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Abstract. In this paper, we are interested in studying the set A}¨}pX,Y q of all norm-
attaining operators T from X into Y satisfying the following: given ε ą 0, there exists η
such that if }Tx} ą 1´ η, then there is x0 such that }x0´ x} ă ε and T itself attains its
norm at x0. We show that every norm one functional on c0 which attains its norm belongs
to A}¨}pc0,Kq. Also, we prove that the analogous result holds neither for A}¨}p`1,Kq nor
A}¨}p`8,Kq. Under some assumptions, we show that the sphere of the compact operators
belongs to A}¨}pX,Y q and that this is no longer true when some of these hypotheses are
dropped. The analogous set AnupXq for numerical radius of an operator instead of its
norm is also defined and studied. We present a complete characterization for the diagonal
operators which belong to the sets A}¨}pX,Xq and AnupXq when X “ c0 or `p. As a
consequence, we get that the canonical projections PN on these spaces belong to our
sets. We give examples of operators on infinite dimensional Banach spaces which belong
to A}¨}pX,Xq but not to AnupXq and vice-versa. Finally, we establish some techniques
which allow us to connect both sets by using direct sums.

1. Introduction and Motivation

The famous theorem due to Bollobás on functionals which attain their norms states
that if x˚ is a norm one functional which almost attains its norm at some element x, in
the sense that x˚pxq ą 1 ´ η for some η ą 0, then there exist a new functional x˚0 and
a new element x0 such that x˚0 attains its norm at x0, x0 « x, and x˚0 « x˚ (see [4]).
This result opened the gate to further discussion on this topic and nowadays we have a
large literature about various classes of functions which attain their norms and satisfy a
Bollobás type result (see, for instance, [2, 3, 8, 9, 11, 12, 15, 19, 20] and the references
therein). Lindenstrauss in [16] was the first one who answers negatively a question posed
by Bishop and Phelps in [7] on the density of linear operators which attain their norms. In
particular, Bollobás’ result is no longer true for this class of functions, which had allowed
many researchers to study systematically when we have a Bollobás type result for other
functions rather than functionals. For a starting point on this topic, we suggest the reader
the seminal paper [3].
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In order to explain properly what we will be doing in this paper, we briefly present
some necessary notation so that the reader can follow the ideas easily. We denote by
BX and SX the closed unit ball and the unit sphere of the Banach space X, respectively.
We denote by X˚ the topological dual of X. Given two Banach spaces X and Y , we
denote by LpX, Y q the set of all bounded linear operators and by LpXq if X “ Y . We
will be using both notation xx˚, xy and x˚pxq indistinctly throughout the paper for the
action of an element x˚ P X˚ at an element x P X. We say that T P LpX, Y q attains its
norm if there exists x0 P SX such that }T px0q} “ }T }. In this case, we say that T is a
norm-attaining operator. The set of norm attaining operators from X into Y is denoted
by NApX, Y q. We introduce the set of all states on X by ΠpXq “ tpx, x˚q P SX ˆ SX˚ :
xx˚, xy “ 1u and for a given operator T P LpXq, the numerical radius of T is defined
as νpT q :“ supt|xx˚, T pxqy| : px, x˚q P ΠpXqu. Notice that we always have vpT q ď }T }.
We say that T attains the numerical radius when there is px0, x

˚
0q P ΠpXq such that

|xx˚0 , T px0qy| “ νpT q. In this case, we say that T is a numerical radius attaining operator.
For a background on this topic, we refer to [5, 6].

