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Abstract 

In this paper a tuning procedure is proposed for event based PI controllers with Regular Quantization 
with Hysteresis (RQH) sampling law. The RQH is a generalization of Symmetric Send on Delta (SSOD) 
strategy which decreases the robustness requirements to avoid limit cycle oscillations and reduce the 
number of events needed for control, improving the overall performance of PI controllers in networked 
control systems. The tuning procedure takes into account not only classical robustness margins but 
also takes advantage of some specific robustness measures to avoid limit cycle oscillations induced 
by the sampler. As the robustness analysis depends on the Describing Function (DF) method, a study 
evaluating the effect of high order harmonics is provided, showing the validity of the tuning procedure. 
Some examples are included in which the usefulness of the tuning procedure is shown. 
© 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Event based control (EBC) of continuous system is getting more and more attention re-
ently [1] . This is due to some of the advantages that EBC offers, such as providing a better
anagement of the data flow through the digital networks on distributed control systems,

educing the data drop out in the form of package losses and decreasing the delays caused
y the communication. These benefits are a direct consequence of the EBC data transmission
olicy, which consists in sending data only when significant changes are detected on the state
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f the system and not periodically as in most of classical control loops. In networked control
ystems the EBC approach may be considered among the most promising control approaches,
n deed, in [2] its importance in modern factory automation has been recently highlighted. 

In [3] a summarized but extensive study about the main contributions on EBC in the last
wo decades is presented. The results in that paper revels scarce of investigation on event based
ID respect to other control approaches such as Model-based, Predictive or State-feedback
ontrol. PID, however, is used in most of the industrial control applications. Due to the high
ensitivity of the derivative action to the measurement noise, the PI control is the dominant
orm of the PID in use today, [4] . This dominance in the industrial environment over other
dvanced control strategies such as MPC, was reflected in a survey conducted among the
ndustrial committee members of the International Federation of Automatic Control published
n [5] . The versatility of PID algorithms also allows them to remain important in the modern
ontext of Industry 4.0 as it was highlighted in [6] , where the necessity of introducing new
eatures to the PID algorithms in order to adapt them to the high connectivity between devices
hrough wired and wireless communication networks that this paradigm offers was also pointed
ut. The adaptation of PID to the paradigm of event based control can contribute to its use
n this new application scenarios. 

In EBC systems, the event generation policy is of paramount importance because it is
n charge of generating and sending the events that regulate the execution of the controller
lgorithm, which, as shown in [7] , determines the performance and behavior of sampled
ontrol systems. The most used event generation techniques, mainly because of their simplicity
f implementation, are the ones based on the signal quantification, like the send-on-delta
SOD) sampling technique, which is based on sending new events when the sampled signal
hanges in more than a threshold δ. The effectiveness of this strategy has been tested in terms
f control performance and communication reduction, [8,9] . 

To the knowledge of the authors, the use of SOD in PID control loops was introduced
y rzn [10] to reduce the use of CPU in embedded control systems without significantly
egrading the system performance. To do that, the sensor is sampled periodically but the
ontrol algorithm is executed only if the error signal crosses preset thresholds. Some further
orks were focused on solving the problems raised by rzn, mainly related with the calculation
f the integral of error when the time between samples increases. It should be noted in
articular the works of Durand [11,12] and Vasyutynskyy [13,14] . Recent works have extended
he rzn proposal to fractional order systems. Concretely, the implementation issues of the
iscrete event-based fractional order controllers have been addressed for two different control
lgorithms: FO-IMC [15] and FO-PID [16–18] . Because the aim of these papers is to reduce
he computation effort of the control algorithms, their main contribution is the development
f control routines computationally more efficient. However, no tuning procedures have been
eveloped for these algorithms taking into account the effect of the SOD sampler, and the
se of tuning methods for continuous controllers is suggested instead. 

With similar principles than in SOD sampling, in [19] a sampling strategy known as
ymmetric-send-on-delta (SSOD) was presented, being the main characteristic traits the inclu-
ion of a hysteresis with the same magnitude than the quantification threshold δ and having
xed switching levels. Several works have been published with regard to SSOD sampling

n loops with a PI controller, concerning tuning procedures, identification and application
ases. In [20] , a tuning procedure for PI controllers in SSOD sampling was presented taking
nto account first order plus time delay (FOPTD) models, and some rules were designed by
inimizing the 1% settling time of the closed loop response. SSOD sampler has also been
2 
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sed for identification, for instance, in [21] a system identification procedure was proposed.
n [22] , event-based controllers with a SSOD sampling strategy were applied to the inside air
emperature control of the greenhouse production process. 

In [23,24] , some tuning methods for PI controllers with SSOD sampler have been de-
eloped. Additionally, in [25] a unified design of a SSOD based PID and Smith predictor
or self-regulating and integral processes was investigated. The approach followed in these
ublications was based on some robustness margins to avoid limit cycles that were obtained
y applying the describing function (DF) technique, whose used allowed to introduce the
lassical concepts of phase and gain margins in the design of this kind of EBC. The DF is
 well-known analysis tool for Wiener-Hammerstein nonlinear systems introduced in the 30s,
nd posteriorly presented in [26] . Several variants based on this technique were presented,
.g. the dual input DF [27] , the sampled or discrete DF [28] and the fractional order DF [29] .
 lot of literature can be found about this method, for example in [30,31] . 
Another sampling strategy based on the signal quantization is the Regular Quantification

RQ) sampling strategy, which is an alternative to SSOD event generation, and consist in
ending new data whenever the value of the sampled signal is a multiple of the quantization
hreshold δ. A comparative study between SSOD and RQ strategies was presented in [32] .
ue to the lack of hysteresis in the RQ sampler, the measurement noise can produce bursts
f events, and thus, bursts of data to transmit, which is the main disadvantage of RQ with
espect to SSOD. Nevertheless, the inclusion of the hysteresis, as in the case of SSOD, forces
he controller to fulfill higher robustness requirements to avoid limit cycle oscillations. 

Taking these effects of the hysteresis into account, in [33] a new sampling strategy called
egular Quantization with Hysteresis (RQH) was presented. This sampling strategy consists
f a quantification with fixed thresholds and with variable hysteresis, which can be chosen
reely, and depending on these parameters choice the intermediate cases between the RQ
nd SSOD appear. In that work the event generation for the same process reactivity was
haracterized and the robustness against limit cycle oscillations studied, introducing new gain
nd phase robustness margins to the presence of this kind of oscillations. 

Using these new margins, it has been proved that in general the tuning methods for continu-
us PI do not provide good enough results when applied to PI controllers with RQH sampling
ince either the limit cycles are not avoided or, conversely, extremely robust controllers are
btained which is an indicator that faster behavior can be achieved. This fact evidenced the
ecessity for developing new tuning algorithms for this kind of control systems taking into
ccount the effects of the RQH sampler in order to improve the trade-off between robustness
nd speed of response. 

In this paper, a tuning procedure for PI controllers within a loop in which the error signal
s sampled according to the RQH principles is proposed. The procedure takes into account
lassical robustness measures such as gain and phase margin, as well as it includes specific
obustness measures, also in terms of gain and phase, to the oscillations induced by the sampler
n the loop, which were presented in [33] . The tuning procedure and the obtained margins
re tested in simulation for several processes which prove the tuning procedure applicability.
dditionally, the validation of any controller placed within a structure with an RQH sampling

s studied by taking into account additional harmonics which have an effect on the robustness
easures. 
The paper is organized as follows. Section 2 presents the main characteristics and advan-

ages of the RQH sampling strategy and highlights the necessity of a specific tuning method.
ection 3 proposes a tuning procedure for the controller placed in a loop with a RQH
3 
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Fig. 1. Control loop scheme for event-based PID controllers proposed in [19] . 

