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Thermal effects on the resonance fluorescence of doubly dressed artificial atoms
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In this work, robustness of controlled density of optical states in doubly driven artificial atoms is studied
under phonon dissipation. By using both perturbative and polaron approaches, we investigate the influence of
carrier-phonon interactions on the emission properties of a two-level solid-state emitter, simultaneously coupled
to two intense distinguishable lasers. Phonon decoherence effects on the main features of the emission spectra
are found to be modest up to neon boiling temperatures (∼30 K), as compared with photon generation at the
Fourier transform limit obtained in the absence of lattice vibrations (zero temperature). These results show that
optical switching and photonic modulation by means of double dressing do not require ultralow temperatures for
implementation, thus boosting their potential technological applications.
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I. INTRODUCTION

Quantum dots (QDs), often also denominated “artificial
atoms,” exhibit completely discretized energy states which
allow selective probing of particular exciton transitions at
the single-photon level. Consequently, their optical properties
have been a topical trend in the last two decades given their
importance for fundamental research and technological appli-
cations [1,2].

Recent progress in growth and manipulation of nano-
metric heterostructures has indeed demonstrated the analogy
between atoms and solid-state zero-dimensional systems to
impressive levels, so that despite emerging in the quantum
optics realm decades after natural atoms, QD-based emitters
for many purposes not only match but potentially may also
surpass their atomic counterpart [3,4].

Particularly, their behavior as actual two-level systems
when they are irradiated by a monochromatic field under
resonant excitation has been elucidated through pristine ob-
servation of the so-called Mollow triplet (among other related
phenomena), a distinctive stimulated emission of fully quan-
tized systems [5–10].

In the 1990s, interesting schemes for enriched emis-
sion from natural atoms undergoing double excitation were
proposed [11–15], and resonance fluorescence spectra in
agreement with theoretical predictions were soon reported
[16,17]. However, because of experimental difficulties for
doubly driving atoms or molecules related to implication of
three or more states [18–20], a couple of relevant phenomena
remained unobserved for almost 20 years: peak suppres-
sion by pure quantum interference (no-population trapping
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involved) and peak-into-band broadening for monochromatic
double dressing [13,15].

Furthermore, during this century the capability to study
strong light-matter coupling by embedding semiconductor
quantum dots in cavities has impressively developed [21,22].
Hence, QDs became an adequate testbed for pursuing those
elusive quantum optical phenomena [23,24], which were fi-
nally measured in InGaAs/GaAs and InGaAs/AlAs artificial
atoms [25,26]. In those works, the possibility of manipulating
the density of optical states with a second dressing laser was
demonstrated by enabling or suppressing photon emission at
determined energies through quantum interference.

Such experiments were carried out at helium cryogenic
temperature (4.2 K), so that phonon effects could be mostly
inhibited. Nevertheless, thinking of device applications for
those effects, how feasible would it be to reproduce them at
higher temperature is a crucial question.

Decoherence associated with vibrations of the surrounding
crystal lattice is unavoidable in semiconductor nanostructures.
Consequently, the usefulness of QDs for realization and usage
of quantum optical features in scalable technology is limited.
For instance, phonon-induced dephasing is responsible for
damping of exciton Rabi oscillations in artificial atoms [27].
It has been also found that sidebands in QD resonance fluores-
cence spectra exhibit a systematic broadening with increasing
temperature due to interactions between the dressed excitons
and the phonon reservoir [28]. Besides the electron-phonon
coupling, some other interactions like electron-hole exchange,
hyperfine spin-spin, and environment fluctuations are present
and may potentially affect the emitter coherence. However,
dephasing caused by phonons is the dominant decoherence
channel as the temperature increases and requires especial
attention [29].

So far, most of the available studies on double-dressed
solid-state emitters have omitted this essential decoherence
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channel by assuming photon generation in the Fourier-
transform limit (i.e., emission lines unaffected by non-
radioactive broadening) [23–25,30–32], and the very few
which consider phonons still assume the nondissipative low-
temperature limit and focus on phenomena like squeezing
of the phonon reservoir or coupling to neighboring nanome-
chanical resonators, instead of addressing the temperature
dependence of the photon emission [33,34].

