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Abstract: We propose a framework where Fer and Wilcox expansions for the solution of differential
equations are derived from two particular choices for the initial transformation that seeds the product
expansion. In this scheme, intermediate expansions can also be envisaged. Recurrence formulas are
developed. A new lower bound for the convergence of the Wilcox expansion is provided, as well as
some applications of the results. In particular, two examples are worked out up to a high order of
approximation to illustrate the behavior of the Wilcox expansion.
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1. Introduction

Linear differential equations of the form

ẋ ≡ dx
dt

= A(t)x, x(0) = x0 ∈ Cd, (1)

with A(t) a d× d matrix, whose entries are integrable functions of t, are ever-present in
many branches of science, the fundamental evolution equation of Quantum Mechanics, the
Schrödinger equation, being a particular case. In consequence, solving Equation (1) is of
the greatest importance. In spite of their apparent simplicity, however, they are seldom
solvable in terms of elementary functions, and so different procedures have been proposed
over the years to render approximate solutions. These are specially useful in the analytical
treatment of perturbative problems, such as those arising in the time evolution of quantum
systems [1], control theory, or problems where time-ordered products are involved [2].
Among them, exponential perturbative expansions have received a great deal of attention,
due to some remarkable properties they possess. In particular, if Equation (1) is defined
in a Lie group, the approximations they furnish also evolve in the same Lie group. As a
consequence, important qualitative properties of the exact solution are also preserved
by the approximations. Thus, if Equation (1) represents the time-dependent Schrödinger
equation, then the approximate evolution operator is still unitary, and as a consequence,
the total sum of (approximate) transition probabilities is the unity, no matter where the
expansion is truncated. There are, in fact, many physical problems (in non-linear mechanics,
optical spectroscopy, magnetic resonance, etc.) involving periodic fast-oscillating external
fields that are also modeled by Equation (1), with A(t) periodic. In that case, especially
tailored expansions incorporating the well-known Floquet theorem [3], such as the average
Hamiltonian theory [4] and the Floquet–Magnus expansion [5,6], have also been proposed.

When dealing with the general problem (1), one of the most widely used exponential
approximations corresponds to the Magnus expansion [7]

x(t) = eΩ(t)x0, (2)
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where Ω is an infinite series

Ω(t) =
∞

∑
k=1

Ωk(t) (3)

whose terms are linear combinations of time-ordered integrals of nested commutators of A
evaluated at different times (see [8] for a review, including applications to several physical
and mathematical problems). What is more interesting for our purposes here is that this
expansion can be related with a coordinate transformation x 7−→ X rendering the original
system (1) into the trivial equation

dX
dt

= 0, (4)

with the static solution X(t) = X(0) = x0, and that the transformation is given precisely by
x(t) = exp(Ω(t))X(t) [9].

In contrast to the Magnus expansion, the Floquet–Magnus expansion obtains the
solution with two exponential transformations when A(t) is periodic, whereas other
exponential perturbative expansions are based on infinite product factorizations of x(t),

x(t) = eΩ1(t) eΩ2(t) · · · eΩn(t) · · · x(0), (5)

such as those proposed by Fer and Wilcox. In fact, as pointed out in [10], both expansions
have a curious history, which is worth describing. It was Fer who proposed the expansion
that bears his name in [11], although he never applied it to solve any specific problem.
Bellman reviewed this paper in the Mathematical Reviews (MR0104009), and even proposed
the expansion as an exercise in [12]. Nevertheless, Wilcox identified it in [1] with an
alternative factorization, Equation (5), which was indeed a different and new type of
expansion. From them on, their historical trajectories move apart. Thus, Fer expansion
was rediscovered by Iserles [13] as a tool for the numerical integration of linear differential
equations and later on used in Quantum Mechanics [14] and solid-state nuclear magnetic
resonance [15], but also as a Lie-group integrator [16–18]. On the other hand, Wilcox
expansion has been rediscovered several times in the literature, in particular in [19] in the
context of nonlinear control systems, and in [20] as a general tool for approximating the
time evolution operator in Quantum Mechanics.

The first goal in this work is to recast both infinite product expansions within a
unifying framework. This is done by considering, instead of just one exponential trans-
formation, as in the case of the Magnus expansion, a sequence of such transformations,
eΩ1(t), . . . , eΩk(t), . . ., chosen to satisfy certain requirements. To be more specific, suppose
one replaces A(t) in Equation (1) by λA(t), where λ > 0 is a parameter. Then, if the
transformations are chosen so that each Ωk(t) is proportional to λk, we recover the Wilcox
expansion, whereas we end up with the Fer expansion when each Ωk(t) is an infinite series
in λ whose first term is proportional to λ2k−1

.
We also show that further alternative descriptions yield new factorizations. This addi-

tional degree of freedom can be indeed used to deal better with the features of the matrix
A(t), as in Floquet–Magnus, when A(t) is periodic.

One might then consider this sequence of linear transformations as a generalization
of the concept of picture in Quantum Mechanics when Equation (1) refers to the Schrödinger
equation.

Our second goal consists of obtaining, on the basis of this framework, new results
concerning Wilcox expansion. Thus, we develop a recursive procedure to obtain every
order of approximation in terms of nested commutators, as well as a convergence radius
bound. We also establish a formal connection of the Wilcox expansion with the Zassenhaus
formula [7,21].

