary 2.4 to derive closed-form
formulas for the option prices and implied volatility.

3. Applications of the multi-factor Heston kernel
approximations

3.1. Option pricing

In this section, we derive explicit formulas for European vanilla
call and put options starting from the representation of the multi-
factor Heston conditional marginal M provided in Theorem 2.2 and
its approximations up to the third order in the vols of vols, given
by Eq. (38). The equivalent derivation starting from the representa-
tion of the conditional marginal M in terms of the Gaussian kernel
Gr,, Eg. (15) is provided in Appendix B.

We use C(Sp,T,E) and P(Sp, T,E) to denote the price of Euro-
pean vanilla call and put options in the multi-factor Heston model,
with spot price Sy, maturity T, strike price E, and discount factor
B(T), which is given by

B(T) = e~ o r(5)ds (42)
Specifically, C and P are defined as:

+oo
C(Sy,T,E) = B(T)/ e - E)M(logSo, vy, 0, X', T)dx', (43)
logE
and
logE ,
P(So,T,E) = B(T)/ (E — e )M(logSo, vy, 0,x', T)dx', (44)

where vq is a vector of the variances at time t = 0.

Furthermore, we use Cgs(Sq, T, E, ﬁ) and Pgs(So, T,E,ﬁ) to
denote the classic Black-Scholes formulas for vanilla call and put
options, where I' =I"(0, T) > 0 is the integrated variance over the
time interval [0, T], that is,

Cas (50’ L.E, ﬁ ) = SoN(d1 (")) — Ee~ho "OEN(dy (), (45)

and

Pps (50» T.E, \@ ) — —SoN(~d; (') + Ee /o "OBN(—dy(T)), (46)
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where N(x) is given by

X
e—y2/2dy7

1
and dq(I") and d,(I") are given by
log () + Jor(s)ds+1
di(I') = Wix . (48)
0 = dy (1) — v - B TS 5 (49)

vT

Proposition 3.1. Let C(Sy, T,E) and P(Sqy, T,E) be the prices of Eu-
ropean call and put options, respectively, with spot price Sg, maturity
T, strike price E and discount factor B(T), as given in Eqs. (43)-(44).
We have

r
C(So, T, E) = Cgs (so, T.E../ ;) +R1(So. T.E) + R2(So, T. E)

+ R3(So, T.E) + o(ll¥ 1)
lyll - o. (50)

and

P(So, T,E) = Pgs(SO, T, E,‘l 1;2) + R (50, T,E) +R2(So, T,E)

+ R3 (SO’ T, E) + O(”Z'P)w

lyll — 0. (51)

Here, I'5(0, T) is given by (20), Cgs and Pgs denote the classic Black-
Scholes formulas in (45) and (46), and Rq, R, and R are corrections
to the standard Black-Scholes formula due to the contribution of the
first-, second-, and third-order correction terms of the expansion in
powers of the vols of vols of the function L3, (see, Eq. (19)):

dagr,

R (S0, T, E) = 51 (0, T)B(T)E[_M

+ Qrz](log(E/So), 0.7)
(52)

R2(So, T, E)

@ d
=SZ(O,T)B(T)E|: df,gz + dgxrf 7grz]

d? er

x (log(E/So),0,T) + S».(0, T)B(T)E (log(E/Sp),0,T)

dgr, d36r, dgz dgz
+ 52(0 T)B(T)E[ ,g - dx,g - dx,g +— ](log(E/So) 0,T),
(53)
and
d39r dz
R3(So. T.E) = S3c(0. HB(DE| — 5% — — 22 |(log(E/S0), 0, T)

d3Gr
— $34(0, T)B(T)E 2
34(0, T)B(T) G

[ d>Gr, d3Gr,
« |-

(log(E/S0),0,T) +S51(0,T)S2.(0, T)B(T)E

i T dx ](log(E/So),O,T )
1
+€s§ (0, T)B(T)E

|:d79r2 dbgr, d>gr, d*Gr, dGr, dzgr2j|
x [ — 2 -2 -

dx” dx’ dx” dx" dx” dx”

x (log(E/So),0,T)
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+51(0,T)S,(0, T)B(T)E
» |:_d5gr2 d4gr, d3¢gr, d%*gr, grz

dx” dx"* dx” dx”

}(log(E/So) 0,7T),
(54)

where Sy, Sy, Syc, S3c and S34 are given in (21), (22), (25), (26) and
(27), respectively. The notation [-](-,-,-) in Eq. (53) and Eq.
(54) means that the function in the square brackets is evaluated at
the argument (-, -, -),

Note that for y =0, Gr, coincides with gro, the correction terms
R1, R, and R3 become zero, and the option prices become the classic
Black and Scholes prices for options with time-dependent but deter-
ministic volatilities.

Dropping the arguments of I'5, Sy, Sy and Sy, Egs. (52), (53) can
be rewritten as

Vega(I" 3

R1(So. T.E) = %51 (mE + irz), (55)

2
R2(So, T, E)
B Vega(I'y) [ (mg + 3T3)?
= +Sy¢ ﬁl"g/z 1_,2 -1
Vega(Ty) [ (mg + 1y)? 1
+ 5 \/ng—(-3/22)|: : 1—-22 : _(mE+§F2)—1—F2
2
752 Vega(Ty) [ (mg + 3T2)*  (mg + 3T)°
VTT3? r3 s

()]

e oo+ 2) 1+ )0

where mg is the log-moneyness associated with the forward price de-
fined as

mr = lo L
£=108 Soejgr(s)ds ’

and the Black-Scholes Vega is Vega(Ty) = ~/TEe~Jo "O4SN! (dy (Ty))
with dz(rz) = —(mE + %Fz)/w/ Fz.

(57)

Proof. See Appendix A. O

We denote the approximated European vanilla option prices up
to the the first-, second- and third-order approximations as

Cn(So, T, E) = CBS(SO,T E, J?)

m
+ Y Ri(So.T.E), m=1,2,3,
i=1

Pn(So. T, E) = Pss <50,T E. FT)

m
+ ZRi(So,T,E), m=1,2,3. (59)
i=1
Notably:

(i) Proceeding further with the expansion of the function £j,
in the powers of the vols of vols, we can only add higher-
order corrections to the option price approximations with-
out affecting the zero-order contribution. The Black-Scholes-
type term is, in fact, determined by the Gaussian kernel gr,,
which is not affected by higher-order expansions in y of £3.
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(ii) When the vols of vols go to zero, the option prices converge
to the Black-Scholes-like term with volatility \/I"g(0, T)/T.

(iii) The Black-Scholes-type formulas for the European vanilla
options (that is, the zero-order approximations) overprice
at-the-money options. The first-order correction term R,
which affects the call and put options in the same way, can
correct for this overpricing. In fact, R; is negative when the
options are at-the-money (i.e., E/(Spe/o '©45) ~ 1) and the
correlations are negative. This finding indicates that in the
case of the Heston model, where negative correlation val-
ues are usually observed, the prices of call and put options
are smaller than those calculated using the standard Black-
Scholes formulas for at-the-money options, thereby reducing
the overpricing of the Black-Scholes formulas.

(iv) The correction term, Rq, shows why S; may be deemed re-
sponsible for the smile asymmetry. We observe zero price
skewness (33) when p; =0, j=1,2,...,n. Indeed, zero cor-
relation implies a null third-order correction to option pric-
ing, indicating the crucial effect of non-null correlations.

(v) The correction terms Ry, m=1,2,3 are the same for the

call and put options. As a consequence, the pairs Cp, Pn,
m=1,2,3, satisfy the put-call parity. In fact, Gy — Pn =
Cos(So. T.E. 12) — Pos(So. T, E. ¥12) = 5 — Eelo o),
m =1, 2, 3. The fact that the put-call parity holds is implied
by the fact that the Fourier transforms of M, M, and M3
with respect to the log-price are equal to zero when the
conjugate variable is equal to zero and to the imaginary
unit (see Section 8 of the online supplementary material.)

(vi) The correction terms Ry, m =1, 2,3, are linear in the Vega
of the Black-Scholes formulas (see Eqs. (55) and (131)).
Thus, small values of Vega imply small corrections. Note
that for large values of y;, the Vega goes to zero as e~T2/8,
Thus, for large values of y;, the second- and third-order ap-
proximations of the option prices move toward the Black-
Scholes-like term with volatility /I'5(0,T)/T. A higher-
order approximation is needed in this case to capture non-
zero correction terms. In Section 4.1, we numerically deter-
mine the range of values of y that are coherent with expan-
sion to the third order.
Theorem 2.2 implies that any contract with maturity T and
payoff P that allows for a closed or semi-closed form in the
Black-Scholes framework can be written as a convolution
of the Black-Scholes price with integrated variance I'; (0, T)
and the function £*. Using the expansion in powers of the
vols of vols of the Fourier transform of £*, which implies a
representation of £* as a weighted sum of the derivatives
of the Dirac delta function of the log-price, we obtain an
expansion of the contract price given by the Black-Scholes
price at zero order plus corrections at higher orders given
by the Black-Scholes Greeks®. Moreover, the current repre-
sentation shows that the corrections to the Black-Scholes
term are equal for the put and call options, at any order of
approximation, implying that the put-call parity equation is
satisfied at any order of approximation.

(vi

=

3.2. Implied volatility

The implied volatility ¥ in the multi-factor Heston model is de-
fined as the quantity such that the following equality holds:

2
CBS(SO,T,E,,/ET) = C(So. T, E). (60)

5 The expansion of £* and call option prices as the Black-Scholes prices plus
Greeks are found in Section 8 of the online Supplementary material.
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We derive the first- and second-order approximations of X as
a function of the vols of vols (i.e., ¥ = £(y)) by solving

Z5(y)
T

=CBS(50,T,E,,/FTZ>+Rm(so,T,E), m=1,2. (61)

Proposition 3.2. The first-order, X1(y), and second-order, Z;(y),
approximations are given by

21(y)

— o+

CBS (SO, T, E,

(mE + = Fo) (62)
Foy/T
2(y)=vTo++vTIo
1 1.3°
x [aoa,g) +ay(T.y)(me + 3To) + ax(T. ) (me + 3To) }
(63)
Here, mg is the log-moneyness associated with the forward price (see

Eq. (57)), Tg and S; are defined in (16) and ag (T, Y), a1(T,y) and
ay(T,y) are given by

ao(T,y) = [; ;352 (52;:25%)} (64)
0
(51 52)
a (T, Z) = |:l_,5 21_‘352i| (65)
and
(52 +526) 3 2
a (T, y)_o|:l"§_l"35i| (66)

with S, and S,. given in (22), (25), respectively. Here, we have
dropped the arguments (0, T) of the functions 'y, S1, S, and Sy.

Proof. See Appendix A. O

The fact that the implied volatility expansion depends only on
I'p and not on I'; is a consequence of the choice of y =0 as a
base point of the Taylor expansion of the implied volatility. In fact,
the same formula for the implied volatility can be derived using
the second-order approximation to the call option price based on
the Gaussian kernel Gr. A suitable double expansion would allow
a similar formula to be obtained for the implied volatility, with
I'g replaced by I',. This approach, however, is not reported in this
paper, as it deserves further investigation.