In this paper, we are interested in studying a set of linear operators which satisfy a
Bollobás type theorem in a sense which will be clear in a moment. This was motivated
by a natural question, although quite restrictive at first glance, whether we can get a
Bollobás theorem without changing the initial operator which almost attains its norm. In
other words, given ε ą 0, is it true that there exists η ą 0, which depends just on ε, such
that if }Tx} ą 1 ´ η, then there exists x0 such that x0 « x and T itself attains its norm
at x0? It turns out that the answer for this problem is negative whenever the dimension
of the involved Banach spaces are bigger than 2 (see [11, Theorem 2.1]) and, on the other
hand, it characterizes uniformly convex Banach spaces when we consider the problem for
linear functionals (see [15, Theorem 2.1]). Since there is no hope for a uniform version
for the operator case of this problem (in the sense that η depends just on a given ε ą 0)
and the functional case is completely characterized, it seems to be reasonable considering
the same problem but now taking η depending not just on ε but also on a fixed norm
one operator T . This was done in [9, 12, 13, 19, 20] and many positive results come out
differently from the uniform case. Here, we will be working with a set of operators which
satisfy such a property. Let us give the precise definitions.

Definition 1.1. Let X, Y be Banach spaces.

(i) A}¨}pX, Y q stands for the set of all norm-attaining operators T P LpX, Y q with
}T } “ 1 such that if ε ą 0, then there is ηpε, T q ą 0 such that whenever x P
SX satisfies }T pxq} ą 1 ´ ηpε, T q, there is x0 P SX such that }T px0q} “ 1 and
}x0 ´ x} ă ε.

(ii) AnupXq stands for the set of all numerical radius attaining operators T P LpXq
with νpT q “ 1 such that if ε ą 0, then there is ηpε, T q ą 0 such that whenever
px, x˚q P ΠpXq satisfies |xx˚, T pxqy| ą 1 ´ ηpε, T q, there is px0, x

˚
0q P ΠpXq such

that |xx˚0 , T px0qy| “ 1, }x0 ´ x} ă ε, and }x˚0 ´ x
˚} ă ε.

Let us notice the following. Suppose that the pair of Banach spaces pX, Y q satisfies
the following property: given ε ą 0 and T P SLpX,Y q, there exists ηpε, T q ą 0 such
that whenever x P SX satisfies }Tx} ą 1 ´ ηpε, T q, then there exists x0 P SX such that
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}Tx0} “ 1 and }x0 ´ x} ă ε. In this case, we have clearly that all norm one operators
from X into Y will belong to the set A}¨}pX, Y q. Notice also that if pX, Y q satisfies such
a property, then X must be reflexive by the James theorem since, in this case, every
operator attains its norm. Studying the set A}¨} gives us more freedom in the sense that
we do not have to restrict ourselves to any condition on the involved spaces but of course
on the definition of a concrete operator. On the other hand, very recently this property
was used in [10] as a tool to prove that every nuclear operator can be approximated (in
the nuclear norm) by nuclear operators which attain their nuclear norms. This makes
us think that, studying the sets A}¨} and Anu, might be helpful to get similar results
in the context of tensor products by using an analogous definition of the set A}¨} for
bilinear mappings. For instance (and this will be just a motivational thought by now),
consider the projective tensor product X pbπY between two Banach spaces X and Y , and
denote by } ¨ }π the projective tensor norm on X pbπY . Define A}¨}pX ˆ Y q the set of
all norm-attaining bilinear mappings satisfying its corresponding version of Definition
1.1.(i). If B P A}¨}pXˆY q and |Bpzq| ą 1´ ηpε, Bq2, where z P X pbπY with }z}π “ 1 and
ηpε, Bq ą 0 is function which appears in the definition, then there exists a norm-attaining
tensor z1 P X pbπY such that Bpz1q “ 1 and }z1´ z}π ă δpεq, where δpεq ą 0 is small. This
leads us to the natural question of how often a bilinear mapping belongs to A}¨} and how
often the function ηpε, Bq depends just on ε, since this would imply the density of the
set of the tensors which attain their projective norms (see [10, Proposition 4.3] for more
information in this direction). Thanks to the natural isometric identification between the
bilinear mappings on X ˆ Y and the operators from X into Y ˚, our study on the sets
A}¨} and Anu for operators might derive in new progresses on both nuclear operators and
tensors which attain their nuclear and projective norms, respectively.