In this work, we focus on the monochromatic double dress-
ing of a solid-state two-level system and simulate the thermal
effects on its emission spectrum assuming that the emitter
is embedded in a phonon reservoir, which is effectively the
case for artificial atoms given their inherent many-body nature
[35,36]. The results presented here particularly consider a
single QD, although the used model could be also applied
to other types of photon sources, like localized defects or
artificial molecules [37–42].

This paper is structured in three main parts: in the first
one, the model used to study doubly driven QDs is introduced.
The second part is devoted to the exciton-phonon interaction.
Emission spectra for different temperatures and approxima-
tion levels are presented in the third section. Finally, a brief
summary and conclusions close the work.

II. DOUBLY DRESSED TWO-LEVEL SYSTEM

We focus on two states of an undoped semiconductor
QD: the ground state in which there is no exciton |0〉, and
the excited state in which a localized neutral exciton is
formed when an electron is promoted to the conduction band
|X 〉, as depicted in Fig. 1(a). Within the Jaynes-Cummings
framework, the Hamiltonian for such a two-level solid-state
quantum emitter with characteristic frequency ω0, simultane-
ously driven by two independent and uncorrelated lasers of
well-defined frequencies ωA and ωB, and subject to phonon
dissipation, reads

Ĥ = ĤL−M + ĤX−P, (1)

with

ĤL−M = 1

2
h̄ω0σ̂z + h̄ωA

(
m̂ + 1

2

)
+ h̄g(âσ̂+ + H.c.)

+ h̄ωB

(
n̂ + 1

2

)
+ h̄g(b̂σ̂+ + H.c.),

ĤX−P = σ̂+σ̂−
∑

k

h̄ηk
(
d̂k + d̂†

k

) +
∑

k

h̄ωk l̂k, (2)

where σ̂+ = |X 〉〈0| (σ̂− = |0〉〈X |) is the bottom-up (top-
down) dipole transition operator. In the ĤL−M part, g is the
light-matter coupling, and m̂ and â (n̂ and b̂) are the number
of photons and photon annihilation operators for laser A (B),
respectively [23,41,43–46]. As for the ĤX−P part, ηκ is the
exciton-phonon coupling for the phonon mode of frequency
ωk, and l̂k and d̂k are correspondingly the number of phonons
and phonon annihilation operators [38,47,48].

For the sake of clarity, in this section we assume a vanish-
ing ηk. Then, the effects of a non-negligible exciton-phonon
interaction are addressed in the next section.

Regarding the light-matter part of the system, an initial
basis constituted by bare states of the form |ψ〉 = |i, m̃, ñ〉,

FIG. 1. (a) Schematics of the QD under the resonant influence
of two monochromatic lasers. (b) Computed density of optical states
of the energy branch corresponding to the QD state |X 〉, evolving
with the number of photons in laser B (the line lengths represent the
corresponding density magnitudes). (c) Complete state configuration
for the N − 1 and N rungs of the Jaynes-Cummings ladder, evolving
from the bare two levels to the double-dressed states.

where i = 0 and X , m̃ ≡ 〈m̂〉, and ñ ≡ 〈n̂〉, is considered. In
this paper, we study the case for resonant monochromatic
double dressing, in which ω0 = ωA = ωB. The ratio between
the “number of photons” in each laser is defined as α2 ≡ ñ

m̃ .
Then, for a given total number of photons N ≡ m̃ + ñ, the

corresponding rung of the Jaynes-Cummings ladder (JCL) is
composed of 2N + 1 states, N + 1 corresponding to i = 0 and
N to i = X (i.e., this rung is the N-plet { |0, 0, N〉, |X, 0, N −
1〉, |0, 1, N − 1〉, |X, 1, N − 2〉, |0, 2, N−2〉, . . . |X, N−2, 1〉,
|0, N − 1, 1〉, |X, N − 1, 0〉, |0, N, 0〉 }) [23].