Fig. 2. Relationship between input x and output x̄ for the RQH sampling strategy. 
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ampler. This tuning procedure takes into account both classical and specific to the non-
inearity robustness margins. Section 4 studies the validation of controllers placed in this kind
f loops by considering the effect of high order harmonics. Finally, the conclusions about this
ork are drawn. 

. Problem statement 

The typical networked control system in which event generators such as the RQH are placed
s presented in Fig. 1 . In this figure, the controller and process are denoted by the blocks
(s) and G p (s) respectively, the applied sampler, or event generator, is represented by the EG
lock, the ZOH block is a zero-order hold and the network’s delay is modeled by exp (−t d s) .
he reference signal to track is denoted by y r , the controlled output by y and the disturbance
ignal by p. The controller is assumed to be placed close to the actuator. The measured signal
 

∗ of the error e is sent by the event generator through the communication network and the
OH block keeps in ē the last value sent until new data arrive. This control scheme was first
roposed in [19] considering that the EG block was a SSOD and the controller a PI. Instead
f the SSOD, in this work the RQH sampling will be used in the EG block. 

The RQH sampler is defined essentially by two parameters, the quantization level δ > 0
nd the hysteresis h that can be freely selected as long as 0 ≤ h ≤ δ, being the ratio h/δ

he characteristic parameter that define most of the sampler properties. The relation between
n input x and its output x̄ of the RQH sampler is presented in Fig. 2 . In this figure the
Q or SSOD samplers input/output relationship can be obtained by fixing h = 0 or h = δ

espectively, being the RQH a more general strategy that embraces both, which consequently,
resents characteristics that are a trade-off between RQ and SSOD. Namely, immunity to
enerate events caused by noise in the signal, low event generation for the same reactivity to
4 
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Fig. 3. Block scheme equivalent to the one presented in Fig. 1 . 

c  

t
 

[  

t  

t  

s  

s  

e  

s  

c  

f  

s  

w  

m  

a
 

D  

i  

p  

t  

t  

s  

w
 

b

G  

w  

b  

p  

[

N

 

hanges and lesser robustness requirements for the controller to avoid limit cycle oscillations
han the SSOD sampler. 

To select the proper parameters for the RQH sampler a simple procedure was presented in
33] . Firstly, the hysteresis h is selected slightly greater than the peak-to-peak amplitude of
he measure noise to prevent it from generating events. Secondly, the parameter δ is selected
o assure a certain reactivity to significant changes on the system, which are defined by the
teady-state error e ss . The RQH sampling, as well as SSOD and RQ strategies, introduces a
teady-state error on the controlled output y, this is due to the existence of a dead band around
 = 0 in which the sampler will send ē = 0 because the thresholds are not surpassed. The
teady-state error in RQH samplers is defined by e ss = (δ + h) / 2. If h has been previously
hosen to avoid event generation due to the measurement noise, then δ can be obtained directly
rom this expression to fulfill the e ss requirement. Additionally, the ratio h/δ of the RQH
ampler has a big influence on the number of generated events, which increase proportionally
ith this ratio, thus, making the e ss of the system to be the maximum admissible e ss , by
eans of maximizing δ, decreases to the lowest possible the number of events generated for
 given change in the signal to track. 

Once the ratio h/δ is defined, the RQH can be characterized in terms of robustness using the
escribing Function (DF) technique. To apply the DF technique, the block scheme presented

n Fig. 1 can be rewritten as that in Fig. 3 , in which the network delay, the control and
rocess transfer functions are grouped in G ol (s) = G p (s) C(s) e −t d s , which is the open-loop
ransfer function of the system, and the rest in the block EG-ZOH. This last block presents
he same behavior as the original blocks: it samples the signal and holds its value until new
amples are taken. Therefore, the EG-ZOH results in a non-linearity which can be studied
ith the DF method. 
The condition for the existence of limit cycle in the system presented in Fig. 3 is given

y: 

 ol ( jω) = − 1 

N 

, ∀ ω, (1)

here N is the describing function of the non-linearity. Graphically, if it exists an intersection
etween the open-loop transfer function and the inverse negative of the DF, the system will
resent limit cycle oscillations. The DF for the RQH sampling strategy was presented in
33] and is given by the following equation: 

 (A, h) = 

2δ

Aπ

⎡ 

⎣ 

m ∑ 

k=1 

√ 

1 −
(

δ

A 

(
k + 

h 

2δ
− 1 

2 

))2 

+ 

2m ∑ 

k= m+1 

√ 

1 −
(

δ

A 

(
2m − k − h 

2δ
+ 

1 

2 

))2 
⎤ 

⎦ − j 
2hmδ

A 

2 π
, (2)
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Fig. 4. Shapes of −1 / N for RQH samplers with different values of h/δ in Nyquist and Nichols diagrams with the 
gain and phase margins to the non-linearity γh/δ and �h/δ . 
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here A is the amplitude of the sinusoidal oscillation and m = 

⌊
A 
δ

− h 
2δ

+ 

1 
2 

⌋
is the maximum

umber of levels crossed by the oscillation. 
The traces of −1 / N are composed of several branches, one for each value of m. As the

atio h/δ decreases, all the branches tend to fold and move towards the Real-axis, being a
orizontal line when h/δ = 0. In Fig. 4 the locus of −1 / N for different values of h/δ is
epresented. The case where h/δ = 1 represents the negative inverse of N for SSOD and
everal studies about its robustness have already been presented [32,34] . 

An important remark is that for PI controllers tuned with reasonable robustness margins
he shape of G ol is such that the non intersection with the branch corresponding to m = 1
uarantees to avoid intersections with branches for m > 1 , and therefore, no intersection
etween G ol and −1 / N takes place, avoiding limit cycle oscillations. 

Using the expression of the DF presented in Eq. (2) , in [33] , a study of the robustness
gainst limit cycles of certain classical tuning methods was presented for a batch of processes.
o that end, a gain γh/δ and phase �h/δ margins to the non-linearity were defined, revealing

hat some methods cannot be applied for certain ratios h/δ without presenting limit cycle
scillations, and other methods present an extremely robust behavior which can be an indicator
hat faster controllers can be tunned. These margins are presented in Fig. 4 in Nyquist and
ichols diagrams in violet. 
In addition, unlike the classical phase and gain margins, an important consideration to be

aken into account is that the robustness margins to the non-linearity γh/δ and �h/δ usually
rovide poor information about the closed loop performance. This is due to the fact that
hey are not measured with regard to a fixed point, instead, these measures depend on the
on-linearity and on the open-loop transfer function shapes. In a similar way, assuring some
6 
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lassical gain and phase margins, or using classical tuning rules, does not guarantee to avoid
imit cycle oscillations induced by the sampling because it has not been taken into account
n the original design. Thus, in this paper a tuning procedure which takes into account both
lassical margins and these new robustness margins to the non-linearity in the design procedure
s developed. 

. Tuning procedure for RQH based PI 

From the study presented in [33] and as it has been commented before, tuning methods
or continuous PI are not entirely valid for designing controllers with RQH sampling strategy
ince �h/δ and γh/δ must be checked afterwards to ensure the avoidance of limit cycles. In this
ection, a tuning procedure for PI controllers will be introduced taking into account classical
obustness measures and these new specific measures. The only restriction for the calculation
f the new margins is the usage of the DF technique, which assumes the process to be filtering
nough to neglect the high order harmonics effect. This means that the method can be used
or a wide range of processes, having either sub-damped or over-damped response including
ime delays or non minimum phase. 