Now, we describe the content of this paper. We start by showing, as expected, that
when we are working with finite dimensional spaces, we have a positive result. That is,
if dimpXq ă 8, then the set A}¨}pX, Y q coincides with the sphere of LpX, Y q for every
Banach space Y and the set AnupXq coincides with the set of all operators with numerical
radius one. As a consequence of it, we get that every norm one functional on c0 which
attains its norm belongs to A}¨}pc0,Kq by using the canonical embedding from a finite
dimensional Euclidian space pKn, } ¨ }8q (the space Kn with the topology induced by the
norm of c0) into c0. On the other hand, we present examples of norm one functionals on `1
and `8 which attain their norms but cannot be in A}¨}p`1,Kq and A}¨}p`8,Kq, respectively.
Next, we show that under some assumptions on the Banach space X, the sphere of the
compact operators is contained in A}¨}pX, Y q and also the set of all compact operators T
with νpT q “ }T } “ 1 belongs to AnupXq. Moreover, we provide some counterexamples
which show that the result is no longer true by dropping some of these hypothesis. Some
conditions on X which guarantee the possibility to pass from A}¨}pX, Y q to A}¨}pY ˚, X˚q

(analogously, from AnupXq to AnupX
˚q) via the adjoint operation are also considered. As

one of main results, we give a complete characterization for the diagonal operators when
such operators belong to A}¨}pX,Xq for X “ c0 or `p with 1 ď p ď 8, and to AnupXq in
the same cases except p “ 8. As a consequence, the canonical projections PN belong to
these sets. Finally, in the last section, we study some relations between A}¨}pX, Y q and
AnupX ‘ Y q through the natural correspondences between LpX, Y q and LpX ‘ Y q.
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2. Main results

In this section, we present the main results of the paper. Recall that in finite di-
mensional Banach spaces, every operator T attains both norm and numerical radius by
compactness. The following result shows that, when X is finite dimensional, we can de-
scribe the sets A}¨}pX, Y q and AnupXq entirely. Moreover, we show that S`1 X NApc0,Kq
is always contained in A}¨}pc0,Kq.

Theorem 2.1. Let X be a finite dimensional Banach space. Then

(i) A}¨}pX, Y q “ tT P LpX, Y q : }T } “ 1u for any Banach space Y ,
(ii) AnupXq “ tT P LpXq : νpT q “ 1u,

(iii) Every norm one functional on c0 which attains the norm belongs to A}¨}pc0,Kq.

Proof. Items (i) and (ii) are proved by using the compactness of the unit ball of the
finite dimensional space X as in [3, Proposition 2.4] or [9, Theorem 2.4]. To prove (iii),
suppose x˚ P Sc˚0 attains its norm at some point in Bc0 . Then, there exists n0 P N so

that x˚pnq “ 0 for every n ą n0. Let Ψ : pKn0 , } ¨ }8q Ñ c0 be the canonical embedding
into c0 that sends pk1, ¨ ¨ ¨ , kn0q ÞÑ pk1, ¨ ¨ ¨ , kn0 , 0, 0, ¨ ¨ ¨ q. It is easy to see that }Ψ} “ 1.
Moreover, }x˚ ˝Ψ} “ 1, so (i) implies that x˚ ˝Ψ P A}¨}pKn0 ,Kq. Given ε ą 0, define

δpε, x˚q :“ min
!ε

2
, η

´ε

2
, x˚ ˝Ψ

¯)

and suppose that |xx˚, x0y| ą 1 ´ δpε, x˚q for some point x0 P Sc0 . Let z0 P Kn0 be the
point such that z0pnq “ x0pnq for 1 ď n ď n0. Then,