After the first dressing, the (2N + 1)-plet generates two
groups of N states (two N-plets), associated with the
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symmetric and antisymmetric combinations of the pairs of
bare states coupled by the first laser, 1√

2
(|0, N − ñ, ñ〉 ±

|X, N − ñ − 1, ñ〉) ≡ |φN
ñ,±〉. Each of these combinations are

the eigenstates of the 2 × 2 blocks in the matrix representing
the emitter dressed by laser A, whose off-diagonal terms are
given by

〈X, N − ñ − 1, ñ | âσ̂+ | 0, N − ñ, ñ〉
≡ 〈X, m̃ − 1, ñ | âσ̂+ | 0, m̃, ñ〉
= 〈0, m̃, ñ | â†σ̂− | X, m̃ − 1, ñ〉 = h̄g

√
N − ñ (3)

In those N-plets, singly dressed states are coupled by the
second laser according to

〈
φN

ñ ± ∣∣ĤD−B

∣∣φN
ñ′ ± 〉 = ± h̄g

2
(
√

ñ′δñ,ñ′−1 + √
ñ′ + 1δñ,ñ′+1),

(4a)〈
φN

ñ ± ∣∣ĤD−B

∣∣φN
ñ′ ∓ 〉 = ± h̄g

2
(
√

ñ′δñ,ñ′−1 − √
ñ′ + 1δñ,ñ′+1),

(4b)

where the second line refers to inter N-plet coupling, while
the first one accounts for coupling within each N-plet.

The generated matrix can be numerically diagonalized to
obtain the energy eigenvalues (EN

l ; l = 1, 2, . . . , 2N + 1) and

eigenstates (| ψN
l 〉 =

N∑
ñ

∑
j=+,−

cN,l
ñ, j | φN

ñ, j〉) of the phonon-free

part of the Hamiltonian [23].
Once the unitary transformation that allows change be-

tween the bare and doubly dressed bases is found, the density
of optical states in terms of ñ and N can be calculated by using

ρN
ñ (E ) =

∑
l

∑
j=+,−

∣∣〈φN
ñ, j

∣∣ψN
l

〉∣∣2
δ
(
E − EN

l

)
. (5)

Figure 1(b) shows the density of optical states of a JCL
rung, for a fixed number of photons in field A and an in-
creasing number of photons in field B. There, the enrichment
for possible transitions toward and from neighboring rungs
is clearly appreciated. Figure 1(c) depicts the complete level
structure for two contiguous rungs of the JCL, under double
dressing.

For the sake of physical insight it is convenient to further
pursue an analytical approach. That is possible by imposing
two conditions: (i) laser A being much more intense than laser
B (m̃2 	 ñ2 ⇒ α4 � 1), and (ii) the total number of pho-
tons being large enough so that the energy spacing between
eigenvalues EN

l within an N-plet is much smaller than the
two involved Rabi frequencies (N → ∞). Both of them are
experimentally manageable.

Under those conditions for a good quality QD at tempera-
tures below the nitrogen boiling point (77 K) [28], one should
have 
 � G = g

√
ñ < � = g

√
m̃, where 
 ≡ 1

τ
stands for

the total decay rate (inverse of the exciton lifetime τ ) and 2�

(2G) is the Rabi frequency associated with field A (B).
Hence, the matrix block corresponding to each N-plet

resembles the representation of the position operator in the
harmonic oscillator energy eigenstates [23,49]. Regarding the
matrix blocks mixing N-plets, the larger laser A is with re-
spect to laser B, the more negligible such a coupling is.