Before applying the tuning procedure, the parameters h and δ that define the RQH de-
cribing function, and significantly affect the robustness measures, must be selected taking
nto account the admissible steady state error ( e ss ) and the peak-to-peak amplitude of the
easurement noise, as commented in Section 2 . It is important to keep in mind that higher

alues of h/δ affect negatively the amount of events generated, which will be greater than
he number of events generated with intermediate values of h/δ. Besides, the increase of this
atio affects in an inversely proportional way the controller’s speed to attain the same margins

h/δ and γh/δ . 
Once the parameters δ and h have been selected, the shape of −1 / N is defined, and the

I controller tuning procedure can be addressed. The goal of the tuning procedure proposed
n this section is to obtain the controller that minimize the I AE (Integral of Absolute value
f the Error) index of the disturbance response while fulfilling the requirements on gain and
hase margins. This tuning problem can be expressed as follows: 

inimize 
K p ,T i 

I E 

ubject to γcg ≥ γcg r , �cp ≥ �cp r , 

γh/δ ≥ γh/δr , �h/δ ≥ �h/δr 

(3)

here γcg and �cp are the classical gain and phase margin, and the sub-index r refers to
he required value of each parameter. It is well-known that for non-oscillatory responses the

inimization of I AE and I E (Integral of the error) are equivalents. However, using the later
s preferable because the I E is directly related with the controllers parameters trough the
ntegral gain ( K i = K p /T i ) which facilitates the solution of the optimization problem. 

As commented before, the RQH sampling causes the apparition of a steady state error,
nd thus, that the integral of the error signal will tend to infinite. However, in Appendix A it
as been proven that, with reasonable parameters, the integral of the sampled error signal is
imilar to the integral of the error signal in a continuous system, i.e. to the IE index. 
7 
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Before describing the tuning procedure, it is important to note that the following conditions
ust be met in order to fulfill the margins restrictions in Eq. (3) : 

lassical gain margin 

{ ∣∣G ( jω cg ) 
∣∣∣∣C( jω cg ) 

∣∣ ≤ 1 /γcg r (4a)

arg (G ( jω cg )) + arg (C( jω cg )) = −π (4b)

lassical phase margin 

{ ∣∣G ol ( jω cp ) 
∣∣ = 1 (5a)

arg (G ol ( jω cp )) ≤ −π − �cp r (5b) 

/δ gain margin 

⎧ ⎨ 

⎩ 

∣∣G ( jω γ ) 
∣∣∣∣C( jω γ ) 

∣∣ ≤ 1 
γh/δr 

∣∣∣− 1 
N (A γ ) 

∣∣∣ (6a) 

arg (G ol ( jω γ )) = arg 

(
− 1 

N (A γ ) 

)
(6b)

/δ phase margin 

⎧ ⎨ 

⎩ 

| G ol ( jω �) | = 

∣∣∣− 1 
N (A �) 

∣∣∣ (7a) 

arg (G ol ( jω �)) ≤ arg 

(
− 1 

N (A �) 

)
− �h/δr (7b) 

Where G (s) = G p (s) e −t d s is considered to take into account the process transfer function
 p (s) and the communication delay modeled by e −t d s . 
The precedent equations define a whole set of controllers whose margins will be at least

he required values or greater. Our goal is to find the controller with maximum K i = K p /T i
minimum I E ) in this set. 

The tuning procedure consists of 3 steps: 

1. Find the set of all the PI controllers that can be obtained for a given process. 
2. Tune each controller obtained from step 1 according to the gain margin and detune those

that do not fulfill the requirements on �cp , γh/δ or/and �h/δ . 
3. Finally, choose among all the resulting controllers the one with minimum I E = K p /T i . 

Next, these steps are described in detail. 

tep 1 The tuning procedure starts by obtaining the range of possible values for ω cg . Since
for a PI controller arg (C( jω)) ∈ 

[−π
2 , 0 

]
, the application of the Eq. (4b) implies

that arg (G ( jω cg )) ∈ 

[−π, −π
2 

]
. Thus, the range of ω cg can be directly obtained from

the phase response of G ( jω) as the values of ω within the boundaries defined by
arg (G ( jω)) = −π and arg (G ( jω)) = −π

2 . For this range of ω cg a regular griding is
defined. Each item in the grid corresponds to a PI controller whose parameter will be
calculated according to step 2. 

tep 2 This step is applied to each item in the grid of ω cg obtained in step 1. The value of
T i can be calculated using the equation of the PI phase 

arg (C( jω)) = arctan (T i ω) − π

2 

, (8)

that combined with Eq. (4b) result in, 

T i = 

1 

ω cg 
tan 

(
− arg (G ( jω cg )) − π

2 

)
. (9)
8 
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Once T i has been obtained, the corresponding K p can be calculated. K p is firstly
obtained to fulfill the restriction on γcg . For a PI controller, the modulus can be
expressed as: 

| C( jω) | = K p 

√ 

1 + (ωT i ) 2 

ωT i 
. (10)

Thus, from Eq. (4a) we obtain that: 

K p ≤ ω cg T i 

γcg r 

∣∣G ( jω cg ) 
∣∣√ 

1 + (ω cg T i ) 2 
. (11)

As the objective is to optimize the IE index, the maximum gain K p within all the
possible values defined by Eq. (11) will be considered. That is: 

K p = 

ω cg T i 

γcg r 

∣∣G ( jω cg ) 
∣∣√ 

1 + (ω cg T i ) 2 
. (12)

At this point, the controller fulfills the classical gain margin restriction. To meet the
rest of margin conditions, Eqs. (5a) to (7b) are checked and the controller is conve-
niently detuned if needed. This is based on the fact that reducing K p implies a radial
shrinking of G ol ( jω) in the Nyquist diagram, or a downward displacement in the
Nichols diagram. Consequently, the controller’s detuning improves all the robustness
margins. 
In order to satisfy the classical phase margin requirement, Eq. (5) must be fulfilled.
Considering in the construction of G ol the values of K p and T i previously calculated,
we obtain the current margin �cp . If �cp ≥ �cp r , no modifications on K p have to be
done. However, if this requirement is not fulfilled, we obtain the frequency which will
become the new ω cp from Eq. (5b), forcing the equality 

arg (G ol ( jω cp )) = −π − �cp r (13)

A detuning factor k is then introduced to fulfill the Eq. (5a), whose value can be
calculated as: 

k = 

1 ∣∣G ol ( jω cp ) 
∣∣ (14)

Once k is obtained, the controller gain is recalculated as kK p . 
It is important to highlight that k shrinks the shape of G ol ( jω) in the Nyquist diagram
and consequently all the robustness margins are risen. Therefore, the conditions in (4)
hold true and the design meets both gain and phase margins. 
To fulfill the restrictions on γh/δ and �h/δ the procedure is similar to the one used
with the classic margins. Firstly, the margin γh/δ is calculated and compared with γh/δr .
If γh/δ < γh/δr , then k must be recalculated. From the definition of γh/δ it is worth
noticing that for kG ol ( jω) the factor k can be introduced as follows: 

(ω γ , A γ ) = arg min 

(ω,A ) 

⎛ 

⎝ 

∣∣∣− 1 
N (A ) 

∣∣∣
k| G ol ( jω) | : arg (G ol ( jω)) = arg 

(
− 1 

N (A ) 

)⎞ 

⎠ . (15)

Since in the previous equation k does not affect the condition arg (G ol ( jω)) =
arg 

(
− 1 

N (A ) 

)
and

∣∣∣− 1 
N (A ) 

∣∣∣
| G ol ( jω) | is just scaled by 1 /k, then the frequency ω γ and A γ will
9 
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Fig. 5. Graphical interpretation of the detuning procedure to fulfill the �h/δr margin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remain invariable as k changes. Thus, the new value of k can be easily obtained from
Eq. (6a): 

k = 

1 

γh/δr 

∣∣∣∣− 1 

N (A γ ) 

∣∣∣∣ 1 ∣∣G ol ( jω γ ) 
∣∣ (16)

The last margin to check is the phase margin to the non-linearity, �h/δ . If its value
is greater than �h/δr , then no modifications have to be done to the controller. On the
other hand, if �h/δ < �h/δr the parameter K p must be recalculated. Let us consider
the open-loop transfer function given by kG ol ( jω) , this parameter k can be introduced
within the definition of the phase margin to the non-linearity as: 

(ω �, A �) = arg min 

(ω,A ) 

(
arg (kG ol ( jω)) − arg 

(
− 1 

N (A ) 

)
: 

∣∣∣∣− 1 

N (A ) 

∣∣∣∣ = k| G ol ( jω) | 
)
. 

