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Abstract: Background: Clinical Practice Guidelines (CPGs) include recommendations to optimize
patient care and thus have the potential to improve the quality and outcomes of healthcare. To
achieve this, CPG recommendations are usually formalized in terms of Computer-Interpretable
Guideline (CIG) languages. However, a clear understanding of CIG models may prove complicated,
due to the inherent complexity of CPGs and the specificities of CIG languages. Drawing a parallel
with the Business Process Management (BPM) and the Software Engineering fields, understandability
and modifiability of CIG models can be regarded as primary quality attributes, in order to facilitate
their validation, as well as their adaptation to accommodate evolving clinical evidence, by modelers
(typically teams made up of clinical and IT experts). This constitutes a novel approach in this area
of CIG development, where understandability and modifiability aspects have not been considered
to date. Objective: In this paper, we define a comprehensive set of process model metrics for CIGs
described in the PROforma CIG language, with the main objective of providing tools for quality
assessment of CIG models in this language. Methods: To this end, we first reinterpret a set of metrics
from the BPM field in terms of PROforma and then we define new metrics to capture the singularities
of PROforma models. Additionally, we report on a set of experiments to assess the relationship
between the structural and logical properties of CIG models, as measured by the proposed metrics,
and their understandability and modifiability from the point of view of modelers, both clinicians
and IT staff. For the analysis of the experiment results, we perform statistical analysis based on a
generalized linear mixed model with binary logistic regression. Results: Our contribution includes the
definition of a comprehensive set of metrics that allow measuring model quality aspects of PROforma
CIG models, the implementation of tools and algorithms to assess the metrics for PROforma models,
and the empirical validation of the proposed metrics as quality indicators. Conclusions: In light
of the results, we conclude that the proposed metrics can be of great value, as they capture the
PROforma-specific features in addition to those inspired by the general-purpose BPM metrics in the
literature. In particular, the newly defined metrics for PROforma prevail as statistically significant
when the whole CIG model is considered, which means that they better characterize its complexity.
Consequently, the proposed metrics can be used as quality indicators of the understandability, and
thereby maintainability, of PROforma CIGs.

Keywords: software models; process models; computer-interpretable guidelines; metrics; process
model quality

1. Introduction
1.1. Background

According to the most recent definition, trustworthy Clinical Practice Guidelines
(CPGs) are “statements that include recommendations intended to optimize patient care
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that are informed by a systematic review of evidence and an assessment of the benefits
and harms of alternative care options” [1]. Research has demonstrated that CPGs have the
potential to facilitate the translation of clinical research results into practice and to improve
the quality and outcomes of healthcare. To achieve these benefits, CPG recommendations
should be made available to clinicians where and when they are needed [2]. Although
this can be done using CPGs in their original text form, there is a consensus that the
most effective way is by converting them into a computer-interpretable format [3]. Thus,
Computer-Interpretable Guidelines (CIGs) can be defined as formalized versions of CPG
contents intended to be executed as part of decision-support systems.

It is well established that CPGs are difficult to comprehend and formalize [4]. CPG
texts can be semantically very complex, with rich content in knowledge of very varied type
(procedures, decision criteria, abstract concepts, etc.). In line with this, CIG representation
languages provide a wide range of modeling constructs tailored to these knowledge types.
This makes CIG languages poorly accessible and understandable for clinicians, in general.
As a result of these factors, the formalization of CPGs is usually carried out by joint teams
made up of clinical and IT experts. On the one hand, specialized clinical knowledge is
required for an adequate understanding of most of CPG contents. On the other hand,
knowledge engineering skills are necessary to analyse and identify the CPG contents
amenable to formalization, as well as to describe them in terms of the CIG language of
choice. Even with such a collaborative approach, a clear understanding of the final CIG
model may prove complicated, due to the inherent complexity of the CPG and to the
specificities of the CIG language, among other factors.

Against this background, the assessment of the understandability and modifiability
of CIG models gains special relevance. An important reference topic is comprehension of
business process models, given the similarities between the specific part of CIG languages
dedicated to procedural knowledge and Business Process Management (BPM) notations.
This parallelism has been recognized and exploited for some time in several works (see, e.g.,
in [5–7]). Understandability and modifiability of CIG models can be regarded as primary
quality attributes, in order to facilitate the validation of the model as well as its adaptation
to accommodate evolving clinical evidence.

In the BPM literature, several works deal with different aspects with an influence on
the understandability of process models. One of them is the heuristics of the so-called
Seven Process Modeling Guidelines [8]. Inspired by the long tradition in Software, other
works use metrics to capture the structural and logical complexity of process models and
analyze how the metric values relate to their understandability and modifiability [9]. In
this line, in a previous work [10] we analyzed the metrics proposed in the BPM area by
Mendling [11] and reinterpreted them in terms of a specific CIG language, PROforma [12].

PROforma provides a principled approach to modeling the logical and procedural
aspects of clinical decision making. It is a representative language of the so-called Task-
Network Model (TNM) approach [2], which consists in describing guidelines in terms of a
hierarchical decomposition of networks of component tasks. A highly distinctive feature of
CIG languages lies in the model used to represent decision-making policies. In this regard,
PROforma is characterized by the use of a decision model based on argumentation logic.
PROforma stands out for having multiple positive assessments in clinical settings [13].
Among these, quantitative trials have been carried out which have demonstrated positive
effects of the PROforma systems in healthcare outcomes [14].

In this paper, we take a step further and define a comprehensive set of process
model metrics for CIGs described in the PROforma language, with the main objective
of providing tools for quality assessment of CIG models. Note that we focus on process
model metrics for PROforma CIGs, rather than on the modeling thereof. The proposed
metrics not only encompass process model aspects considered in the BPM field, but also
others that take into account the specificities of PROforma models, including the richness
of the description of decision logics and the intensive use of hierarchical decomposition
of tasks. In addition, we report on a set of experiments to assess the relationship between
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the structural and logical properties of CIG models, as measured by the proposed metrics,
and their understandability and modifiability. Importantly, we are concerned with the
understandability and modifiability of PROforma CIGs from the point of view of modelers
in general, i.e., both clinicians and IT experts with an adequate training in the language.

1.2. Related Work

CIG quality is a crucial aspect that can be considered from different perspectives. In
the medical field, there is a concern about how to evaluate the quality of CPG documents as
well as how these documents can meet certain quality standards. A number of tools have
been developed for this purpose, e.g., instruments to assess the quality of both the CPG
development process and the CPGs themselves [15], and approaches for rating the strength
of CPG recommendations and the quality of the evidence supporting them [16]. We shall
not dwell further on the quality of CPGs, as it is outside of the scope of our work. Focusing
on CIG quality aspects, it is imperative to consider the topic of Software Quality Assurance
(SQA), in addition to the above-mentioned topic of business process model comprehension.

SQA is concerned with ensuring and demonstrating that a software system satisfies
the needs and requirements of the customer, and that it will continue to satisfy them in the
future [17]. The latter involves aspects such as the ease to fix the software and to adapt it to
new requirements. Starting in the late seventies, several frameworks have been proposed
defining the fundamental characteristics to evaluate the quality of software [18]. Modifia-
bility (or flexibility), defined as the degree to which the code facilitates the incorporation
of changes, appears in McCall’s quality model already in 1977. Boehm’s model improves
McCall’s one adding characteristics such as understandability (or recognizability), defined
as the degree to which the software allows users to recognize whether it is appropriate
for their needs. Stressing the importance of customer satisfaction, the newest ISO 25010
quality model [19] defines a quality in use model separate from the product quality model [20].
The latter encompasses eight software quality characteristics and 31 sub-characteristics,
including the modifiability and understandability.