Then, because x̂ | x〉 = x | x〉, for each jth N-plet it
is found that 1√

2
h̄g(b̂σ̂+ + c.c.) | j, N, λ j〉 = h̄gλ j√

2
| j, N, λ j〉

(with j = +,− and λ j = jλ). The eigenenergies can thus
be approximated according to El → Eλ j ≡ h̄gλ j , where the
continuous parameter λ j emulates the position eigenvalue of
a dimensionless harmonic oscillator. In turn, the superposi-
tion coefficients can be approximated following cN,l

ñ, j ≡ 〈φN
ñ, j |

ψN
l 〉 → 〈φN

ñ, j | j, N, λ j〉 ≡ ψ∗
ñ, j (

λ j√
2

), where

ψñ, j

(
λ j√

2

)
=

(
1√

π2ññ!

)1/2

exp

(
−1

2

λ j√
2

)
Hñ

(
λ j√

2

)
,

(6)
i.e., the wave function associated with the ñth energy eigen-
state of the quantum harmonic oscillator (Hñ(x) is the ñth
Hermite polynomial) [13,23].

Evidently, these eigenstates of the double-dressed system
satisfy orthonormality and completeness relations, which are
used in finding the nonvanishing matrix elements of the decay-
ing transition operator between consecutive JCL rungs. They
yield

〈±, N − 1, λ± | σ̂− | ±, N, λ′
±〉 = ± 1

2δ(λ − λ′), (7a)

〈±, N − 1, λ± | σ̂− | ∓, N, λ′
∓〉 = ∓ 1

2δ(λ + λ′), (7b)

where the sign difference in the δ functions has strong im-
plications in the emission spectrum. Taking as reference the
center of the energy miniband corresponding to each N-plet,
Eqs. (7a) and (7b) imply that transitions between minibands
characterized by equal j produce emissions that are much
sharper than those between minibands with different j. Fig-
ure 2 illustrates this effect. There, green-solid lines represent
contributions to the central peak, while red-dashed (blue-
dotted) lines contribute to a lower (higher) sideband, in the
resonance fluorescence spectrum as measured by He et al. in
Ref. [25].

In this limit of very high N , by taking the real part
of the Fourier transform of the correlation function for the
dipole-moment operator [13,50], the incoherent part of the
resonance fluorescence spectrum of a monochromatically
doubly dressed two-level system is given by

Ld (ω) = 


4π

{

CP

(ω − ωL )2 + (
CP)2
+1

2

∫ +∞

−∞
dλ

∣∣∣∣∣ψñ

(
λ√
2

)∣∣∣∣∣
2

×
[


LS

(ω − ωL + 2� − λg)2 + (
LS)2

+ 
US

(ω − ωL − 2� − λg)2 + (
US)2

]}
, (8)

for some ñ in the weak laser. The characteristic central peak
and lower (upper) sideband rates are 
CP = 


2 and 
LS =
3

4 = 
US.

Such a spectrum has three components: a central peak,
with a full width at half maximum (FWHM) of 
, and a
lower (higher) energy sideband, formed by the convolution
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FIG. 2. (a) Allowed dipole transitions between N-plets for con-
secutive JCL rungs. (b) Temperature dependence of renormalized
Rabi frequencies �r (black-upper line) and Gr [blue (gray-lower)
line].

of ñ peaks with FWHM of 3

2 , associated with the red-dashed

(blue-dotted) transitions in Fig. 2(a).

III. THERMAL EFFECTS

It has been experimentally observed by Wei et al. in
Ref. [28] that thermal effects on the emission spectrum of a
driven quantum dot are entirely captured by a renormalization
of the zero-temperature Rabi frequency and the accounting
of a temperature-induced damping rate to be added to the
radiative rate 
.

Then, to evaluate the phonon effects on the emission spec-
trum of a doubly driven QD, we first consider separately
the effects of the lattice vibrations on the emitter under the
excitation of either laser. This is done by means of the master
equation of a singly driven QD, which allows us to obtain
the corresponding phonon-induced decoherence rate and Rabi
frequency adjustment.