Eventually, the important problem of expanding the exponential exp(A+ εB) for ε > 0
and A, B, two generic non-commuting operators will be addressed, and two applications
of the obtained results.
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2. A Sequence of Transformations: The General Case

Given the initial value problem (1), let us consider a linear change in variables x 7−→ X1
of the form

x(t) = eΩ1(t)X1(t), Ω1(0) = 0 (6)

transforming the original system into

dX1

dt
= B1(t)X1. (7)

For the time being, the generator Ω1(t) of the transformation is not specified. Then,
B1(t) can be expressed in terms of A(t) and Ω1(t) as follows. First, by inserting Equation (6)
into Equation (1), and taking Equation (7) into account, one can obtain

d
dt

exp(Ω1) = A(t) exp(Ω1)− exp(Ω1)B1(t), (8)

whence
B1(t) = e−Ω1 A(t)eΩ1 − e−Ω1

d
dt

eΩ1 . (9)

The derivative of the matrix exponential can be written as [8]

d
dt

exp(Ω1(t)) = d expΩ1(t)
(Ω̇1(t)) exp(Ω1), (10)

where the symbol d expΩ(C) stands for the (everywhere convergent) power series

d expΩ(C) =
∞

∑
k=0

1
(k + 1)!

adk
Ω(C) ≡ exp(adΩ)− I

adΩ
(C). (11)

Here ad0
ΩC = C, adk

ΩC = [Ω, adk−1
Ω C], and [Ω, C] denotes the usual commutator. Therefore

B1(t) = e−Ω1
(

A(t)− d expΩ1(t)
(Ω̇1(t))

)
eΩ1 ≡ e−adΩ1 (B0 − G1) (12)

where
B0(t) ≡ A(t), G1(t) ≡ d expΩ1(t)

(Ω̇1(t)) (13)

and

e−adΩ1 F = ∑
k≥0

(−1)k

k!
adk

Ω1
F = e−Ω1 F eΩ1 . (14)

Of course, nothing prevents us from repeating the whole procedure above and intro-
ducing a second transformation to Equation (7) of the form

X1(t) = eΩ2(t)X2(t), Ω2(0) = 0, (15)

so that the new variables verify
dX2

dt
= B2(t)X2. (16)

In general, for the n-th such linear transformation

Xn−1(t) = eΩn(t)Xn(t), Ωn(0) = 0 (17)

with
dXn

dt
= Bn(t)Xn, (18)
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one has

Bn(t) = e−adΩn (Bn−1 − Gn), with Gn(t) = d expΩn(t)(Ω̇n(t)) (19)

so that the solution of Equation (1) is expressed as

x(t) = eΩ1(t) eΩ2(t) · · · eΩn(t)Xn(t). (20)

Alternatively, we can write Bn(t) in Equation (19) as follows. Since it is also true that [8]

d expΩn(t)(Ω̇n(t)) =

(
d
dt

eΩn

)
e−Ωn =

(∫ 1

0
exΩn Ω̇ne(1−x)Ωn dx

)
e−Ωn

=
∫ 1

0
ex Ωn Ω̇ne−x Ωn dx, (21)

we have

Bn = e−Ωn Bn−1eΩn −
∫ 1

0
e−u Ωn Ω̇neu Ωn du

= ∑
k≥0

(−1)k

(k + 1)!

(
(k + 1)adk

Ωn
Bn−1 − adk

Ωn
Ω̇n

)
, n ≥ 1.

(22)

The important point is, of course, how to choose Bn, or, alternatively, Ωn, i.e., the
specific requirements each transformation has to satisfy in order to be useful to approxi-
mately solve Equation (1). There are obviously many possibilities, and in the following
we analyze two of them, leading to two different and well-known exponential pertur-
bation factorizations mentioned in the Introduction, namely the Wilcox [1] and Fer [11]
expansions.

3. Wilcox Expansion
3.1. Recurrences

Let us introduce the (dummy) parameter λ in Equation (1) and replace A with λA.
This is helpful when collecting coefficients, and at the end we can always take λ = 1.

Since the solution of Equation (1) when A is constant, or more generally when
A(t1)A(t2) = A(t2)A(t1) for all t1 6= t2, is x(t) = exp(

∫ t
0 A(u)du), it makes sense to

take the generator for the first transformation as

Ω1(t) =
∫ t

0
B0(u) du = λ

∫ t

0
A(u) du ≡ λ W1(t). (23)

Then, according to Equations (12) and (13), we have

C1 ≡ B0 − G1 = ∑
k≥1

λk(b0,k − g1,k) (24)

where
b0,1 = A(t), b0,l = 0, l > 1

g1,1 = Ẇ1, g1,l =
1
l!

adl−1
W1

Ẇ1, l > 1.
(25)

With the choice Ẇ1 = A(t), it turns out that B1 is a power series in λ starting with λ2,

B1(t) = e−adΩ1 (B0 − G1) = e−λ adW1 C1 = ∑
l≥2

λl b1,l , (26)

where

b1,l =
l−2

∑
k=0

(−1)k

k!
adk

W1

(
b0,l−k − g1,l−k

)
. (27)
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We can analogously choose the second transformation proportional to λ2, i.e., as Ω2(t) ≡
λ2W2(t) for a given W2 to be determined. Then, a straightforward calculation shows that

C2 ≡ B1 − G2 = ∑
l≥2

λl(b1,l − g2,l) (28)

with
g2,2 = Ẇ2, g2,2l =

1
l!

adl−1
W2

Ẇ2, g2,r = 0, r 6= 2l. (29)

The generator W2 is then obtained by imposing that b1,2 − g2,2 = 0 in Equation (28), i.e.,

g2,2 = Ẇ2 = b1,2 = b0,2 − g1,2 = −1
2

adW1Ẇ1. (30)

In this way, B2(t) is a power series in λ, starting with λ3,

B2(t) = e−λ2 adW2 C2 = ∑
l≥3

λl b2,l (31)

with

b2,l =
[(l−1)/2]−1

∑
k=0

(−1)k

k!
adk

W2

(
b1,l−2k − g2,l−2k

)
, (32)

where [·] stands for the integer part of the argument. In general, the n-th transformation
Ωn(t) ≡ λn Wn(t) is determined in such a way that the power series of Bn(t) starts with
λn+1. This can be done as follows: from Bn−1 = ∑l≥n λlbn−1,l , we compute

Cn ≡ Bn−1 − Gn =
∞

∑
r=n

λrcn,r =
∞

∑
r=n

λr(bn−1,r − gn,r) (33)

with

gn,r =


1
l!

