
OENO One 2021, 1, 207-222 207© 2021 International Viticulture and Enology Society - IVES

Received: 28 September 2020 y Accepted: 16 January 2021  y Published: 1st March 2021  
DOI:10.20870/oeno-one.2021.55.1.4502

Optimising grapevine summer stress responses and hormonal balance by 
applying kaolin in two Portuguese Demarcated Regions

Sara Bernardo1, Lia-Tânia Dinis1, Ana Luzio1, Nelson Machado2, Alexandre Gonçalves3, Vicente Vives-Peris4,  
Marta Pitarch-Bielsa4, María F. López-Climent4, Aureliano C. Malheiro1, Carlos Correia1, Aurelio Gómez-Cadenas4 
and José Moutinho-Pereira1 
1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of 
Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801 Vila Real, Portugal 

2 CoLAB Vines&Wines - National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o 
Desenvolvimento da Viticultura Duriense (ADVID), Régia Douro Park, 5000-033 Vila Real, Portugal 

3 MORE - Research Mountains – Association, Brigantia Ecopark, 5300-358 Bragança, Portugal
4 Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellón de la Plana, Spain
*corresponding author: moutinho@utad.pt

a b s t r a c t

In Mediterranean-like climate areas, field-grown grapevines are typically exposed to severe environmental conditions 
during the summer season, which can negatively impact the sustainability of viticulture. Despite the short-term 
mitigation strategies available nowadays to cope with climate change, little is known regarding their effectiveness in 
different demarcated winegrowing regions with differing climate features. Hence, we applied a kaolin suspension (5 %) 
to Touriga-Franca (TF) and Touriga-Nacional (TN) grapevine varieties located in two Portuguese demarcated regions 
(Alentejo and Douro) with different mesoclimates to study its effect on the physiological performance, hormonal 
balance and ABA-related grapevine leaf gene expression during the 2017 and 2018 growing seasons. Data show that 
2017 was warmer than 2018 due to the occurrence of two heatwaves in both locations, highlighting the protective 
effect of kaolin application under severe environmental conditions. In the first study year, at midday, kaolin enhanced 
water use efficiency (23 % in Douro and 13 % in Alentejo), carbon assimilation rates (PN; 72 % in Douro and 25 % 
in Alentejo), and the soluble sugar content of grapevine leaves, while decreasing the accumulation of plant growth 
regulators (ABA, IAA, and SA) during the ripening stage. The results show an up-regulation of ABA biosynthesis-
related genes (VvNCED) in TF treated vines from the Douro vineyard mainly in 2017, suggesting an increased 
stress response under severe summer conditions. Additionally, kaolin triggered the expression of ABA-responsive 
genes (VvHVA22a and VvSnRK2.6) mainly in TF, indicating different varietal responses to kaolin application under 
fluctuating periods of summer stress.
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INTRODUCTION

Viticulture is an important socioeconomic and 
cultural sector in many countries and regions 
worldwide, whose sustainability is expected 
to be seriously challenged by climate change 
in the coming years (Bernardo et al., 2018; 
Santos et al., 2020). Indeed, the predicted 
increase in periodicity of extreme weather events  
(e.g., heatwaves and prolonged drought), 
along with the simultaneous incidence of high 
luminosity, high temperatures and water scarcity 
during the summer, may impact photosynthetic 
productivity, hormonal regulation and cell 
homeostasis, thus hampering growth and 
crop yield (Moutinho-Pereira et al., 2004; 
Jones et al., 2005; Ollat et al., 2016).  
Likewise, abiotic stresses also trigger several 
plant defence responses and adaptation strategies, 
including osmotic and hydraulic adjustments, 
energy dissipation mechanisms, antioxidant 
defence systems, and hormonal regulation and 
crosstalk in complex signalling networks (Peleg 
and Blumwald, 2011; Bernardo et al., 2018; 
Balfagón et al., 2020).

Overall, it has been well documented that abscisic 
acid (ABA) interacts with other hormones, 
such as salicylic acid (SA) and indole-3-acetic 
acid (IAA), controlling stomatal closure, 
aquaporin gene expression and embolism repair 
during water deficit (Cramer, 2010, Gomez-
Cadenas et al., 2015; Dinis et al., 2018a). However, 
antagonistic reports indicate no correlation 
between ABA accumulation and stomatal closure 
in plants subjected to combined abiotic stresses 
(Zandalinas et al., 2016; Balfagón et al., 2019). 
Furthermore, several studies have highlighted 
the existence of a varietal-dependent hormonal 
sensitivity to abiotic stress factors in different 
plant species, mainly due to their ability to control 
ABA metabolism under stress (Deluc et al., 2009; 
Balint and Reynolds, 2013; Niculcea et al., 2013). 
In grapevines, for example, Soar et al. (2006) 
reported higher ABA accumulation in ‘Grenache’ 
leaves compared with ‘Shiraz’ under water deficit 
conditions, and a significant up-regulation of key 
genes involved in the ABA biosynthetic pathway. 
ABA signalling networks comprise genes involved 
in the biosynthesis, degradation and transport of 
ABA, which ultimately determine its cellular 
content and the genes involved in the perception 
and signalling cascade (Pilati et al., 2017).  
The conversion of neoxanthin to xanthoin 
is considered the rate-limiting step of ABA 
biosynthesis, catalysed by 9-cis-epoxy carotenoid 