By applying the Born-Markov approximation [51–53], the
master equation that governs the dynamics of the system
within the polaron framework under resonant excitation [54]

is given by

d ρ̂(t )

dt
= − i

2
[�̃r σ̂x, ρ̂(t )] − �̃2

4

∫ ∞

0
dτ ([σ̂x, σ̂xρ̂(t )]�x(τ )

+ cos(�̃rτ )[σ̂y, σ̂yρ̂(t )]�y(τ )

+ sin (�̃rτ )[σ̂y, σ̂zρ̂(t )]�y(τ ) + H.c.), (9)

where σ̂x = (|X 〉〈0| + |0〉〈X |), σ̂y = i(|0〉〈X | − |X 〉〈0|), and
σ̂z = (|X 〉〈X | + |0〉〈0|) are the Pauli operators. �̃ is half the
Rabi frequency associated with the respective exciting laser
and �̃r = �̃B is such a frequency renormalized by the ex-
pected value of the lattice displacement operator

B ≡ exp

[
−1

2

∫ ∞

0
dω

J (ω)

ω2
coth(βω/2)

]
, (10)

with β = 1/(kBT ), and J (ω) is the phonon spectral density.
Because the electron moves through the crystal lattice of

the QD and its vicinity, this generates a deformation in the
nuclei array, resulting in a polaronic system. In the continuum
limit [55], the system-bath interaction is characterized by the
spectral density function

J (ω) ≡ V

(2π )3

∫
dkη2

kδ(ω − ωk) = ηω3e(− ω
ωc )2

, (11)

which describes the coupling of carriers to longitudinal acous-
tic phonons via deformation potential, in terms of the cutoff
frequency ωc [56,57] and of the constant η, which summarizes
the strength of the exciton-phonon interaction and depends on
the QD characteristics.

In turn, the correlations of the bath displacement operator
are expressed as

�x(τ ) = B2

2
(eφ(τ ) + e−φ(τ ) − 2), (12)

�y(τ ) = B2

2
(eφ(τ ) − e−φ(τ ) ), (13)

where the phonon correlation function φ(τ ) [58] is defined
according to

φ(τ ) =
∫ ∞

0
dω

J (ω)

ω
[cos(ωτ ) coth(βω/2) − i sin(ωτ )].

(14)

A. Damping rates

Following the treatment by McCutcheon and Nazir in
Ref. [54], the damping rates in the polaron and weak-coupling
frameworks are obtained from the master equation (9). Thus,
the relevant fundamental rates that determine the evolution of
the Bloch vector are


y = �̃2

2
γx(0) (15)

and


z = �̃2

4
[γy(�̃r ) + γy(−�̃r ) + 2γx(0)], (16)

where

γl (ω) = 2Re[Kl (ω)], (17)
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for (l = x and y), is given in terms of the polaron response
function

Kl (ω) =
∫ ∞

0
dτeiωτ�l (τ ). (18)

1. Weak coupling rate

Applying the weak-coupling limit where B → 1 and
ηω2

c � 1 (and consequently e±φ(τ ) ≈ 1 ± φ(τ ), �x(τ ) → 0,
and 
y → 0) [54], the corresponding correlation function
takes the form

�y(τ ) → �W (τ ) =
∫ ∞

0
dωJ (ω)[cos(ωτ ) coth(βω/2)

− i sin(ωτ )], (19)

and the weak-coupling damping rate becomes


z → 
W = π

2
J (�̃) coth (β�̃/2). (20)

This rate, in the high-temperature regime, varies linearly
with the temperature and does not take into account any renor-
malization of the Rabi frequency [47,48].

2. Polaron rate

In the polaron theory, the total damping rate is given by
the addition of the decoherence and decay rates 
p = 
y + 
z

[54], so that from Eqs. (15) and (16) we have


p = �̃2

4
[γy(�̃r ) + γy(−�̃r ) + 4γx(0)]. (21)

Inserting Eqs. (17) and (18) into Eq. (21), the polaron
damping rate turns into


p = �̃2

4

{
2Re

[∫ ∞

0
dτei�̃rτ�y(τ )

]

+ 2Re

[∫ ∞

0
dτe−i�̃rτ�y(τ )

]

+ 4

[
2Re

(∫ ∞

0
dτ�x(τ )