adl−1
Wn

Ẇn, r = n l

0, r 6= n l
l = 1, 2, . . . (34)

Then, Wn is obtained by taking bn−1,n − gn,n = 0, i.e.,

Ẇn = bn−1,n (35)

and, finally, Bn is determined as

Bn = e−λn adWn Cn =
∞

∑
l=n+1

λl bn,l (36)

with

bn,l =
[ l−1

n ]−1

∑
k=0

(−1)k

k!
adk

Wn
cn,l−n k. (37)

Notice that, in view of Equations (34) and (37), Equation (35) simplifies to

Ẇn = bn−2,n for n ≥ 3. (38)

The solution of Equation (1) is expressed, after n such transformations, as

x(t) = eλW1(t) eλ2W2(t) · · · eλnWn(t)Xn(t). (39)

An approximation to the exact solution containing all the dependence up to O(λn) is
obtained by taking Xn = x0 in Equation (39).
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In spite of this, the truncated factorization eλW1(t) eλ2W2(t) · · · eλnWn(t) still shares
relevant qualitative properties with the evolution operator, such as orthogonality, unitarity, etc.

Recursion (33)–(38) allows one to construct any generator Wk of the expansion in terms
of W1, . . . , Wk−1. For illustration, we next collect the first terms

Ẇ1 = A(t), Ẇ2 = −1
2

adW1Ẇ1, Ẇ3 =
1
3

ad2
W1

Ẇ1

Ẇ4 = −1
8

ad3
W1

Ẇ1 −
1
2

adW2Ẇ2, Ẇ5 =
1
30

ad4
W1

Ẇ1 − adW2Ẇ3

(40)

This is the way the Wilcox expansion is built up.

3.2. Explicit Expressions for Wn(t)

Although the recursive procedure (33)–(38) turns out to be very computationally
efficient to construct the exponents Wn(t) for a given A(t) in practice, it is clear that much
insight about the expansion can be gained if an explicit expression for any Wn can be
constructed, thus generalizing the treatment originally done by Wilcox up to n = 4 [1].

Such an expression could be obtained, in principle, by working out the recurrence
(33)–(38), but a more direct approach consists of comparing the Dyson perturbation series
of U(t) [22] in the associated initial value problem

U̇ = λ A(t)U, U(0) = I, (41)

i.e.,

U(t) = I +
∞

∑
n=1

λkPk(t), with Pk(t) =
∫ t

0
dt1 · · ·

∫ tk−1

0
dtk A(t1) · · · A(tk) (42)

with the expansion in λ of the factorization

U(t) = eλW1(t) eλ2W2(t) · · · eλnWn(t) · · · . (43)

Thus, for the first terms, one has

P1 = W1, P2 = W2 +
1
2

W2
1 , P3 = W3 + W1W2 +

1
3!

W3
1 ,

P4 = W4 + W1W3 +
1
2

W2
1 W2 +

1
2

W2
2 +

1
4!

W4
1 .

(44)

In general, we can write

Pn = ∑
p(n)

i1≤i2≤···≤ik

1
rk!

Wi1Wi2 · · ·Wik , i1 ≤ i2 ≤ · · · ≤ ik, (45)

where the sum is extended over the total number of partitions p(n) of the integer n. We
recall that a partition p(n) of the integer n is an n-tuple (i1, i2, . . . , ik), such that i1 + i2 +
· · · + ik = n, with ordering i1 ≤ i2 ≤ · · · ≤ ik. Thus, the seven partitions of n = 5
with the chosen ordering are (5), (1, 4), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2) and (1, 1, 1, 1, 1).
In Equation (45), rk is the number of repeated indices in the partition considered.

By working out Equation (45), one can invert the relations and express Wn in terms of
P1, . . . , Pn−1 for any n ≥ 1. Thus, one obtains

W1 = P1, W2 = P2 −
1
2

P2
1 , W3 = P3 − P1P2 +

1
3

P3
1 ,

W4 = P4 − P1P3 +
3
4

P2
1 P2 +

1
4

P2P2
1 −

1
2

P2
2 −

1
4

P4
1 .

(46)
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Notice that Wn, n ≥ 2, is expressed in terms of products of iterated integrals Pi1 · · · Pij .
Interestingly, it is possible to express these products as proper time-ordered integrals by
using a procedure developed in [23]. If we denote

A(i1i2 . . . in) ≡
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn A(ti1)A(ti2) · · · A(ttn), (47)

so that Pn(t) = A(12 . . . n), then

W2 = A(12)− 1
2

A(1) · A(1)

W3 = A(123)− A(1) · A(12) +
1
3

A(1) · A(1) · A(1),
(48)

etc. Taking into account Fubini’s theorem,∫ α

0
dy
∫ α

y
f (x, y) dx =

∫ α

0
dx
∫ x

0
f (x, y) dy, (49)

it is clear that A(1) · A(1) = A(12) + A(21), and thus

W2 = A(12)− 1
2
(

A(12) + A(21)
)
=

1
2
(

A(12)− A(21)
)
. (50)

We can proceed analogously with the following products

A(1) · A(12) = A(123) + A(213) + A(312)

A(1) · A(1) · A(1) = A(123) + A(132) + A(213) + A(231) + A(312) + A(321),
(51)

so that

W3 =
1
3

A(123) +
1
3

A(132)− 2
3

A(213) +
1
3

A(231)− 2
3

A(312) +
1
3

A(321). (52)

Carrying out this argument to any order, we can expand all the products of integrals
appearing in Wn. As a result, each product is replaced by the sum of all possible permutations
of time ordering consistent with the time ordering in the factors of this product [24].