dioxygenase (NCED). NCEDs are encoded by 
multigene families (e.g., NCED1, NCED2, and 
NCED3), being strongly modulated in response 
to stress (Nambara and Marion-Poll, 2005). 
Moreover, the regulation of many ABA-responsive 
genes has also showed that this hormone has a 
key role in triggering stress adaptation responses 
(Wu et al., 2016; Jia et al., 2017).

Recent multidisciplinary research on climate 
variability and climate change short-term 
mitigation strategies in grapevines has shown 
that the application of solar protectants with 
reflective properties, such as kaolin particle film, 
can notably improve plant water relations and 
reduce leaf temperature, increasing its ability to 
cope with summer stress (Dinis et al., 2016b; 
Dinis et al., 2016a; Brito et al., 2019a). In addition, 
studies performed in field-grown grapevines have 
demonstrated that kaolin application can lower 
ABA and increase IAA accumulation in leaves, 
showing a strong negative correlation with 
stomatal conductance, and a better water status 
(Dinis et al., 2018a). Recently, Frioni et al. (2020) 
explored kaolin-induced modulation of ABA 
biosynthesis in potted vines under progressive 
water stress conditions with xanthophyll cycle 
pigment dynamics; their results indicated that 
kaolin treatment reduced the conversion of the 
carotenoid zeaxanthin into neoxanthin, which 
consequently decreased ABA levels in leaves. 
However, it is still not clear if the rate-limiting step 
of ABA biosynthesis, which is triggered by NCED 
gene expression, can be directly affected by kaolin 
application, nor the possible association with 
several hormonal responsive genes and crosstalk, 
which can trigger summer stress tolerance. 
Besides, we still require more knowledge on the 
combined effects of environmental threats at local 
and regional scales, especially in Mediterranean-
like climate areas, where environmental 
thresholds can be reached during the summer 
(Mosedale et al., 2016). Furthermore, few studies 
have linked the interactions between different 
varietal sensitivities, environmental variables 
and plant acclimation responses (Duchene, 2016; 
Ollat et al., 2017), which would validate kaolin 
application as a suitable and environmentally 
friendly practice applied in the wine industry 
at local scales. Since NCED genes are the 
cornerstones of ABA biosynthesis, this study 
hypothesises that kaolin treatment can regulate 
VvNCED gene expression, modulating ABA, IAA, 
and SA content with different climatic fluctuations 
over consecutive growing seasons, thus 
optimising grapevine summer stress responses.  
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Our study therefore aims to better understand the 
effects of kaolin in on two red grapevine varieties, 
Touriga-Franca (TF) and Touriga-Nacional 
(TN), in two Portuguese demarcated regions  
(Douro and Alentejo) during the 2017 and 2018 
growing seasons. For this purpose, leaf gas 
exchange, soluble sugar content, phytohormone 
accumulation, ABA biosynthesis (VvNCED1, 
VvNCED2, VvNCED3) and responsive (VvHVA22a, 
VvSnRK2.6) gene expression were assessed.

MATERIALS AND METHODS 

1. Site and plant material

The experiments were carried out under field 
conditions during the 2017 and 2018 growing 
seasons in two different winegrowing regions:  
i) Douro Demarcated Region (“Quinta do Orgal” 
commercial vineyard: 41º 04’ N, 7º 04’ W, 169 
m), in Northeast Portugal, hereafter referred to 
as ‘Douro’, and ii) Alentejo Demarcated Region 
(“Herdade do Esporão”, 38º 23’ N, 7º 33’ W, 220 
m), in the southeast part of the country, hereafter 
referred to as ‘Alentejo’.

These regions have a warm-temperate climate 
with hot, dry summers (Kottek et al., 2006) 
with most rainfall occurring mainly during the 
winter months. An automatic weather station 
was set up on each trial site to record standard  
meteorological variables. According to the world 
reference base for soil resources (FAO, 2015), 
the soil mapping of both regions is classified as 
luvisols, characterised by a uniform clay-enriched 
subsoil. The ‘Douro’ site has a steep slope 
(30 º N) and E-W orientation, and is composed 
of 6-year-old vines grafted onto 110R rootstock 
and trained to a unilateral cordon. The ‘Alentejo’ 
experiment displays a slight slope (5 º N) and 
N-S orientation, is composed of 8-year-old vines 
grafted onto 1103P rootstock and is also trained to 
a unilateral cordon. In both vineyards, spacing is 
2.20 x 1.0 m between vines. In both locations, two 
Vitis vinifera L. varieties were selected - Touriga-
Franca (TF) and Touriga-Nacional (TN) - due to 
their notable winery potential. 