Verification & Validation (V&V) activities are central to SQA [20]. Verification aims
to determine whether the software product under construction matches its specification
(i.e., building the product right), while the goal of validation is to determine whether the
software satisfies the needs of the customer (i.e., building the right product). Verification is
usually performed by examining descriptions of the software (e.g., requirements, speci-
fications, and code), while validation relies on testing the software in execution. Testing
should be performed throughout the software development process, and not only at the
end of it [20]. If this is done, testing can uncover problems in specifications or errors
prior to the delivery of the final software. However, it may be difficult to ensure that a
software is correct using testing, e.g., due to the huge number of test cases required, or due
to ill-defined requirements. In such cases, verification based on reviews and inspections
involving the customer play a fundamental role. Formal methods can also be used to verify
that a software will operate correctly, by means of mathematical tools to model a system
and check that this model fulfills a series of desirable properties. Additionally, there is a
long tradition of using software metrics to evaluate the quality of design, with the aim of
detecting certain maintainability issues.

With regard to the latter topic, several works propose metrics to evaluate different
quality aspects regarding the characteristics of software and business process models.
Canfora et al. [21] propose a set of metrics for software process models and describe
a family of experiments conducted to validate if these metrics are suitable as model
quality indicators. In particular, the authors focus on the three sub-characteristics of
maintainability: analyzability, understandability, and modifiability. The metrics are based
on the main elements represented in a software process model, and include, e.g., number
of activities or ratio of work products and activities. The conclusions of the experiments
indicate that these metrics are good maintainability indicators. In the BPM field, several
works related to the quality of business process models have been published recently.
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Mendling [11] analyzed different metrics from the areas of network analysis, Software
Engineering, and BPM, and proposed a set of 15 metrics that deal with different aspects of
the structure and space state of the process model. Sánchez-González et al. [22] adapted
these metrics to the OMG standard Business Process Modelling and Notation (BPMN) and
performed a series of experiments with exercises aimed to analyze the correlation between
correct answers and metric values. Recently, Hasić and Vanthienen have done a similar
work by defining a set of metrics for the new OMG standard Decision Model and Notation
(DMN), intended to complement BPMN with the modeling of decisions [23]. These works
are in line with the general viewpoint in the Software Engineering field, where there is a
range of frameworks addressing the quality of conceptual models [24]. Moody argues that
one of the major obstacles hindering the use of this kind of metrics is in many cases the
lack of empirical evidence to support them, despite the fact that it is needed to promote
their acceptance in practice [24].

In the case of CIGs, we can say that clinical experts are the customers and CPG texts
constitute the requirements [2]. Validation and verification of CIG models are usually
performed by clinical experts assisted by knowledge engineers. Validation in general
includes testing the CIG with different patient data values (simulated or real) to check
whether the resulting recommendations are as anticipated by the CPG (and the clinical
experts). Additionally, clinical experts can inspect the CIG trying to detect flaws in the
implemented logic. This inspection extends to the different CPG properties and indicators
that have been defined and formalized, if any. With respect to verification, there are two
main lines of work: proving that the CIG is consistent and free of anomalies, and proving
that it satisfies a set of desirable properties [2]. The latter has been done using formal
verification methods, including theorem proving [25] and model checking [26]. Our work
is placed in the context of CIG quality assurance and complements previous work in this
area. With respect to the BPM area, our work has roots in the previously defined BPMN
metrics and is an effort parallel to the definition of metrics for the DMN standard. Even
when a CIG is internally consistent, free of anomalies, and satisfies a set of predefined
properties, there exist quality aspects related to the process models that might be interesting
to quantify to determine if those models are easily understandable and modifiable.

2. Materials and Methods
2.1. The PROforma Language

PROforma [12] is a formal knowledge representation language tailored to capture
clinical knowledge. It is a well-established language which has been (and is still being)
successfully used for the deployment and execution of clinical guidelines models [13,14,27].
PROforma is supported by several software tools, including an execution engine and
different editing environments. It was designed with the aim to integrate into clinical
process descriptions an explicit model of decision-making, with an expressivity and level
of detail that BPM languages lack [14]. Recent work by the OMG aims to complement
the BPMN notation providing support for the description of cases (CMMN) and business
decisions and rules (DMN) [28,29]. However, DMN does not allow for the possibility of
combining arguments for and against a hypothesis (or candidate) to derive a decision,
as PROforma does (see below). This feature is particularly suitable for clinical decision-
making, which makes PROforma the preferable option over BPM languages.

In PROforma, a guideline is modeled as a plan made up of one or more tasks. There
are four types of tasks: actions, enquiries, decisions, and plans. An action corresponds to an
activity (e.g., a clinical procedure) to be performed by an external agent. An inquiry is a
task that acquires information, i.e., the value of one or more data items or sources, from the
external environment (e.g., clinician and databases). A decision is a task that represents a
choice among different candidates (e.g., low or high risk level). Finally, a plan is a container
that can be used to group together a set of other tasks. As a plan may contain in turn other
nested plans, PROforma allows the definition of hierarchical task networks. The tasks
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within a plan are usually ordered via scheduling constraints and/or different kinds of task
conditions. If none are given, a parallel execution of tasks is assumed.

In the PROforma graphical notation, CIGs are depicted as directed graphs in which
nodes represent tasks and arcs represent scheduling constraints. In this notation, the shape
of the nodes indicates the task type: squares are used for actions, circles for decisions,
diamonds for inquiries, and round-edged rectangles for plans. In the case of scheduling
constraints, the arc indicates that the task at the head of the arc cannot start until the task at
the tail of the arc (antecedent task) has completed. An example of PROforma graph can be
found in Figure 1.

Figure 1. Top-level plan of Asthma PROforma CIG. Squares are used for actions, circles for decisions,
diamonds for inquiries, and round-edged rectangles for plans. This CIG is represented as a directed
graph with nodes of different shapes: squares for actions, circles for decisions, diamonds for inquiries,
and round-edged rectangles for plans.

More specifically, the execution of a PROforma CIG evolves as follows. A task can
only be considered for activation when all its scheduling constraints have been met, i.e.,
when all its antecedent tasks have been either completed or discarded. In that case, the
task will be activated if at least one of the antecedent tasks has completed; otherwise, it
will be discarded. Tasks may also have different types of conditions imposing additional
constraints to be met before activation, including preconditions and wait conditions. Both are
truth-valued expressions that are checked when the scheduling constraints are met. In the
case of preconditions, the task will be activated if the precondition holds; otherwise, it will
be discarded and will not be considered again. In the case of wait conditions, the task will
remain dormant until the condition is met, with the possibility of a subsequent reactivation
if the condition is met again. For more details on PROforma, see the OpenClinical.net
(accessed on 29 April 2020) resources [30].

The specification of PROforma decisions requires additional attributes, apart from the
associated candidates. Notably, each candidate can have one or more arguments, which
are truth-valued expressions that determine the choice of that candidate. These expres-
sions usually describe the arguments for (in favor) or against the candidate. Additionally,
each candidate has a recommendation rule, which is an expression that is used to calculate
the support for the candidate considering all its arguments. Finally, the choice mode,
single or multiple, determines how many candidates can be recommended by the de-
cision. As an illustration, Figure 2 shows the PROforma code of the task Age between
5–15 Decision from Figure 1. This decision has two candidates: age_between_5_and_15 and
age_not_between_5_and_15. Each candidate has one argument with a condition to confirm
the corresponding candidate and a recommendation rule that establishes that this candidate
will be selected when it is supported by at least one argument. This decision task has both
a scheduling constraint and a precondition. This implies that it will be activated only when
the antecedent task has completed, whenever the expression in the precondition holds.