At this point, it is illustrative to consider some examples in detail. Thus, the product
A(1) · A(12) gives the sum of all permutations of three elements, such that the second
index is less than the third one. With respect to A(1) · A(1) · A(1), since there is no special
ordering, then all possible permutations have to be taken into account. Finally, for the
product P1P3 appearing in W4 one has

P1P3 = A(1) · A(123) = A(4123) + A(3124) + A(2134) + A(1234). (53)

Proceeding in a similar way, one can show that any product of iterated integrals can
be expressed as a sum of iterated integrals. This property is, in fact, related to a much
deeper characterization of the group of permutations [23]. If SSymm denotes the graded
Q-vector space with the fundamental basis given by the disjoint union of the symmetric
groups Sn for all n ≥ 0, then it is possible to define a product ∗ of permutations and a
coproduct δ in SSymm, so that there is a one-to-one correspondence between iterated integrals
and permutations

A(σ) · A(τ) = A(σ ∗ τ). (54)

The product ∗ was introduced in [25], and, together with the coproduct δ, endows
SSymm with a structure of Hopf algebra [26], the so-called Malvenuto–Reutenauer Hopf
algebra of permutations [27].
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In sum, the general structure of the Wilcox expansion terms therefore reads as

Wn =
n!

∑
k=1

ω
(n)
k A(σk), (55)

where the summation extends over all the n! permutations σk ∈ Sn of {1, 2, . . . , n}. The
weights ω

(n)
k are given by rational numbers that can be determined algorithmically for any

n, although the general expression for them is not obvious, in contrast with the Magnus
expansion, for which such a closed formula exists [28]. This can be then considered as an
open problem.

Moreover, if one is interested in obtaining a compact expression for Wn in terms
of independent nested commutators of A(t), as is done in [1] up to n = 4; one can use
the class of bases proposed by Dragt & Forest in [24] for the Lie algebra generated by
the operators A(t1), A(t2), . . . , A(tn). The same procedure as carried out in [23] for the
Magnus expansion can be applied here, so that one obtains the general formula

Wn(t) = ∑
τk

c(n)τk

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

[A(tτ(2)), [A(tτ(3)) · · · [A(tτ(n)), A(t1)] · · · ]].
(56)

Here, the sum extends over the (n− 1)! permutations τk of the elements {2, 3, . . . , n}
and c(n)τk is a rational number that depends on the particular permutation. For a given
permutation, say τk, its value coincides with the prefactor in Equation (55) of the particular
term A(σk), corresponding to the permutation σk ∈ Sn, such that

{σk(1), σk(2), . . . , σk(n− 1), σk(n)} = {τk(2), τk(3), . . . , τk(n), 1}. (57)

Thus, if we denote

A[i1i2 . . . in] ≡
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn[A(ti1), [A(ti2), · · · [A(tin−1), A(tin)] · · · ]] (58)

we obtain for the first terms

W2 = −1
2

A[21],

W3 =
1
3

A[231] +
1
3

A[321],

W4 = −1
4

A[3241]− 1
4

A[4231]− 1
4

A[4321],

W5 = − 2
15

A[23451]− 2
15

A[23541]− 2
15

A[24351]− 2
15

A[24531]

− 2
15

A[25341]− 2
15

A[25431] +
1
5

A[32451] +
1
5

A[32541]− 2
15

A[34251]

− 2
15

A[34521]− 2
15

A[35241]− 2
15

A[35421] +
1
5

A[42351] +
1
5

A[42531]

+
1
5

A[43251] +
1
5

A[43521]− 2
15

A[45231]− 2
15

A[45321] +
1
5

A[52341]

+
1
5

A[52431] +
1
5

A[53241] +
1
5

A[53421] +
1
5

A[54231] +
1
5

A[54321].

(59)
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In sum, the general structure of the Wilcox expansion terms via commutators uses the
same weights as in Equation (55) and reads

Wn =
(n−1)!

∑
k=1

′
ω
(n)
k A[σk], (60)

where the primed sum requires the rightmost element in the permutation σ(k) to be
invariant (as in Equation (56)). This element may be chosen at will and, whatever that
value, the permutations are build up with the remaining n− 1 elements. Different, but
equivalent, expressions for Wn in terms of commutators are obtained depending on the
value fixed at the rightmost position. We stress once again that, although only the first terms
have been collected here for simplicity, the whole procedure is algorithmic in nature and
has been implemented in a computer algebra system furnishing to evaluate Wn(t) explicitly
for any n [29]. Note that Wn(t) involves a linear combination of (n− 1)! iterated integrals.

3.3. Convergence of Wilcox Expansion

Recursion (33)–(38) is also very useful to provide estimates for the radius of conver-
gence of the Wilcox expansion when Equation (1) is defined in a Banach algebra A, i.e., an
algebra that is also a complete normed linear space with a sub-multiplicative norm,

‖X Y‖ ≤ ‖X‖ ‖Y‖. (61)

If this is the case, then ‖adXY‖ ≤ 2 ‖X‖ ‖Y‖ and, in general, ‖adn
XY‖ ≤ 2n‖X‖n ‖Y‖.

As shown in [30,31], if the series

M(λ; t) =
∞

∑
j=1

λj ‖Wj(t)‖ (62)

has a certain radius of convergence rc for a given t, then, for λ < r < rc, the sequence of functions

Ψn ≡ eλW1(t) eλ2W2(t) · · · eλnWn(t) (63)

converges uniformly on any compact subset of the ball B(0, rc). Thus, studying the conver-
gence of the Wilcox expansion reduces analysis of the series M(λ; t) and, in particular, its
radius of convergence rc.

Let k(t) be a function such that ‖A(t)‖ ≤ k(t) and denote K(t) =
∫ t

0 k(s) ds. Then, clearly

‖b0,1‖ ≤ k(t); ‖b0,l‖ = 0, l = 2, 3, . . . (64)

and
‖W1‖ ≤ K(t), ‖W2‖ ≤

1
2

K2(t). (65)

In general, the following bounds can be established by induction

‖gn,r(t)‖ ≤ βn,r Kr−1(t) k(t),

‖bn,l(t)‖ ≤ αn,l Kl−1(t) k(t), n = 1, 2, . . . ; l > n

‖Wn(t)‖ ≤ cn Kn(t), (66)
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where

α0,1 = 1; α0,l = 0, l > 1

αn,l =
[ l−1

n ]−1

∑
j=0

1
j!