Notably, the implied volatility resulting from the second-order
approximation to the option price is a quadratic function of the
forward moneyness and reduces to the approximation of Bergomi
and Guyon (2011) in the case of the Heston model. The coefficients
aop(T, y) and a, (T, y) are second-degree homogeneous functions of

Y, while a; (T, ) is a homogeneous function of degree one.

Interestingly, by considering formula (63) as a function of mg +
Io/2 = log(E/Spe'T~T0/2), we can derive an explicit dependence of
the level, ao(T, ), and convexity, a,(T, y), on the price skewness

(given in Eq. (33)), that is:

ao(T, y) = —ax(T, y)To - 21—45kewnesszDs, (67)
and

T y)= Ty [(5211—3526) 12 Skewnessf)s} . (68)
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The expression of a, reveals that the convexity of the volatility
smile depends on the function S%. This finding confirms that the
quantity S; is responsible for the asymmetry in the smile since
it allows for a concave smile. Bearing in mind that I'g, S, and
S, are non-negative for any time horizon and model parameters,
Eq. (68) clearly shows the effect of price skewness on the volatil-
ity smile, i.e., large values of price skewness can destroy the U
shape of implied volatility. Indeed, concave volatility smiles are al-
lowed in mean-reverting underlying assets, where the option tenor
is comparable to the characteristic reversion time of the asset®.

The second-order approximation of the implied volatility leads
to the following approximation for the implied volatility skew:

ad

Vyew(T) = ‘E)mEEZ = /To(a1(T.y) +Toax(T. y))

mg=0

(S1 +S20)
= ,/I‘o‘ TC 24Skewnesst

1 /1 1
(5E ¥ + ZECGPY) -

1 2
Col ZED)

- lSkewnessés . (69)

24

For null correlation coefficients S; =0, Sy =0, and Vg, =0,
the second-order approximation, ¥,, of the volatility surface is a
strictly convex function with vertex at mg = 0 (i.e.,, when the op-

tion is at the money):
- (m + 1F ) -1
e+ 500 .

Ez(V)—f-’r 0\/>|:l_,0(m5+]ro)
(70)

2

Finally, a simple calculation proves that the implied volatility skew
decays according to 1/+/T as T — +oo since we have

. ro(o T) < . 51(0 T) PiYi,.
TL“POO va’ TLITOO ZZXJ P
lim 52C(0 ) Z viei v }

T—+co0 2Xj Xj
Therefore, we obtain

lim IVskew(T)
T—+o0
2,,2 2
_ ZA PJVJ 'ojyj -~ Z . iV,
. 2)(,2 2%
(Z] 1) = ! i-1

(71)

where ﬁj‘ = vjf /30 v} is the weight of the jth long-term variance
mean. The limit for large maturity shows that, in the multi-factor
Heston model, the interaction between the variances plays a cru-
cial role in the implied volatility skew (see the squared term on
the right-hand side of Eq. (71)), as previously observed in Veng
et al. (2019).

3.3. The VIX index

The VIX volatility index, disseminated by the Chicago Board Op-
tions Exchange (CBOE), is built to provide a model-free, option-
implied, return volatility measure for the S&P 500 index. The

6 Some empirical evidence can be found at http://faculty.baruch.cuny.edu/
jgatheral/Bachelier2008.pdf (see pages 53-56).
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CBOE’ computes the VIX from non-zero bid prices of European call
and put options on the S&P 500 index using the formula

(o) =72 70 73 1] "

where T is 30-day maturity, E; is the strike of the ith out-of-the-
money option, Fr.r = Sie™ is the forward index quotation with
constant interest rate, S; = e* is the price at t, and Eg is the first
strike below the forward index level. The quantity Q(E;) is the
midpoint of the bid-ask spread of each option with strike E;.

This definition is based on the following representation of the
expected value of the future realized variance, given by Demeterfi,
Derman, Kamal, and Zou (1999):

[ vae] =2l (1) -n(2)

Eo py(So, T, E) Co(So, T, E)
rT 0\-0, 4> rT 0\-0,
+e /0 —gF dE + ¢ fsg 7152

(73)

where P and C are put and call prices. Eq. (73) can then be rewrit-
ten (see Zhang et al., 2010) via a second-order Taylor approxima-
tion of the log function for Ey ~ Fy 1 as:

(VIXO.T>2 _2eT

Eo
1
100 7 [ A =P (So, T,E)dE

0 17For
n fEn EZC(SO,T,E)dE}T[EOI] (74)

Jiang and Tian (2005, 2007) discuss the potential biases that can
arise from approximating (74) with (72) such as (i) truncation er-
rors (the minimum and maximum strikes are far from zero and in-
finity in practice); (ii) discretization errors (piecewise linear func-
tions approximate the integrals in equation); (iii) expansion errors
(the Taylor series expansion is truncated to the second order); and
(iv) interpolation errors (linear interpolation of the maturities). In
fact, a number of empirical studies indicate that the VIX overes-
timates the future volatility of the underlying assets. To improve
the fit between the VIX index and the volatility of the underlying
assets, Pacati, Rend, and Pompa (2018) proposed a new specifica-
tion in the double Heston model that leads to a deterministic non-
negative shift, or displacement ¢, of the stochastic volatility level
such that:

<v1x0.T>2 _ To(0.T)
100/) T

Here, we take a different approach and show that the squared VIX
can be associated with both I'y and I',, which in our framework,
are both candidates for the implied volatility. In fact, by taking the
zero-order approximation in Eq. (60), i.e., only the Black-Scholes
term, it is trivial to derive Xy(y) = \/ITZ Similarly, if we expand
the option price formulas around the Gaussian kernel Gr,. we find
Yo(y) = \/F»O at the zero order.

To derive the link between the VIX, I'y and I'y, we use different
approximations of Eq. (74). The starting point in both cases is to
replace the following identities:

B q

(75)

Jo psds
+ T .

Eo
2P0, T.E)IE = e /0 £(5) [log(Eo/S) + Eio - 1]d$,
(76)

7 See the CBOE white paper at http://www.cboe.com/micro/vix/vixwhite.pdf
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/E ST E)dE_e’rT/ 1(5)|108(Eo/S) + & > 1]as
(77)

Here, to maintain simple notation, f(S) denotes the price density.
Using (76) and (77) in Eq. (74), we obtain:

(VIXM)2 2
100) T

1Thr 2
+rlm 1]

[—E(log(Sr/Eo) | Fo) + E(% —1 FO)]

(78)

Remark 3.3. VIX2 « (0, T)
To derive the relationship between the VIX and I'g, we use the
following expansion (see Zhang et al., 2010):

()= (-3 (0] o

In fact, neglecting the third- and higher-order terms in Eq. (79) and
replacing the expansion of the second term of the right-hand side
of Eq. (78), we obtain

(5 2o (117

2 For For
()~ ()
* T[ ¢\ E Eo
Assuming a constant risk-free interest rate, we have Fyr =
E(Sy | Fp) = Spe'™, while considering that E(log( ) |}‘0) =1T -
320 Iy E(vjs | Fo)ds, we obtain:

(Y = 3-em()17) o ()]
(s () ) o]0

Note that the recent paper by Huang, Schlag, Shaliastovich, and
Thimme (2020), which proposes a stochastic volatility model with
stochastic vols of vols, reports a similar result. The squared VIX, in
fact, is shown by the authors to be equal to the conditional mean
of the integrated variance, which, as in our model, coincides with
To.

(80)

(81)

Remark 3.4. VIX? « '5(0,T)
To derive the relationship between the VIX and I",, we first use
the following Taylor expansion
3
1) i| S — Eo,

S S 1/S 2 S
e (5,) = (5 -1) - 2(5 1) +°[(Eo‘
on the right-hand side of Eqs. (76)-(77), then the expansion

of S;/Ep around the conditional mean, denoted by E(Sy/Egp) =
E(St/Eq | Fo) for simplicity:

Sr Sr 1 St Sr
o () ~ g (£(5)) + sy [ (&)}
& Eg & Eo E(g—g) Eo Eo
Therefore, we first have
VIXor\> 1 [+ S 2 17./Sr
(100) ‘T/o f(s)(Fo_l>d5_f[ (E
1 Sr
TVar(E—O | ]-'0>,

the variance. Taking the variance of Eq. (82), we ob-

(82)

2

1)

(83)

where Var is
tain:
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Thus, when Ej is very close to Fyr, as in the CBOE computation,
I',(0,T)/T is a proxy for VIX2/100. This formula is in line with
Theorem 1 from Chow, Jiang, and Li (2020). Note that the variance
is computed in the risk-neutral measure.

This finding suggests that the VIX index typically overestimates
the conditional mean of the integrated spot volatility (given that
normally I'; > Iy, as the correlation p; between prices and volatil-
ity is typically negative), and our analysis is in line with the results
of Pacati et al. (2018). In fact, our derivation provides an interpreta-
tion of the displacement parameter in Pacati et al. (2018) implying

that @ =2(5,(0,T) —$1(0,T)).

Our analysis, not only provides an explanation for the bias be-
tween the VIX and the conditional mean of the integrated spot
volatility but also offers a theoretical foundation for recently pro-
posed methods to compute the variance risk premium (VRP). Zhao
et al. (2013) provide a natural definition of the variance risk pre-
mium, expressing it as the difference between the variances of
the continuously compounded returns evaluated in the risk-neutral
scenario and in the physical probability measures. In our frame-
work, the variance risk premium for the multi-factor Heston model
can be expressed as
VRP=TY - T}, (85)
where Q and P denote, respectively, the risk-neutral and physical
probability measures (here I‘g is the same quantity denoted
earlier as I'y). In fact, as discussed above, F2Q and Fg, which
are the variances of the Gaussian kernel underlying the price
process in the risk-neutral and physical measures, coincide with
the variances of the continuously compounded returns under the
same two measures. Bon Bondarenko (2014), Bollerslev, Tauchen,
and Zhou (2009), and Carr and Wu (2009) have proposed con-
structing the volatility risk premium based on the assumption
that model-free option-implied volatility measures can provide a
natural empirical analog to the market’s risk-neutral expectation
of the conditional total variation of returns. These authors had the
correct intuition to use the VIX index as a proxy of the risk-neutral
variance of returns, and by deriving this link explicitly, via 'y, we
provide a theoretical justification for this approach.

Finally, we note that our results imply a nonlinear effect of the
vols-of-vols risk on the VIX index, given that I'; is a quadratic
function of the vols-of-vols parameters. Huang et al. (2020) also
uncovered a nonlinear effect of the vols-of-vols risk on VIX op-
tions.

4. Accuracy of the option price approximations: simulation
study

In this section, we study the accuracy of the approximation for-
mulas derived in Sections 2 and 3 in reproducing European option
prices and their performance in terms of computational time. As a
benchmark, we compute the “true” European option prices by fol-
lowing the approach proposed in Recchioni and Sun (2016) (deriva-
tions are reported in Appendix C).