OpenClinical.net
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decision :: ’dec_age_5_15’ ;
caption :: ’Age between 5-15 Decision’ ;
precondition :: result_of(dec_age_15) = age_not_greater_than_15;
candidate :: ’age_between_5_and_15’ ;
argument :: confirming,(Age >= 5 and Age <= 15) attributes
argument_name :: ’ ( age >= 5 AND age =< 15 ) ’ ;
end attributes
;
recommendation :: Netsupport( dec_age_5_15, age_between_5_and_15 ) >= 1 ;
candidate :: ’age_not_between_5_and_15’ ;
argument :: confirming,(Age < 5) attributes
argument_name :: ’ ( age < 5 ) ’ ;
end attributes
;
recommendation :: Netsupport( dec_age_5_15, age_not_between_5_and_15 ) >= 1;
end decision.

Figure 2. PROforma task “age between 5–15 decision”.

2.2. Metrics for the Evaluation of PROforma Models

In this section, we describe the metrics we propose to assess quality aspects of CIGs
modeled in PROforma related to their understandability and modifiability. Note that a
high (respectively, low) metric value does not necessarily imply that the model is low
(high) quality. Instead, given two equivalent models, the metric value could identify
which model is the least understandable and therefore error-prone. Our starting point
is the set of 15 metrics proposed by Mendling [11] dealing with different aspects of the
structure and the space state of a process model: size, coupling, cohesion, complexity, and
modularity. The size aspect measures how big the process is or how many elements it has.
Coupling deals with the number of interconnections among the different modules of the
process model, the density of these interconnections, and how complex they are. Cohesion
measures the relationship among the elements inside a module. Complexity deals with the
simplicity of the process models, usually related to the number of control flows and the
number of modules of the process. Finally, modularity measures to what extent a process
can be separated into different parts or modules. These 15 metrics have been adapted
to the BPMN language and validated by Sanchez-Gonzalez [22]. In order to reinterpret
them in terms of PROforma, first we need to consider the main differences between both
formalisms. Moreover, it is crucial to consider the specific types of knowledge typically
contained in CPGs. Taking into account both aspects, we have reinterpreted the original
metrics by Mendling, and further we have defined new PROforma-specific ones, as we
explain in this section.

Mendling et al. [11] considered the process model as a graph G = (N, A), where N is
the set of nodes and A is the set of arcs connecting those nodes, A ⊆ N × N. We have also
considered a PROforma model as a graph, where the tasks correspond to nodes and the
scheduling constraints correspond to arcs. Clinical processes included in guidelines do not
usually contain unstructured loops. Then, we have ruled out the possibility of arbitrary
cycles in the process model graph. As a matter of fact, the PROforma editor warns about
graph cycles.

In BPMN there are different types of nodes: tasks, split connectors, and join connectors.
In contrast, PROforma does not have connector nodes properly speaking. Instead, we
have considered any task (node) with more than one incoming or more than one outgoing
scheduling constraint (arc) as a connector node. Accordingly, if the number of outgoing
arcs is greater than one, we talk about split connectors, and, if the number of incoming
arcs is greater than one, they are join connectors. In BPMN, parallel, exclusive or inclusive
split connectors are explicitly distinguished, regarding the behavior of the split node on the
number of available paths taken (all, one or variable, respectively). However, in PROforma,
we do not make any difference among split connectors regarding their behavior as it is not
possible to determine it from the node. For example, if the connector node is a PROforma
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decision task, its actual behavior (parallel, exclusive or inclusive) is determined not only by
the result of the decision but also by the preconditions of the subsequent tasks.

One of the distinctive features of PROforma is decision tasks. According to our
experience, decisions tasks can be very complex, and therefore their use can have a negative
impact in the understandability of the process model. For this reason, we have considered
to define new metrics to study their impact in the quality of the model.

PROforma is a hierarchical task network language, and therefore plans are also a key
feature of the models. A plan is a task that acts as a container for other tasks, which are
grouped together to achieve a particular goal. Although BPMN allows for subprocesses, the
set of metrics by Mendling [11] does not consider this feature. Notice that the use of plans is
related to modularity, which is a key principle to deal with complex processes and usually
it facilitates the understandability of complex models [31]. However, the decomposition of
a process into plans depends on the knowledge engineer criteria, and as Reijers et al. [31]
argued, there is no objective benchmark on how to use it. Moreover, it seems that when
the process logic is fragmented across several sub-plans, decomposition might become a
drawback instead of a benefit. For that reason, we have defined new metrics to study their
effect in the understandability and modifiability aspects of the model.

Therefore, considering the differences between PROforma models and BPMN mod-
els described in the preceding paragraphs, we have redefined the initial set of metrics
as follows:

• We have not considered the cyclicity metric, since we have ruled out the possibility of
arbitrary cycles (see above).

• We have referred to connectors instead of to gateways in the following metrics: av-
erage connector degree (Section 2.2.2), maximum connector degree (Section 2.2.2),
and connector mismatch (Section 2.2.4). In the calculation of the token split met-
ric (Section 2.2.5), we have also simplified the join connectors, having a single type
instead of distinguishing between AND, OR, and XOR joins.

• We have not considered the behavior of the different split nodes. For that reason, we
have ruled out the gateway heterogeneity metric that measures the type entropy of
the gateways. Besides, the metrics connector mismatch and control flow complexity
(Section 2.2.4) have been redefined considering that all the split connector nodes have
the same behavior.

Moreover, we have also defined new metrics in order to consider the specific charac-
teristics of PROforma. First, in order to capture the impact of decisions in the complexity
of the model, we have formulated the following new metrics: number of decisions, density
of decisions, and number of preconditions.

Second, the use of plans in the clinical processes modeled with PROforma has several
implications regarding the metrics and also brings about the definition of new metrics:

• Whenever there is more than one start task (i.e., tasks without any incoming schedul-
ing constraint) and/or more than one end task (i.e., tasks without any outgoing
scheduling constraint) in a plan, we have considered an implicit parallel split and/or
join within the plan. Accordingly, dummy components (tasks and scheduling con-
straints) have been incorporated to account for these implicit splits and/or joints.

• We have defined some metrics in order to determine the effect of plans and their size
in the quality of the model: number of plans, density of plans, average size of a plan,
plans with a single task, and plans with a size above the average.

• For each metric, we have defined an aggregation method of the values obtained for
every graph that is part of the model (see Section 2.2.6). These metrics provide a more
comprehensive characterization of the entire model.

The complete collection of metrics for PROforma models is described below, providing
a formula for those metrics that do not correspond to a single observable value. We have
subdivided the set of metrics into the following six categories: size, density, partitionability,
connector interplay, concurrency, and aggregation.
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The elements within a PROforma plan have been represented as a directed
graph (G) where tasks are nodes and scheduling constraints are arcs. We have used the
following notation:

• N: set of nodes—actions, inquiries, decisions, and plans—(see Figure 1 for examples
of each one of these elements),

• A: set of arcs, i.e., scheduling constraints between a pair of tasks,
• P: set of plans, i.e., nodes that correspond to PROforma plans,
• CT: set of all connector tasks, i.e., nodes with more than one incoming arc and nodes

with more than one outgoing arc,
• NCT: set of all non-connector tasks (NCT = N − CT).
• SCT: set of split connector tasks.
• JCT: set of join connector tasks (CT = SCT + JCT).

In the formulas that follow, unless otherwise indicated, N, A, P, CT, NCT, SCT, and
JCT refer to the corresponding sets of a single graph (plan) and not to the entire model.