2. Treatments and monitoring

The experimental set up was adapted to the 
existing features of each commercial vineyard 
to ensure similar edaphoclimatic conditions and 
sun exposure among treatments and varieties. In 
‘Douro’, 60 vines per variety were selected and 
divided into three blocks with 20 vines each. 
In ‘Alentejo’ we selected 120 vines per variety 
planted in one extended row, and with half the 

row as the control group, and the other half as the 
treated group; in each half row, the vines were 
also divided into three blocks with 20 plants each.  
All vines were managed according to the growers’ 
commercial organic practices and deficit irrigated 
(30 % of the reference evapotranspiration) to 
prevent plant death. In both experiments, the plants 
were divided into two experimental groups: the 
control or untreated group of each variety (TF_C 
and TN_C), and the kaolin-treated group (TF_KL 
and TN_KL). Treated vines were sprayed with 
kaolin (Surround® WP, Engelhard Corporation, 
Iselin, New Jersey), which was prepared in  
an aqueous solution at the manufacturer 
recommended dosage of 5 % (w/v), supplemented 
with 0.1 % (v/v) Tween 20 to improve adherence, 
and directly applied to leaves according to 
standard operating procedures adjusted for 
agricultural practices. In 2017 and 2018, kaolin 
was applied in the ‘Douro’ experiment on the 
windless mornings of DOY 177 and DOY 205 
respectively, and in ‘Alentejo’ trial on DOY 
198 in both growing seasons. The adjacent 
control plants were carefully protected by 
a plastic film during the kaolin application.  
For all the physiological measurements, six 
healthy, fully-expanded, mature leaves in a similar  
position were sampled per row and treatment 
during two periods of the day (predawn and 
midday). The measurements were also undertaken 
during two different developmental stages: i) at 
veraison, corresponding to DOY 199 and DOY 212 
in the ‘Douro’ and to DOY 208 and DOY 209 
in ‘Alentejo’ in 2017 and 2018 respectively, and 
ii) at ripening, corresponding to DOY 234 and 
DOY 254 in ‘Douro’ and to DOY 237 and DOY 
243 in ‘Alentejo’ in 2017 and 2018 respectively. 
Leaf samples were immediately frozen in liquid 
nitrogen, posteriorly ground to a fine powder, and 
then they were stored at -80 °C for further analysis.

3. Heat accumulation – Growing degree days 
(GDD)

In this study, GDD was computed using the 
Winkler index (WI), referring to the degree day 
units accumulated during the growing season from 
April to October, with a base temperature of 10 °C 
(Winkler et al., 1974; Jones et al., 2010). 

4. Leaf gas exchange

Leaf gas exchange was evaluated using a 
portable infrared gas analyser (LCpro+, ADC, 
Hoddesdon, UK), operated in the open mode. 
The measurements were performed on cloudless 
days under natural light conditions in the morning 
(09:00 GTM +1) and at midday (14:00 GTM +1). 
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Net photosynthetic rate (PN, µmol m-2 s-1), stomatal 
conductance (gs, mmol m-2 s-1), transpiration rate 
(E, mmol m-2 s-1), and the ratio of intercellular 
to atmospheric CO2 concentration (Ci/Ca) were 
estimated according to von Caemmerer and 
Farquhar (1981). The intrinsic water use efficiency 
was calculated as the ratio of PN/gs to eliminate the 
possible effects of air humidity and temperature 
on transpiration (Iacono et al., 1998).

5. Determination of leaf total soluble sugars

Leaf soluble sugars (SS) were extracted by heating 
10 mg of lyophilised tissue in 5.0 mL ethanol: 
water (80:20, v/v) for 1 hr at 80 °C. Quantification 
of SS was performed following an anthrone-
sulfuric acid method adapted to microplate 
(Leyva et al., 2008). The anthrone reagent, 
containing 0.1 g of anthrone (0.1 %) dissolved 
in 100 mL of concentrated sulfuric acid (98 %), 
was prepared immediately before analysis and 
then added to the extracts. Determination of 
leaf SS was made in triplicate by reading the 
absorbance at 625 nm in a microplate multiscan 
reader (SPECTROstar® Nano, BMG Labtech 
GmbH, Germany). The colorimetric response was 
compared to a standard curve based on glucose, 
and total SS was expressed as mg/g of dry  
weight (DW).