ˇ

ˇ

ˇ

ˇ

px˚ ˝Ψq

ˆ

z0
}z0}8

˙ˇ

ˇ

ˇ

ˇ

ą 1´ δpε, x˚q

so, there is u0 P SKn0 such that |px˚ ˝ Ψqpu0q| “ 1 and }u0 ´
z0

}z0}8
}8 ă

ε
2
. Finally, let

v0 P c0 be such that v0pnq “ u0pnq for 1 ď n ď n0 and v0pnq “ x0pnq for n ą n0. It follows
that x˚ attains its norm at v0 P Sc0 and

}v0 ´ x0} “ }u0 ´ z0}8 ď

›

›

›

›

u0 ´
z0
}z0}8

›

›

›

›

8

`

›

›

›

›

z0
}z0}8

´ z0

›

›

›

›

8

ă
ε

2
` p1´ }z0}q ď ε.

�

Concerning linear functionals on `p-spaces, we have the following result.

Proposition 2.2. Let X be a Banach space.

(i) If X is uniformly convex, then SX˚ “ A}¨}pX,Kq.
(ii) There is x˚ P NAp`1,Kq X S`8 such that x˚ R A}¨}p`1,Kq.

(iii) There is x˚ P NAp`8,Kq X S`˚8 such that x˚ R A}¨}p`8,Kq.

Proof. For item (i), we argue as in [15, Theorem 2.1]. Let us prove (ii) now. Consider the
norm one functional z˚ :“

`

1, 1
2
, 2
3
, . . . , n´1

n
, . . .

˘

P `8. Notice that z˚ is a norm-attaining
functional and it is not difficult to see that the rotations of the unit vector e1 P S`1 are
the only norming points of z˚, that is, if |xz˚, zy| “ 1 with z P S`1 , then z is of the form
z “ eiθe1 for some θ P r0, 2πq. Given ε ą 0, suppose that there is such a ηpε, z˚q ą 0. We
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take k P N to be such that 1
k
ă ηpε, z˚q and then |xz˚, eky| ą 1 ´ ηpε, z˚q. This means

that there is z P S`1 such that |xz˚, zy| “ 1 and }z ´ ek}1 ă ε. This implies that z “ eiθe1
and }eiθe1 ´ ek}1 “ 2, which is a contradiction.

For item (iii), consider the functional x˚ :“
`

1
2
, 1
22
, 1
23
, . . .

˘

on `8, which is as an element
in S`1 ; hence is embedded in S`˚8 . If there is z “ pzpnqq8n“1 P S`8 such that |xx˚, zy| “
}x˚} “ 1, then

1 “ |xx˚, zy| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“1

1

2n
zpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

n“1

1

2n
|zpnq| ď 1.

From this, we get that zpnq “ eiθ for all n P N. Now, assuming that such a ηpε, x˚q ą 0
exists, we take k P N with 2kηpε, x˚q ą 1 and consider the element e1 ` . . . ` ek P S`8 .
Then, |xx˚, e1 ` . . . ` eky| ą 1 ´ ηpε, x˚q. So, there is x P S`8 such that |xx˚, xy| “ 1 and
}x´pe1`. . .`ekq}8 ă ε, which leads to a contradiction since }x´pe1`. . .`ekq}8 ě 1. �

Let us observe that it is immediate that an operator which has norm one but does
not attain the norm cannot be in A}¨}pX, Y q by its definition. Analogously, the same
argument for non numerical radius operators applies for the set AnupXq. Nevertheless, we
present in Example 2.3 a norm one operator which attains its norm and numerical radius
but belongs neither to A}¨}pX,Xq nor to AnupXq.

Example 2.3. Let p ą 0 and q ą 0 be such that 1
p
` 1

q
“ 1. We consider the spaces `p

and `q as `pp`
2
pq and `qp`

2
qq, respectively, where `2p “ pK2, } ¨ }pq. For each n P N, we define

Tn P Lp`2pq by

Tnpx, yq :“

ˆˆ

1´
1

2n

˙

x, y

˙

`

px, yq P `2p
˘

.