In the following, we use the subscripts “H”, “DH” and “TH” to
denote option prices and their approximations in the Heston, dou-
ble Heston and triple Heston frameworks.
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Table 1

Descriptive statistics for the exact call and put option prices evaluated on grid M of the Heston model.
y Average call price min call max call Average put price min put max put
0.01 32.292 14.337 56.822 31.101 10.081 64.549
0.05 31.846 14.294 56.847 30.655 10.091 64.567
0.1 31.908 14.193 57.206 30.717 10.166 64.997
0.25 32.116 14.102 57.970 30.925 10.242 65.958
0.5 33.211 13.925 61.368 32.020 10.338 70.310
0.8 35.390 13.807 67.253 34.199 10.526 77.262
2.0 47.997 14.392 89.417 46.806 12.010 107.451

Table 2

Descriptive statistics for the relative errors of second- and third-order option price approximations evaluated on grid M in the case of the Heston model.
Second-order approximations in vols of vols (G, i, P> y)
y meanc medianc stdc meanp medianp stdp
0.01 2.7090e-9 0.000 8.7598e—8 2.3767e-9 0.000 7.1053e—8
0.05 3.3058e—7 0.000 9.9919e—7 2.9665e—7 0.000 9.1210e-7
0.15 8.6177e—-6 2.9231e-6 1.9097e-5 8.0870e—6 2.8545e—6 1.6523e-5
0.25 3.9080e-5 8.7593e—6 8.5551e-5 3.6756e—6 9.2254e—-6 7.4764e—5
0.5 2.8757e—4 6.0871e-5 6.1026e—4 2.7410e—4 6.5693e—5 5.5215e—4
0.8 1.0428e-3 2.3942e-4 2.1199e-3 1.0099e-3 2.4380e—4 1.9904e-3
2.0 1.0785e-2 3.4351e-3 1.8412e-2 1.0854e-2 3.3176e-3 1.8488e-2
Third-order approximations in vols of vols (Cs i, Ps i)
y meanc medianc std¢ meanp medianp stdp
0.01 4.5346e—-10 0.000 3.3345e-8 9.2518e-10 0.000 4.7762e-8
0.05 1.1567e-7 0.000 6.1056e—7 1.0622e-7 0.000 5.5577e-7
0.15 3.0780e—6 0.000 5.3205e—6 2.8741e—-6 0.000 4.9957e—6
0.25 1.2798e-5 4.5284e—6 2.0294e-5 1.2180e-5 5.3118e-6 1.9446e-5
0.5 8.0037e-5 3.4110e-5 1.0768e—4 7.8271e-5 3.6047e—5 1.0436e—4
0.8 2.8491e—4 1.1447e-4 4.0639e—4 2.8161e—4 1.2737e-4 3.6937e—-4
2.0 4.0807e-3 7.8427e—4 8.8272e-3 4.1534e-3 8.4030e—4 8.7858e-3

4.1. Simulation study 1: Heston and double Heston on “reasonable”
grid of parameters

We being this section by assessing the performance of the
second- and third-order approximations, Egs. (58)-(59), of the call
and put option prices, Gy, Ppy, with m=2,3, in the Heston
framework.

The Heston exact formula is obtained by imposing n=1 in
Eq. (134) in Appendix C. Egs. (132) and (133) in Appendix C are
equal except for the values of g, which are valid over different in-
tervals. In the following, we choose g = 1.05 for a call option and
q = —0.05 for a put option®. Eqgs. (132) and (133) are defined via
convergent integrals that can be computed accurately using a sim-
ple composite rectangular rule.

We evaluate the exact formulas Cy and Py and the approxi-
mated formulas G, y and Py, y for the points in the following set:

M ={(So,E.T,y,v, x, V", p,1) |So =100, E =80+ 10(j — 1),
T=2j/5j=12,...,5,

y =0.01,0.05,0.15,0.25,0.5,0.8,2, vy = 2 + j/5.
j=1,2,...,5, x=15+15(-1), j=1,2,...,5,

v =jy*/Q2x).p=-j/6.j=12,...,5r=001} (86)

These values of model parameters in grid M include those esti-
mated by Christoffersen et al. (2009) in Section 4.2 (see, also the
online supplementary material).

Some descriptive statistics for the call and put option prices,
computed with the exact formulas Cy and Py, are shown in
Table 1.

1

Table 2 compares the exact option prices with their second- and
third-order approximations. From left to right we report the vols
of vols (y), mean (meanc), median (medianc), and standard devi-
ation (stdc) of the relative call option errors, ec,,, and the mean
(meanp), median (medianp), and standard deviation (stdp) of the
relative put option errors, ep,,, associated with the second-order
approximation, m = 2 (in the top panel), and the third-order ap-
proximations, m = 3 (in the bottom panel).

The results in Table 2 show that while the quality of the ap-
proximations decreases as y increases, the second-order approxi-
mation guarantees four correct significant digits up to a volatility
of 50%. The average error of the second-order approximation is at
most of the order of a percent for larger values of y. The third-
order approximation improves the estimation by less than one or-
der of magnitude for the values of y considered. Given that only
marginal improvements are obtained with the third-order approx-
imation, we focus on the second-order approximations when pre-
senting numerical and empirical results in the following sections.

In the remainder of this section, we illustrate the computa-
tional advantages of using the second-order approximation formu-
las (58) and (59) in the Heston and double Heston models. To
this end, we consider the same grid M as in Eq. (86) and com-
pute 3125 call and put option prices for each value of y, aver-
aging over the other parameters on the grid, using the second-
order approximations G,y and P, y. In the case of the double
Heston model, we have chosen (So.E, T, ¥1, 1,0, X1, V5, 01.7) € M
and (2, V2,0, X2, V5, 02) = (V1, V1,0, X1, V5, p1), Where y, =y =y.
This choice is made to limit the number of call and put op-
tions to be evaluated to 31250 for each value of y, as in the
Heston model. We then evaluate the number of points to be

8 These values permit numerical integration with a simple rectangular rule for
high values of the vols of vols. Numerical integration of the integral formulas in
Appendix C for very large values of vols of vols deserves further investigation.
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Table 3

From left to right: average, min and max number of points, avgN,, min N,, and maxN,, required by the rectangular rule to achieve the same accuracy as that of the
second-order approximation formulas in the Heston (upper panel) and double Heston (lower panel) models; the total time Timey (Timepy) and Time, y (Time, py) required
to compute the European options with integral formulas (132) and (133) with N, points and the second-order approximations G, y, Po i (Copn, P2pn); Avg. rel. err. are the
average relative errors of the put and call option approximations with integral formulas Cy, Py (Ppy, Cpy) and second-order approximations Py, Co. g (Po.pn, Co.pn). For a fixed
vol of vol (or pair of vols of vols), the relative errors are computed by averaging over the remaining parameters in the set M for a total of 31250 option prices. The time is
expressed in seconds. The computation was conducted on an Intel CORE i7 (8th generation) processor. The true values are obtained from integral formulas (132) and (133)
using 2'6 quadrature points.

Heston model

y Avg N, min N, max N, Timey Time, y Avg. rel. Avg. rel. Avg. rel. Avg. rel.
(seconds) (seconds) err. Py err. Cy err. Py err. Gy
0.01 57,487 49,182 64,287 1000.53 5.6703e—3 2.1214e-9 1.9918e-9 2.4319e-9 2.6084e—-9
0.05 45,065 38,204 51,445 786.37 5.5438e-3 2.3726e-7 2.2266e-7 3.0146e-7 3.2296e-7
0.15 36,241 27,982 42,899 636.62 5.6344e-3 7.5595e—6 7.1100e—6 8.0736e—-6 8.6186e—6
0.25 32,372 24,001 39,441 568.72 5.4188e-3 3.4802e-5 3.2779e-5 3.6758e-5 3.9068e—-5
0.50 27,219 18,728 34,661 489.77 5.4844e-3 2.6347e—4 2.4914e-4 2.7410e—4 2.8760e—4
0.80 25,146 16,029 33,311 430.12 5.4781e-3 8.6383e—4 8.2078e—4 1.0099e-3 1.0428e-3
2.00 17,287 9376 27,407 311.37 5.4531e-3 9.7082e-3 9.3358e-3 1.0854e-2 1.0785e-2

Double Heston model

Y1(=v2) avg N, min N, max N, Timepy Time; py Avg. rel. Avg. rel. Avg. rel. Avg. rel.
(secs) (secs) err. Ppy err. Cpy err. P py err. Gopy
0.01 57,729 48,699 63,986 1697.921 6.9875e-3 2.0766e—9 1.9851e-9 2.6669e-9 2.7042e-9
0.05 43,997 35,194 50,835 1318.594 6.8625e—3 3.0610e—7 2.9264e-7 3.3035e-7 3.3479e-7
0.15 35,510 26,646 42,507 1059.156 7.0593e-3 8.3366e—6 7.9724e—6 8.8086e—6 8.9091e—6
0.25 31,331 22,505 38,302 1000.29 7.3562e-3 3.9098e-5 3.7409e-5 4.0008e—-5 4.0365e-5
0.50 26,043 17,388 33,159 792.57 6.8687e-3 2.9259e—4 2.8042e—4 2.9844e—-4 2.9902e—-4
0.80 22,437 16,392 29,641 709.57 7.1750e-3 8.2388e—4 7.9060e—4 1.1009e—-3 1.0947e-3
2.00 15,222 8232 22,594 490.907 6.8609e—3 1.0089e-2 9.7601e-3 1.0252e-2 1.0060e—2
used in the quadrature rule to achieve the same level of accu- double Heston models for the years 1990 to 2004. The spot vari-

racy when pricing the options with integral formulas Eq. (134). In ance of the Heston model is chosen to be 0.9, while the spot vari-
the top panel of Table 3, we report, from left to right (and for ances of the double Heston model are v; =0.13 and v, = 0.75.
y =0.01,0.05,0.15,0.25,0.5, 0.8, 2), the average, mean and max These choices are supported by the results of the empirical anal-
number of points (truncated to the closest integer) required by the ysis discussed in Christoffersen et al. (2009) p. 1926. In fact, in

rectangular rule to achieve the same level of accuracy (i.e., rela- Christoffersen et al. (2009), the sum of the factor estimates v g
tive error) in option prices as the second-order approximation for- and v, o is 88% in the two-factor model, and the difference is ap-
mulas; the total times, Timey and Time, y, required to compute proximately 62%, while it is 90% in the one-factor model. Finally,
31,250 European call and put options, respectively, with the in- the risk-free interest rate is chosen to be 0.15.

tegral formula and with formulas G,y and P, y; and the average As the first step, we compute the prices of 25 European vanilla

relative errors (i.e, Err. Py, Err. Cy, Err. P,y and Err. G, ) of the call and put options with spot price S; = 100, strike prices E =
put and call options with the integral formulas P; and Cy and 80+ j/5, j=1,2,...,5 and time to maturity T = j/12 years, j=

with the second-order approximations P, j; and C, y. The columns 1,2,...,5 using the exact integral formulas with 26 nodes. As in
in the bottom panel of Table 3 are the same as those in the top Section 4.1, these values are denoted the “true values”. Then, we
panel, but the results correspond to the double Heston model. The compute the average relative errors, over the twenty-five options,

computations were conducted on an Intel CORE i7 (8th generation) for the put and call options second-order approximations in the
processor. The true values are obtained with the integral formulas Heston and double Heston frameworks. Finally, we determine the

(132) and (133) using 216 quadrature points. number of nodes necessary to achieve, with the integral formulas,

Table 3 shows that using formulas (58) and (59) allows con- the same average accuracy of the second-order approximation for-
siderable savings in computation time with respect to using the mulas and compare the computational times of the two methods.
integral formulas for both the Heston model (top panel) and dou- Tables 4 and 5 show the results of this experiment, respectively, for
ble Heston model (bottom panel). This computation time reduction the Heston and double Heston frameworks. The columns in these
is important because, for the same level of accuracy, the time re- tables are the same as those in Table 3, with the only difference

quired to evaluate option prices with the integral formulas in the being that the time and accuracy are computed for a specific set
double Heston model is, in the best case, approximately twice that of model parameters, average across the strike and time to matu-

needed for the Heston model. rity.