)]}
, (22)

which explicitly written in terms of the phonon correlation
function, according to Eqs. (12)–(14), is


p = �̃2
r

4

{
Re

[ ∫ ∞

0
dτei�̃rτ (eφ(τ ) − e−φ(τ ) )

]

+ Re

[ ∫ ∞

0
dτe−i�̃rτ (eφ(τ ) − e−φ(τ ) )

]

+ 4Re

[ ∫ ∞

0
dτ (eφ(τ ) + e−φ(τ ) − 2)

]}
. (23)

B. Single-phonon polaron rate

There is an intermediate level of procedure between the
weak-coupling and the full-polaron approaches [28], the so-
called single-phonon approximation, which consists in taking
for e±φ(τ ) the same truncated expansion as in the weak-
coupling limit, but assuming that B is still significant to make

noticeable the renormalization of the Rabi frequency. Under
such assumptions, the damping rate becomes


1-ph = π

2
J (�̃r ) coth (β�̃r/2). (24)

The 
W , 
1-ph, and 
p rates are expected to have similar
behavior at low temperatures (T < 15 K) and then differ
noticeably as the bath-induced fluctuations and multiphonon
effects become important at higher temperatures.

IV. RESULTS

For the doubly driven system under study, we now include
the phonon effects on the resonance fluoresce spectrum by
considering the modification of the decay rate and Rabi fre-
quencies appearing in Eq. (8). Hence, on the one hand the
radiative broadening 
 is substituted by the total decay rate

T = 
 + 
i for the cases i = W , p, and 1-ph, while on the
other hand the original Rabi frequencies 2� and 2G are substi-
tuted by the renormalized ones 2�r ≡ 2B� and 2Gr ≡ 2BG.

In the numerical simulations, we use parameters consistent
with those reported in Ref. [28], corresponding to experi-
ments on single self-assembled InAs/GaAs QDs embedded
in a microcavity with a low Q factor (∼200). Thus, the Rabi
frequencies are tuned to 2� = 10π GHz and 2G = 4π GHz
(α4 ≈ 0.025), respectively. The spontaneous emission rate of
the neutral exciton state is taken as 
 = 2.35 GHz, the cou-
pling exciton-phonon constant as η = 2.535 × 10−7 GHz−2,
and the phonon cutoff frequency as ωc = 493.33 GHz.

Figure 2(b) shows the temperature-dependent renormal-
ization of the original Rabi frequencies 2� and 2G, corre-
spondingly. It can be observed how, in the range 0–70 K, the
renormalized Rabi frequencies are almost reduced by a factor
3. It is worth noting that, while in the weak-coupling approach
this effect is despised, its amount is the same in the polaron
and single-phonon approaches.

The doubly driven QD emission spectra, simulated within
the three different levels of approximation considered in this
work, are shown in Figs. 3(a)–3(c) for a temperature range
between 0 and 60 K [59]. The singly driven case is also shown
in dashed lines for comparison.

At zero temperature, where the thermal dissipation is ab-
sent, it can be observed how turning on the second driving
laser modifies the side peaks into optically active sidebands.
The width of those bands corresponds to the Rabi frequency
associated with the weaker laser and then is controllable by
adjusting its power. As long as this Rabi frequency is signifi-
cantly smaller than the one associated with the stronger laser
(which corresponds to the distance between the center of the
sidebands and the central peak), there will be distinguishable
optically dark frequency ranges between the bright sidebands
and the central peak. The greater the ratio between the Rabi
frequencies is, the wider those dark ranges are. Such tunability
is precisely what makes the system very promising for optical
switching [23,25].