Now, define T P Lp`pq as

T pzq :“ pTnpxpnq, ypnqqqn “

ˆˆ

1´
1

2n

˙

xpnq, ypnq

˙

n

pz “ ppxpnq, ypnqqqn P `pq.

Following [9, Theorem 2.21.(ii)], we see that T attains its norm but T R A}¨}p`p, `pq. Let us
also see that T R AnupXq. Let e2i be the unit canonical vectors of `2p and `2q for i “ 1, 2, that

is, e21 “ p1, 0q and e22 “ p0, 1q. Consider ei,n :“ pp0, 0q, . . . , p0, 0q, e2i
loomoon

n-th

, p0, 0q, . . .q P S`p

and e˚i,n :“ pp0, 0q, . . . , p0, 0q, e2i
loomoon

n-th

, p0, 0q, . . .q P S`q for i “ 1, 2. Since |xe˚2,n, T pe2,nqy| “ 1,

T attains its numerical radius and νpT q “ }T } “ 1. Suppose that T P Anup`pq and consider
1
2n
ă ηpε, T q for a given ε P p0, 1q. Since νpT q “ }e1,n}p “ }e˚1,n}q “ xe˚1,n, e1,ny “ 1

and |xe˚1,n, T pe1,nqy| ą 1 ´ ηpε, T q, there is pw,w˚q P Πp`pq such that |xw˚, T pwqy| “ 1,
}w ´ e1,n}p ă ε, and }w˚ ´ e˚1,n}q ă ε. Since }T } “ 1 and |xw˚, T pwqy| “ 1, it follows
that }T pwq}p “ 1. If we denote w “ ppupnq, vpnqqqn P S`p , then it is possible to see that
upjq “ 0 for all j P N. This implies that }w ´ e1,n}p “ }pp0, vpnqqqn ´ e1,n}p ě 1, which is
a contradiction.

Remark 2.4. Due to the relation between the norm of an operator and its numerical
radius, it is natural to wonder whether the fact that an operator is in A}¨}pX,Xq for some
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Banach space X implies that it also belongs to AnupXq. Nevertheless, this is not the
case in general even in Hilbert spaces. Indeed, on the one hand, every isometry on X
clearly belongs to A}¨}pX,Xq. On the other hand, this does not hold for the set AnupXq.
Consider the right shift operator R P Lp`2q. It is known that the numerical range W pRq
of R is the open unit disk D in the complex plane (see, for example, [17, Example 2])
which implies that νpRq “ 1, but |xRx, xy| ă 1 for every x P S`2 .

Recall that a Banach space X satisfies the Kadec-Klee property when the weak and
norm topologies coincide on the unit sphere SX . It is well-known that every locally
uniformly rotund space (LUR, for short) satisfies the Kadec-Klee property (the converse
is not true, e.g., `21). Recall also that, by the Šmulian lemma, the norm of X is Fréchet
differentiable at x if and only if px˚nq Ă SX˚ is convergent whenever limnxx

˚
n, xy “ 1. In

the next result, under some assumptions on the involved Banach spaces, we show that
some subsets of the space of all compact operators belong to the classes A}¨} and Anu. We
denote by KpX, Y q the set of all compact operators from X into Y .

Theorem 2.5. Let X be a reflexive space which satisfies the Kadec-Klee property. Then,

(i) SKpX,Y q Ă A}¨}pX, Y q for every Banach space Y .
(ii) tT P KpXq : νpT q “ }T } “ 1u Ă AnupXq whenever X is Fréchet differentiable.