6. Analysis of phytohormones

Abscisic acid (ABA), indole-3-acetic acid (IAA) 
and salicylic acid (SA) content was determined 
by high-performance liquid chromatography 
coupled to a triple quadrupole mass spectrometer 
(Micromass®, Manchester, UK) through an 
orthogonal Z-spray electrospray ion source 
(Durgbanshi et al., 2005). Briefly, 100 mg 
of lyophilised leaf samples were extracted 
in 2.0 mL of distilled water using mill ball 
equipment (MillMix20, Domel, Železniki, 
Slovenia). [2H6]-ABA (Sigma-Aldrich, USA), 
[2H2]-IAA (Sigma-Aldrich, USA), and [13C6]-SA 
(Sigma-Aldrich, USA) were used as internal 
standards. After centrifugation at 10.000 x g, 
the supernatants were recovered and the pH was 
adjusted to 2.8–3.2 using 30 % acetic acid. Extracts 
were partitioned twice with diethyl ether and the 
supernatants were evaporated under vacuum in a 
centrifuge concentrator (Speed Vac, Jouan, Saint 
Herblain Cedex, France) at room temperature. 
The dry residue was then resuspended in 500 µl 
of water : methanol (9:1), filtered through 
0.22 µM PTFE filters, and directly injected 
into an UPLC system (WatersTM Acquity SDS,  
Waters Corporation, Milford, MA) interfaced with  

a TQD triple quadrupole (Micromass® 
Ltd., Manchester, UK) mass spectrometer 
through an orthogonal Z-spray electrospray 
ion source. A reversed-phase C18 column 
(Gravity, 50 × 2.1 mm 1.8 μm particle size, 
Macherey-Nagel GmbH, Germany) was used to 
achieve the chromatographical separation using 
a methanol:water gradient, supplemented with 
0.1 % acetic acid at a flow rate of 300 μl min−1. 
Results were processed using MasslynxTM v4.1 
software, and the phytohormone contents were 
obtained using a calibration curve prepared with 
commercial standards.

7. Quantitative real-time PCR

RNA was extracted from frozen leaves according 
to Gambino et al. (2008). RNA samples were then 
treated with DNAse I RNase-free (Thermo Fisher 
Scientific, Waltham, MA, USA) to degrade the 
possible extracted DNA. The RNA concentration 
was estimated using the absorbance values at 
260 nm with a Nanodrop 2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA), 
while the purity of each sample was determined 
calculating the 260/280 and 260/230 ratios. 
Finally, total RNA (1 μg) was reverse transcribed 
to cDNA using PrimescriptTM RT Reagent Kit 
(Takara, Shiga, Japan). Quantitative real-time 
PCR (RT-qPCR) was conducted with an ABI Step 
One detection system (Applied BiosystemsTM, 
Foster City, CA, USA). Gene specific primer pairs 
used for each target or reference gene are listed 
in Suplementary Table 1 (ST1). The amplification 
was performed via a reaction comprising 1 μL of 
cDNA, 5 μL of MaximaTM SYBRTM Green/ROX 
qPCR mix (Thermo Fisher Scientific), 1 μL of 
primers (a mix of forward and reverse, 10 μM) and 
3 μL of sterile deionised water. RT-qPCR reactions 
included a pre-incubation at 95 °C for 10 min, 
followed by 40 cycles of denaturation at 95 °C for 
10 s, annealing at 60 °C for 10 s, and extension 
at 72 °C for 20 s. Actin and tubulin were used 
as housekeeping genes to normalise the results 
among samples. Relative expression of VvNCED1 
(Phytozome accession no. GSVIVT00000988001), 
VvNCED2 (Phytozome accession no. 
GSVIVT01021507001), VvNCED3 (Phytozome 
accession no. GSVIVT01038080001), VvHVA22a 
(Phytozome accession no. GSVIVT01012547001), 
and VvSnRK2.6 (Phytozome accession no. 
GSVIVT01009074001) was obtained using the 
Relative Expression Software Tool Solver v.2 
(REST-MCS) (Pfaffl, 2001; Pfaffl, 2002).  
Each analysed gene was considered significantly 
up-regulated and down-regulated in the kaolin 
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treated groups (TN_KL and TF_KL), when its 
relative expression fold change was ≥ 2.0 and 
≤ 0.5 respectively.

8. Statistical analysis

Statistical analyses of leaf gas exchange 
parameters, soluble sugars, and phytohormone 
content were performed using a SigmaPlotTM 12.3 
programme (SPSS Inc.). After testing for ANOVA 
assumptions (homogeneity of variances with 
the Levene’s mean test and normality with the 
Kolmogorov-Smirnov test), statistical differences 
among treatments and varieties were evaluated by 
two-way factorial ANOVA, followed by the post 
hoc Tukey’s test. Afterwards, statistical differences 
between years (2017 vs 2018) within each sampling 
group were evaluated by one-way analysis of 
variance (ANOVA), followed by the post hoc 
Tukey’s test. Different lower-case letters represent 
significant differences between treatments 
and varieties (TN_C, TN_KL, TF_C, TF_KL) 
within each location and developmental stage. 