(17)

In the previous expression the condition 

∣∣∣− 1 
N (A ) 

∣∣∣ = k| G ol ( jω) | depends on the value

of k. This means that, unlike the cases of ω γ and A γ , ω � and A � depend on k.
The new values of ω � and A � in which the phase margin will be measured once the
detuning factor is introduced are calculated as: 

(ω 

′ 
�, A 

′ 
�) = arg max 

(ω,A ) 

(
| G ol ( jω) | −

∣∣∣∣− 1 

N 

′ (A ) 

∣∣∣∣
)
. (18)

where −1 / N 

′ (A ) = −1 / N (A ) · 1 �h/δr . Then the detuning factor can be calculated
as: 

k = 

∣∣∣∣− 1 

N 

′ (A 

′ 
�) 

∣∣∣∣ 1 

| G ol ( jω 

′ 
�) | (19)

The graphical interpretation of this procedure is represented in Fig. 5 . The detuning
factor k is calculated to guarantee zero phase margin between kG ol and −1 / N 

′ , which
10 
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is an image of −1 / N whose phase has been displaced �h/δr . Consequently, the min-
imal distance in phase between kG ol and 1 / N , or in other words, the phase margin,
is �h/δr . 

tep 3 Finally, as a result of the preceding steps a set of controllers defined by pairs (K p , T i ) is
obtained. Among them, the one that minimizes the I E index is selected as the resulting
controller, which, for PI controllers, is the one that maximizes the ratio K p /T i . 

emark 1. In some applications, an important issue to consider is the wear of the actuator,
hich could be reduced by limiting the control action bumps produced by the steps of magni-

ude δ introduced by the RQH sampler in the input of the controller. For a PI controller these
umps have amplitude δu = K p δ. Using this equation it is possible to obtain the maximum
 p for given values of δ and admissible control action bumps δu max : K p max = δu max /δ. Then, all

he proportional gains obtained in step 2 that surpass K p max must be limited to this value. 

emark 2. Networked systems often contain communications delays, modeled in Fig. 1 by the
xp(−t d s) block. In the presented procedure this delay must be added to the process transfer
unction delay if it exists. Introducing delay in the loop reduces all the studied robustness
argins, therefore, not considering it in the process transfer function ( G (s) = G p (s) exp(−t d s) )

ould lead to a potential loss of robustness, causing the apparition of limit cycle oscillations
r even instability. Thus, if this communication delay is known it has to be considered into
he process transfer function to perform the tuning procedure. 

emark 3. This tuning method can be applied to other type of controllers as long as the
eparation between linear and non-linear part presented in Fig. 3 is kept. For example, for a
ID controller the Eqs. (8) and (10) result in: 

rg (C( jω)) = arctan 

(
ωT i (N T i /T d + 1) 

N T i /T d − (ωT i ) 2 (1 + N ) 

)
− arctan 

(
ωT i 

N T i /T d 

)
− π

2 

, (20)

 C( jω) | = K p 

√ 

(ωT i (N T i /T d + 1)) 2 + (N T i /T d − (ωT i ) 2 (1 + N )) 2 

ω T i 
√ 

(ω T i ) 2 + (N T i /T d ) 2 
(21)

espectively, and it has to be taken into account that the range for the controller’s phase is
−π

2 , 
π
2 

]
, changing the expressions derived from Eqs. (4)–(7). In this case, as more parameters

re introduced ( T d and N ), additional requirements could be considered for the design. A very
mportant issue to be taken into account when considering other controllers is that the filtering
roperties of G ol must be enough to kept the DF technique valid for predicting the limit
ycle oscillation. This study can be done according to the procedure presented in Section 4 to
alidate the design of the PI. 

The procedure is summarized in a flowchart which can be found in Fig. B.17 in Annex
ppendix B . Note that once the pair (K p , T i ) to fulfill the requirements on γcg is obtained, the

emaining robustness measurements are tested and the controller gain is corrected if needed.
ach margin is calculated, and if they are lower than the requirement, K p is reduced according

o a detuning factor k that is calculated with the pertinent equations. 
In order to show the validity of the proposed tuning methodology let us introduce the

ollowing example. 
11 
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Fig. 6. Graphical representation of the gain and phase margins to the non-linearity (γh/δ, �h/δ ) in Nyquist (left) and 
Nichols (right) diagrams for the PI controller obtained in Example 1 . 
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xample 1. Consider a system whose transfer function is defined by: 

 (s) = 

1 

(s + 1) 4 
. (22)

The peak-to-peak amplitude of the measurement noise has a magnitude of e n p−p = 0. 03
nd the maximum admissible steady-state error is e ss = 0. 1 . 

With the aim of avoiding burst of events introduced by an insufficient hysteresis in the
ampler due to the noise, the hysteresis h must be slightly greater than the peak-to-peak
mplitude of the noise, thus we choose h = 0. 04. The upper bound of δ, once h has been
hosen, is calculated with the expression of the e ss in RQH loops, δ = 2e ss − h. We choose
= 0. 16 , which is the upper bound, in order to keep the quotient h/δ low enough to reduce

he number of events and to minimize the effect of the margins γh/δ and �h/δ in the controller
esign. 

In order to obtain a proper closed-loop response and enough robustness against limit cycles
nduced by the sampler, the controller is designed to meet the following constrains: 

γcg ≥ 6 dB �cp ≥ 45 

◦

γh/δ ≥ 2 dB �h/δ ≥ 15 

◦

By applying the proposed tuning procedure we obtain a PI controller with K p = 1 . 05 and
 i = 2. 6 whose exact robustness margins are: 

γcg = 7 . 22 dB �cp = 45 

◦

γh/δ = 2. 91 dB �h/δ = 18 . 6 

◦

hich fulfill the requirements stated above. The robustness margins to the non-linearity can be
isualized in Fig. 6 , where phase and gain margin to the non-linearity have been represented
n Nyquist and Nichols diagrams. Fig. 7 shows the closed-loop response to step changes in
he reference and the disturbance inputs. As expected, neither limit cycle oscillations take
laces nor unnecessary events are generated due to the noise. The amplitude of the control
ction bumps is δu = K p δ = 0. 168 . 

In order to show the effect of limiting δu on the design, let us consider the actuator to
dmit a maximum control action variation of δu = 0. 05 . Taking into account this addi-
max 

12 
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Fig. 7. Time response of the controlled output and control action to unitary step-like changes in reference and 
disturbance of the example system with the proposed controller and sampler. 