Proof. Item (i) follows from the same argument as in [19, Theorem 2.12]. Let us prove
(ii). Suppose by contradiction that it is not true. Then, there are ε0 P p0, 1q and a
compact operator T P KpXq with νpT q “ }T } “ 1 such that for every n P N, there is
pxn, x

˚
nq P ΠpXq such that

(1) 1 ě |xx˚n, T pxnqy| ě 1´
1

n

and whenever px, x˚q P ΠpXq satisfies }x ´ xn} ă ε0 and }x˚ ´ x˚n} ă ε0, we have
|xx˚, T pxqy| ă 1. By reflexivity of X, there is a subsequence of pxnq, which we denote

again by pxnq, and x0 P BX such that xn
w
ÝÑ x0. Thus, T pxnq ÝÑ T px0q in norm. From

this and 1 “ νpT q “ }T } ě }T pxnq} ě |xx
˚
n, T pxnqy| ÝÑ 1, we get that }T px0q} “ 1. This

shows that x0 P SX . Since w and norm topologies coincide in SX , we have that xn ÝÑ x0
in norm. Notice now that for each n P N, we have

1 ě |xx˚n, T px0qy| ě |xx
˚
n, T pxnqy| ´ }x0 ´ xn}.

Since xn converges to x0 in norm, by using p1q, we get that |xx˚n, T px0qy| ÝÑ 1. Thus, there
exists a subsequence of px˚nq, which we denote again by px˚nq, and some θ P r0, 2πq such
that xx˚n, T px0qy converges to eiθ. Let S P KpXq be the operator defined by S :“ e´iθT .
One clearly has that Spx0q P SX and xx˚n, Spx0qy converges to 1. By Šmulian lemma,
there is x˚0 P BX˚ such that x˚n ÝÑ x˚0 in norm. Since xx˚n, xny “ 1 for every n P N, we
get that xx˚0 , x0y “ 1. So, x˚0 P SX˚ and then px0, x

˚
0q P ΠpXq. Finally, in view of (1) and

|xx˚n, T pxnqy| ÝÑ |xx˚0 , T px0qy|, we get that |xx˚0 , T px0qy| “ 1. This is a contradiction. �

In fact, the above argument shows, under the same assumptions on (ii), that every
compact operator T which has norm and numerical radius 1 attains its numerical radius.
Notice also that the identity operator always belongs to AnupXq whereas it is not compact
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unless X is finite dimensional. So, in the infinite dimensional setting, the inclusion in
Theorem 2.5.(ii) must be strict. On the other hand, since every operator from a reflexive
space into a space which satisfies the Schur’s property is compact and Hilbert spaces
satisfy all the hypothesis of Theorem 2.5, we have the following consequence.

Corollary 2.6. Let X be a reflexive Banach space with the Kadec-Klee property and let
H be a Hilbert space.

(i) If Y has the Schur property, then A}¨}pX, Y q “ SLpX,Y q.
(ii) If T P KpHq is with νpT q “ }T } “ 1, then T P AnupHq.

Next, we present a numerical radius attaining compact operator S R Anu with νpSq “
}S} “ 1 defined on a Banach space X which is not reflexive, its norm is nowhere Fréchet
differentiable, and satisfies the Schur’s property (and, in particular, the Kadec-Klee prop-
erty).

Example 2.7. Consider c0 as a real space. Define the operator T P Lpc0q by

pT pxqqp1q “
8
ÿ

j“1

1

2j
xpjq and pT pxqqpkq “ 0 pk ě 2q px “ pxpjqq8j“1 P c0q.

It is proved in [2, Proposition 2.8] that }T } “ νpT q “ 1 but T attains neither its norm
nor numerical radius. In particular, T belongs neither to A}¨}pc0, c0q nor to Anupc0q. We
claim that S :“ T ˚ is a compact numerical radius attaining operator with νpSq “ }S} “ 1
but does not belong to Anup`1q. Indeed, first notice that S P Lp`1q is given by

Spyq “
8
ÿ

j“1

yp1q

2j
ej py “ pypjqq8j“1 P `1q.