Significant differences were considered when 
p < 0.05. The asterisks (*** p < 0.001, ** p < 0.01 
and * p < 0.05) represent significant differences 
between sampling years (2017 vs 2018) within 
each variety, treatment and developmental stage. 
Absence of letters and asterisks indicate no 
significant difference.

RESULTS 

1. Weather conditions

The daily mean air temperatures from April  
(DOY 91) to October (DOY 304) in 2017 
and 2018 in the Douro trial were 22.6 °C and 
21.3 °C respectively, with total precipitation 
of 92.2 mm in 2017 and 256.2 mm in 2018 
(Figure 1A). In ‘Alentejo’, the daily mean air 
temperature registered for the equivalent period 
in 2017 was 22.5 °C, with a total precipitation 
of 47.0 mm, while in 2018, the mean air 
temperature recorded from April to October was 
21.0 ºC with 228.8 mm of total rainfall (Figure 1B).

FIGURE 1. Daily mean air temperature (ºC), precipitation (mm) and maximum temperature (ºC) of 2017 
and 2018 growing seasons in both ‘Douro’ and ‘Alentejo’. 
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The calculated GDD indicated that ‘Alentejo’ 
had the lowest accumulated thermal units in both 
growing seasons (2683 °C and 2361 °C GDD 
in 2017 and 2018 respectively), while ‘Douro’ 
had the highest (2705 °C and 2416 °C GDD in 
2017 and 2018 respectively). Based on the WI 
classification regions (I–V), most of the GDD 
calculated fittted into region V, except for the 
Douro site in 2017 (2705 °C GDD), which slightly 
exceeded the thresholds of the warmest category 
(Region V: 2222-2700 °C), and was thus classified 
as “too hot” (Jones et al., 2010).

To assess the possible occurrence of heatwaves 
during the experiments, we counted the number 
of days with maximum temperatures above 40 °C 
in both locations and growing seasons. In 2017, a 
total of 23 days with maximum temperatures above 
40 ºC was registered at the Douro location (Figure 
1C), with two periods of at least five consecutive 
days each in June (DOY 165-169) and July (DOY 
193-198). Similarly, at ‘Alentejo’, there were two 
periods of five consecutive days of maximum 
temperature above 40 ºC (Figure 1D) recorded in 
June (DOY 167-171) and July (DOY192-197), but 
with 10 days less of high temperatures throughout 
the season than ‘Douro’. In 2018, a total of 10 and 
11 days of extreme temperatures were recorded in 
the ‘Douro’ and ‘Alentejo’ locations respectively, 
with only one period of six consecutive days 
having a maximum temperature above 40 ºC in 
both regions (DOY 213-218).

2. Leaf gas exchange parameters 

From veraison to ripening, kaolin application 
boosted leaf PN, gs, and PN/gs in both varieties and 
locations, particularly in the midday period of 
the 2017 growing season (Table 1 and Table 2). 
Overall, gs and PN values were higher in ‘Alentejo’ 
(Table 2) in both seasons compared to ‘Douro’ 
(Table 1). In 2017, particularly in the midday 
period of the ripening stage, TN_KL and TF_KL 
plants showed significantly higher gs, PN, PN/gs, 
and lower Ci/Ca, in both locations. In 2018, these 
effects were only observed at the veraison stage, 
mainly in TN grapevines located in the Douro 
experiment (Table 1). At the ‘Douro’ ripening 
stage of 2018, TN_KL showed lower PN and gs, 
whereas TF_ KL exhibited higher PN/gs and lower 
Ci/Ca. In ‘Alentejo’, TN_KL showed lower gs and 
E at midday and increased PN/gs levels only at the 
veraison stage of 2018. The effect of kaolin on the 
physiological performance of the TF variety was 
mainly noticed at ripening, showing higher gs and 
E values (Table 2). 

3. Leaf soluble sugars

Between the summer of 2017 and that of 2018, 
we observed a general decrease in the total 
content of leaf soluble sugars (SS; Figure 2).  
At veraison in ‘Douro’, kaolin application 
decreased leaf total SS content by 26 % in the TN 
variety in 2017, and by around 29 % in the following 
season. In contrast, leaf SS accumulation in  
TF-treated vines increased by 41 % at veraison and 
by 78 % at ripening in the 2018 growing season, 
while no significant differences were detected in 
the TN variety at ripening. In ‘Alentejo’, TF_KL 
grapevines showed 40 % less leaf SS levels at the 
ripening stage of 2017 and decreased by around 
43 % at veraison in 2018, contrasting with the 
results obtained in the ripening period of 2018 in 
the same variety.