2j cj
n (αn−1,l−nj + βn,l−nj) n ≥ 1, l > n

βn,r =


1
l!

2l−1 n cl
n,

[ r
n
]
= r

n = l

0,
[ r

n
]
6= r

n

(67)

c1 = 1, c2 =
1
2

, cn =
1
n

αn−2,n, n > 2.

It is clear that if the series ∑j≥1 cj K j(t) converges, so does M(λ = 1; t). Therefore, a
sufficient condition for convergence of the Wilcox expansion is obtained by imposing

lim
n→∞

cn+1Kn+1(t)
cnKn(t)

= K(t) lim
n→∞

Dn < 1, (68)

where
Dn ≡

n
n + 1

αn−1,n+1

αn−2,n
. (69)

We have computed this quantity up to n = 2000 and then extrapolated to the limit
(1/n)→ 0. Then Dn → D∞ = 1.51868, as seen in Figure 1, and thus the convergence of the
Wilcox expansion is ensured at least for values of time t such that∫ t

0
‖A(s)‖ds ≤ K(t) < ξW =

1
D∞
≈ 0.65846 (70)

This type of extrapolation has also been used to estimate the convergence radius of
the Magnus expansion [32]. Although the estimate is not completely analytic, the same
type of computation has provided accurate results in other settings. In particular, for the
Magnus expansion, such an estimate fully agrees with a purely theoretically deduced
bound [8,10,32].

Figure 1. Dn as a function of 1/n, and linear extrapolation (red line).
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4. Fer–Like Expansions
4.1. Standard Fer Expansion

In forming the Wilcox expansion, the first transformation is chosen in such a way that
Ω̇1 = B0(t), whereas Ω̇n 6= Bn−1 for n ≥ 2. It makes sense, then, to analyze what happens
if we impose this condition at each step of the procedure

Ω̇n(t) = Bn−1(t) or, equivalently, Ωn(t) =
∫ t

0
Bn−1(u)du (71)

for all n ≥ 1. In that way, expression (22) for Bn clearly simplifies to

Bn(t) = ∑
k≥1

(−1)kk
(k + 1)!

adk
Ωn

Bn−1, n ≥ 1. (72)

In doing, so we recover the precise Fer expansion, see [10,11]. Again, after n transforma-
tions, we get

x(t) = eΩ1(t) eΩ2(t) · · · eΩn(t)Xn(t) (73)

so that, if we impose Xn(t) = x0, we are left with another approximation to the exact
solution. Notice that this approximation clearly differs from the previous Wilcox expansion
for n ≥ 2, as can be seen by analyzing the dependence on λ of each transformation. Whereas
Ωn = λnWn(t) for the Wilcox expansion, now Ωn contains terms of order λ2n−1

and higher.
This can be easily shown by induction: Ω1 is proportional to λ, so that B1, according to
Equation (72) contains terms of order λ2 (coming from [Ω1, B0]) and higher. In general,
Bn−2 and Ωn−1 contain terms of order λ2n−2

and higher, so the first term in the series (72)
for Bn−1, i.e., the commutator [Ωn−1, Bn−2], produces a term of order (λ2)2n−2

= λ2n−1

in Ωn.
Alternatively, expressing Equation (72) as

Bn(t) =
∫ 1

0
dx
∫ x

0
du e−(1−u)Ωn [Bn−1, Ωn] e(1−u)Ωn (74)

and taking norms, it is then possible to show that the Fer expansion converges for values
of t such that [10] ∫ t

0
‖A(s)‖ds < 0.8604065. (75)

4.2. Intermediate Fer-Like Expansions

Notice that the λ-power series of Ωn in the Fer expansion contains infinite terms start-
ing with λ2n−1

, but the corresponding truncated factorization obtained from Equation (73)
by taking Xn(t) = x0 is correct only up to terms of order λ2n−1

. One might then consider
yet another sequence of transformations so that each Ωk contains only the relevant terms
leading to a correct approximation up to this order. Of course, both factorizations would be
different, but nevertheless they would produce the correct power series up to order λ2n−1

.
The corresponding factorization can be properly called a modified Fer expansion.

Our starting point is, once again, Equation (22). Clearly, the first transformation is the
same as in Fer (and Wilcox), i.e.,

Ω̇1 = B0 = λA(t), (76)

and thus

B1 =
∞

∑
k=0

(−1)kk
(k + 1)!

adk
Ω1

B0 = O(λ2), (77)

where the rightmost term points out the lowest λ contribution in the sum.
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Next, to reproduce the same dependence on λ as the Fer expansion, we need to
enforce that B2 = O(λ4), and the question is how to choose Ω2 guaranteeing this feature.
An analysis of Equation (22) with n = 2 reveals that this is achieved by taking Ω̇2 as the
sum of terms in B1 in Equation (77) contributing to λ2 and λ3, i.e.,

Ω̇2 = −1
2

adΩ1 B0 +
1
3

ad2
Ω1

B0, (78)

since the next term appearing in the expression of B2 involves the computation of ad3
Ω1

B0 =

O(λ4). Thus

B2 =
∞

∑
k=1

(−1)k

(k + 1)!

(
(k + 1)adk

Ω2
B1 − adk

Ω2
Ω̇2

)
= O(λ4). (79)

Likewise, Ω3 is to be designed so that

B3 =
∞

∑
k=0

(−1)k

(k + 1)!

(
(k + 1)adk

Ω3
B2 − adk

Ω3
Ω̇3

)
= O(λ8), (80)

and this is guaranteed by taking Ω3 as the sum all the terms in B2 contributing to powers
from λ4 up to λ7. From Equation (79) it is clear that

B2 = −1
2
(
2adΩ2 B1 − adΩ2 Ω̇2

)
︸ ︷︷ ︸

O(λ4)

+
1
3!