2.2.1. Size Metrics

Size is usually an important factor in the understandability of process models. Usually
size is related to the number of nodes N. Furthermore, we have considered the diameter
of the process graph, the number of arcs or scheduling constraints, and the new metric
number of plans.

• Size, SN : the number of tasks (nodes) in the graph.

SN(G) = |N|

• Arcs, SA: the number of scheduling constraints in the graph

SA(G) = |A|

• Diameter, diam: length of the longest path from a start task to an end task in the graph.
• Number of plans, SP: the number of tasks in the graph that correspond to plans.

SP(G) = |P|

2.2.2. Density Metrics

We have used density as a generic term to refer to any metric that relates the quantity
of two elements of the graph. In this category fall the metrics density, coefficient of
connectivity, average connector degree, and maximum connector degree. Moreover, the
newly defined metrics related to plans and decisions also fall in this category: density of
plans, percentage of single-node plans, average size of a plan, percentage of plans whose
size is above average size, and decision density.

• Density, ∆: it measures how far or close is the number of arcs to the maximal number
of arcs. It is computed as the ratio of scheduling constraints to the maximum number
of scheduling constraints.

∆(G) =
|A|

|N| · (|N| − 1)

• Coefficient of connectivity, CNC: it is a measure of how dense is the graph regarding the
number of connections. It is computed as the ratio of scheduling constraints to tasks.

CNC(G) =
|A|
|N|

• Average connector degree, dC: it is a measure of the number of nodes a connector
is in average connected to. It is computed as the average number of scheduling
constraints of connector tasks, where d(c) is the number of scheduling constraints
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of the connector task c. The metric considers both the incoming and the outgoing
scheduling constraints.

dC(G) =
1
|CT| ∑

c∈CT
d(c)

• Maximum connector degree, d̂C: it is the maximum number of nodes a connector is
connected to. It is computed as the maximum number of scheduling constraints of
connector tasks. As in the previous metric, all scheduling constraints are included.

d̂C(G) = max{d(c)/c ∈ CT}

• Density of plans, p: it measures the level of clustering in a process model. It quantifies
how many among the total number of tasks in the graph are plans, and it is computed
as the ratio of the number of plans to the total number of tasks of the graph.

p(G) =
SP(G)

SN(G)

• Percentage of single-node plans, p1%: it is a measure of how fragmented is the model
respect to single-node plans. Single-node plans capture excessive fragmentation. This
metric is computed as the ratio of plans that contain a single node to the total number
of plans.

p1% =
|{p ∈ P/SN(Gp) = 1}|

|P|
where Gp is the graph representing the content of plan p. In this metric, P denotes the
set of plans of the entire model (not a single graph).

• Average size of a plan, t: t is a measure of how dense is a plan. That is, how many tasks
plans have on average. In order to compute it, we have consider the size of all the
plans of the model (P).

t =
1
|P|

|P|

∑
i=1
|SN(Gi)|

• Percentage of plans whose size is above average size, p50%: it is measure of how homoge-
neous plans are in size. It is computed as the number of plans whose size is above
average (see previous metric) to the total number of plans.

p50% =
|{p ∈ P/|SN(Gp)| > t}|

|P|

• Decision density, δD: it is a measure of how dense is the graph respect to this specific
PROforma element. It is computed as the ratio of the number of nodes that correspond
to decisions to the total number of tasks in the graph. The number of decisions, SD, is
a new metric described in Section 2.2.4.

δD(G) = SD(G)/SN(G)

Note that the metrics related to the density of the plans (average size, percentage of
single-node plans, and percentage of plans of size above average) are not defined for a
single plan (graph) but for the full model.

2.2.3. Partitionability Metrics

Partitionability is used for referring to the relationship of subcomponents to the overall
model. Within this category are the metrics separability, sequentiality, structuredness,
depth, and the new metric model depth.
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• Separability, Π: it tries to capture how far certain parts of the model can be considered
in isolation. An increase in the value of this metric might imply a simpler model. It is
computed as the ratio of cut vertices to tasks. A cut vertex (or articulation point) is a
node whose deletion separates the graph into several components.

Π(G) =
|{n ∈ N/n is a cut vertex}|

|N| − 2

• Sequentiality, Ξ: it measures how sequential is a plan. This metric relates to the fact
that sequences of nodes are the most simple components in a graph. It is calculated
as the ratio of the maximum possible number of scheduling constraints between
non-connector tasks to the total number of scheduling constraints.

Ξ(G) =
|A ∩ (NCT × NCT)|

|A|

• Structuredness, φ: it measures how far a process model is made of nesting blocks
of matching join and split connectors. For this metric, it is necessary to obtain the
reduced process graph applying the graph reduction rules defined by Mendling [11].
Structuredness is computed as one minus the number of tasks in the reduced process
graph, |N′|, divided by the number of tasks in the original process graph. The
structuredness value for a structured graph is 1.

φ = 1− |N
′|
|N|

• Depth, Λ: it is related to the maximum nesting of structured blocks in a graph. It is
computed as the maximum depth of all nodes, where the depth of a node λ(n) is
calculated as the minimum of the in-depth and out-depth of the node. The in-depth
λin(n) refers to the maximum number of split connectors that must be traversed in
a path reaching the node from the start node, minus the number of join connectors
in the same path. The out-depth λout(c) is defined analogously with respect to the
end node.

Λ(G) = max{λ(n)/n ∈ N}

• Model depth, Υ: it computes the maximum nesting of a task in the hierarchy of plans.
Starting at the top-level plan, where it would be initialized to 1, each time the process
logic traverses a plan, it would be increased by one. Therefore, it can be defined as the
maximum number of plans that it is necessary to descend to reach a task. We define
the model depth of a task t recursively as follows (notice that in PROforma, plans are
a type of tasks).

modelDepth(t) = 1, t ∈ top_level plan

modelDepth(t) =1 + modelDepth(p),

t 6∈ top_level plan, t ∈ p, p ∈ P

Υ = maximum(modelDepth(t)) ∀t

Note that this latter metric is different from the depth metric that considers the
nesting of a task in a graph with respect to the split/join connections traversed. In
contrast, model depth measures the nesting of a task considering the hierarchy of
graphs. Although it is possible to compute the model depth of any plan, we have only
considered the model depth metric of the top-level plan (full model).
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2.2.4. Connector Interplay Metrics

This section presents the metrics related to connectors and their interplay, in partic-
ular, connector mismatch and control flow complexity metrics. As the behavior of some
connectors in PROforma depends on the result of the decisions and on the preconditions of
the tasks, we have included two new metrics in this category: number of decisions and
number of preconditions.

• Connector mismatch, MM: this metric relates to the structuredness of the model, as this
property implies that each split connector matches a corresponding join connector.
The metric counts the number of mismatches of connector tasks, i.e., number of split
connector tasks that do not have a corresponding join connector task. Since we do not
have different split/join connectors, it is calculated as the difference between the sizes
of both sets:

MM = ||SCT| − |JCT||

• Control flow complexity, CFC: it tries to measure how difficult is to consider all potential
states after a split connector. It is computed as the sum of all split connectors tasks
(SCT) weighted by the potential combinations of states after the split, i.e., 2dout(c) − 1
where dout(c) is the number of outgoing scheduling constraints of the connector task
c. Notice that in our models all connectors are considered or-connectors, the worst
case scenario for a split connector.

CFC(G) = ∑
c∈SCT

(2dout(c) − 1)

• Number of decisions SD: In some cases, the behavior of some connectors depends on
the result of decisions. This metric calculates the number of nodes of the graph that
correspond to PROforma decision tasks.

• Number of preconditions, SPrecond: Related with the previous metric, the complexity
of control flows is increased if they have preconditions to be evaluated. This metric
counts the number of preconditions in the graph.