4. Phytohormone contents

At veraison, in the 2017 summer season of the 
‘Douro’ assay, the kaolin treatment decreased 
ABA by 33.3 % and SA content by 52.8 % in TN, 
and it lowered IAA levels by 24.2 % in the TF 
variety, while no significant effect was observed in 
either variety during the ripening stage (Figure 3). 
In the following summer season, the kaolin 
coating increased leaf IAA content at veraison in 
TF (by 144 %) and in TN (by 76 %) at ripening.  
In ‘Alentejo’ at the veraison stage of 2017, TN_KL 
plants showed 27.6 % higher ABA concentrations, 
whereas TF_KL exhibited 128 % higher IAA 
content. At ripening, IAA accumulation in TF_KL 
decreased by around 36 % compared to the control 
plants. In 2018, ABA content in TN_KL leaves 
shifted from lower values at veraison compared 
to the control group, to increased ABA levels at 
the ripening stage, while no significant effects 
were observed for the TF variety. In addition, IAA 
and SA accumulation decreased in kaolin-treated 
plants at both developmental stages, particularly 
in the TF variety.

5. Expression of ABA-related genes

At the ‘Douro’ 2017 veraison stage, VvNCED1, 
VvNCED2, and VvNCED3 genes were down-
regulated in TN_ KL compared to the control 
group, while in TF at both developmental stages 
all VvNCED genes were up-regulated in kaolin 
treated plants (Figure 4). In 2018, the relative 
expression of all VvNCED analysed genes was 
lower in kaolin treated plants, except for TN_KL 
in the ripening period. At the ‘Alentejo’ 2017 
veraison stage, the relative expression of VvNCED 
genes only changed significantly in TF_KL.  
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FIGURE 2. Leaf total soluble sugar (SS) content in the ‘Douro’ and ‘Alentejo’ grapevine leaves (Touriga-
Nacional control - TN_C and kaolin – TN_KL; Touriga-Franca control – TF_C and kaolin – TF_KL) at 
2017 and 2018 veraison and ripening stages. 
Data are mean ± SD of three replicates. Different lower case letters represent significant differences between treatments and 
varieties within each developmental stage and sampling year. *** p < 0.001, ** p < 0.01, and * p < 0.05 represent significant 
differences between sampling years (2017 vs 2018) within each variety, treatment, and developmental stage.

FIGURE 3. Phytohormones (abscisic acid - ABA, salicylic acid – SA, and indole-3-acetic acid - IAA) 
content in the ‘Douro’ and ‘Alentejo’ grapevine leaves (Touriga-Nacional control - TN_C and kaolin – 
TN_KL; Touriga-Franca control – TF_C and kaolin – TF_KL) throughout 2017 and 2018 summer seasons. 
Data are mean ± SD of three replicates. Different lower case letters represent significant differences between treatments and 
varieties within each developmental stage and sampling year. *** p < 0.001, ** p < 0.01, and * p < 0.05 represent significant 
differences between sampling years (2017 vs 2018) within each variety, treatment and developmental stage.
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At ripening, TF treated plants continued to exhibit 
higher levels of VvNCED gene expression; in 
contrast, TN_KL showed an opposite pattern with 
a pronounced down-regulation of all VvNCED 
genes analysed in this study. Overall in 2018, 
VvNCED gene expression of kaolin treated plants 
was mostly down-regulated in both varieties in 
‘Alentejo’. 

TN_KL gene expression of VvHVA22a and 
VvSnRK2.6 was significantly down-regulated 
throughout both summer seasons (2017 and 2018) 

at the Douro location, and, despite no significant 
changes being observed in the TF variety, there 
was also a trend for lower expression levels 
(Figure 5). Similarly, VvHVA22a, VvSnRK2.6 
relative expression was also reduced in TN_KL 
in the ‘Alentejo’ trial in both sampling years, 
particularly in the ripening period of 2017, 
and at the veraison stage of 2018. Conversely,  
TF_KL showed an up-regulation of VvHVA22a 
and VvSnRK2.6 gene expression, which was only 
perceived during the 2017 summer season.

FIGURE 4. Relative expression of VvNCED1, VvNCED2, and VvNCED3 genes of TN and TF grapevine 
leaves (Touriga-Nacional control - TN_C and kaolin – TN_KL; Touriga-Franca control – TF_C and kaolin 
– TF_KL) at ‘Douro’ and ‘Alentejo’ throughout the 2017 and 2018 summer season. 
* denote significant difference between control and kaolin treated vines of each variety within the same developmental stage 
(veraison or ripening).
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DISCUSSION