(
3ad2

Ω2
B1 − ad2

Ω2
Ω̇2

)
︸ ︷︷ ︸

O(λ6)

+O(λ8), (81)

where only the relevant terms in the expansion in B1 have to be taken into account. In this
way, we can take

Ω̇3 = −adΩ2 B[4]
1 +

1
2

adΩ2 Ω̇2 +
1
2

ad2
Ω2

B[2]
1 −

1
6

ad2
Ω2

Ω̇2 (82)

with

B[j]
1 ≡

j

∑
k=1

(−1)k

(k + 1)!
k adk

Ω1
B0. (83)

Notice, that since the second term in Ω2 in Equation (78) is O(λ3), the expression (82)
does contain some contributions in λ8 and λ9 that in principle could be removed. We prefer,
however, to maintain them in order to have a more compact expression.

For this modified Fer expansion, Ωn is generally chosen, so that Ω̇n is precisely the
sum of all terms of Bn−1 containing terms of powers from λ2n−1

up to λ2n−1 and then
appropriately truncating the series of Bn−2, . . . , B1.

Other possibilities for choosing Bk at the successive stages clearly exist, and according
to the particular election, different intermediate Fer-like expansions result. In practice, one
of those combinations of commutators could be more easily computed for a specific problem.

5. Applications
5.1. Wilcox Expansion as the Continuous Analogue of Zassenhaus Formula

The Zassenhaus formula may be considered as the dual of the Baker–Campbell–
Hausdorff (BCH) formula [33] in the sense that it relates the exponential of the sum of
two non-commuting operators X and Y with an infinite product of exponentials of these
operators and their nested commutators. More specifically,

eX+Y = eX eY
∞

∏
n=2

eCn(X,Y) = eX eY eC2(X,Y) eC3(X,Y) · · · eCk(X,Y) · · · , (84)
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where Ck(X, Y) is a homogeneous Lie polynomial in X and Y of degree k [1,7,21,34,35].
A very efficient procedure to generate all the terms in Equation (84) is presented in [21]
and allows to construct Cn up to a prescribed value of n directly, in terms of the minimum
number of independent commutators involving n operators X and Y.

In view of the formal similarity between Equations (39) and (84), Wilcox expansion
also has been described as the “continuous analogue of the Zassenhaus formula” [10], just
as the Magnus expansion is sometimes called the continuous version of the BCH formula.
To substantiate this claim, we next reproduce the Zassenhaus Formula (84) by applying the
procedure of Section 3 to a particular initial value problem, namely, the abstract equation

U̇ = λ(X + Y)U, U(0) = I, (85)

where X and Y are two non-commuting constant operators.
The formal solution is, of course, U(t) = etλ(X+Y), but we can also solve Equation (85)

by first integrating U̇0 = λXU0 and factorizing U(t) as U(t) = U0 UI = etλX UI , where UI
obeys the equation

U̇I = λ e−tλXYetλX UI ≡ Aλ(t)UI , (86)

and finally apply this to Equation (86), the sequence of transformations leading to the
Wilcox expansion. Notice, however, that now the coefficient matrix Aλ(t) is an infinite
series in λ

Aλ(t) = λ e−tλadX Y = ∑
j≥0

(−1)j

j!
tjλj+1adj

XY, (87)

so that, when applying the recursion (33)–(38), Ω̇1 is no longer B0 ≡ Aλ(t), but the term in
Aλ(t) which is proportional to λ. In other words,

Ẇ1 = Y, and thus W1(t) = t Y. (88)

After some computation, one arrives at

b0,l =
(−1)l−1

(l − 1)!
tl−1adl−1

X Y. (89)

Since Ẇ1 = b0,1 = Y, then clearly g1,l = 0 for all l > 1 and

b1,l =
l−2

∑
k=0

(−1)k

k!
adk

W1
b0,l−k. (90)

By imposing b1,2 = g2,2 = Ẇ2, we get

Ẇ2 = −t adXY, so that W2(t) = −
1
2

t2 adXY. (91)

In general, gn,n = Ẇn, gn,r = 0 when r 6= n and the recurrence (33)–(38) reads now

Ẇ1 = b0,1

bn,l =
[ l−1

n ]−1

∑
k=0

(−1)k

k!
adk

Wn
bn−1,l−nk, n = 1, 2, . . . (92)

Ẇn = bn−2,n n ≥ 2
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together with Equation (89). Working out this recursion we obtain, for the first terms

W3(t) =
1
6

t3ad2
XY +

1
3

t3adYadXY

W4(t) = − 1
24

t4ad3
XY− 1

8
t4adYad2

XY− 1
8

t4ad2
YadXY

W5(t) =
1

120
t5ad4

XY +
1

30
t5adYad3

XY +
1

20
t5ad2

Yad2
XY (93)

+
1
30

t5ad3
YadXY +

1
20

t5ad[X,Y]ad2
XY +

1
10

t5ad[X,Y]adYadXY

One can see that this procedure agrees with the algorithm presented in [21] for every
term Wn, n ≥ 1, in

U(t) = etλ(X+Y) = etλX eλW1(t) eλ2W2(t) eλ3W3(t) · · · . (94)

The Zassenhaus formula is recovered by taking t = 1, i.e., Cn(X, Y) = Wn(t = 1).

5.2. Expanding the Exponential exp(A + εB)

Bellman, in his classic book [36], states that “one of the great challenges of modern
physics is that of obtaining useful approximate relations for e(A+εB)t in the case where
AB 6= BA”. One such approximation was proposed and left undisclosed in ([12], p. 175).
Assuming that eA+εB can be written in the form

eA+εB = eA eεC1 eε2C2 eε3C3 · · · , (95)

Bellman proposed to determine the first three terms C1, C2, C3, and pointed out that,
contrary to other expansions, the product expansion (95) is unitary if A and B are skew-
Hermitian.