2.2.5. Concurrency Metrics

It is necessary to keep track of how many concurrent paths are in the graph in order
to synchronize them. Split connectors tasks could potentially introduce new threads of
control. This is measured by the token split metric. Concurrent paths introduced from the
beginning (not by split connectors tasks) are not considered.

• Token split, TS: sum of output degrees minus 1 of all split connector tasks (SCT).

TS(G) = ∑
c∈SCT

(dout(c)− 1)

2.2.6. Aggregation Metrics

PROforma is a hierarchical task network language, therefore a CIG is represented
in PROforma as a hierarchy of plans. Accordingly, for each metric we have defined an
aggregation to better characterize the full model, except in the case of metrics which already
consider all the graphs of the model (i.e., model depth and the metrics related to the size
of plans). Hereinafter, these metrics will be referred as full-model metrics, while the ones
computed for a single graph will be referred as single-graph metrics.

We have used different aggregation formula depending on the metric as shown in
Table 1. For those metrics that count a particular element of the graph or of the PROforma
language, namely, nodes, arcs, plans, decisions, and preconditions, the aggregation metric
has been defined as the sum of the values. In the case of the diameter metric within the
size category, the aggregation metric has been calculated as weighted average with respect
to the number of nodes of each graph.
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Table 1. Aggregation formula for the different graph metrics.

Metric Aggregation Calculated as

Size SN Sum of values
Number of arcs SA Sum of values
Diameter diam Weighted average of values
Number of plans SP Sum of values
Density ∆ Weighted average of values
Coefficient of connectivity CNC Average of values
Average connector degree dC Weighted average of values
Maximum connector degree d̂(c) Maximum of values
Density of plans p Average of values
Decision density δD Average of values
Separability Π Weighted average of values
Sequentiality Ξ Weighted average of values
Structuredness φ Weighted average of values
Depth Λ Weighted average of values
Connector mismatch MM Weighted average of values
Control flow complexity CFC Weighted average of values
Number of decisions SD Sum of values
Number of preconditions SPrecond Sum of values
Token split TS Weighted average of values

For some of the metrics that refer to densities, their aggregation has been defined as
the average of the values. This is the case of the metrics coefficient of connectivity, density
of plans, and decision density. However, in most cases, the aggregation of the metric has
been computed as a weighted average. For example, in the case of the average connector
degree metric, the aggregation has been calculated as a weighted average with respect
to the number of connector nodes in each graph. Or, in the case of the depth metric, the
weights are the number of nodes of every graph. However, the maximum connector degree
has been obtained as the maximum over all maximum values.

The aggregation of the metrics in the partitionability category has been computed as a
weighted average with respect to the number of nodes, except for the sequentiality metric
where we have used as weight the sum of the number of nodes and the number of arcs.
Finally, the aggregation of the metrics connector mismatch and control flow complexity
in the connector interplay category and the metric in the concurrency category have been
computed as weighted averages with respect to the number of split connector nodes in
each graph.

Table 2 presents the values of the metrics for a PROforma CIG for the assessment
and treatment of asthma. The second column displays the values for the top-level plan
shown in Figure 1, i.e., single-graph metrics. The third column presents the values of the
full-model metrics.
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Table 2. Metric values for the Asthma CIG: the first column (Graph) shows the results for the
top-level plan in Figure 1, while the second column (Model) shows the results for the full-model
metrics. NB: BPM metrics reinterpreted for PROforma are marked with (*), the rest are PROforma-
specific metrics.

Metric Graph Model

Size * SN 7 46
Number of arcs * SA 6 44
Diameter * diam 4 5.15
Number of plans SP 3 10
Density * ∆ 0.14 0.16
Coefficient of connectivity * CNC 0.86 0.51
Average connector degree * dC 3.00 2.79
Maximum connector degree * d̂(c) 3 4
Density of plans p 0.43 0.22
Percentage of single-node plans p1% n/a 0.27
Average size of a plan t n/a 4.18
Percentage of plans of size above average p50% n/a 0.27
Decision density δD 0.29 0.17
Separability * Π 0.6 0.38
Sequentiality * Ξ 0.17 0.16
Structuredness * φ 1 0.73
Depth * Λ 2 1.43
Model depth Υ n/a 5
Connector mismatch * MM 2 0.61
Control flow complexity * CFC 6 10
Number of decisions SD 2 13
Number of preconditions SPrecond 4 19
Token split * TS 2 4.62

3. Experiments
3.1. Experimental Setting

As mentioned before, CIG models must be easy to maintain, to incorporate changes
or to correct errors. Their design must facilitate their comprehension by modelers enabling
them to easily find missing aspects or to include new findings. According to ISO 25010
quality model [19], modifiability and analyzability are two of the sub-characteristics of
maintainability defined to assess the quality of systems and software products. Therefore,
we have selected these characteristics to assess the quality of CIG models represented using
the PROforma language. In this light, we have conducted an experiment to determine
whether the proposed metrics are in correlation with the analyzability and modifiability
of PROforma models and, consequently, whether these metrics can be used as quality
indicators of PROforma models.

To design the experiment, we have considered different works focused on the assess-
ment of metrics for modeling languages from other domains, such as Software Process
Models [21], Entity–Relationship Diagrams [32], or Business Process Models [22]. Specifi-
cally, we have used the experimentation method proposed in Wohlin [33]. We have not
considered works related to metrics for assessment of source code quality due to the ev-
ident differences between imperative programming and CIGs in PROforma. The next
subsections describe the steps followed to prepare and carry out the experiment.

3.1.1. Scoping

Scoping includes the definition of the experiment and the identification of its goals.
Regarding the experiment definition, we have defined a set of exercises of different types
and varying complexity, to be solved by modelers, as done in similar works [22,32]. The
exercises are related to PROforma CIGs based on guidelines from different medical spe-
cialties and developed by independent teams, to increase the diversity in the sample. The
goal of the experiment has been defined similarly to the Goal/Question/Metric Method by
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Basili [34]: to assess PROforma metrics, with the purpose of validating if they report on quality
indicators with respect to analyzability and modifiability, from the point of view of modelers, and in
the context of modellers with different skill levels.

3.1.2. Planning

Planning consists in identifying the subjects, preparing the material, specifying how
the experiment is going to be performed and formulating the hypothesis. The subjects
participating in the experiments were 13 people with different expertise profiles in the field
of PROforma modeling, including members of our research group and graduate students,
all of them with an IT background. The material used includes both the PROforma models
and the exercises. Table 3 lists the PROforma models used. Except for the CHF and
COPD ones, which were developed by our research group, the models come from the
OpenClinical.net repository [30] and have been developed by independent modellers. Most
of the models are based on guidelines from well-recognized international organizations (see
Source guideline column in Table 3). Thus, our experiment included guidelines developed
by a wide range of medical institutions: the British Thoracic Society (BTC), the Scottish
Intercollegiate Guidelines Network (SIGN), the European Society of Cardiology (ESC), the
Global Initiative for Chronic Obstructive Lung Disease (GOLD), the American College of
Chest Physicians (ACCP), the UK National Institute for Health and Care Excellence (NICE),
the New England Medical Center from the US (NEMC), and the Accident Compensation
Corporation from New Zealand (ACC).

Table 3. PROforma models used in the experiment.

