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Abstract: We discuss the Gaussian design of a device that controls the scale, in an anamorphic
fashion, of Fraunhofer diffraction patterns. The device uses two pairs of varifocal cylindrical
lenses. For spherical lenses, the optical powers can be predicted by using a previously known
high-level solution. We emphasize the anamorphic capabilities, by considering the case My = 1/
Mx. The proposed device does not introduce vignetting, and it does not alter the axial location
of the Fraunhofer diffraction patterns. Since the composing elements work at fixed inter-lens
separation, the device does not require mechanical compensation.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As pointed out by Abbe [1], under coherent illumination, image formation can be described in
terms of Fraunhofer diffraction patterns. The conditions for describing Fraunhofer diffraction
patterns, as Fourier spectra, are well described by Born and Wolf [2]. Under noncoherent
illumination, the conceptual use of the Fourier spectra is rightly credited to Duffieux [3].

It is convenient to distinguish the generation of virtual Fraunhofer diffraction patterns [4,
5], from the commonly described real Fraunhofer diffraction patterns, which are frequently
associated to the setups formed with identical lenses, separated by their focal length [6–9].

For spatial filtering operations, it is quite useful to be able to modify the scale of the Fraunhofer
diffraction patterns for coupling Fourier spectra with the physical size of the spatial filters. This
scaling operation is commonly implemented by axially displacing the input, under spherical
illumination. Trivially, this technique introduces vignetting effects [10]. It is relevant here to note
that for reducing the overall length of the optical processor, some writers have suggested to use
telephoto lenses [11, 12]. However, these proposed devices do not offer tunable magnification.

We note that other authors have recognized the usefulness of introducing anamorphic magnifi-
cations, when performing optical filtering techniques [13, 14]. For implementing anamorphic
processors, the optical setups usually have rather complex lens arrangements [15].

On the other hand, there are several relevant efforts for incorporating varifocal lenses, for
proposing novel optical systems [16–18]. Some of these optical systems do not require mechanical
compensation; as for example when implementing tunable magnifications with zero throw [19,20].

Here, we discuss a Gaussian design of a simple device, which can scale the Fraunhofer
diffraction pattern of any input masks. We note that the scaling operation can be anamorphic,
and that it does not alter the longitudinal position of the Fourier spectra. Hence, the proposed
device can be useful for coupling the size of Fourier spectra to the size of several spatial filters.
To our end, we follow a simple treatment, but we do recognize that if the lenses are spherical,
then the optical powers can be predicted by using a previously known, high-level solution [16].
However, we believe that we are discussing a novel application.

As shown in Fig. 1(a), we consider a classical optical processor. The composing lenses have
fixed optical powers, which are equal to K1. As depicted in Fig. 1(b), after the first lens, we
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locate two varifocal lenses, Λ2 and Λ3, respectively. The varifocal pair scales up the Fraunhofer
diffraction pattern. And in Fig. 1(c) we depict a scale down operation.

Fig. 1. Pictorial of a classical optical processor. In (a) an optical processing system with
fixed optical powers. In (b) a scaling down operation on the Fourier spectrum. And in (c) a
scaling up operation on the Fourier spectrum.

In section 2, we discuss the basics of the proposed device. In section 3 we specify the optical
powers of the composing elements, along the horizontal and the vertical directions, for generating
an anamorphic fitting operation. And in section 4, we summarize our contribution.

2. Zero throw tunable fitting

In Fig. 2, we depict the main paraxial variable of the proposed device. We consider a paraxial
ray, parallel to optical axis, from the object to the first lens, Λ1. If the height is y1, then after
refraction the paraxial angle reads

u1 = −K1 y1 <0. (1)

The selected paraxial ray impinges on the optical attachment, and after two consecutive refractions,
it emerges with an angle

u3 =
u1
M
= −

K1 y1
M

. (2)

In Eq. (2) we denote as M, the magnification needed for fitting the Fourier spectrum over a
given spatial filter.
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Fig. 2. Main paraxial variables describing the refraction at the two elements, Λ2 and Λ3
respectively, which compose the optical attachment.