It turns out that the Wilcox expansion can be used to provide explicit expressions for
Cn for any two indeterminates A and B, as we will see in the sequel.

Before proceeding, it is important to remark that this problem differs from the Zassen-
hauss formula, in the sense that the expansion parameter affects only one of the operators
in the exponential. The solution goes as follows. We write

U(t) ≡ et(A+εB) = etA V, (96)

and solve the differential equation satisfied by V

dV
dt

= εe−tABetA V ≡ εB̃(t)V, V(0) = I (97)

with the Wilcox expansion, so that

V(t) = eεW1(t) eε2W2(t) eε3W3(t) · · · . (98)

The operators Ci in Equation (95) are then obtained by taking t = 1.
The successive terms Wj(t) in Equation (98) can be determined either by the recursion

(33)–(38) or the explicit expression (56). For the first term, we get

W1(t) =
∫ t

0
B̃(s)dt =

∫ t

0
e−s adA B ds =

∞

∑
k=0

(−1)k tk+1

(k + 1)!
adk

AB (99)
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and so the expression for C1 is given by

C1 =
1− eadA

adA
B = B− 1

2
[A, B] +

1
3!
[A, [A, B]]− 1

4!
[A, [A, [A, B]]] + · · · . (100)

Although it is possible in principle to construct explicit expressions for W2, W3, etc., it is
perhaps more convenient to apply the recursion (33)–(38) for each particular application.

5.3. Illustrative Examples

We next particularize the Bellman problem (95) to matrices where closed expressions for
C1, C2, . . . can be obtained. The idea is to illustrate the behaviour of the product expansion
by computing explicitly high-order terms with matrices in the SU(2) and the SO(3) Lie algebras.

5.3.1. Matrices X and Y in SU(2)

In the first example, we chose A = i aσz and B = i σx, where i =
√
−1, a is a real

parameter and

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(101)

are Pauli matrices. This instance is borrowed from Quantum Mechanics, where exp[i(aσz +
εσx)] is a matrix that transforms the 1

2 -spin wave function in a Hilbert space.
Using the scalar product notation to write down a linear combination of Pauli matrices:

~v ·~σ = vxσx + vyσy + vzσz, the matrix exponential reads

exp(i~v ·~σ) = cos v I + i
sin v

v
~v ·~σ. (102)

In the sequel, we work out the expansion

ei(aσz+εσx) = eiaσz eiεW1 eiε2W2 eiε3W3 . . . (103)

up to order eleven in ε and analyze the increasing accuracy of the product expansion as far
as more terms are considered. The lhs in Equation (103) may be thought as a transformation
involving σx and σz. In turn, the rhs is a pure σz transformation, i.e., exp(iaσz), followed by
an infinite succession of transformations, exp(iεkWk), whose effect should decrease with k.
The truncated product expansion is expected to be accurate as far as ε� a.

In Table 1 we write down the first five contributions for a generic t (expressions for
k > 5 are too involved to be collected here). Wilcox–Bellman’s Formula (103) corresponds
then to t = 1. All the terms have been obtained with the recurrences of Section 3, starting from

Ẇ1(t) = e−iatσz σx eiatσz = Cσx + Sσy, (104)

where C ≡ cos(2at) and S ≡ sin(2at).
The formulas in Table 1 show that ε/a may be considered as an effective expansion

parameter. In Figure 2, we illustrate, for a = 1, the accuracy of the Wilcox–Bellman product
expansion in the example at hand as a function of ε. We plot the squared modulus of the non-
diagonal matrix element, say |U1,2|2, of Equation (103) for every analytic approximation up
to order eleven in ε, as well as the exact result. Even orders do not contribute in this test,
because W2k is always proportional to σz, and therefore exp(iε2kW2k) is a diagonal matrix.
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Table 1. First five orders in Bellman problem for generic t. The operators Ck in Equation (95) are
obtained by taking t = 1, i.e., Ck = i Wk(1). We have defined S ≡ sin(2at) and C ≡ cos(2at).

k Wk(t)

1 1
2a

[Sσx + (1− C)σy]

2 1
4a2 (2at− S)σz

3 1
12a3

{
[6at + (C− 4)S]σx − (1− C)2σy

}
4 − 1

16a4 [6at + (C− 4)S]σz

5 1
240a5

{
[56S− (4C + 7)SC− 10at(7 + 4C− 2C2)]σx+

[4C3 − 7C2 − 28C + 31 + 2at(2SC− 4S + 3at)]σy
}

Figure 2. Accuracy of Wilcox–Bellman product expansion up to order eleven as a function of the
ratio ε/a, with a = 1. The quantity plotted is the squared modulus of the non-diagonal element of
the matrix. The vertical grey line stands for the convergence lower bound ε = 0.658.

As regards convergence of the product expansion, the lower bound of Equation (70)
leads to ∫ 1

0
‖e−iatσz εσx eiatσz‖dt = ε < 0.658. (105)

In turn, the behaviour of the curves in Figure 2 points out that convergence of the
product expansion extends well beyond that lower bound for this particular example.

Eventually, Figure 3 shows the logarithm of the absolute error in the approximations
given by curves in Figure 2.
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Figure 3. Absolute error of the approximations given by curves in Figure 2 with a = 1. The vertical
grey line is located at the value of the convergence lower bound ε = 0.658.