Fig. 8. Time response of the controlled output and control action to unitary step-like changes in reference and 
disturbance of the example system considering a limitation on the actuator δu = 0. 05 . 
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ional restriction the new parameters for the controller are K p = 0. 312 and T i = 1 . 037 and
he robustness margins: 

γcg = 9 . 5126 dB �cp = 45 

◦

γh/δ = 4. 486 dB �h/δ = 20. 95 

◦

The time response of the controlled system is shown in Fig. 8 . As it can be seen, the value
f δu is limited to 0.05 and consequently a smoother control action is achieved. 

In most cases, bigger ratios of h/δ lead to more restrictive robustness constraints for design
he controllers. This fact could induce the idea that those PI designed for ratios h/δ bigger
han the one to be actually implemented in the system always fulfill all the robustness margins
nd consequentially the most conservative designs are achieved for the SSOD sampler. The
ollowing example shows a case that refutes this assumption. 

xample 2. Consider a system whose transfer function is modeled by: 

 (s) = 

e −5 s 

(s + 1) 3 
. (23)

For this example consider that the tuning requirements to be met are: 

γcg ≥ 6 dB �cp ≥ 45 

◦

γh/δ ≥ 4 dB �h/δ ≥ 30 

◦

Assume that by applying the procedure to select δ and h taking into account the noise and
 ss , the required sampler has a ratio h/δ = 1 / 20. However, according to the misconception
xplained before, in order to have a more robust controller, we decide to apply the tuning
lgorithm considering a sampler with ratio h/δ = 1 , i.e. the SSOD sampler. 
13 
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Fig. 9. Gain and phase margins to the non-linearity (γh/δ, �h/δ ) obtained in Example 2 for SSOD sampler (left) and 
sampler with ratio h/δ = 1 / 20 (right). 
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The resulting PI has K p = 0. 518 , T i = 5 . 584 and classical gain and phase margins γcg =
 . 02 dB and �cp = 72. 1 

◦. Referring to the robustness against limit cycles, for the SSOD sam-
ler the margins to the non-linearity are γh/δ = 4. 5072 dB and �h/δ = 30 

◦, fulfilling the re-
uirements. However, the margins for the sampler with ratio h/δ = 1 / 20 are γh/δ = 3 . 8261 dB
nd �h/δ = 59 

◦. As it can be noted, the PI designed for SSOD does not fulfill the robustness
ondition when used with the RQH sampler: in this case γh/δ is reduced from 4. 5072 dB to
 . 8261 dB. 

A graphical representation of the margins to the non-linearity is presented in Fig. 9 where
t can be easily seen the effect of reducing the hysteresis on the margins. In this case, the
hase margin to the non-linearity increases as expected because of the folding of the DF
races, however, the gain margin to the non-linearity worsens to the point of not fulfilling the
uning requirements, which is also due to the folding of the DF traces over the real axis. 

From the precedent example it can be deduced that the controller needed to fulfill the
equirements must be changed if the sampling strategy varies. The following example presents
 comparison between the controllers obtained with the proposed method for the specific cases
f SSOD and RQH. 

xample 3. Let us consider the scenario presented in Example 1 , i.e. same process, noise
eak-to-peak amplitude and maximum steady-state error. The choice of the RQH sampler will
e kept too. 

There is a range of the parameter δ for the SSOD sampler to fulfill the noise and error
equirements. This range is defined by the same equations than for the RQH but having h = δ,

esulting in: 

 n p−p < δ < e ss 

s choosing a value of δ close to e n p−p will result in a high event generation rate, a value
= 0. 1 will be chosen, i.e. at the limit of the admissible maximum steady-state error. 
14 
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Table 1 
Controllers and performance indexes for each controller and sampler under restrictions S 1 and S 2 . 

K p T i IA ̄E ref t s , ref IA ̄E d t s , d n ev 

S 1 RQH 1.01 2.5 4.545 13.899 3.538 17.678 26 
SSOD 0.817 2.57 4.701 17.334 3.795 15.578 34 

S 2 RQH 0.822 3.081 3.582 5.488 3.285 10.508 16 
SSOD 0.997 5.049 4.895 18.794 4.747 23.498 26 

Fig. 10. Nyquist plot of G ol with the obtained controllers and the inverse negative of the DF for both scenarios. 
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We will consider two sets of robustness requirements to illustrate different situations. These
ets denoted by S 1 and S 2 present the following robustness requirements: 

 1 : γcg ≥ 6 dB �cp ≥ 45 

◦ S 2 : γcg ≥ 6 dB �cp ≥ 45 

◦

γh/δ ≥ 3 dB �h/δ ≥ 15 

◦ γh/δ ≥ 3 dB �h/δ ≥ 45 

◦

 2 presents higher restrictions than S 1 in terms of the phase margin to the non-linearity,
herefore, the robustness against limit cycle oscillations will be higher. 

Applying the proposed tuning procedure for each set of restrictions and for each sampling
trategy four controllers are obtained, whose parameters are gathered in Table 1 . The open-
oop transfer function for both cases under the specified scenarios can be observed in Fig. 10 .

To asses the performance of the controllers several measures will be defined. Firstly, the
ntegral of the absolute sampled error, i.e. at the output of the sampler, as a consequence of a
nitary step-like change in the reference ( I A ̄E re f ) and disturbance ( I A ̄E d ) inputs. It is defined
s: 

 A ̄E = 

∫ ∞ 

0 
| ē (t ) | dt, 

eing t = 0s the point in time where the excitation occurs. In addition, as the classical settling
ime cannot really be applied due to the appearance of e ss , therefore, the settling time used
s defined as the elapsed time from the excitation application to the time at witch the system
esponse enters and remains within the final detection thresholds. Finally, the number of
riggered events are also used as a measure. 

The temporal responses of the four controllers against step-like changes at the reference
nd disturbance inputs are presented in Fig. 11 , where the RQH case is represented in blue and
he SSOD in red. Considering the case presented by the set of conditions S 1 , it can be seen
15 
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Fig. 11. Temporal response of the measured output of the process with the controllers obtained in Example 3 (blue: 
RQH and red: SSOD), the events generated and their respective control actions to unitary step changes in the 
reference (at t = 0s) and disturbance (at t = 35 s) inputs. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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hat the temporal responses of both controllers and samplers do not differ significantly. RQH
ampling presents bigger changes in the control action produced by the quantification δ used,
hich leads to a slightly more oscillatory response with a higher overshoot. In Table 1 the
erformance measures described above is presented, revealing that the usage of RQH sampling
ntails a reduction on the number of events needed to control the system, and according to
he obtained performance indexes, this reduction of events does not degrade the performance
f the system. 

However, in the set of restrictions S 2 , it can be seen a significant improvement of RQH
ampling with regard to SSOD. As expected, the number of events generated is lower for
QH, but in addition, the rest of performance indexes are improved. This is due to the

lowness of the SSOD controller, resulting from the required robustness against limit cycle
scillations, which produces a slow response that worsens the performance. 

In summary, this example shows how by choosing RQH sampling a robust controller
gainst limit cycle oscillations induced by the sampler can be tunned without degrading
ignificantly the overall performance of the system. An opposed situation is found with SSOD
ampling, in which to attain similar levels of robustness than in RQH the controller is forced
o present a slower response that degrades the system performance. Additionally, the number
f events needed for control is lower for RQH than for SSOD regardless of the robustness to
ttain. 

To highlight the importance of the proposed tuning method over other existing tuning rules
et us introduce the following example: 

xample 4. Consider the process with transfer function: 

 (s) = 

1 − s 

( s + 1) 3 
. 