Moreover, νpSq “ νpT q “ 1, xz, e1y “ 1 where z “ p1, 1, 1, . . . q P S`8 , and that xz, Se1y “
ř8

j“1
1
2j
“ 1, which implies that S attains the numerical radius (and the norm). Before

proving that S R Anup`1q, let us first observe that S P A}¨}p`1, `1q. Indeed, given ε ą 0,

take x P S`1 such that }Spxq}1 ą 1 ´ ε
2
, that is,

ř8

j“1
|xp1q|
2j

ą 1 ´ ε
2
. Thus, |xp1q| ą 1 ´ ε

2

and
ř8

j“2 |xpjq| ď
ε
2
. Consider y “

´

xp1q
|xp1q|

, 0, 0, . . .
¯

P S`1 , then

}Spyq}1 “ 1 and }x´ y}1 “ |xp1q ´ yp1q| `
8
ÿ

j“2

|xpjq| ď p1´ |xp1q|q `
ε

2
ă ε.

This shows that S P A}¨}p`1, `1q.
Next, we claim that S cannot be in Anup`1q. Indeed, observe that if py, zq P Πp`1q

satisfy |xz, Spyqy| “ 1, then

8
ÿ

j“1

|ypjq| “ 1,
8
ÿ

j“1

ypjqzpjq “ 1,

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“1

1

2j
yp1qzpjq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1, and max
jPN

|zpjq| “ 1.

From the third equality, we have

1 “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“1

1

2j
yp1qzpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď |yp1q|
8
ÿ

j“1

1

2j
“ |yp1q| ď 1.
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This implies that the only possible candidates are y “ p1, 0, 0, 0, . . .q and z “ p1, 1, 1, 1, . . .q
or y “ p´1, 0, 0, 0, . . .q and z “ p´1,´1,´1,´1, . . .q. Suppose, by contradiction, that for
a given ε P p0, 1q, there is ηpε, Sq ą 0. Let n0 P N be such that

řn0

j“1
1
2j
ą 1 ´ ηpε, Sq.

Set y0 “ p1, 0, 0, . . .q P S`1 and z0 “ p1, 1, . . . , 1, 1
loomoon

n0-th

, 0, 0, . . .q P S`8 . Then, py0, z0q P

Πp`1q and |xz0, Spy0qy| “
řn0

j“1
1
2j
ą 1 ´ ηpε, Sq. So, there is py, zq P Πp`1q such that

|xz, Spyqy| “ 1, }y´y0}1 ă ε, and }z´z0}8 ă ε. But this is not possible since }z´z0}8 ě
|zpn0 ` 1q ´ z0pn0 ` 1q| ě 1.

Let us recall that in Corollary 2.6, we proved that if a compact operator T defined on
a Hilbert space is such that νpT q “ }T } “ 1, then T must belong to the set AnupHq.
However, the following result (inspired by [2, Example 1.9]) provides us a wide class of
operators T P AnupHq such that 1 “ νpT q ă }T } and , in particular, examples of operators
which belong to Anu but not to A}¨}. Notice, by item (iii) below, that T belongs to the set
Anu in a uniform sense, that is, the η does not depend on the operator T defined there.
We do not know how often this happens, that is, we do not know, for instance, whether
the set of such an operators could be norming for the whole space.

Proposition 2.8. Let H be a separable infinite dimensional real Hilbert space. Then,
there is T P LpHq such that

(i) T is a compact operator.
(ii) 1 “ νpT q ă }T } and T attains its numerical radius.

(iii) given ε ą 0, there is ηpεq ą 0 such that whenever x0 P SH satisfies

|xTx0, x0y| ą 1´ ηpεq,

there is x1 P SH such that νpT q “ xTx1, x1y “ 1 and }x1 ´ x0} ă ε.

In particular, T P AnupHq and T R A}¨}pH,Hq.