We observe that, on average, the relative error of the second-
4.2. Simulation study 2: Heston and double Heston with empirical order approximations is 0.02% for both put and call options in the
parameters Heston framework and 6.1% and 5.4%, respectively, in the double

Heston model. These relative errors guarantee four correct signifi-
In this Subsection' we repeat the previous exercise using model cant dlgltS for the Heston model and two correct Signiﬁcant dlglts

parameters calibrated to real data. Specifically, we use the param-  for the double Heston model. The discrepancy in the accuracy be-
eters estimated by Christoffersen et al. (2009)° for the Heston and tween the two tables is due to the different magnitude of the vols

9 We report the values of these parameters in the online supplementary mate- positive probability unless, as remarked in Christoffersen et al. (2009), the process
rial. We also present the Feller condition corresponding to each set of parameters satisfies a standard reflecting barrier at the origin. Interestingly, the Feller condition
estimated by Christoffersen et al. (2009). The Feller condition is violated in sev- never holds in the case of process v;,. Violation of the Feller condition has also
eral cases; therefore, the square root process of the variance can reach zero with been noted in Pacati et al. (2018).

12
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Table 4

From left to right: year, vol of vol y;, number of points N, required by the rectangular rule to achieve the same accuracy as that of the second-order approximation formulas
in the Heston model; Timey, Time, ; time required to compute the fifty put and call options with the integral formulas and the BS-second-order approximations; Avg. rel.
err P,- and Avg. rel. err. C, -: average relative errors on put and call options of the integral formulas with N, points and the second-order approximations. For each set of
model parameters estimated by Christoffersen et al. (2009) (see Table 3 Panel A) over the years 1990-2004, we compute European put and call options with spot price
So = 100, time to maturity T = j/12 years, and strike prices E; =80+ 10(j — 1), j = 1.2, 3,4, 5. The risk-free interest rate is r = 0.15. The computation was conducted on an
Intel CORE i7 (8th generation) processor. The true values are obtained with the integral formulas (132) and (133) using 26 points.

Heston model

Year Y1 Np Timey Time, y Avg. rel. Avg. rel. Avg. rel. Avg. rel.

(seconds) (seconds) err. Py err. Cy err. Py err. Gy
1990 0.85 25,104 0.984 9.375e—6 5.197e—4 3.959e—4 5.290e—4 5.547e—4
1991 0.58 28,143 1.078 1.094e-5 1.642e-4 1.223e-4 1.720e-4 1.690e—4
1992 0.55 28,566 1.078 1.094e-5 1.406e—4 1.042e—-4 1.425e—4 1.405e—4
1993 0.51 29,284 1.125 9.375e-6 1.076e—-4 7.920e-5 1.098e—4 1.088e—4
1994 0.46 29,724 1.328 1.094e-5 1.014e-4 7.280e-5 1.058e—4 9.277e-5
1995 0.56 29,284 1.125 1.094e-5 1.068e—4 7.837e-5 1.128e—4 1.216e—-4
1996 0.58 29,139 1.109 1.094e-5 1.177e-4 8.579e-5 1.232e-4 1.339e-4
1997 0.60 28,283 1.078 9.375e—6 1.530e—-4 1.138e-4 1.571e-4 1.665e—4
1998 0.81 25,229 0.984 1.094e-5 4.871e—-4 3.733e-4 5.025e-4 4.944e—-4
1999 0.76 25,993 1.797 9.375e-6 3.677e—-4 2.795e—4 3.858e—4 3.808e—4
2000 0.66 27,316 1.051 1.319e-5 2.275e—4 1.700e—4 2.319e—4 2.331e—4
2001 0.65 27,864 1.141 1.187e-5 1.986e—4 1.459e-4 2.087e—4 2.123e-4
2002 0.60 27,864 1.141 1.406e—-5 1.936e—4 1.429e-4 1.969e—4 1.862e—4
2003 0.68 27,046 1.106 1.187e-5 2.402e—4 1.810e—4 2.518e—4 2.655e—4
2004 0.38 30,472 1.219 1.344e-5 6.277e-5 4.686e—5 6.432e-5 5.516e-5
Avg. 0.62 27,954 1.533 1.344e-5 2.126e—4 1.595e—4 2.196e—4 2.210e—4

Table 5

From left to right: year, vols of vols y;, y», number of points N, required by the rectangular rule to achieve the same accuracy as that of the second-order approximation
formulas in the double Heston model; Timepy and Time, py time required to compute the fifty put and call options with the integral formulas and the second-order approx-
imations; Avg. rel. err P,- and Avg. rel. err. C, -: average relative errors on put and call options of the integral formulas with N, points and the second-order approximations.
For each set of model parameters estimated by Christoffersen et al. (2009) (see Table 3, Panel B) over the years 1990-2004, we compute European put and call options
with spot price So = 100, time to maturity T = j/12 years, and strike prices E; =80+ 10(j — 1), j=1,2,3, 4, 5. The risk-free interest rate is r = 0.15. The computation was
conducted on an Intel CORE i7 (8th generation) processor. The true values are obtained with the integral formulas (132) and (133) using 2'¢ points.

Double Heston model

Year Y1 Va Np Timepy Time; py Avg. rel. Avg. rel. Avg. rel. Avg. rel.
(seconds) (seconds) err. Ppy err. Cpy ert. P py err. G py
1990 1.05 0.68 25,413 1.250 1.094e—5 9.909¢e—4 7.086e—4 1.109e—3 9.213e—4
1991 1.82 0.34 19,914 0.968 1.094e—5 6.647e—3 4.796e—3 7.391e-3 8.293e—3
1992 6.28 0.27 12,099 0.578 1.094e—5 1.056e—1 7.999e—2 1.236e—1 1.103e—1
1993 5.25 0.21 13,338 0.641 1.094e—5 6.533e—2 4.941e-2 8.140e—2 7.451e-2
1994 9.43 0.17 9956 0.484 1.250e—5 2.243e—1 1.691e—1 2.646e—1 2.266e—1
1995 6.89 0.24 11,523 0.562 1.094e—5 1.387e—1 1.033e—1 1.702e—1 1.491e—1
1996 2.01 0.19 19,914 0.969 1.094e—5 5.380e—3 4.058e—3 5.590e—3 5.985e—3
1997 1.54 0.12 23,051 1.141 1.094e-5 1.623e-3 1.224e-3 2.356e-3 2.582e-3
1998 2.12 0.40 19,914 1.016 1.094e—5 5.331e-3 4.101e-3 5.388e—3 5.646e—3
1999 1.99 0.38 20,909 1.031 1.094e—5 3.691e-3 2.831e-3 4.490e—3 4.748e—3
2000 1.94 0.23 20,909 1.031 1.094e—5 3.642e-3 2.770e-3 4.531e—-3 4.849e—3
2001 1.91 0.20 20,909 1.016 1.094e—5 3.623e-3 2.753e-3 4.340e—3 4.651e-3
2002 1.98 0.17 20,909 1.016 1.250e—5 3.621e-3 2.746e—3 4.978e—3 5.307e—3
2003 8.81 0.40 9956 0.484 1.250e—5 2.263e—1 1.720e—1 2.366e—1 2.041e-1
2004 1.98 0.20 20,909 1.016 1.094e—5 3.627e-3 2.755e—3 4.940e—3 5.267e—3
Avg. 3.67 0.28 17,975 0.880 1.125e-5 5.323e—2 4.017e-2 6.143e—2 5.419e—2
of vols. In fact, in the years 1992-1995 and 2003, the vol of vol y; of vols and expand the range of values considered for this param-

is larger than 520%, with peaks of 943% in 1994 and 880% in 2003. eter, in the central panel, we plot the approximated option prices
In these years, we observe the largest relative errors for the double when fixing the model parameters to the values estimated for the
Heston model. In contrast to that of the double Heston model, the year 1990 (see Table 8 Year 1990), while the vol of vol y; is cho-
estimated vol of vol of the Heston model is always less than 80% sen to be y" = e3+m/2 m=1,2,...,30, and y, = 0.007. The grid
and larger than 37% (see Tables 4 and 5). of strike prices and times to maturity, over which the average is
We conclude this section by comparing the relative errors of taken, is the same for both panels. In the right panel, we show for
the call option prices given by the zero-order Black-Scholes-type the same parameters as the central panel, the correction terms R;,
term (with Gaussian kernel gr,) and by the first-, second- and fori=1,2,3.
third-order approximations as a function of vol of vol in the case of The curves log-error vs log vol-of-vol (left and central panels)
the Heston model and as a functions of the largest of the two vols depicted in Fig. 1 show that the errors grow linearly with the vols
of vols (i.e., 1) in the case of the double Heston model. In the left of vols for values of y up to approximately 200%. The figures also
panel of Fig. 1, the model parameters are the same as those used provide empirical evidence that while the third-order expansion
for Tables 4 and 5. In this case, the prices for different levels of slightly improves the approximation for volatilities up to approx-
vols of vols are not perfectly comparable, as they also depend on imately 200%, beyond this value, the second- and third-order ap-
the remaining model parameters. To isolate the effect of the vols proximations become indistinguishable from each other and con-

13
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Fig. 1. Left and middle panels: relative errors of zero-, second-, and third-order approximations to the call options obtained in a log-log scale. Zero order: dash-dot line;
first order: dashed line; second order: solid line; third order: dotted line. (Right) panel: correction terms R; (dashed line), R, (solid line), and R3 (dotted line) as a function

of the log of the vols of vols.

verge to the Black and Scholes price, in line with the discussion
in Section 3.1. Interestingly, for larger values of the vols of vols,
and in line with the theory of asymptotic series (as further ex-
plained in Section 7 of the supplementary material), the first-order
approximation provides better estimates than higher-order approx-
imations. This is a consequence of the fact that for large values
of the vols of vols, the asymptotic expansion of £, may diverge.

This is also signalled by the correction terms R, and R3 becom-
ing larger than R;. However, despite the non-convergence, the
asymptotic expansion may still provide a satisfactory approxima-
tion when truncated to a finite number of terms.

5. Accuracy of the option price approximations: empirical
calibration study

In this section, we assess the performance of the Heston
second-order approximation formula (58)-(59) to reproduce and to
forecast traded European call and put option prices on the US S&P
500 index. In this exercise, the U.S. three-month government bond
index is used as a proxy for the interest rate r.