The peak-to-peak amplitude of the measurement noise has been measured to be of 0.04
nits and it is required that the response do not present a steady-state error greater than 0.075.
ith this requirements a RQH sampler is chosen with h = 0. 05 to avoid burst of events due

o the noise and δ = 0. 1 to not surpass the maximum e ss admissible. 
16 
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Table 2 
Obtained controller and performance parameters for each tuning method. 

K p T i IA ̄E ref t s , ref IA ̄E d t s , d n ev 

Proposed 0.6646 2.1206 4.8637 14.878 4.1017 13.798 41 
AMIGO 0.2473 1.8807 7.4872 18.088 7.7062 22.048 31 
One-Third 0.3202 2.8453 8.6168 24.088 8.6736 27.388 31 
Ziegler-Nichols 0.9257 6.0792 6.3643 30.268 6.3643 34.768 43 

Fig. 12. Inverse negative of the sampler’s DF in this example and the G ol ( jω) of the four studied controllers and 
process. 
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A comparative test will be conducted between the performance offered by the proposed
uning method and other well-known methods, namely, AMIGO [35] , One-Third [36] and
iegler-Nichols [37] tuning rules. For our tuning method a controller will be tunned to meet

he following constrains: 

γcg ≥ 6 dB �cp ≥ 45 

◦

γh/δ ≥ 2 dB �h/δ ≥ 15 

◦

or the other tuning rules the temporal response of the process has been approximated by a
OPTD model and their parameters have been obtained. The obtained parameters can be seen

n Table 2 . Needles to say, the controllers tuned with tuning rules other than the proposed in
his papers are not supposed to avoid the intersection with the inverse negative of the DF, and
herefore, avoid limit cycle oscillations. In this case, all controllers avoid intersection with
he DF traces, in deed, the classical tuning rules present higher robustness measures than the
roposed method, which can be appreciate in Fig. 12 where the open-loop transfer function
f the four controllers and process in the Nyquist diagram is presented as well as the inverse
egative of the DF of the sampler under study. 

The temporal response of the controlled output can be found in Fig. 13 as well as the
enerated events and the control action. In order of appearance: the proposed controller (or-
nge), AMIGO (green), One-Third (red) and Ziegler-Nichols (blue) tuning rules. As it can be
17 
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Fig. 13. Temporal response of the measured output of the process with different controllers, the events generated 
and their respective control action to unitary step changes in the reference (at t = 0s) and disturbance (at t = 60s) 
inputs. (Orange: proposed controller. Green: AMIGO. Red:One-Third. Blue: Ziegler-Nichols). 
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l  
een, all the controllers present enough robustness to avoid limit cycle oscillations. AMIGO
nd One-Third tuning rules present controllers with a slow temporal response compared to
he other rules, however, this is a normal behavior since they also present the highest robust-
ess. The other controllers present a faster response, nevertheless, Ziegler-Nichols struggles
o stabilize more than the proposed method. 

The measures presented in Example 3 have been used to evaluate the performance of the
ontrollers under study, and have been summarized in Table 2 . As it can be seen, the proposed
uning rule presents the fastest results, being its integral errors and settling times, both under
eference and disturbance changes, the ones with lower values. However, it presents a greater
eneration event rate, as Ziegler-Nichols, when compared with AMIGO and One-Third tuning
ules. This is due to the overdamped temporal response of these last two methods, which
atches with its increased robustness and slowness in the response. 

. Design validation 

The gain and phase margins to the non-linearity used in the tuning procedure were obtained
sing the DF technique, which assumes that the filtering capabilities of the linear part of the
ystem are good enough to neglect the high order harmonics effect at the input of the non-
inearity. If this assumption is not fulfilled, the DF viability for predicting limit cycle can
18 
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Fig. 14. Sinusoidal signal and its sampled output with a sampler with a given ratio h/δ. 
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onduct to misleading results. In this section, we analyze the effect of high order harmonics
n the proposed margins by studying the variation of the critical points to which each margin
s measured. Therefore, the results presented in this section can be used to validate the design
rocedure presented before or any other tuning method that uses γh/δ and �h/δ to check the
obustness against limit cycles induced by the RQH sampler. 

Consider the input to the non-linearity to be a sine wave with period T o and amplitude A,

hich is considered high enough to produce single-leveled symmetric oscillations ( m = 1 )
n the sampled signal ē (t ) as it is shown in Fig. 14 . The switches on the sampled signal ē (t )
re produced at the time fractions ρ1 and ρ2 . In those switching points the value of the error
ignal e (t ) is: 

 

(
ρp 

T o 
2 

)
= 

{ 

δ
(

1 
2 + 

h 
2δ

)
for p = 1 

δ
(

1 
2 − h 

2δ

)
for p = 2 

(24)

As a sinusoidal signal has been supposed at the input of the non-linearity, the value of the
ime fractions ρ1 and ρ2 can be obtained: 

1 = 

1 

π
arcsin 

(
δ

A 

(
1 

2 

+ 

h 

2δ

))

2 = 1 − 1 

π
arcsin 

(
δ

A 

(
1 

2 

− h 

2δ

)) (25)

Expressing the sampled signal ē (t ) as a Fourier series, and operating with the obtained
xpression of this signal through the loop, considering y r (t ) = 0, and thus, e (t ) = −y(t ) ,
t can be obtained the resulting expression of e (t ) , in which, evaluating at t = ρ1 

T o 
2 and

 = ρ2 
T o 
2 : 

 

(
ρ1 

T o 
2 

)
= −4δ

π

∞ ∑ 

n odd 

1 

n 

[

{ G ol ( jnω o ) } 1 

2 

sin (nπ(ρ2 −ρ1 ))+�{ G ol ( jnω o ) } sin 

2 
(nπ

2 

(ρ2 −ρ1 ) 
)]

 

(
ρ2 

T o 
2 

)
= −4δ

π

∞ ∑ 

n odd 

1 

n 

[

{ G ol ( jnω o ) } 1 

2 

sin (nπ(ρ2 −ρ1 ))−�{ G ol ( jnω o ) } sin 

2 
(nπ

2 

(ρ2 −ρ1 ) 
)]
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ubstituting these values of e (t ) in the switching points presented in Eq. (24) , this equation
an be expressed otherwise as: 

{ G ol ( jω o ) } = −
π
4 + 

∑ ∞ 

n=3 , 5 , ... 
1 
n 
{ G ol ( jnω o ) } sin (nπ(ρ2 − ρ1 )) 

sin (π(ρ2 − ρ1 )) 

�{ G ol ( jω o ) } = −
πh 
8 δ + 

∑ ∞ 

n=3 , 5 , ... 
1 
n �{ G ol ( jnω o ) } sin 

2 
(

nπ
2 (ρ2 − ρ1 ) 

)
sin 

2 
(

π
2 (ρ2 − ρ1 ) 

)
Replacing the expressions of ρ1 and ρ2 which were obtained in Eq. (25) , the previous

xpressions can be rewritten as: 

{ G ol ( jω o ) } = −
π
4 + 

∑ ∞ 

n=3 , 5 , ... 
1 
n 
{ G ol ( jnω o ) } sin (nθ ) 

sin (θ ) 

{ G ol ( jω o ) } = −
πh 
4δ

+ 

∑ ∞ 

n=3 , 5 , ... 
1 
n �{ G ol ( jnω o ) } (1 + cos (nθ )) 

1 + cos (θ ) 

(26)

here: 