It is apparent from Fig. 2 that

fB =
1

K1
− (d1 + d2) . (3)

Then, from Fig. 2 and from Eq. (3), we recognize that

u3 = −
y3
fB
=

y3
1 − K1(d1 + d2)

K1. (4)

We note that the heights, at the three elements are interrelated as follows

y3 = M2 ∗ y2 = M2 ∗ M1 ∗ y1 >0. (5)

Consequently, from Eqs. (2), (4), and (5) we obtain

M M1 ∗ M2 ∗ =1 − K1(d1 + d2). (6)

Now, as part of the upfront generic considerations, we recognize that the overall equivalent
optical power has a rather simple expression. From Fig. 2, we notice that the exit paraxial angle
u3 help us to relate the back focal length and the overall equivalent optical power. That is,

u3 = −K y1 = −M2 ∗ M1 ∗
y1
fB

;

K =
K1
M

.

(7)

From Eq. (7) we recognize that the zoom attachment modifies the overall equivalent optical power.
And since the object is at star space, then the zoom attachment also modifies the telephoto ratio

fB
f ′
=

K
K1
=

1
M

. (8)

As next discussed, the above relationships are sufficient for identifying the optical power of the
zoom components, as functions of the variable magnification M.

3. Optical powers for anamorphic scaling

For the sake of completeness in our discussion, in the appendix we summarized the approach in
references [19] and [20]. However, we note that these results can be obtained by applying the
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generic high-level description in Ref. [16]. Here, it suffices to indicated that by using paraxial,
ray tracing formulas and the condition on Eq. (6), one obtains the following optical powers, along
the horizontal directions

K2, x =

(︃
1 −

1
Mx

)︃ (︃
1
d2

)︃
1 − K1(d1 + d2)

1 − K1 d1
. (9)

K3, x = −(Mx − 1)
(︃

1
d2

)︃
1 − K1 d1

1 − K1(d1 + d2)
. (10)

In Fig. 3, we plot the Eqs. (7), (9) and (10) by setting K1 = 0.05 (1/cm), that is f1 = 20 (cm). And
the inter-lens separations are d1 = 7 (cm); d2= 7 (cm); and fB = 6 (cm).

Fig. 3. Optical powers as function of the scaling magnification M, in the interval 1.1 M
10. We plot K2 (in blue) and K3 (in black), K1 = 0.05 (1/cm), then f1 = 20 (cm), and the
inter-lens separations are d1 = 7 (cm); d2 = 7 (cm); and fB = 6 (cm).

It is apparent from Fig. 3, that one can sustain a tunable scaling operation, in the interval
1.1 ≤ Mx ≤10. For this operation, one needs an optical element with a moderate, positive
hyperbolic variation 0.0 (1/cm) ≤ K2,x ≤ 0.06 (1/cm). And a second element with a linear,
negative variation – 2.78 (1/cm) ≤ K3, x ≤ - 0.03 (1/cm).

Then, we recognize that the proposed device is useful for continuously scaling (along the
horizontal direction) the Fourier spectrum of an input picture, in the range 1.1 ≤ Mx ≤10; without
altering the location of the Fraunhofer diffraction pattern.

For emphasizing the anamorphic characteristics of the proposed device, we only consider the
following illustrative example, depicted in Fig. 4. Other cases are beyond our current scope. If
we set

My =
1

Mx
. (11)
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Fig. 4. Pictorial of a classical optical processor that uses one spherical lens, and two pairs
of varifocal lenses. This device implements a tunable, anamorphic scaling operation on the
Fourier spectrum.

Then, Eq. (9) becomes

K2, y = (1 − Mx)

(︃
1
d2

)︃
1 − K1(d1 + d2)

1 − K1 d1
. (12)

And Eq. (10) becomes

K3, y =

(︃
1 −

1
Mx

)︃ (︃
1
d2

)︃
1 − K1 d1

1 − K1(d1 + d2)
. (13)

In Fig. 4, we assume that the input is an in-plane rotated (say by an angle θ) cosinusoidal grating.
Then the Cartesian spatial frequencies are

µ =

(︃
Mx
λ

K1

)︃
x = cos(θ)

d ;

ν =

(︃
My
λ

K1

)︃
y = sin(θ)

d .