As the temperature increases, the sharpness of the sideband
limits is blurred while the central peak broadens, eventually
extinguishing the dark regions between them. According to
the three studied models, for temperatures above 45 K the
sidebands and central peak are so overlapped that the alternat-
ing bright-dark regions are practically undone by the thermal
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FIG. 3. Temperature-dependent phonon effects on the resonance
fluorescence of a QD driven by one (dashed lines) and two (solid
lines) electromagnetic fields in the (a) weak-coupling limit, (b) the
single-phonon limit, and (c) the full-polaron framework. (d) Compar-
ison of the phonon effects on the photon emission from a QD driven
by one (dashed lines) and two (solid lines) electromagnetic fields at
15 and 60 K, as simulated within the different approximation levels
here studied: weak-coupling (black line), single-phonon (blue line),
and polaron (red line) approaches.

dissipation. However, at temperatures up to 30 K, the contrast
between optically active and inactive frequencies along the
emitting window is greater than 75%, as compared to the
0 K case. Thus, from the simulated spectra the plausibility of
using a doubly driven emitter as an efficient optical frequency
selector at the temperature range 0–30 K can be anticipated.

Comparing the temperature dependence between the singly
and the doubly dressed cases, the Mollow lateral peaks are
consistently found at the middle of the bright sidebands gener-
ated by the second laser in the latter case. This highlights how
the renormalization of the Rabi frequency analogously affects
both the side peak and the sideband positions with respect
to the central peak. However, there is a striking difference
between the two systems. Whereas the Mollow side peaks
broaden significantly as the temperature increases (which has

been previously observed in experiments) [60,61], surpris-
ingly the width of the sideband decreases toward matching
the FWHM of their singly dressed counterparts. This impacts
their potential utilization in devices in opposite ways. On
the one hand, photon emission from Mollow side peaks at
well-defined frequencies is very vulnerable to nonradiative
broadening, while on the other hand, using sidebands gen-
erated by double dressing in modulated-frequency photonic
devices may tolerate some reduction of the optically active
ranges. Our results predict a narrowing well below 50% be-
tween 0 and 30 K (from 22.1 to 13.2 GHz, as obtained from
the full-polaron calculations).

Studies in the context of quantum gates have also observed
how multidressing may increase the system robustness against
noise-induced decoherence [62,63].

Figure 3(d) compares the emission spectra obtained from
the weak-coupling, the single-phonon, and the full-polaron
models, at 15 K and at 60 K. There, overestimation of the
thermal effects calculated under the weak-coupling model is
evidenced [38]. Meanwhile, the very similar features observed
in the spectra simulated within the single-phonon and the
polaron models reveal that the former is accurate enough for
describing the thermal influence in the studied temperature
scope. In contrast with the results from the weak-coupling
model, a substantial reduction of the overall optically active
frequency window is appreciated in the spectra obtained from
the single-phonon and polaron models in which the Rabi
frequency renormalization is included.

Off-resonance case

In the singly driven case, it has been well established that,
in systems undergoing electron-phonon coupling, detuned ex-
citation underlies strong asymmetry in the Mollow spectrum
[9,60,64].

In this final part, we address the effects of detuning the
frequency of the exiting lasers with respect to that of the
emitter by a quantity � = ωL − ω0, where ωL ≡ ωA = ωB.

As usually done for two-level systems [65,66], under the
first driving laser, we write the states dressed as the general
superposition:∣∣φN

ñ,+
〉 ≡ C+

0 | 0, N − ñ, ñ〉 + C+
X | X, N − ñ − 1, ñ〉, (25a)∣∣φN

ñ,−
〉 ≡ C−

0 | 0, N − ñ, ñ〉 + C−
X | X, N − ñ − 1, ñ〉, (25b)

where the coefficients are given by C+
0 = sin(θ ), C+

X =
cos(θ ), C−

0 = cos(θ ), and C−
X = − sin(θ ) [C+

0 = cos(θ ),
C+

X = − sin(θ ), C−
0 = sin(θ ), and C−

X = cos(θ )] for the case
� � 0 (� < 0), and θ = 1

2 arctan( 2�
�

).
For such detuning-dependent superpositions, the dimen-

sionless dipole transition matrix elements introduced in
Eqs. (7a) and (7b) turn into

〈±, N − 1, λ± | σ̂− | ±, N, λ′
±〉 = ± sin(θ ) cos(θ )δ(λ − λ′)