In this study, the environmental conditions 
recorded over two growing seasons in two 
different winegrowing regions revealed that 
stress intensity and extent were widely present, 
particularly in 2017, as shown by the occurrence 
of at least two heatwaves in both locations 
(Figure 1). In 2017, weather data indicated that 
the ‘Douro’ site had higher heat accumulation 
(2705 °C GDD) than ‘Alentejo’, which triggered 
different plant responses in both locations 
that can, in turn, modulate kaolin efficiency in 
mitigating summer stress impacts. Shifts in net 
photosynthesis, stomatal conductance, and water 
use efficiency are outcomes reported in grapevines 
exposed to summer stress, whose efficiency 
has been improved by kaolin application in  
vineyards in the Douro region (Dinis et al., 2018b). 
In agreement with this, the results of the leaf gas 
exchange analysis (Table 1 and Table 2) showed 
that, in 2017, treated leaves from TN and TF had 
higher PN, gs, and water use efficiency (PN/gs) in 
both regions, which is consistent with the results 
obtained for other Mediterranean crops, such as 
olive trees (Brito et al., 2019b) and hazelnut trees 
(Cabo et al., 2019). Throughout the experiments, 

the effects of kaolin on transpiration were positively 
associated with increasing stomatal conductance 
and negatively related to PN/gs. However, during the 
midday period of the ripening stage of 2018 in the 
Douro region, decreased leaf PN and gs in TN_KL 
plants - without significant effects on leaf PN/gs and 
Ci/Ca parameters - may corroborate the hypothesis 
that kaolin efficiency is higher under more severe 
summer stress conditions (Brito et al., 2018).  
Conversely, TF_KL grapevines showed improved 
leaf PN/gs and decreased Ci/Ca in the same 
period, suggesting that beyond stress severity, 
which can modulate grapevine physiological 
responses (Moutinho-Pereira et al., 2004), 
kaolin efficiency as a short-term mitigation 
strategy may also depend on intrinsic varietal 
features. Moreover, the improved leaf gas 
exchange of grapevines located in the Alentejo 
region over the two summer seasons, indicates 
that the grapevines were subjected to better 
environmental conditions for sustainable plant 
growth and development. This result may partly 
be explained by the different row orientation in 
each vineyard (Hunter et al., 2020), since the E-W 
orientation of the Douro vineyard suggests higher 
midday sunlight canopy exposition compared 
to N-S orientation of the Alentejo vineyard.  

FIGURE 5. Relative expression of VvHVA22a, and VvSnRK2.6 genes of grapevine leaves (Touriga-
Nacional control - TN_C and kaolin – TN_KL; Touriga-Franca control – TF_C and kaolin – TF_KL) at 
‘Douro’ and ‘Alentejo’ throughout the summer season. 
* denote significant difference between control and kaolin treated vines of each variety within the same developmental stage 
(veraison or ripening).
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In addition, heat accumulation during the 
experiment also increased in ‘Douro’. 
Nevertheless, in the warmer year of the 
experiment (2017), plants benefited from kaolin 
application, particularly during the midday period, 
which is in agreement with previous studies 
(Dinis et al., 2018a; Dinis et al., 2018b).

Beyond their role in supplying energy, 
carbohydrates can regulate a wide range of 
mechanisms, including photosynthesis, sugar 
transport, defence reactions, secondary metabolism, 
hormonal balance and berry development 
(Lecourieux et al., 2014), as reported in this 
study (Figure 2). Since summer stress was more 
prominent in 2017, and particularly in the Douro 
region, high leaf SS accumulation may promote 
carbohydrate storage and growth, maintaining cell 
homeostasis in kaolin treated leaves, as recently 
observed in some Mediterranean field crops 
(Brito et al., 2018; Dinis et al., 2018b). However, 
under non-limiting summer stress conditions, 
such as those recorded during the 2018 growing 
season, kaolin application decreased foliar 
carbohydrate accumulation at ripening, which 
was previously shown to be linked to increasing 
photosynthetic rates, and reserve mobilisation and 
export (Sami et al., 2016; Brito et al., 2019b). 
Furthermore, the lower leaf SS content found in 
TF kaolin-treated leaves located in ‘Alentejo’ 
indicates that this variety was able to withstand 
even more intense periods of stress, revealing 
its ability to adapt to different environmental 
conditions. The higher SS content found in TF 
at the ripening stage of 2018 in both regions 
might also indicate that kaolin application under 
non-limiting summer stress conditions promotes 
plant growth and development, which can be 
varietal dependent and associated with increased 
expression of sugar transporters as reported by 
Conde et al. (2018).

Phytohormones are key players in modulating 
several plant responses and stress tolerance, 
through changes to their synthesis and catabolism, 
transport, crosstalk and signalling pathways 
(Gomez-Cadenas et al., 2015). Throughout the 
experiment, leaf ABA content was higher in 
2017 compared to 2018 in both varieties (TF 
and TN) and treatments (control and kaolin) 
mainly at the Douro site, highlighting the need 
to explore and invest in acclimation strategies in 
vineyards with critical climatic up lines (Figure 
3).The modulating effect of kaolin on hormonal 
accumulation differed depending on the variety 
and sampling year, demonstrating the arduous 

challenge of studying stress responses under field 
conditions (Peleg & Blumwald 2011). Generally, 
kaolin application decreased ABA, IAA, and SA 
accumulation in 2017 in ‘Douro’, indicating a 
prompt response to summer stress under adverse 
environmental conditions. In the equivalent 
period, IAA accumulation also decreased in 
treated leaves in ‘Alentejo’, whereas SA content 
increased, suggesting a possible defence signal 
to reduce greater damage to the photosynthetic 
machinery (Gururani et al., 2015). However, SA 
and IAA contents increased in 2018, indicating 
that under non-limiting stress factors, kaolin 
plants may boost plant growth, development and 
abiotic stress resistance without restraining the 
stomatal conductance and water use efficiency of 
plants (Dinis et al., 2018a).