Model Goal Source Guideline Size

Asthma Assessment and treatment of asthma in adults
and children BTS/SIGN (UK) 46

CHF Diagnosis and treatment of chronic heart failure ESC (EU) 89

COPD Diagnosis, management, and prevention of
chronic obstructive pulmonary disease GOLD (worldwide) 57

Cough Diagnosis and treatment of chronic cough ACCP (US) 28
CRcaTriage Colorectal referral and diagnostic NICE (UK) 7
Depression Management of depression in primary care NEMC (US) 18
Dyspepsia Differential diagnosis of dyspepsia N/A 4
HeadInjury Work-up and management of acute head injury NICE (UK) 34
IBME_TB Screening for tuberculosis unknown 14

Statins Management of patients at elevated risk of
coronary heart disease using statins NICE (UK) 24

STIK Assessment, investigation and management of
soft-tissue injury of the knee ACC (NZ) 26

The exercises consisted in questions or tasks, specifically defined for each PROforma
model, to be solved by the subjects. The exercises were designed to reflect the analyzability
and modifiability characteristics; therefore, they were classified into the Analysis and
Modifiability categories (Type). Analysis exercises are those dealing with understanding the
logical structure and/or the dynamic behavior of the model, and are usually formulated
in terms of questions, e.g., about the results of model execution. Modifiability exercises
are those where specific model changes are requested based upon a set of requirements.
As mentioned before, it was intended that the exercises had different levels of complexity.
Accordingly, we agreed that the exercises should fall in the categories Trivial, Average, and
Substantial (Difficulty). Once the subjects have solved the exercises, the solutions must be
rated. To this end, we initially planned to use the grades Correct (C), Partially Incorrect
(PI), in case of minor flaws, or Incorrect (I).

As an illustration of the exercises designed, below are given an analyzability exercise
and a modifiability one, both related to the top-level plan of Asthma CIG (see Figure 1).
The two exercises were classified as trivial (T) in complexity:
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Asthma CIG, worksheet #2, exercise #1, part (a)
In the Top-level Plan, would it be possible to omit the decision “Age Decision” and arrange
the rest of the tasks so that the overall behavior of the plan remains the same?

Asthma CIG, worksheet #2, exercise #1, part (b)
If so, modify the plan accordingly and make sure that the execution traces are compatible
with the ones obtained before the changes.

In the specification of how the experiment was going to be performed, we determined
that, among the subjects, the researchers also had to participate preparing materials and
exercises in the planning phase. Each participating researcher formulated different sets
of exercises (or worksheets), most of them based on a specific PROforma model. The
preparation of the worksheets included not only the wording of the exercises but also
their classification in terms of type and complexity. These aspects were reviewed and
validated by the most experienced modelers of the group. A total of 117 different exercises
were formulated, grouped in 18 worksheets with 5–6 exercises each on average, with the
exception of one worksheet which comprised 17 exercises.

Additionally, we determined that each subject had to participate in the operation
phase solving the exercises proposed by the other participants and rating the solutions
of the ones she/he had proposed. Needless to say, neither the participants answered the
exercises they proposed, nor rated their own solutions to the exercises by others. More
details of the operation step are included in the next subsection.

Finally, taking into account the goal of the experiment, the null hypothesis and its
alternative were defined as follows:

• Null hypothesis H0: there is no significant correlation between the metrics and the
correct solutions in solving the exercises.

• Alternative hypothesis H1: there is a significant correlation between the metrics and
correct solutions in solving the exercises.

As with any experiment, there are some potential sources of bias that we have tried
to minimize. Our results may be influenced by a selection bias due to the subjects and
the PROforma models selected. The expertise in PROforma of the involved subjects
may have an influence in the complexity of the exercises they prepare, including their
classification and the grading of exercise solutions. To minimize this problem, subjects with
different expertise levels were involved in these tasks. The fact that all the participants
have a technical background might also be seen as a bias. However, we consider that
this background should not be regarded as a bias as long as they have had the PROforma
training required for the experiment. Finally, regarding PROforma models, their uniformity
may also be a risk. To mitigate this bias, we have chosen PROforma models engineered by
different people, and from different sources and medical specialities.

3.1.3. Operation

The operation phase of the experiment is composed of three main tasks: preparation,
execution, and data validation. The preparation of the experiment includes all the actions
required to have the material and participants ready. This comprised the instructions for the
participants (including the wording of the exercises), the guideline models, the answering
forms, and the tools (spreadsheets) for gathering and grading the answers provided.

Among the preparation tasks, we can consider the development of software tools to
compute the values of the metrics for all the PROforma models used in the experiment.
For this purpose, we have implemented a Java program that takes as input a PROforma
file in XML format, transforms it into a series of graphs, and uses these graphs to compute
the values of all the metrics proposed in this paper. Notice that, originally, the format of
PROforma CIGs is plain text. To facilitate the processing of PROforma files, we have opted
for building an appropriate metamodel using the Eclipse Modeling Framework (EMF) [35].
This solution has the advantage of providing code generation facilities, such as editing
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tools adapted to the metamodel. We have used such an editor to produce the PROforma
XML files required to compute the metric values.

Regarding the execution of the experiment, as mentioned before, all participants
played the subject role, solving the exercises proposed by the rest of participants. The
models were displayed and handled using the PROforma graphical editor Tallis Com-
poser [36]. The solutions to the exercises were recorded in the provided answering forms
and, if required, in modified PROforma models. Moreover, the subjects screen-recorded
themselves while they were solving the exercises, describing the steps followed talking
aloud. After reviewing the answers recorded in the forms, the modified models, and the
screen-recorded videos, each participating researcher graded the exercises she/he had
proposed as Correct (C) or Incorrect (I) using as tool the spreadsheets provided. Note
that due to the inherent difficulty of establishing objective criteria to grade an exercise as
partially incorrect, we finally opted for a binary rating of the exercises as Correct (C) or
Incorrect (I).

The final task consists in checking that the data collected in the above spreadsheets
is valid. First, we have removed invalid and void answers, e.g., answers stating that the
exercise had no solution or that the wording made no sense. Second, and related to the
latter, we have removed those exercises with severe ambiguities in their wording. To
do this, we have considered a wording as ambiguous when three or more subjects had
concerns about it. After this validation, we obtained a total of 368 observations, each
one corresponding to an exercise solution by one subject, and including the rating of the
solution, as well as the exercise and subject details.

3.2. Results

In this section, we describe the last step of the experiment. We explain the statistical
analysis performed to validate the hypothesis and we discuss the results obtained. As
described in Section 2.2, we have two sets of metrics regarding their scope: single-graph
metrics and full-model metrics. Therefore, we have performed two distinct analyses. The
variables included in each statistical analysis are the calculated values for all the metrics
in the graphs or model involved in the exercise, an anonymous identifier of the subject
who solved the exercise, and the level of difficulty of the exercise. Additionally, the type
of the exercise was taken into account by considering in the statistical test three different
poolings of exercises: (1) all the exercises, (2) only the analysis exercises, and (3) only the
modifiability exercises. The observations correspond to the correctness, i.e., the correct or
incorrect grading of the exercise solution. We hypothesized that the correlation between the
metric and the correctness of the exercise solution will depend on the type of the exercise.

For the statistical analyses, we have computed the correlation between two variables:
(1) the interaction between the metrics with the difficulty of the exercise (Metric× Di f f iculty)
and (2) the correctness of the exercise. For that purpose, we have selected the general-
ized linear mixed model with the binary logistic regression (GLMM-BLR) [37] as target
distribution. On the one hand, the binary logistic regression has been selected since the
output, the exercise grade or correctness, falls into two non-ordinal categories: correct and
incorrect. On the other hand, the mixed models are suitable when data include correlated
or non-independent observations. In this case, we have several observations from the
same subject. Thus, we have used the previously mentioned interaction as the fixed effect
in the mixed model and the variable person—the subject who answered the exercise—as
the random effect in the mixed model. As a result, we have reformulated the hypothesis
definition as follows:

• Null hypothesis H0: there is no significant correlation between the interaction of
metrics and Difficulty, and correct solutions in solving the exercises.