The availability of an explicit and elementary formula for the
implied volatility provides an advantage in terms of calibrating the
model rather than estimating the parameters directly from the op-
tion prices. This is because it avoids biases caused by different
magnitudes of option prices that are typically corrected by intro-
ducing appropriate weights in the optimization algorithm (i.e., the
inverse of option Vegas, see Christoffersen et al., 2009, or the bid-
ask spread, see Date & Islyaev, 2015). Additionally, the simple link
between implied volatility and model parameters allows for reli-
able estimates while accelerating the solution of the optimization
problem. We note that, while formulas similar to ours for the im-
plied volatility (i.e., Eq. (63)) were derived by Bergomi and Guyon
(2011), their effectiveness for calibration purposes has not been
tested in the literature.

Here, we provide empirical evidence that by using the second-
order approximations for the implied volatility X, j, we can ob-
tain “consistent” estimates of the Heston model parameters from
both the call and put options. Typically, option prices are filtered
to avoid inconsistency resulting from the simultaneous use of call
and put option prices (see Pacati et al., 2018). We do not filter any
observations that do not satisfy standard no-arbitrage conditions
while investigating how this affects the model calibration.

Our dataset consists of 1200 European vanilla call and put op-
tions with four strike prices (i.e., ng = 4) and ny = 150 maturities.
Starting from the traded call option prices C°(S;, T;, E;) with spot
price S;, time to maturity T; and strike price E;, and using the U.S.
three-month government bond yield as the risk-free interest rate,
r, we compute the observed implied volatility, o2(S;, T;, E;), for
i=1,2,...,n7, j=1,2,..., Ng. This computation is performed us-
ing the Matlab function calcBSImpVol, which uses Li’s rational func-
tion approximator for the initial estimate (see, Li, 2006; Li, 2008),
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followed by Householder’s root finder of the third order to improve
the convergence rate of the Newton-Raphson method.

For any time i=1,2,...,ny, we then estimate the Heston
model paran?etfers .Q,. = (Xi> Ui\ Vi 01 V) € R3, i=1,2,...,n7, to
solve the optimization problem:

e Yo u(Si T E;
ag(si,n,fj)—z*”(\/"f" D
i

where ¥, y is given in formula (63) with n=1 and V is the follow-
ing set of constraints:

rr}in
O evi

(87)

V={0=(x. v y.p.10) eR’| y, V", x, U >0, -1 < p < 1};
(88)

To solve problem (87), we use a metric variable steepest descent
algorithm (see, for example, Recchioni & Scoccia, 2000; Fatone,
Mariani, Recchioni, & Zirilli, 2013). This is an iterative algorithm
that generates a sequence of points, @", k=0,1,..., belonging to
the interior of the feasible region and moving opposite to the gra-
dient vectors of the objective function computed in a suitable met-
ric.

We then repeat the calibration procedure starting from the ob-
served put prices P°(S;, T;, E;), where P° is the observed value of

the put option, i=1,2,...,n7, and j=1,2,...,ng, and solve the
problem
ng
. Yonu(Si, T E;
min 025 T Ej) — 22n(Si T Ej) (89)
OeVis VT

In this way, we obtain two optimal sets of model parameters,
one starting from the call options, ©°, and the other starting from
the put options, ©.

Some descriptive statistics for the estimated model parameters,
initial variance, Feller ratio, objective function and observed im-
plied volatility are given for the two sets in Table 6. The values of
the objective function compare favourably with those in Table 1 of
Veng et al. (2019). The two sets of parameters are almost identical,
with the exception of the estimate of the long-term mean param-
eter. We argue that the difference in the v* parameter estimate
from the call and put prices is due to market imperfections that
lead to a spread between the implied volatility o of call and put
options. In fact, the absolute value of the implied volatility spread,
|68(Si. T;. Ej) — 02(S;. T;, E;j)| derived from the call and put options
is 0.04 on average, while the relative absolute spread (i.e., the ratio
of the spread to implied volatility from the call) is 0.24. Interest-
ingly, the absolute difference between the square root of the two
long-term variance parameters is 0.05, and the ratio of this differ-
ence to the square root of the call variances is 0.29, thus mirroring
the implied volatility spread.

To evaluate the model consistency, we compute the Euro-
pean call and put option prices using formulas G,y and P,y in
Egs. (58)-(59) with both sets of estimated parameters. Fig. 2 shows
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Table 6
Descriptive statistics for estimated values of the model parameters and observed implied volatility o°.
Call set
X v y o i z;;/- Obj. func. o°
Mean 5.7999 0.014663 0.50098 -0.8502 0.08060 0.677512 8.35e-5 0.1581
Median 5.7999 0.012726 0.50100 —-0.8502 0.08200 0.588756 2.28e-5 0.1546
Std 0.00057 0.007032 0.000303 0.000220 0.004912 0.324606 1.46e—4 0.020
Put set
X v* y 0 i Zﬁf« obj. func. o0
Mean 5.7999 0.029102 0.5009 —0.8502 0.08384 1.34530 7.84e-5 0.1931
Median 5.7999 0.029114 0.5009 —-0.8502 0.08489 1.29907 2.02e-5 0.1923
Std 0.000020 0.006205 0.00026 0.00018 0.004243 0.28708 2.87e—4 0.0168
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Fig. 2. Left panel: Observed call option prices (solid line) and second-order approximations C, ; (dotted line) for four different strike prices E; = 1900, E, = 1975, E5 = 2000,
and E4 = 2025 and expiry date T = December 19, 2015, versus time (September 1, 2014-March 30, 2015) obtained with the optimal parameters from the observed implied
volatility of call options (i.e., call set). Right panel: Observed put option prices (solid line) and Black-Scholes second-order approximations P, j; (dotted line) for four different
strike prices E; = 1900, E, = 1975, E3 = 2000, and E; = 2025 and expiry date T = December 19, 2015, versus time (September 1, 2014-March 30, 2015) obtained with the

optimal parameters from the observed implied volatility of call options (i.e., call set).

the observed and second-order (solid line and dotted line, respec-
tively) call option prices. The approximations in Fig. 2 are obtained
using the model parameters estimated by the observed implied
volatility from call options (i.e., call set). The corresponding figures
for the put prices, obtained using the model parameters estimated
by the observed implied volatility from put options (i.e., put set)
are available in the supplementary material. For each set, we com-
pute the mean and standard deviation of the relative errors for the
call options as:

Ef'jQL = |C°(S;. T Ej) — Gy (Si. Th. Ej: ©)]/C°(S;, T, Ej). with L = C, P,

and we also compute the equivalent errors for the put options. The
average relative errors EC©° and EP€” (i.e, when parameters are
estimated starting from the corresponding option prices) are, re-
spectively, 0.027 (i.e., 2.7%) and 0.031 (i.e., 3.1%). These errors are
in line with those in Pacati et al. (2018), where a double Heston
model with jumps is used. By contrast, when using the model pa-
rameters of the put set to estimate the call prices, and vice versa,
the relative errors EC©” and EP©" are, on average, 0.21 (i.e., 21%)
for the call and 0.22 (i.e., 22%) for the put options. Thus, while the
cross estimates produce a clear bias, the error is of the same order
as the relative error in the implied volatility (i.e., 24%), suggesting
that the bias is driven by market imperfections rather than an in-
consistency with the methodology.

We conclude this section by testing the potential of the cali-
brated parameters to forecast option prices one day ahead. Fig. 3
shows the one-day-ahead estimates for call (left panel) and put
(right panel) option prices. Specifically, the option estimates at

15

time t + 1 are calculated using the optimal parameter values at
time t. The one-day-ahead estimated call prices are obtained using
the model parameters ©F, while the one-day-ahead estimated put
prices are obtained from ©F. The relative errors of the one-day-
ahead estimates are, on average, 4.67% for call options and 4.72%
for put options.

6. Variance of the Gaussian kernels and the VIX index

In this section, we focus on the relationship between the VIX
and the variances I'y and I', in the Heston, double Heston, and
triple Heston models. We use the VIX time series for the years
2000, 2001, 2002 and 2003 provided by the CBOE'® and two time
series for the realized variance, the median truncated realized vari-
ance and the 5-minute realized variance, both available from the
Oxford-Man Institute!!, For the Heston model, we assume that the
realized variance from the Oxford-Man Institute database plays the
role of the spot variance; thus, v; = RV;. The use of the realized
variance as a proxy for the short-term volatility factor is sup-
ported by the results illustrated in Corsi, Fusari, and La Vecchia
(2013). In the double Heston model, each factor variance is eval-
uated as a fraction of the total realized variance; thus, v = a1 RV;
and vy = (1 —aq)RV;. In the triple Heston model, the stochastic
variances v, j=1,2,3 are chosen to be a fraction of the total

10 The VIX level was downloaded from http://www.cboe.com/products/
vix-index-volatility/vix- options-and-futures/vix-index/vix- historical-data.
11 website https://realized.oxford-man.ox.ac.uk/data.


http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
https://realized.oxford-man.ox.ac.uk/data
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Fig. 3. Observed option prices (solid line) and one-day-ahead estimates computed using second-order approximation (dotted line) for four different strike prices E; = 1900,
E, = 1975, E3 = 2000, and E4 = 2025 and with expiry date T = December 19, 2015, versus time (September 1, 2014-March 30, 2015). Call price one-day-ahead estimates
using the call set (left panel); Put price one-day-ahead estimates using the put set (on the right). The average relative errors of call and put options are 7.9% and 6.2%,

respectively.

Table 7
Estimated parameters for the Heston model from Christoffersen et al. (2009).

Heston model parameters

Year X v y P Z’V‘Z‘"

2000 2.5751 0.0678 0.6561 —-0.6975 0.8111
2001 3.8191 0.0564 0.6489 -0.7410 1.0231
2002 3.3760 0.0532 0.5973 —0.7725 1.0068
2003 1.7201 0.0691 0.6837 —-0.5939 0.5085

realized variance, as Vi =RV, j=1,2,3,
use ¥, noder (t) to denote the quantity

& /T t,t+T
En.model (t) = M, model = H DH,TH n=0,2.

(90)

ajzo, ozjgl. We

6.1. Gaussian kernels and the VIX index in the Heston and double
Heston frameworks

We now empirically test the relationship between the VIX, Iy
and I'; in the Heston and double Heston frameworks. For each
fixed year, we use the model parameters in Christoffersen et al.
(2009), provided in Table 7 and Table 8, to compute the kernel
variance 'y and I'y, while the «; parameter is obtained by mini-
mizing the squared residuals (sum of squared errors):

SSE = 3" [Ea.m(t: ar) - VIX.]'. (91)
t

across the four years (thus, «q is imposed to be the same for the

four years). We find that the optimal value of «; is &; = 0.15 when

we use the median truncated realized variance and o« = 0.06 in

the case of 5-minute realized variance.