= arcsin 

⎛ 

⎝ 

δ

2A 

⎡ 

⎣ 

(
1 − h 

δ

)√ 

1 −
[

δ

2A 

(
1 + 

h 

δ

)]2 

+ 

(
1 + 

h 

δ

)√ 

1 −
[

δ

2A 

(
1 − h 

δ

)]2 
⎤ 

⎦ 

⎞ 

⎠ 

hich depends on the non-linearity characteristics. 
Eq. (26) describe the real and imaginary parts of G ol ( jω o ) when the system presents

scillation of frequency ω o . As it can be seen, these expressions depend on the high order
armonics of the oscillation frequency: nω o , n = 3 , 5 , . . . , which are neglected in the DF
pproach. Therefore, these equations can be used to validate the controllers obtained by the
uning method proposed in Section 3 . To do that, more accurate estimations of the points with
espect to which the margins γh/δ and �h/δ are measured can be obtained by using equations
n (26) with a reasonable number of harmonics and the values of G ol ( jnω o ) , n = 3 , 5 , . . .

pproximated as: 

 ol ( jnω o ) = G ol ( jnω γ ) γh/δ; n = 3 , 5 , . . . (27)

or evaluating the gain margin accuracy, and: 

 ol ( jnω o ) = G ol ( jω �) · 1 −�h/δ; n = 3 , 5 , . . . (28)

for evaluating the phase margin. In fact, Eqs. (27) and (28) provide the values G ol in the
igher order harmonics of frequencies where the oscillations will take place if the gain or
hase lag of G ol increase on γh/δ or �h/δ, respectively. 

Hence, to validate the gain and phase margin to the non-linearity obtained, and therefore,
he controller that has been tuned, the point obtained using Eqs. (26) and (27) , which will
e denoted by G ol,γ ( jω o ) , has to be compared to the point −1 / N (A γ ) . Similarly, the point
btained with Eqs. (26) and (28) , which we will be referred to as G ol, �( jω o ) , has to be
ompared to the point −1 / N (A �) . 

To show the variation of these critical points with respect to those where the gain and
hase margin to the non-linearity are measured and how this variation is used to validate the
roposed controllers, let us introduce the following example. 
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Fig. 15. Harmonic analysis of the validity of the proposed margins for G ol (s) and the sampler with ratio h/δ = 2/ 3 . 
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xample 5. Consider a system whose transfer function is defined by: 

 (s) = 

1 

(s + 1) 4 
. 

A PI controller has been tuned applying AMIGO method [35] by approximating this system
y a FOPTD model, obtaining K p = 0. 301 and T i = 2. 4268 . Consider in this case that the
ystem is placed in a loop which contains a sampler with ratio h/δ = 2/ 3 . The robustness
argins to the non-linearity have been measured and result in γh/δ = 11 . 51 dB and �h/δ =

9 . 61 

◦. The gain margin has been obtained at a frequency ω γ = 0. 4703 rad/s and with a ratio
/A = 0. 834, while the phase margin has been obtained at a frequency ω � = 0. 1218 rad/s
nd with a ratio δ/A = 0. 833 . 

The points where these measures have been obtained can be seen graphically in Fig. 15 ,
here it has been represented the negative inverse of the DF and G ol ( jω) in solid black line

nd the measured robustness margins with a circle marker, in blue for the gain margin and
n red for the phase margin, in the Nyquist and Nichols diagrams. 

Then, to test the validity of the margins, Eq. (26) have been used considering the following
 harmonics: n = 3, 5 and 7. In those equations, the open-loop transfer function to test is the
ne presented in Eq. (27) to test the gain margin and (28) to test the phase margin. 

As a result, the new location of the critical points is obtained. These new points have been
epresented with a cross of its respective color in Fig. 15 , and the respective new robustness
argins have been measured to these points. In this case, the variation between −1 / N (A γ )

nd G ol,γ ( jω o ) and between −1 / N (A �) and G ol, �( jω o ) is not very important. Thus, as the
ariation between the robustness margins is very slight, being both obtained margins more
estrictive than the corrected margins considering the high order harmonic contribution, the
btained controller can operate safely in this loop. 

Nevertheless, the corrected margins are not always beneficial in terms of robustness. For
xample, consider now that the sampler used above is replaced by another sampler with
atio h/δ = 1 / 6 . As in the precedent case, the robustness measures to the non-linearity have
een obtained at the critical frequencies and δ/A ratios. Using Eqs. (26) –(28) as it has been
21 
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Fig. 16. Harmonic analysis of the validity of the proposed margins for a given system and sampler. 
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xplained before, the new location of the critical points has been obtained. In Fig. 16 it has
een represented the negative inverse of the DF traces, the transfer function and the critical
oints obtained with the DF and with the harmonic analysis calculus. Here it can be seen
hat the variation of the critical points implies a reduction in the effective margins, being this
eduction more visible in the case of the phase margin. 

In this case, the variation in the margins is not significant enough to induce limit cycle
scillations in the temporal response, in fact, considering the new recalculated margins, the
ontroller still provides a considerable degree of robustness to the system. However, this proves
hat the influence of high order harmonics is not always beneficial in terms of robustness and
hat the validation of the controller design should be carried out, specially when systems with
ow filtering capabilities are involved, because the DF approach cannot be applicable with a
igh reliability. 

In general lines, the proposed margins give an accurate order of magnitude of the proximity
o the oscillations due to the effect of the non-linearity. As it has been seen in the precedent
xample, the effect of the high order harmonics takes an important role in the accuracy of
he robustness margins to the non-linearity, being the variation of the critical points beneficial
r detrimental depending on the case. 

In particular, in those cases where �h/δ is obtained for relative low values of ω �, the
ariation of the critical point of the phase margin produced by the harmonic analysis is more
emarkable, resulting in decreasing the effective phase margin to the non-linearity. In those
ases, despite the variation on the phase margin, the corrected phase margin measure still
rovides enough robustness. 

. Conclusions 

In this paper a tuning procedure for PI controllers within a loop with a RQH sampling
trategy has been provided. Prior to the controller tuning the parameters that define the RQH
22 



O. Miguel-Escrig and J.-A. Romero-Pérez Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; May 4, 2021;22:52 ] 

s  

fi
 

a  

h  

b
 

T  

s
 

o  

c  

o  

s  

i

6

 

w  

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ampler must be chosen. Guidelines to select the proper parameters for a system from speci-
cations have been provided. 

The tuning procedure consists of 3 steps in which both, the classical robustness margins
nd the robustness margins to the limit cycles produced by the sampler proposed in this paper,
ave been taken into account. By considering both, not only the limit cycle oscillations induced
y the sampler are avoided, but also a proper closed-loop temporal response is assured. 

Several simulation examples where the proposed tuning method is applied are shown.
hose examples illustrate the usefulness of the method and how a loss in robustness can be
uffered when the method is not properly used. 

Finally, the validation of the controller design has been tested by considering the effect
n the robustness measures of higher order harmonics. In the cases where the DF technique
an be used, it has been confirmed that the proposed margins to predict the appearance of
scillations are accurate and this validation can be skipped. Nevertheless, in those cases where
ystems with low filtering capabilities are involved the validation of the controller designed
s recommendable due to the high order harmonic influence on the robustness. 

. Future works 

In this section two work lines for future researches related with the tuning of controllers
ith RQH sampling strategy are presented, which, in the opinion of the authors, could sig-
ificantly improve the applicability and performance of this kind of control system: 

1. The tuning procedure proposed in this paper is based on shaping the open-loop transfer
function to obtain both the desired robustness margins and good closed-loop performance
for a kind of event-based control loop with a continuous PI controller and RQH sampler. As
it has been shown, this goal can be successfully achieved with a conventional PI controller
by selecting the proper parameters K p and T i . Other controller structures, such as PID,
could provide more flexibility on configuring G ol , and consequently, a better trade-off
between robustness and response speed can be attained using that control structure. In this
sense, the use of fractional order PID controllers seems specially interesting since they are
a generalization of the conventional PID with more degrees of freedom in their frequency
response due to the fractional-order differential and integral operators [38] . Fractional order
PID is a consolidated field of research with a growing acceptance by the practitioner
[39–42] . Because the suitability of the describing function technique in the context of
fractional order systems has been previously shown in [29,43,44] , the extension of the
results presented in this paper for fractional order control systems could lead to promising
results in the field of EBC. 