• Alternative hypothesis H1: there is a significant correlation between the interaction of
metrics and Difficulty, and correct solutions in solving the exercises.

Section 3.2.1 is devoted to the results of the analysis using the metrics for single graphs,
whereas Section 3.2.2 focuses on the metrics for the full model.
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3.2.1. Analysis of Single-Graph Metrics

In this first scenario, the analysis has been performed using the metrics calculated for
the graph involved in each exercise and for the three above mentioned poolings of exer-
cises. The fixed effect in the GLMM-BLR model is the interaction between the single-graph
metrics and the difficulty of the exercise (Metric× Di f f iculty). Table 4 summarizes the
results of the metrics whose significance level was below the threshold value (ρ < 0.05)
in the statistical test and, thus, showing a statistically significant correlation in, at least,
one of the three above mentioned poolings. Henceforth, when we use the term “statis-
tically significant correlation”, we mean that the metric is relevant and its values can be
regarded as an indicator of the difficulty on solving exercises. The observed outcomes are
summarized below.

Table 4. Single-graph metrics showing a significance level for the fixed effect when considering:
(1) all exercises (All), (2) analysis exercises only (Ana.), and (3) modifiability exercises only (Mod.).
The significant values are highlighted in bold text.

Category Metric & Fixed Effect All Ana. Mod.

Size

Size: SN × Di f f iculty 0.013 0.011 0.195

Number of arcs: |A| × Di f f iculty 0.031 0.001 0.205

Diameter: diam× Di f f iculty 0.033 0.014 0.133

Density

Density: ∆× Di f f iculty 0.041 0.054 0.027

Coefficient of connectivity: CNC× Di f f iculty 0.020 0.018 0.041

Average connector degree dC × Di f f iculty 0.014 0.011 0.082

Maximum connector degree d̂C × Di f f iculty 0.021 0.007 0.138

Partitionability

Separability: Π× Di f f iculty 0.055 0.238 0.015

Sequentiality: Ξ× Di f f iculty 0.044 0.204 0.148

Depth: Λ× Di f f iculty 0.090 0.043 0.111

Conn. interplay
Control flow complexity: CFC× Di f f iculty 0.08 0.041 0.570

Number of decisions: SD × Di f f iculty 0.059 0.033 0.398

Concurrency Token split: TS× Di f f iculty 0.086 0.022 0.513

First, the subset of metrics under the categories size and density have a significant
correlation for the first pooling of exercises (all exercises). They also have a significant
correlation for the second pooling (analysis exercises), except for density (∆) metric, whose
significance value is close but slightly above the threshold of 0.05. However, they do not
usually show a significant correlation for the third pooling (modifiability exercises). In
fact, the metrics that indicate a ratio between the number of arcs and the number of nodes,
namely, density (∆) and coefficient of connectivity (CNC), are the only ones showing a
significant correlation for that case.

Second, the subset of metrics under the remaining categories (partitionability, connec-
tor interplay, and concurrency) show a less clear pattern in the three poolings of exercises.
The only metric showing a significant correlation for all exercises is sequentiality (Ξ), which
somehow equates the simplicity of the graph to the presence of sequences of nodes. The
metrics showing a significant correlation for the analysis exercises are depth (Λ), control
flow complexity (CFC), number of decisions (SD), and token split (TS), which are all re-
lated to connectors and possible execution paths. The only metric showing a significant
correlation for the modifiability exercises is separability (Π), which might indicate the
presence of non-trivial structures in the graph.

In general, for the analysis exercises, it makes sense that errors occur in those graphs
with a large number of elements, specially those including many multiple-path decisions.
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In such cases, all the tasks and scheduling constraints have to be analyzed in order to
understand the structure of the model or its behavior.

In contrast to analysis exercises, the modifiability ones request specific changes which
in some cases do not require the understanding of the complete graph, e.g., because
the focus is in a small part of it. Therefore, those metrics indicating the global size of
the graph might not show a significant correlation for the modifiability exercises. The
understandability for this kind of exercises does not depend on the number of elements in
the graph, but on the complexity of the nodes involved in the modification. However, a
simple modification in a dense model, such as the two examples shown in Figures 3 and 4,
might require a comprehensive understanding of all the tasks in the model because complex
elements (such as preconditions and triggers) might be used for synchronization purposes.
The understandability issues raised in these two examples are not derived from their
size, but because of the complex structures and relationship between tasks. Moreover, the
complexity of the structures in these examples is somehow captured by the metrics showing
the ratio between the scheduling constraints and the number of nodes—density (∆) and
coefficient of connectivity (CNC)—and the metrics analyzing the structure of the graph—
separability (Π) and connector mismatch (MM). Note that the coefficient of connectivity
(CNC) reaches values above 1 in poorly structured models and/or in those with some
complex interactions among tasks, e.g., nodes with two or more in-coming arcs (see
Figures 3 and 4). Thus, the more complex the graph involved in the exercise is, the more
error-prone it is on modification tasks.
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Figure 3. Graph “adult subsequent management” of Asthma CIG. The 66.67% of analysis exercises and
the 66.67% of modifiability exercises were correctly solved.
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Figure 4. Graph “adult assessment” of Asthma CIG. The 73.33% of analysis exercises and 66.67% of
modifiability exercises were correctly solved.

3.2.2. Analysis of Full-Model Metrics

We have performed a second analysis using the full-model metrics calculated for the
model involved in each exercise and, as in the previous scenario, for the three poolings of
exercises. Except for the metrics, the statistical analysis considers the same variables: fixed
effect and random effect. Table 5 summarizes the results of the metrics whose significance
level was below the threshold value (ρ < 0.05) in the statistical test and, thus, showing a
statistically significant correlation in, at least, one of the three above mentioned cases. The
observed outcomes are summarized below.

In this case, most of the metrics (14 out of 16) fall under the categories density and parti-
tionability. For the metrics under the size category, diameter (Diam) is the only one showing
a significant correlation for the pooling with all exercises. Note that the metrics under this
category usually compute the aggregation as the sum of the metric over all the graphs
in the model, except diameter (Diam) which applies a weighted average. For the metrics
falling under the connector interplay category, only the number of preconditions (SPrecond)
metric is showing a statistical correlation and just for the analysis exercises. None of the
full-model metrics under the concurrency category show a significant correlation.

All the metrics within the density category are included in the table, which may
demonstrate that densities are of special relevance. This is even more apparent in the
modifiability exercises, where seven out of the nine metrics within the density category
show a significant correlation in one or more of the three poolings of exercises. It is of
special relevance that the three full-model metrics we specifically defined for PROforma
models—percentage of single node plans (p1%), average size of a plan (t), and percentage
of plans whose size is over the average size (p50%)—are significant or show a significance
value slightly higher than the threshold, except for the percentage of single node plans
(p1%) in modifiability exercises.

Almost all the metrics within the partitionability category indicate a significant correla-
tion for the pooling including all the exercises. The metrics depth (Λ) and model depth (Υ)
also show a significant correlation for the pooling including the analysis exercises, whereas
the separability (Π), sequentiality (Ξ), and structuredness (φ) also show a significant corre-
lation for the last pooling of exercises, the one with the modifiability exercises. Only the
metric structuredness (φ) shows a significant correlation in the three poolings of exercises.
This suggests that the metrics capturing the complexity on the structure of the full model,
such as separability (Π), sequentiality (Ξ), and structuredness (φ), may somehow indicate
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how error-prone the model is in the modifiability exercises, whereas the ones indicating
the depth are of special relevance for the analysis exercises.