≡ ±μδ(λ − λ′),

〈−, N − 1, λ− | σ̂− | +, N, λ′
+〉 = cos2(θ )δ(λ + λ′)

≡ μ±δ(λ + λ′),

〈+, N − 1, λ+ | σ̂− | −, N, λ′
−〉 = − sin2(θ )δ(λ + λ′)

≡ −μ∓δ(λ + λ′). (26)
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FIG. 4. Resonance fluorescence spectra for different detuning
values at 15, 30, and 45 K, obtained within the full-polaron frame-
work. Right (left) panel: Doubly driven (singly driven) QD. The
inset shows the dimensionless dipole matrix element coefficients as
functions of the normalized laser detuning �

2�r
(solid lines). The

coefficients C+
X and C+

0 are also shown there for illustration (dashed
and dotted lines, respectively).

The transition matrix element coefficients μ±, μ∓, and
μ, which correspondingly modulate the heights of the lower
and higher energy sidebands, and that of the central peak,
become more and more dissimilar among them as the detuning
increases (see inset of the Fig. 4).

To simulate the emission spectrum for a detuned case,
the corresponding damping rates are calculated within the
full-polaron framework, in which dephasing (
y) and relax-
ation (
z) rates can be obtained. Then, the characteristic total

rates in Eq. (8) are modified according to 
CP = [
+
p(1+ rμ�

�
)]

2 ,


LS = 3[
+
p(1+ rμ±�

�
)]

4 , and 
US = 3[
+
p(1+ rμ∓�

�
)]

4 , in terms of

the broadening parameter r = ( (
+
y+
z )
2(
+
y ) − 1

2 ) [61].
The position and width of the sidebands, are additionally

influenced because the Rabi frequency � and the light-matter
coupling g must be substituted by the off-resonance Rabi
frequency �D = √

4�2 + �2 and the reduced constant gD =
2g sin(θ ) cos(θ ).

The resonance fluorescence spectra at T = 15 K, T =
30 K, and T = 45 K for different detuning values are pre-
sented in Fig. 4. There, the outstanding influence of the
detuning on the symmetry of the emitted spectra is clearly
manifest.

Comparing the response of the singly and doubly dressed
systems, it is worth noting that in the former case the side
peaks broaden significantly with the increase of the detuning,
while in the latter case the sidebands are revealed almost inde-
pendent of �, even at 45 K. It is related to the tradeoff between
bandwidth reduction associated with thermal scattering and
the growth of the effective Rabi frequency associated with the
detuning.

Furthermore, the enlargement of the Rabi frequencies
added to the induced asymmetry help the preservation of the
contrast between the brighter sideband and the neighboring
dark regions, enhancing the possibilities of this setting for use
in optical devices (the contrast increases more than 10% as
compared to the zero detuning case). This reinforces the idea
that, for applications, the double dressing favors the robust-
ness of the photonic properties under rising temperature.

V. SUMMARY AND CONCLUSIONS

In this work, the thermal dissipation effects on the res-
onance fluorescence of an artificial atom simultaneously
driven by two incoherent electromagnetic fields were compu-
tationally studied. By expanding a previously existing model
that describes a doubly driven atom perfectly isolated from
phonons, we included the temperature dependence unavoid-
ably present in solid-state-based quantum emitters. Thus we
developed the necessary framework to simulate the temper-
ature dependence of the photon emission from this highly
tunable system, which allows observation and manipulation
of quantum interference phenomena in mesoscopic systems.

Within three different levels of approximation for the
carrier-phonon coupling and using realistic material param-
eters, we simulated the resonance fluorescence spectra of a
doubly driven artificial atom embedded in an acoustic phonon
environment in the temperature range 0–60 K. As a main
result, our calculations show robustness to phonon dissipa-
tion of the efficient control of the density of optical states
up to neon boiling temperatures (∼30 K). Furthermore, off-
resonance excitation was found to preserve or even enhance,
under increasing temperature, the extent and contrast of the
optically brighter sideband, making the scheme promising
for applications in cryogenic optoelectronic devices requiring
frequency filtering.
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