We start by comparing, in Figs. 4 and 5, the VIX time series
(solid line) and iz,model (dotted line) in the Heston (Fig. 4) and
double Heston (Fig. 5) models as a function of the day index for
each year considered. The figures show that f]quH (t) (see Eq. (90))
more closely follows the VIX behavior for all years and both time
series. This result is confirmed in Table 9, which shows that the
double Heston model outperforms the Heston model in terms of
the sup-norm. The RMSE shown in Table 9 compares favourably
with the results obtained by Corsi et al. (2013) (see Section 4.3,
Table 4).
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We then compare, in Fig. 6, the fit between the VIX and
iZ,model versus io,modeb The figures clearly show, as discussed in
Section 3.3, that the VIX overestimates Xg pogel-

To provide further evidence of this point, we test for linear de-
pendence between the VIX index and g 040 and £, 04 With
model = H and DH. This is done by regressing the daily VIX ob-
servations on the daily estimates of g 04e(t) and Ej oger ()
when using, respectively, the median truncated realized variance
(see, Table 10, left panel) and the 5-minute realized variance (see
Table 10, right panel) as proxies of the spot variance process
Ve = Y__q Vj- The results of these zero-intercept regressions show

that both ¥ o461 (t) and 5 1046 (t) perform better than the naive
linear model VIX; = B1RV; + noise. The coefficients are statistically
significant at the 5% level. These results are in line with the find-
ings of Huang et al. (2020). These results also confirm our hypoth-
esis that 22,model (t) in the Heston and double Heston models cap-
tures the VIX dynamics better than io,model (t). In fact, in both the
Heston and double Heston models, the coefficient B; is, on av-
erage, closer to one when we regress on iz,mode, (t) rather than
2O.model(’f)-

We further investigate the quality of the VIX approximation by
analysing the bias, i.e., E(Z; moger — VIX), for m = 0,2, for the He-
ston and double Heston models. Table 11 shows that io,model has a
more pronounced bias than iz,model and that, particularly for the
years characterized by large vols of vols, the use of 22,model sub-
stantially improves the fit.

To provide further intuition about the above results, we com-
pare the accuracy of the double Heston call option pricing formu-
las when the expansion in the vols of vols is performed starting
from the representation in Eq. (15), after extracting the Gaussian
kernel 'y, and from the representation in Eq. (18), after extract-
ing the Gaussian kernel I'y. We focus on out-of-the-money call op-
tions, which are the ones used to compute the VIX index. A better
performance of the approximation formulas, written in terms of
I'y, in pricing out-of-the-money options, would provide justifica-
tion for the better performance of I', itself in approximating the
VIX.

As an illustration, we use the double Heston parameters esti-
mated by Christoffersen et al. (2009) for European call options on
the S&P500 in the year 2003 (see the last row of Table 8). The
first factor of the double Heston model in 2003 is characterized
by a high vols of vols (881%), a very small long-term mean (i.e.,
0.33%) and a slow mean reverting speed (i.e., 0.1638), so the pa-
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Fig. 4. Each panel contains the VIX time series and the model implied volatility £, (i.e., Eq. (90) - Heston model) as a function of day. The model parameters in
Table 7 were used with the spot variance of the price log-return corresponding to the daily time series of the median truncated realized variance (left panels) and the

5-minute realized variance (right panels) from the Oxford-Man Institute.

Double-Heston IV
—VIX

- Double-Heston IV
—VIX

Implied Volatility
Implied Volatility

Double-Heston IV . Dou‘hle-Heslon \%
—VIX 1 [ —VIX

Implied Volatility

Implied Volatility

200 50 150

100
day-index (year 2001)

200

FR—
day-index (year 2000)

00 150

100
day-index (year 2001)

200

50 100 150 E
day-index (year 2000)

Double-Heston IV
—VIX

Double-Heston IV
—VIX

Implied Volatility
Implied Volatility

Double-Heston IV

Double-Heston IV
—VIX

—VIX

Implied Volatility
Implied Volatili

o 50

200 250 o 50 150

100
day-index (year 2003)

200

100 150
day-index (year 2002)

o 50 00 50 150

100
day-index (year 2003)

200

100 150 2
day-index (year 2002)
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Table 8
Estimated parameters for the double Heston model from Christoffersen et al. (2009).

Double Heston model parameters

Year x v; " o X v 2 p2 2ol o

1 2
2000 0.1404 0.0052 19382 ~0.9915 0.3542 0.1690 0.2292 ~0.9024 0.0004 2.2789
2001 0.1433 0.0054 19115 ~0.9911 0.2347 0.1655 0.2047 ~0.8983 0.0004 18539
2002 0.1491 0.0058 19754 ~0.9902 0.1855 0.1607 0.1715 ~0.8896 0.0004 2.0270
2003 0.1638 0.0032 8.8078 -0.9838 0.4625 0.1198 0.3976 ~0.6569 0.0000 0.7009

rameters do not satisfy the Feller condition. The second factor is
characterized by less volatile dynamics, with a vols of vols of 39%,
a long-term mean equal to 11% and a faster mean reverting speed
(i.e., 0.4625). This suggests that the volatility remains closer to its
long-term mean, with parameters satisfying the Feller condition.
The initial value of each factor variance is evaluated as a fraction
of the total variance, so 119 =« and v, = (1 —«). The risk-free
interest rate is chosen to be 0.15.

We analyse the accuracy of the approximations as a function
of @ (which is the only parameter we estimated in the VIX exer-
cise) to assess the sensitivity of the option price approximations to
the choice of spot volatility. The comparison is presented in Fig. 7,
where the relative errors of the second-order call option approx-
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imations in the double Heston framework are shown in a loga-
rithmic scale. The solid lines are the approximations obtained with
the Gaussian kernel Grys while the dashed lines are those obtained
with Gr,. In all panels, a logarithmic scale with logarithm-base 10
is used. The x-axis shows the values of the spot variance v;; = a.
Fig. 7 shows that the approximations obtained with the complete
kernel gr, are more accurate than those obtained with gr, for the
considered parameter values. Interestingly, some values of the spot
variance vy g (i.e., 1) reduce the relative pricing errors. We note
that as we move from v;0=0 to v; =1, we start closer to or
further from the long-term means of the two factors. This move-
ment has the effect of changing the relative contribution of each
factor to the overall dynamics, which, as the process transitions
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Table 9
Root mean square error (RMSE) obtained using %, o4 to approximate the VIX index.
Model Median truncated RV 5-minute RV
RMSE min err max err RMSE min err max err
Heston 0.0276 0.0131 0.0453 0.0253 0.0168 0.0380
Double Heston 0.0239 0.0152 0.0341 0.0301 0.0233 0.0347
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Fig. 7. Relative errors of the second-order approximations of call options in the double Heston framework obtained using the Gaussian kernels Gr, (solid-line) and gr,
(dashed line) as a function of the initial spot variance vy o = o, 10 = (1 — ). The double Heston parameters used to compute the call option prices are those estimated in
the year 2003 and shown in Table 8. A logarithmic scale is used for the y-axis (logarithm base=10).

from smooth mean reverting dynamics with a small vol of vol to
dynamics with abrupt fluctuations, could make the option more
difficult to price, explaining the observed changes in pricing errors.

While we restrict the analysis to out-of-the-money options for
a specific set of parameters, the comparison of the accuracy of the
two approximations when expressed in terms of Iy or I'y deserves
a full investigation, which will be the subject of future work.

6.2. Calibration of the double and triple Heston models from the VIX
index

Given the encouraging results in the previous subsection, we
explore the possibility of calibrating the parameters of the double
and triple Heston models directly from the VIX daily data.

For this exercise, we use only the median truncated realized
variance as a proxy of the spot variance v;. In this case, both the
model parameters and ¢; are obtained by minimizing the squared
residuals (SSE) separately for each year (thus, «; differs by year).
We use the Matlab Isqnonlin function to minimize the SSE. As a
starting point, we the Heston and double Heston parameters from
the previous section.

We first calibrate the double Heston model. The results re-
ported in Table 12 are similar to those of Christoffersen et al.
(2009) for a large basket of options. The estimated parameters for
the triple Heston model are reported in Table 13, and the relative
values of the coefficients «;, j =1,2,3 are shown in Table 14.
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Fig. 8 presents the VIX time series (solid line) and ):“QJH (dotted
line) in the triple Heston model as a function of the day index for
each year considered. The fit with iz,m(t) appears to better cap-
ture the VIX behavior than the Heston and double Heston mod-
els presented in the previous subsection. The visual inspection is
supported by the lower values of the average, minimum and maxi-
mum RMSE, which are 0.0187, 0.0126 and 0.0258, respectively, and
of the bias, reported in the last column of Table 14, which is two
orders of magnitude lower than the values in Table 11. The coeffi-
cient B is also closer to one.

Notably, the estimation performed using the VIX provides
model parameter values for the first two factors that are similar
to those obtained by Christoffersen et al. (2009). In particular, the
second factor, which is dominant, is consistently slowly mean re-
verting around its long-run mean, while the first factor has more
volatile dynamics around its very small long-term mean across the
whole period. By contrast, the temporal dynamics of the parame-
ters characterizing the third factor appear to switch between these
two types of behavior. Specifically, the vol of vol, y3, and the speed
of mean reversion, 3, are lower in the years 2001 and 2002, while
the long-term mean, v, is higher in the same years. The correla-
tion coefficient, p3, changes sign, going from positive in 2000 to
negative in 2001 and 2002 and positive again in 2003. This behav-
ior may be driven by the 2001 crisis, which was triggered by the
collapse of the dot-com bubble and the 9/11 attacks. The long-term
mean, in particular, is anti-correlated with the dynamics of the real
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Table 10

Zero-intercept regression models with two proxies for spot variance. The model parameters of the Heston and double Heston models are taken from Table 3 in Christoffersen
et al. (2009).

Proxy: median truncated realized variance

VIX; = B1RV; + noise

Year Bi S.E. t-stat R?

2000 0.589 0.0089 65.94 0.271
2001 0.490 0.0075 64.54 0.352
2002 0.574 0.0081 68.20 0.532
2003 0.524 0.0063 82.66 0.597

VIX; = By o1 (t) + noise

Year B S.E. t-stat R?
2000 0.93603 0.0069 134.65 0.609
2001 0.8142 0.0087 93.718 0.5583
2002 0.745 0.0095 78.416 0.6095
2003 0.8846 0.0107 82.43 0.6042
VIX; = By E2.4(t) + noise

Year Bi S.E. t-stat R?
2000 1.002 0.0075 132.2 0.600
2001 0.860 0.0092 92.67 0.553
2002 0.786 0.0102 76.65 0.599
2003 0.962 0.0120 80.17 0.591

VIX; = B o.py (t) + noise

Year Bi S.E. t-stat R?
2000 0.8677 0.0063 138.28 0.6192
2001 0.6979 0.0063 109.85 0.6300
2002 0.6995 0.0067 104.7 0.7288
2003 0.8096 0.0079 101.75 0.6961
VIX; = By .01 (t) + noise

Year B S.E. t-stat R?
2000 0.964 0.0072 132.60 0.599
2001 0.879 0.0079 110.74 0.635
2002 0.699 0.0068 104.73 0.7328
2003 0.8071 0.0079 101.33 0.6944

Proxy: 5-minute realized variance

VIX; = B1RV; + noise

$y.n Year B S.E. t-stat R?
2000 0.807 0.0156 51.68 0.186
2001 0.706 0.0138 50.86 0.253
2002 0.784 0.0140 55.73 0.431
2003 0.671 0.0101 66.40 0.489
VIX; = B1Zou(t) + noise

Year B S.E. t-stat R?
2000 1.004 0.0076 1321 0.5981
2001 0.8594 0.0082 103.57 0.6048
2002 0.8044 0.0092 76.65 0.6554
2003 0.9371 0.01095 85.53 0.6204
VIX; = By Sy (t) + noise

Year Bi S.E. t-stat R?
2000 1.068 0.0080 132.2 0.602
2001 0.904 0.0088 102.3 0.599
2002 0.843 0.0098 85.254 0.646
2003 1.013 0.0121 83.488 0.609
VIX; = By Zo.pn (t) + noise

Year B S.E. t-stat R?
2000 1.013 0.0111 91.21 0.414
2001 0.8518 0.0110 7758 0.4578
2002 0.8698 0.0116 75.24 0.5806
2003 0.8957 0.0094 94.66 0.664

VIX; = B1 3.0 (t) + noise

Year B S.E. t-stat R?