Table 5. Full-model metrics showing a significance level for the fixed effect when considering: (1) all
exercises (All), (2) analysis exercises only (Ana.), and (3) modifiability exercises only (Mod.). The
significant values are highlighted in bold text.

Cat. Metric & Fixed Effect Alls Ana. Mod.

Size Diameter: Diamaggr × Di f f iculty 0.014 0.050 0.055

Density

Density: ∆aggr × Di f f iculty 0.296 0.212 0.032

Coef. of connectivity: CNCaggr × Di f f iculty 0.008 0.114 0.025

Avg. connector degree: dCaggr × Di f f iculty 0.012 0.032 0.030

Max. connector degree: d̂Caggr × Di f f iculty 0.217 0.093 0.027

Density of plans: p× Di f f iculty 0.068 0.021 0.095

Perc. single node plans: p1%× Di f f iculty 0.031 0.039 0.374

Avg. size plan: t× Di f f iculty 0.007 0.026 0.043

Perc. plans over average: p50%× Di f f iculty 0.002 0.061 0.038

Decision density: δD × Di f f iculty 0.005 0.005 0.044

Partitionability

Separability: Πaggr × Di f f iculty 0.016 0.087 0.030

Sequentiality: Ξaggr × Di f f iculty 0.017 0.090 0.048

Structuredness: φaggr × Di f f iculty 0.037 0.031 0.043

Depth: Λaggr × Di f f iculty 0.026 0.032 0.051

Model depth: Υ× Di f f iculty 0.119 0.047 0.151

Conn. Interplay Number of preconditions: SPredcond × Di f f iculty 0.304 0.042 0.204

4. Discussion

The previous results show that 13 single-graph and 16 full-model metrics are statis-
tically significant in that they report on the complexity of the PROforma models. It is
interesting to remark that four out of the 16 full-model metrics deemed significant, namely,
percentage of single node plans (p1%), average size plan (t), percentage of plans over
average (p50%), and structuredness (φaggr), can only be calculated over the full model, i.e.,
the corresponding single-graph metric does not exist. Then, the global number of metrics
deemed significant is similar when the analyses are limited to those metrics that have a
definition for the single graph and the full model.

Among the relevant metrics, the ones showing a significance level below 0.05, only
eight of them are statistically significant in both analyses, namely, density (∆), coefficient
of connectivity (CNC), average connector degree (dC), maximum connector degree (d̂C),
separability (Π), sequentiality (Ξ), and depth (Λ). In other words, these eight metrics are
statistically significant when they are calculated over the single graph but also when they
are calculated over the full model with the aggregation formula. In most of cases (12 out of
the 16 cases (eight metrics × two analyses)), the metrics show a significant correlation for
the pooling including all exercises. However, the behavior is different for the other two
poolings of exercises.

For the pooling including only the analysis exercises, the statistical results suggest
that the relevant metrics fit better when they are calculated over single graphs, as five
out of eight single-graph metrics are statistically significant. In contrast, only two out
of eight full-model metrics are statistically significant. For the pooling including only
the modifiability exercises, the statistical results suggest the opposite, i.e., the relevant
metrics fit better when they are calculated over the full model. For this kind of exercises,
three out of eight single-graph metrics are statistically significant, whereas seven out of
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eight full-model metrics have a significance value below the threshold of 0.05. This might
indicate that the results on the analysis exercises are more sensitive to the complexity of the
single graph, whereas the results on the modifiability exercises have higher dependence on
the complexity of the full model.

When the analysis only includes modifiability exercises, the statistical results do
not show a clear correlation between the single-graph metrics and the exercise grades.
There are only three out of 13 cases (less than 23%) where the single-graph metrics are
statistically significant. In contrast, full-model metrics might be useful for that particular
type of exercises. In 10 out of 16 cases (62.5%), the metrics are statistically significant and the
statistical significance is sightly above the threshold in two cases (12.5%). According to these
10 metrics, the more complex the model is, the more error-prone it is on modification tasks.

Finally, the global number of metrics deemed as statistically significant is 21, with five
of them being relevant for single graphs, eight of them relevant for full models, and eight
of them relevant for both. For the single graph analysis, the metrics deemed as significant
are roughly equally distributed over the five categories. In contrast, the analysis for the
full-model metrics shows that the vast majority of the metrics deemed as significant (14 out
of 16) are within just two categories, namely, density and partitionability. This finding was
expected and the results have empirically indicated that modifying models with complex
structures may be more prone to error.

5. Conclusions

In this research work, we aimed at providing a comprehensive set of metrics that allow
to measure model quality aspects of PROforma CIG models. Although there are many
proposals for quality assurance in the field of software and business process models, to the
best of our knowledge there are no studies dealing with the quality of CIG models in terms
of understandability and modifiability. First, we have proposed metrics inspired in BPM
ones to include common process modeling characteristics. Second, we have considered
specific features of PROforma to define new metrics that capture distinctive aspects of this
CIG language. These include metrics that take into account the modularity and hierarchical
decomposition aspects of PROforma models. Finally, we have carried out an empirical
validation of these metrics as quality indicators. To this purpose, we have conducted an
experiment and carried out a statistical analysis of its results that are presented as a part of
this research work.

We can conclude that the metrics proposed in this paper can be used as indicators
of the understandability, and thereby maintainability, of PROforma CIGs whenever the
difficulty of the task is considered. We have observed that when single graphs are taken into
consideration, practically all statistically significant metrics belong to the ones inspired in
the BPM metrics. However, the newly defined metrics for PROforma prevail as statistically
significant when the whole model is considered, which means that they better characterize
its complexity. Another observation related to single-graph metrics is that the statistically
significant metrics when analysis tasks are considered are disjoint from the significant
metrics in the case of modifiability tasks, in most of the cases. Concretely, the single-
graph metrics under the categories size, connector interplay, and concurrency appear to
be good indicators when solving analysis exercises, whereas the single-graph metrics in
the density category seem to be significant in solving modifiability exercises. In the case
of the full-model metrics, and for modifiability tasks, the statistically significant metrics
are distributed among density and partitionability categories. Still, many of the full-model
metrics that we have proposed show correlation for some of the poolings.

In light of the above, we consider that the proposed metrics can be of great value, as
they capture the PROforma-specific features in addition to those inspired by the general-
purpose process model metrics in the literature. We believe that the metrics we have defined
are generic enough, and thus we foresee that they could also be a valuable contribution to
CIG languages other than PROforma. Notably, a number of metrics (including full-model
ones) could be easily adapted and applied to CIG languages following the TNM approach,
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as PROforma does. As mentioned earlier, this approach is shared by many CIG languages.
Furthermore, decision-related metrics could also be generalized, as PROforma’s decision
model has been adopted by several CIG languages [14].

One limitation of our work lies in the experimental setting, concretely in that the
experiment has not particularly been large-scale considering the number of subjects and
guideline models. Despite this, we consider that the results we have obtained constitute
a valuable contribution from which further research can be undertaken. As future work,
a more comprehensive experiment, including more subjects as well as more guidelines
and exercises, could be devised to increase the reliability and stability of our results.
Note that we do not consider that the lack of participation of clinician subjects in our
study should be regarded as a limitation. In our view, we would have obtained a similar
outcome if clinicians with the minimum PROforma training required had participated in
the study. On the other hand, some additional PROforma elements that can affect the model
understandability are not represented in the graph structure currently used as a basis for
the analysis performed. Another line of future work will be focused on describing and
implementing new metrics that consider those PROforma features, as they could bring new
objective insights about the actual complexity of the model independently from its layout.
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