5.3.2. Matrices X and Y in SO(3)

The second example refers to the matrix that describes a rotation in three dimensions
defined by the vector~a = αâ. Here, α stands for the rotation angle around the axis given by
the unitary vector â. A generic 3D rotation matrix can be written as exp(~a ·~ρ), where the
components of ~ρ are the three fundamental rotation matrices

ρx =

0 0 0

0 0 −1

0 1 0

, ρy =

 0 0 1

0 0 0

−1 0 0

, ρz =

0 −1 0

1 0 0

0 0 0

. (106)

We study the particular case~a ·~ρ = α
(

cos θ ρz + sin θ ρx
)
, and compare the rotation

of angle α around the unit vector (sin θ, 0, cos θ)

eα
(

cos θ ρz+sin θ ρx
)

(107)

with the sequence of transformations

eα cos θ ρz eα sin θ W1 e(α sin θ)2W2 e(α sin θ)3W3 . . . (108)

In other words, the question we address is how the pure z-axis rotation in Equation (108),
exp(α cos θ ρz), has to be corrected by an infinite composition of further rotations to repro-
duce the one defined by~a ·~ρ. When α sin θ is small enough, the approach is expected to
converge, since the expansion convergence lower bound reads, in this case, |α sin θ| < 0.658.

Here, the accuracy of the product expansion will depend on both the rotation angle α
and the relative orientation of the rotation axis, determined by the angle θ. This is illustrated
in Figures 4 and 5 for the first five orders of approximation, with α = π/4, π/2, 3π/4 and π.

In order to test the expansion, we have computed the matrix trace of the successive
approximants and compared them with the exact result

tr
(
exp

(
α
(

cos θ ρz + sin θ ρx
)))

= 1 + 2 cos α. (109)
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The first two approximants are simple enough to be written down

tr
(

eα cos θ ρz eα sin θ W1
)
=
(

1 + cos(α cos θ)
)

cos
(

2 tan θ sin
α cos θ

2

)
tr
(

eα cos θ ρz eα sin θ W1 e(α sin θ)2W2
)
= cos

(
1
2

tan2 θ (sin(α cos θ)− α cos θ)

)
·

cos
(

α cos θ − 1
2

tan θ sin
α cos θ

2

) (110)

Interestingly, the third approximation order is worse than the second one in all four
cases. In the case of α = π, the fourth order is better than the fifth one.

Figure 4. Error in the approximations to the matrix trace as a function of the rotation angle θ, for two
values α = π/2 and π/4.

Figure 5. Error in the approximations to the matrix trace as a function of the rotation angle θ, for two
values α = 3π/4 and π.
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6. Conclusions

When a linear system of differential equations, defined by the coefficient matrix λA(t),
is transformed under exp(λ

∫ t
0 A(t′)dt′), the coefficient matrix in the new representation

becomes an infinite power series in λ, say Ã(t) = ∑k≥1 λk ak(t). That is the first step
of all matrix exponential methods to approximate the time-evolution operator. In the
framework that we have introduced, it is the first move in a sequence of exponential
transformations that change the linear system from one representation to another with
the goal that dynamics will become less and less relevant. Choosing the transformation
exp(λ

∫ t
0 Ã(x)dx) as the second move and iterating this procedure afterwards yields the

Fer expansion. Instead, choosing the transformation exp(λ
∫ t

0 a1(x)dx), i.e., the leading
term of the new coefficient matrix, opens up Wilcox expansion. The framework allows for
intermediate expansions, taking exp(∑n

k=1 λk ∫ t
0 ak(x)dx) as an initiator, as well as jumping

between schemes, in accordance with the particular requirements of the problem at hand.
We have seen that the theory of linear transformations (or changes of picture in the

language of Quantum Mechanics) provides a unified framework to deal with many differ-
ent exponential perturbative expansions. Whereas only one linear transformation reducing
the dynamics to the trivial Equation (4) or to a system with a constant matrix renders
the Magnus [9] and the Floquet–Magnus [37] expansion, respectively, a sequence of such
transformations with different choices of the new matrices lead to Wilcox and Fer factoriza-
tions. From this perspective, other factorizations are possible depending on the particular
problem at hand: one only has to appropriately select the successive transformations.

In the case of Wilcox expansion, we have provided an efficient recursive procedure to
compute this. In addition, we have developed a method to build up an explicit expression
for any Wn in terms of commutators. This is possible by using similar tools, as in the case of
the Magnus expansion, namely by relating products of iterated integrals with the structure
of the Hopf algebra of permutations, and by using special bases of nested commutators.
A sufficient condition for the expansion convergence has also been obtained.

We have presented some application examples of the results about Wilcox expansion.
Firstly, we have shown how to obtain Zassenhaus formula from Wilcox expansion which,
in turn, may be interpreted as its continuous analogue. Secondly, we point out that Wilcox
expansion solves the problem of expanding the exponential exp(A + εB) when A and B
are non-commuting operators. We refer to this as Wilcox–Bellman expansion. Two practical
cases, in this respect, have been analyzed up to high order. Interestingly, in one of them
the convergence seems to not be uniform. For convenience, the interested reader can find,
in [29], a Mathematica code generating general explicit expressions and recurrences for the
Wilcox expansion.

While a full assessment of the Wilcox expansion in comparison with Fer expansion
is not the main purpose of this work, we can still mention some of their most distinctive
features. Both types of expansion construct the solution of Equation (1) as an infinite
exponential factorization, but in Wilcox, the exponent of each factor is proportional to
successive powers of the expansion parameter λ, whereas, in Fer, each exponent contains
an infinite sum of powers of λ. This means that, when truncated after a given number of
transformations, say n, the Wilcox expansion differs from the exact solution in the power
λn+1. In other words, each term Wk(t) in the Wilcox expansion collects the effect of the
perturbation at order k. On the other hand, the Fer expansion, when truncated after n
transformations, provides a much more accurate approximation. This is true, of course,
if the infinite sums involved in each transformation are exactly computed, an almost
impossible task unless the time dependence of A(t) is simple enough. By contrast, we have
explicit expressions for each exponent Wk(t) in the Wilcox expansion for a generic A(t) and,
by using the same techniques as in the Magnus expansion, we can construct appropriate
approximations of the iterated integrals if necessary. As the examples collected here and in
some other studies show [20], Wilcox expansion can provide accurate results after only a
few such transformations.
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