2000 1.087 0.0120 90.56 0.410
2001 1.008 0.0106 94.51 0.557
2002 0.992 0.0112 88.14 0.655
2003 1.107 0.0114 94.23 0.660
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Comparison of the bias in the estimates obtained with 3¢y, 3,4, opy and £y py
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using the two proxies for the spot variance.

Proxy: Median truncated realized variance

Proxy: 5-minute realized variance

Heston Double Heston Heston Double Heston
Year BiasS, Bias$, Bias$ py BiasS py BiasSo 4 Bias$, 4 Bias ¥ py Bias 35 py
2000 —-0.0114 0.0045 —0.0294 —-0.0070 0.0037 0.0192 0.0033 0.0207
2001 —-0.0414 —0.0290 —0.0748 —-0.0260 —0.0306 -0.0187 —-0.0373 0.0050
2002 —-0.0596 —-0.0473 -0.0797 —-0.0357 —0.0446 -0.0329 —-0.0354 0.0018
2003 —-0.0166 0.0016 —0.0359 0.0284 —0.0054 0.0125 —-0.0172 0.0220
Avg —-0.0322 —0.0175 —0.0549 —-0.0101 —0.0192 —0.0049 —-0.0216 0.0123
Table 12
Estimated parameters for the double Heston model from VIX data.
Double Heston model parameters
year Xi vi 14 14 X2 v 72 P2 o o Bias
2000 0.4128 0.0001 1.8897 —0.9664 1.0737 0.0937 0.2225 —-0.8773 0.1439 0.8560 —1.064e—4
2001 0.1462 0.0204 3.5930 —-0.9623 0.2534 0.3103 0.2077 —0.8762 0.1914 0.8085 —1.187e-4
2002 0.1463 0.0960 3.198 —0.9922 0.1979 0.1994 0.2073 -0.9149 0.2533 0.7466 —3.869e—4
2003 0.0367 0.0027 8.0235 —-0.8953 0.3951 0.1030 0.3501 —-0.5771 0.1372 0.8627 2.6097e-5
Table 13
Triple Heston model parameters estimated from the VIX and the median truncated realized variance data by minimizing the SSE in Eq. (91).
Triple Heston model parameters
Year X1 vi " P X2 123 2] P2 X3 vy V3 P3
2000 0.4840 0.0046 1.6951 —-0.8672 0.3231 0.1516 0.2023 —0.8027 4.3913 0.0170 2.529 0.1009
2001 0.1286 0.0056 4.5488 —0.9988 0.2271 0.1607 0.2024 —-0.8916 0.4429 0.1197 0.0123 -0.5101
2002 0.1317 0.0069 4.1944 -0.9873 0.1623 0.1490 0.1624 —0.7542 0.3289 0.1435 0.10931 —-0.5354
2003 0.1128 0.0016 8.9596 -0.9752 0.4326 0.0920 0.3884 —0.6436 5.2722 0.0001 7.2568 0.4272
Table 14

(Left) Parameters o, j=1.2,...

, with v, = a;RV;, V5 = @2RV;, V3 = a3RV; estimated from the VIX and the median truncated realized variance data by minimizing the

SSE in Eq. (91). (Right) Results of zero-intercept linear regression VIX; = B; £, 14 (t) + noise, that is, 81, SE, t-stat, R? and Bias.

Year

o o o3 Bi SE t-stat R? Bias
2000 0.1120 0.6499 0.2379 0.9883 0.0069 143.165 0.6362 —1.088e—4
2001 0.1340 0.7598 0.1061 0.9987 0.0077 129.88 0.7029 —1.186e—4
2002 0.1789 0.7458 0.0752 0.9816 0.0089 109.21 0.7455 —3.837e—4
2003 0.1283 0.7451 0.1265 1.0038 0.0074 134.91 0.7980 3.353e-5
0:: } - Triple-Heston IV ” ° ” - Triple-Heston IV
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Fig. 8. Each panel contains the VIX time series
in Table 13.

U.S. GDP growth, which registered 4.1% in 2000, 1.1% in 2001, 1.7%
in 2002 and 2.9% in 2003, i.e., the long-term volatility is higher
in 2001 and 2002 when the GDP experiences a decline. The third
factor may thus have macro-economic significance.

This result is not surprising since other studies have shown a
correlation between GDP growth and stock market returns (see,
Ritter, 2005 and the references therein; Cournéde & Denk, 2015)'2.

12 Real US. GDP growth data have been downloaded from https://www.
statista.com/statistics/188165/annual-gdp-growth-of-the-united-states-since- 1990
; S&P 500 annual returns are from https://www.macrotrends.net/2526/
sp-500- historical-annual-returns.

and the model implied volatility 3,

—VIX

~-Triple-Heston IV
—VIX

Implied Volatility
Implied Volatility

250

150
day-index (year 2002)

100 200

50

150

100 20
day-index (year 2003)

ty (i.e., Eq. (90) - Triple Heston model) as a function of day. The model parameters are

7. Conclusions

This paper introduces an approach to extract the Gaussian ker-
nel behind the multi-factor Heston model, which allows a clear
connection of the prices of European option contracts in the multi-
factor Heston framework to the corresponding prices in the Black-
Scholes model. Our simple formulas illustrate how the option
prices and implied volatility respond to changes in model pa-
rameters. A series of numerical exercises shows that our formu-
las are accurate, computationally efficient, and easy to calibrate.
We numerically demonstrate that our approximations compare
favourably with other pricing formulas available in the literature,
such as those of Pacati et al. (2018) and Veng et al. (2019), when
we use them to calibrate the model parameters to the implied
volatility and forecast the option prices one day ahead.
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The approach proposed in this paper, while applied only to
the multi-factor Heston framework and implemented for vanilla
contracts, is more generally valid. Extensions to exotic derivatives
whose payoff allows for a closed or semi-closed form in the Black-
Scholes framework would be straightforward. More importantly,
the representation of the marginal density function as a convo-
lution with an appropriate Gaussian kernel applies to any model
for which an analytically tractable characteristic function exists, in-
cluding affine stochastic volatility, exponential Lévy models, and
jump diffusion models. We plan to explore the implications of our
representation formulas, and related asymptotic expansions, more
generally for this broader class of models and contracts in future
work. We also defer to future work a detailed study of the poten-
tial advantages of the convolution formulas in terms of computing
option prices exactly via numerical integration. In fact, the convo-
lution formula allows us to price any derivative as the convolu-
tion of the corresponding price in a time-dependent Black-Scholes
framework and the function £, (in the case of the Gaussian kernel
gr,) or £, (in the case of the Gaussian kernel gr, ), which do not
depend on the payoff of the contract. A comparison of the perfor-
mance of these formulas for option pricing and those derived from
Recchioni and Sun (2016) deserves further investigation. Addition-
ally, the use of I'; to estimate the variance risk premium from the
VIX and S&P 500 indices and to price VIX options is worthy of fur-
ther rigorous analysis.

The results of this work, and in particular the decomposition of
the option prices and implied volatility in terms of the Greeks of
the options and higher-order risks, may have applications in other
areas, such as portfolio management and asset allocation.

Appendix A. Proofs

Detailed proofs of all the results are provided in the Supple-
mentary material. Here, we provide the most relevant points of
each proof.

A.1. Proof of Theorem 2.1

We recall the backward Kolmogorov equation satisfied by the
function M given in (11) as a function of the past log-price x and
time t:

L] Lo, M 92M
FI LY Vi LYy,
j=1 =

+ (r(t) 5 Z ) oM (92)

ZZ ’axz

at

+ ZX](V

with final condltlon

M, vt x ") =8(x—-x), (93)
where §(-) is the Dirac delta function. We look for M in the form
M(x, v, t, X, t")

1 /+ kX —0) -1k [ 1(8)ds+QkL.t 12O, Ydk.x, ¥ <R, v € R"
o

t,t' >0,/ —t >0, (94)
where Q is defined as
n
Q' —t.v.k:©,) =A(k.t.t') = > v;Bj(k.t.t). (95)

j=1
Substituting Eq. (95) into Eq. (92), we obtain the Riccati equation
satisfied by A and B; (see Duffie et al,, 2000; Fatone et al., 2009):

d n
A= 2 XiviB),
j=1

(96)
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and for j=1,2,...,n,

;tB = X;jB;j +2y]B +1kpjy;B; §+% (97)

with final conditions

Ak, t', t")y=0, Bj(k,t',t')=0,j=1,2,....n (98)

We now rewrite Q in Eq. (95). Egs. (96) and (98) yield
n n v

Akt ) =S Ak ) ==Y Xju;f/ Bj(k.7.th)dr.  (99)
j=1 j=1 t

where

Ajlk, t, t") = —vaj/t /Bj(k, T, t')dt, (100)

while Egs. (97) and (98) yield

%(e-xjfBj(k,t,t’)) = e-xft<zkpjyj3j(k,t, t') + yiBi(k t, t))

k2 k
et X
en(5-)

Since Bj(k,t’,t") = 0, integration yields:

(101)

v
Bj(k,t,t') = —/[ e Xi-0 [lkpjijj(/<,S, t") + y7Bi(k,s, t)]ds
k2 lk v o

{72t /

From Egs. (99) and (102), we obtain:

Xi6-0s. (102)

.
Ak t.t)) = 7Xju;f[ B;(k. 7.t )dt

t’ t’
= vaj/t |:/; [e*h“*”(z kp;yiB;(k,s.t') + %yj?Bf(k, s, t/)>
+e*X1(5*”( k2 +zk)]ds]dr

so by inverting the integration order and using Eqs. (102) and
(103), we obtain

(103)

Aj(k, t,t)
k2 | v
(54 1= o

v
+ / [lk,ojijj(k,s, t') + y}Bi(k,s, t)]
t

x [v5(1—ex60) 4 vje‘Xf(s‘f)]ds

Noting that v; is the variance at time t and the conditional mean
of the point-in-time volatility given in (7), Eq. (104) becomes

—v;Bj(k, t,t")

(104)
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Aj(k, t, t/) - Uij(k, t, t/)

;
/ |:1k,ojijj(k,s, t') + yiBi (ks t') + (
t

Rk
213

X E(vj,s |]:t)d$ (105)
Eq. (105) implies
n
> (At t') —v;Bj(k, t.t)
=
k% — 1k
__( )Fo(tt)+2/ E(wjs|F)
X [i v7Bj(k.s.t') +1kpjy;Bj(k.s, t/)]ds, (106)

where I'g is given in formula (16). This proves formula (11).