Interestingly, kaolin-treated plants in ‘Alentejo’ 
appear to have adopted a slightly different 
strategy, with lower IAA and SA accumulation 
from veraison to ripening, particularly in the TF 
variety in 2018. These results are in line with those 
obtained by Tombesi et al. (2015), who found that 
stomatal closure was induced by hydraulic signals 
and maintained by ABA in drought-stressed 
grapevines, showing the extent of anisohydric 
behaviour in distinct grapevine varieties and how 
ABA levels may modulate stomatal aperture upon 
stress recovery. Thus, the absence of differences 
in ABA levels in TF_KL observed in the 2018 
summer season in ‘Alentejo’, along with higher 
gs, suggests improved hydraulic-mediated 
mechanisms and anisohydric performance in the 
TF variety compared to TN. 

Transcriptional analyses by RT-qPCR performed 
on genes involved in ABA biosynthesis and drought 
stress tolerance showed that kaolin treatment 
promoted several changes in VvNCED genes 
throughout grapevine development, depending 
on the variety, location and growing season. 
In ‘Douro’, VvNCED gene expression was up-
regulated in kaolin-treated leaves during the 2017 
growing season, particularly in the TF variety, but 
not in the following growing season; this suggests 
a different varietal sensitivity for ABA synthesis 
and regulation with kaolin treatment, which seems 
higher in TF under conditions of intense summer 
stress. Interestingly, despite the sharp VvNCED up-
regulation found in treated vines, particularly in TF, 
ABA accumulation did not change significantly, 
contrasting with the results of Dinis et al. (2018a) 
and Frioni et al. (2020), who reported a reduction 
in ABA content in kaolin-treated grapevines 
under summer and water stress conditions. 
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Nonetheless, the water use efficiency of kaolin-
coated vines (Table 1 and Table 2) increased in 
both locations and growing seasons, suggesting 
a better water status and improved abiotic stress 
tolerance under harsh environmental conditions 
(Zhang et al., 2009; Pilati et al., 2017). In 2018, 
most VvNCED genes were down-regulated in 
treated grapevines in both locations, supporting the 
hypothesis that acclimated plants can limit non-
essential cellular responses under moderate stress 
conditions (Larkindale and Vierling, 2008). The 
decreased expression of VvNCED genes in kaolin-
treated plants might also be due to changes in the 
upstream pathway of ABA synthesis in leaves, 
involving carotenoid metabolism and xanthophyll 
cycle activation, which play an essential role in 
protecting plants against water deficit as recently 
demonstrated by Frioni et al. (2020). Regarding 
the effects of kaolin in terms of triggering ABA-
responsive gene expression, the results showed that 
VvHVA22a, and VvSnRK2.6 were down-regulated 
in TN in both regions and sampling years (Figure 
5), possibly related to lower ABA levels (Figure 
3), suggesting reduced ABA-dependent plant 
development (Brands, 2002; Kulik et al., 2011). 
Furthermore, the up-regulation of VvHVA22a, and 
VvSnRK2.6 observed in TF_KL in the ‘Alentejo’ 
region suggests that, in periods of severe summer 
stress, kaolin application could boost TF abiotic 
stress acclimation mechanisms, pointing to an 
improved varietal ability to cope with multiple 
stresses under field conditions.

CONCLUSION

In this study, the foliar application of kaolin to 
Touriga-Franca and Touriga-Nacional varieties 
over two consecutive growing seasons highlighted 
its role in modulating the extent to which 
grapevine can promote abiotic stress responses 
and acclimation in two different vineyards with 
similar mesoclimates. The results demonstrate the 
challenge of understanding stress-related responses 
and hormonal balance under field conditions. 
Nonetheless, even when taking into account the 
inter-annual variability of the environmental 
conditions in both locations, the foliar application 
of kaolin improved the water use efficiency and 
carbon assimilation rates of both grapevine 
varieties in both locations, thus preventing water 
restraint, and leading to sustainable plant growth 
and development, particularly for the TF variety. 
By modulating the intrinsic plant growth regulator 
content and signalling throughout the summer 
season, the kaolin treatment only induced IAA 
and SA accumulation in the Douro vineyard. 

This suggests that climate plays a primary role 
in triggering kaolin effectiveness, different plant 
stress responses and acclimation strategies under 
applied contexts. Furthermore, kaolin-treated 
leaves showed lower ABA accumulation, reducing 
the investment in ABA signalling associated 
with gene expression, which was triggered by 
increasing summer stress conditions.
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