2. It is known that the validity of the describing function technique depends on the filtering
properties of the linear part of the control loop. Consequently, the application of this tech-
nique for low order systems, such as first order plus time delay (FOPTD), is questionable.
Because FOPTD models are commonly used to approximate the behavior of many actual
industrial processes, it is worth considering more proper approaches for tuning RQH based
controllers for this kind of systems. In [34] a procedure for tuning PI and PID controllers
with SSOD sampling for processes with a FOPTD model was proposed by the authors. The
approach is based on a new robustness measure to avoid limit cycle oscillations induced
by the SSOD sampler, called the Tsypkin margin, which overcomes the limitations of DF
approaches. The extension to RQH sampling of the results presented by the authors in
23 
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[45] could be of interest for tuning RQH based controllers for processes whose dynamic
is modeled by low order transfer functions. 
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ppendix A. Validity of IE index 

In the nature of the E G − C(s) control loops is to have a static position error bounded
y the switching thresholds of the chosen sampling strategy. Thus, the choice of IE index
or selecting a controller can be questioned because it will tend to infinite. For this reason,
 modification of this index has been considered using the sampled error signal ē (t ) instead
f the error signal e (t ) , because it tends to 0 in steady state, producing the sampled integral
rror index I Ē , defined as: 

 Ē = 

∫ ∞ 

0 
ē (t ) dt . 

The control action for this kind of non-linear systems is: 

(t ) = K p ̄e (t ) + K i 

∫ t 

0 
ē (τ ) dτ − K d 

dy 

dt 
, 

hich for a PI controller: 

(t ) = K p ̄e (t ) + K i 

∫ t 

0 
ē (τ ) dτ. 

Considering a step change at the disturbance input, in steady-state (assuming stability): 

(∞ ) = K p ̄e (∞ ) + K i 

∫ ∞ 

0 
ē (t ) dt , 

s ē (∞ ) = 0 and taking into account the expression of I Ē : 

(∞ ) = K i 

∫ ∞ 

0 
ē (t ) dt = K i I Ē 

From the schema block in Fig. 1 : 

(u(∞ ) + p(∞ )) G (0) = y(∞ ) = −e (∞ ) , 

here e (∞ ) is bounded by the steady state error e ss , and, as a unitary step load disturbance
s assumed p(∞ ) = 1 : 

(u(∞ ) + 1) G (0) ≤ e ss , 
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ubstituting with the expression of u(∞ ) : 

K i I Ē + 1 

)
G (0) ≤ e ss , 

aking into account that the I E caused by a load disturbance is −1 /K i : 

 Ē ≤ e ss 

K i G (0) 
+ I E , 

rom which the difference between both indexes can be found: 

 Ē − I E ≤ e ss 

K i G (0) 
. 

In this last expression it appears the relation between I Ē and I E indexes. Here it can
e seen that the effect of maximizing K i minimizes the IE index, and makes the difference
 Ē − I E minimum. In addition, as the system is assumed stable, the static error is bounded
etween: 

 ss ∈ 

(
−δ + h 

2 

, 
δ + h 

2 

)
hus, choosing proper values of δ and h, and maximizing K i , the contribution of e ss , i.e. the
ffect of the sampling, can be small enough to consider I E ≈ I Ē , and thus, we can consider
he I E an appropriate selection index for PI tuning. 

ppendix B. Flowchart of the tuning procedure 

The proposed tuning procedure can be deployed by following the steps in this flowchart: 
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Fig. B1. Flowchart that summarizes the tuning procedure. 
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35] K.J. Åström , T. Hägglund , Revisiting the ziegler-Nichols step response method for PID control, J. Process
Control 14 (6) (2004) 635–650 . 

36] T. Hägglund , The one-third rule for PI controller tuning, Computers & Chemical Engineering 127 (2019) 25–30 .
37] J.G. Ziegler , N.B. Nichols , Optimum settings for automatic controllers, trans. ASME 64 (11) (1942) . 
38] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order systems and controls, Advances

in Industrial Control, 1, Springer-Verlag London, 2010, doi: 10.1007/978- 1- 84996- 335- 0. 
39] K. Bingi, R. Ibrahim, M.N. Karsiti, S.M. Hassan, V.R. Harindran, Fractional-order Systems and PID Con-

trollers, Studies in Systems, Decision and Control, 1, Springer International Publishing, 2020, doi: 10.1007/
978- 3- 030- 33934- 0. 

40] B. Jakovljevi, P. Lino, G. Maione, Control of double-loop permanent magnet synchronous motor drives by
optimized fractional and distributed-order PID controllers, Eur. J. Control (2020), doi: 10.1016/j.ejcon.2020.06.
005 . 

41] M. Pirasteh-Moghadam, M.G. Saryazdi, E. Loghman, E. Ali Kamali, F. Bakhtiari-Nejad, Development of neural
fractional order PID controller with emulator, ISA Trans. 106 (2020) 293–302, doi: 10.1016/j.isatra.2020.06.014.

42] B. Liang, S. Zheng, C.K. Ahn, F. Liu, Adaptive fuzzy control for fractional-order interconnected systems with
unknown control directions, IEEE Trans. Fuzzy Syst. (2020) 1, doi: 10.1109/TFUZZ.2020.3031694. 

43] Y. Luo, Y. Chen, Y. Pi, Fractional order ultra low-speed position servo: improved performance via describing
function analysis, ISA Trans. 50 (1) (2011) 53–60, doi: 10.1016/j.isatra.2010.09.003 . 

44] D. Atherton, N. Tan, C. Yeroglu, G. Kavuran, A. Yce, Limit cycles in nonlinear systems with fractional order
plants, Machines 2 (3) (2014) 176–201, doi: 10.3390/machines2030176 . 

45] O. Miguel-Escrig, J.-A. Romero-Pérez, R. Sanchis-Llopis, Tuning PID controllers with symmetric send-on-delta
sampling strategy, J. Frankl. Inst. 357 (2) (2020) 832–862, doi: 10.1016/j.jfranklin.2019.10.008 . 
28 

http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0027
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0027
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0027
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0027
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0028
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0028
https://doi.org/10.1016/j.sigpro.2014.05.012
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0030
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0030
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0030
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0031
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0031
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0032
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0032
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0032
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0033
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0033
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0033
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0034
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0034
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0034
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0034
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0035
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0035
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0035
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0036
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0036
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0037
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0037
http://refhub.elsevier.com/S0016-0032(21)00206-4/sbref0037
https://doi.org/10.1007/978-1-84996-335-0
https://doi.org/10.1007/978-3-030-33934-0
https://doi.org/10.1016/j.ejcon.2020.06.005
https://doi.org/10.1016/j.isatra.2020.06.014
https://doi.org/10.1109/TFUZZ.2020.3031694
https://doi.org/10.1016/j.isatra.2010.09.003
https://doi.org/10.3390/machines2030176
https://doi.org/10.1016/j.jfranklin.2019.10.008

	Tuning procedure for event-based PI controllers under regular quantization with hysteresis
	1 Introduction
	2 Problem statement
	3 Tuning procedure for RQH based PI
	4 Design validation
	5 Conclusions
	6 Future works
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Validity of IE index
	Appendix B Flowchart of the tuning procedure
	References