My(x,v,t, X', t')

T2

Formula (15) follows if we apply the convolution theorem for
the inverse Fourier transform to formula (11).

The proof of Eq. (12) follows using a standard approach for the
Riccati equations. This concludes the proof. O

A.2. Proof of Theorem 2.2

Egs. (18) and (23) follow from Eq. (11) by adding and subtract-
ing the quantity (k* —1k)(=S;(t,t') +Sy(¢,t')), where S; and S,
are given in Eqs. (21) and (22), and applying the convolution the-
orem for the inverse Fourier transform. We now prove the expan-
sion of £3, in Eq. (24). To this end, we prove the following expan-

sion for B; (12):
Bj(k, t, t/) = Bj.() (k, t, t/) + )/JB]1 (k, t, t/)
+O0(yH. yj—> 0 t <t (107)

Substituting Eq. (107) into (97) and equating the coefficients of the
same powers of y;, we obtain that the zero- and first-order terms
Bjo and Bj; solve the following equations:

B 2
d fo(k t,t') - xjBjo(k t,t)) = —% +12j (108)
dBﬂ / /
(k t, t) Xij,](k,t,t)ZIIC,O]‘BJ',O(k,t,t), (109)
w1th ﬁnal conditions
Bj.()(k, t/, t/) =0, Bl‘] (k, t, t/) =0. (110)

The solution Bj is

1 (1—enC-0y 1
Bjo(k,t,t') = i( —lk)T = i(k — k) (t. 1),
(111)
where v; is given in (28), while B;; is
k
Byy(k.t.t)) = pf( — k) f (et (112)
where f; is defined as
fie.t) = (Yt =) = (t' = t)e % «D)
f/
= e’Xf(f"”/ (e _1)ds t <t (113)
t

1 /'+°° e [(x —X)— /[ r(s)ds+ 3T (L.t )] Irt)k? oS (t,[/)(lk3+lk)+52(t.t/)(’(4—21k3—lk)+52c(t.t/)(k‘l—lk?’)dk’
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Using Eq. (107) in Eq. (23
2 /
Hy(k,s, ) = v (1// (s.t") lk)\/fz( t))

+1kp; j<‘p1(s (2_11<)+”1pff(s t) (—1k® — k2)

), we obtain

L -7 +

(1k + 1)

Yi(s.t) ) +o(y}).y; — 0" (114)
Proceeding similarly (see online supplementary material), we ob-
tain Eq. (24). This concludes the proof. O

A.3. Proof of Corollary 2.4

We sketch the proof for the first three-order terms, Gr,, M
and M,. From Theorem 2.2 and using the expansion in formula
(24) up to the second order, we have:

(115)

where S; is a linearly homogeneous function of the vols of vols,
while S, and S,. are homogeneous functions of degree two. We
compute the first three terms of the expansion in powers of the
vols of vols of the function

5()/) — e (t.t’)(lk3+1k)+52(t,t’)(k4—21k3—1k)+525(t,t’)(k4—1k3). (116)
The proof follows based on:
& 0S,
El,_o=1, — =k +1k)—,
r=0 il,— 9y
02%¢ 0S; 9S1 . .
=k} +1k)2 2= £ (117)
Vv 'y dy; 0y;
and
9%¢ N
57 = "3“")2( 1)
)/j y=0 V]
2
8 5 —2(k* — 21k —1k) + 0°Sc (K* —113). (118)
8)/] 8)/1.2

This concludes the proof. O
A.4. Proof of Proposition 3.1

The proof follows by substituting M with its third-order ap-
proximation and integrating by parts. Details on why we obtain
an explicit formula for the corrections terms are given in the on-
line supplementary material. As mentioned above, the correction
Rm.mu, m=1,2,3 for the call option is the same as the put cor-
rection since there are two changes of sign: one due to the payoff
function and the other due to integration by parts over the interval
(—o0, logE) rather than (logE, +o0). This concludes the proof. O

A.5. Proof of Proposition 3.2

Let us now prove formula (62). When y = 0 (i.e., all vols of vols
are equal to zero), we have I',(0, T) equal to I'5(0, T) and the cor-
rection terms Rq, R, equal to zero, which implies

£1(0) = /T (0. T). (119)

We compute the first- and second-order partial derivatives of both
sides of Eq. (61) with respect to y;, j=1,2,...,n, and we eval-
uate the derivatives at y = 0. Using the Black-Scholes Vega (i.e.,
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"C35|y o0 = SoN'(dq(I'g))~/T) and the derivatives of I', S; and S,
with respect to Vi, we obtain

I
[=1

Y

2X;  JTo(0,T)

1 (n(So/E) + fj r(s)ds)
ta- T0(0.T) ’
(120)

thus implying

S1() = YTo(0.T) - \/ﬁ(
0 5

n
x Y 2701,
j=1

Xj

(In(So/E) + [y r(s)ds) 1
To(0,T) 2

(121)

To prove Eq. (63), we proceed by computing the second-order
derivatives, which are given by:

() =L ()
i Jl,.o /To\i

An easy, but involved, computation illustrated in the online sup-
plementary material shows that the addenda containing powers of
(mg + %Fo) higher than two are cancelled by the addenda involv-
ing the Black-Scholes Vomma. In fact, we have:

92 1 (85, )2

(mg + 1T0)

T (122)

[_s (mg +3T0)* 3 (me+3T0) L3
T rz Ty To r2
928, 1 |:(mE + 3T0)? ~ (mg + 1T0) 7 i]
dy? /To r2 Iy Ty
2 1r,)2
Byj /To ri [

Proceeding in a similar manner, we obtain mixed-order mixed

derivatives:
92 1 95, 95,
3,(0) = —
vy 29 = <8Vj><8yz<
|6 (me+ 3T0)?* 3 (mg+3T0) L3
Ty Ik Ty Ty r|
(124)
32s,
The thesis follows since we have 52—2211 12 ay2’ Soc =

1\ 292 Sz n n 9S; 951
7 2j=1Y] 7 - Yj=1 2kt ViViay,

the proof. A more detailed proof is provided in the supplementary
material section available online. O

and % = This concludes

Appendix B. Formulas in terms of the Gaussian kernel G,

In this section, we provide the second-order approximations of
the option prices starting from the representation of the marginal
density function given by formula (11).

Corollary B.1. The following expansion of the conditional marginal M
in powers of y as ||y || — O holds:
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M, v,t, X', t")
=Gr, (X =Xt ")+ My, v, t, X, t") + M o(x, v, t, X 1)
+o(lly 11?), (125)
where My o and M, o are given by
Myo(x, v, t,x,t")

ly Il — 0.

d3g d%g
=S (t,t/)|:— dx,§° * —xt,t) - dx,§° * —xtt)|, (126)
Moo, v, t, X t') = +S,(t, t)
X |:d g, x —x,t, t)+2d gry X —xtt)+ @ gr” x — x,t,t/)i|
dx” dx’ dx”
3
+Sc(t, t)[ gr" & —xt,t)+ df/l;u (x/fx,t,t/):|
1 dGr, ., d° gro
+§S$(t,t/)[ T x —x tt/)+2 x —x,t,t)
gro
+ g & —xtt)]|. (127)

Here, Sy is given by (21), Gr, is the Gaussian kernel defined in (10),
and S, and S, are given in (22) and (25), respectively. The following
expansion holds for the European vanilla call and put option prices,
Cuy and Pyy, with spot price Sy, maturity T, strike price E and dis-

count factor B(T):
VTo

VT

CMH(S()?T# E) = CBS(SO’TsE’ ) +R1.0(507T7E)

+ RZ.O(S()v TvE) +O(||Z||2)7 7| g Ov (128)
and
Puri (So. T, E) = Pss| So, T, E vIo
v (So. T, s | So. T.E. ~ 7
+ R1.0(S0, T. E) + Ra.0(So. T.E + o(ll¥ I?). iyl - .
(129)

Here, I'4(0, T) is given by (16), Cgs and Pgs denote the classic Black-
Scholes formulas, as in (45) and (46), and Ry, and R, o are the cor-
rections to the standard Black-Scholes formula due to the contribution
of the first- and second-order terms of the expansion in powers of the
vols of vols of the marginal density function:

51(0,T)

I'0(0,T)

E 1
x <+ log (SoefoT r(s)ds> + EFO (0, T)) gr,

x (log(E/So),0.T),

R1,0(50. T,E) = B(T)E

(130)
and

d%gr,
dX/Z

dgr[,

+

R2,0(S0. T E) = 5 (0, T)B(T)E[ }(bg(E/So) 0.7)

+ 5200, T)BTES g“

d*Gr, d* an
dx'4

(log(E/Sp),0,T) + 52(0 T)B(T)E

J’_

](log(E/So) 0,7T). (131)
Proof. The proof is based on the proof of Corollary 2.4 and
Proposition 3.2 for the expansion in powers the vols of vols
considering that the Fourier transform of £, is equal to
the product of the Fourier transform of D{,*multiplied by

(=10 (S ()=S0 ]
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Appendix C. Formulas derived from Recchioni and Sun (2016)

Starting from the approach of Recchioni and Sun (2016), with
a straightforward computation, the following explicit formulas for
the option prices in the multi-factor Heston model are derived (see
the online Supplementary material):

Cun (So, T,E) = e@ i r(s)dszs—;
x / o () e kb 0Tk dk
o k2 —(Q2q-1Dik+q(g-1) ’
(132)
and
Puii(So, T, E) =e@ 1o r(S)ds;_;JT
oo (iEz)(q‘Hk)e—lka r($)ds pQuq (T.V0 k:©,)
x /_oo —kz2 - 2q—-1ik+q(qg-1) dk,
(133)

where, in the case of the Heston/double Heston models, Qy 4 is the
elementary function given by

Q' -t v,k ©,) = Z —(szV}f/ij) ln(sq,vj,b,/(ZCq,uj))
=1
- (2x U;/ij)@q,v, + Uqu) (' —1)
- (2111/)/,'2)(§¢;Z,uj - Mé,vj)sq,vj»g/sq,vj,b >

with Mavjs Sqvpr Sqvj.g: and Sq.uj.b defined as follows:

1
—j(xj+(lk—q)yjpj),

Mqv; =
1 172
S, = 5 [4150, + 2000 ] . (134)
Squj.g = 1- e72§qv,,)_ (trit),
Squb = (Squ; + l/«q,v,-)e_zﬁ"’f =0 4 (8qv; — Hqu;)- (135)

The quantity ¢q in Eq. (134) is given by ¢q (k) = % + l%(Zq -1) -
%(q2 —q), k e R. Formulas (132) and (133) differ in the calcula-
tions of call and put prices only in the choice of the real parameter
g, which should be larger than one to compute a call option and
smaller than 0 to compute a put option. These formulas are in line
with the Lewis regularization technique (i.e., Lewis, 2000, Chap 2),
whose integrand functions are smooth functions.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2020.11.050.
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