(14)

From Eq. (14) it is straightforward to obtain that

x2 + y2 =

(︃
λ

K1 d

)︃2
[︄(︃

1
Mx

)︃2
+

(︃
1

My

)︃2
]︄

. (15)

It is apparent, from Eq. (15), that the diffractions orders, of the Fourier spectrum, are now
located along an ellipse. In general, the major axis and the minor axis depend on the horizontal
magnification Mx, and the vertical magnification My, respectively. This is also true for the
condition stated in Eq. (11).
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4. Final remarks

We have proposed the use of an optical device that controls the scale of the Fourier spectrum,
without altering the axial location of the Fraunhofer diffraction pattern. For the scaling operation,
we have incorporated the following requirements, related to the use of a classical optical processor.
The input image is located at the front focal plane of an initial objective lens. And the Fourier
spectrum should remain located, at the back focal plane of the initial objective lens.

We have discussed the Gaussian design of an optical device that works in conjunction with the
initial objective lens. This device controls the scale of the Fourier spectrum, without altering the
axial location of the Fraunhofer diffraction pattern.

The have proposed to employ two varifocal lenses, with fixed interlens separation. Thus, the
device does not require of any mechanical compensation, while performing a continuous scaling
operation, with zero throw.

By using a simple paraxial approach, we have identified the analytical expressions describing
the optical powers, of the composing elements, as functions of the tunable magnification. However,
we have noted that if the varifocal lenses are spherical, the optical powers can be derived from
the higher-level treatment in reference [16].

We have recognized that even for large magnification values, the required optical powers have
feasible values.

We have illustrated the anamorphic capabilities of the proposed device, by considering the
variations of optical power with tunable magnification along the vertical axis and the horizontal
axis.

Appendix

For obtaining the required optical powers, in Eqs. (9) and (10) in the main text, it is convenient to
recognize that the input angle u1 is useful for identifying the first ratio M1*; that is

u1 = −K1 y1 = −(1 − M1∗)
y1
d1

;

M1 ∗ =1 − K1 d1.

(A1)

By substituting Eq. (A1) in Eq. (6) we note that the second ratio reads

M2∗ =

(︃
1
M

)︃
1 − K1(d1 + d2)

1 − K1d1
. (A2)

Next, we note that the intermediate angle u2 satisfies the two following expressions

u2 =
y3 − y2

d2
;

u2 =
y2 − y1

d1
− y2 K2.

(A3)

By substituting the ratios M1* and M2* in Eq. (A3) we obtain

(1 − M2∗)M1∗

d2
=

(1 − M1∗)

d1
+M1 ∗ K2. (A4)

And from Eq. (A4) we have that

K2 =
(1 − M2∗)

d2
−
(1 − M1∗)

M1 ∗ d1
. (A5)
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The result in Eq. (A5) is a full agreement with the result that can be obtained by applying Hopkinś
procedure [20], which is restricted to fixed optical powers. For extending Hopkinś procedure is
necessary to substitute Eqs. (A1) and (A2) in Eq. (A5). After doing so, we obtain the optical
power K2, as in Eq. (9) in the main text.

Next, we identify the optical power of the third element. To that end, we note that the final
angle u3 satisfies the two following expressions

u3 = −M2 ∗ M1 ∗
y1

fBack
;

u3 = −
(1−M2∗)M1∗y1

d2
− M2 ∗ M1 ∗ y1 K3.

(A6)

From Eqs. (A1), (A2), and (A6) we obtain

K3 = −
(1 − M2∗)

M2 ∗ d2
+

1
fBack

. (A7)

Again, the result in Eq. (A7) is a full agreement with the result obtained by applying Hopkinś
procedure [20]. And if one substitutes Eqs. (A1) and (A2) in Eq. (A7), we obtain the optical
power K3, as reported in Eq. (10) in the main text.
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