Proof. Let 0 ă α ď 1 and tαnu be a sequence such that |α1| ą 1, ´1 ă αn ă 1 for n ě 2,
and αn Ñ 0 as n Ñ 8. Let tJ1, J2, J3u be a partition of N such that |J1| “ |J2| “ ℵ0,
|J3| “ ` ă 8. Write the subsets J1, J2 as J1 “ tnk : k ě 1u, J2 “ tmk : k ě 1u
where n1 ď n2 ď . . . , m1 ď m2 ď . . . and each nk corresponds to mk via an one-to-one
correspondence between J1 and J2. Define T P LpHq by

T penkq “ ´αkemk pk P Nq, T pemkq “ αkenk pk P Nq, T penq “ αen pn P J3q,

where ten : n ě 1u is an orthonormal basis of H. Note first that for every x P H, we have

T pxq “
8
ÿ

n“1

xx, enyT penq “
ÿ

kPN

p´αkxx, enkyemk ` αkxx, emkyenkq `
ÿ

nPJ3

αxx, enyen.

The item (i) is clear. Let us calculate the norm and numerical radius of T . Note for each
x P SH , we have

xT pxq, xy “
ÿ

kPN

pαkxenk , xyxx, emky ´ αkxemk , xyxx, enkyq `
ÿ

nPJ3

αxen, xyxx, eny.
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The first two terms are canceled out because H is real and then

(2) xT pxq, xy “ α
ÿ

nPJ3

|xx, eny|
2

for x P SH which implies that νpT q ď α. Since |xTen, eny| “ α for every n P J3, we have
that T attains its numerical radius and νpT q “ α.

On the other hand, let us notice that, for every x P H, we have

}T pxq}2 “
8
ÿ

j“1

|xT pxq, ejy|
2
“

ÿ

kPN

`

|αkxx, emky|
2
` |αkxx, enky|

2
˘

`
ÿ

nPJ3

|αxx, eny|
2.

It follows that }T } ď maxt}tαnu}8, |α|u. However, we also have

}T } ě supt}T penq} : n ě 1u “ supt|αk|, |α| : k ě 1u “ maxt}tαnu}8, |α|u;

hence }T } “ maxt}tαnu}8, |α|u. In particular, since |α1| ą 1, we have }T } ą 1 ě α “
νpT q. This proves item (ii).

Now we prove that T P AnupHq when α “ 1. Given ε P p0, 1q, let x0 P SH be such that

|xT px0q, x0y| ą 1´ ε2

4
. By equation (2), we have that

ÿ

nPJ3

|xx0, eny|
2
“ |xT px0q, x0y| ą 1´

ε2

4
, and then

ÿ

kPJ1YJ2

|xx0, eky|
2
ă
ε2

4
.

Let π3 be the projection of H onto the closed subspace H3 “ spanten : n P J3u. Then we
have π3px0q “

ř

nPJ3
xx0, enyen and

xT pπ3px0qq, π3px0qy “
ÿ

nPJ3

|xπ3px0q, eny|
2
“

ÿ

nPJ3

|xx0, eny|
2.

It follows that T attains its numerical radius at }π3px0q}
´1π3px0q P SH . Moreover,

›

›

›

›

π3px0q

}π3px0q}
´ x0

›

›

›

›

ď

›

›

›

›

π3px0q

}π3px0q}
´ π3px0q

›

›

›

›

` }π3px0q ´ x0}

ď |1´ }π3px0q}| `

˜

ÿ

kPJ1YJ2

|xx0, eky|
2

¸1{2

ă
ε

2
`
ε

2
“ ε.

�

Observe that it is not true that T ˚ belongs to A}¨} if T belongs to A}¨} in general (see
Examples 2.7 and 2.11). However, if we put some extra assumptions on the spaces X and
Y , then we can obtain the following duality results.

Proposition 2.9. Let X, Y be Banach spaces and T P LpX, Y q.

(i) Suppose that Y be uniformly smooth. If T P A}¨}pX, Y q, then T ˚ P A}¨}pY ˚, X˚q.
(ii) Suppose that X be uniformly convex. If T ˚ P A}¨}pY ˚, X˚q, then T P A}¨}pX, Y q.

(iii) Suppose that X is reflexive. Then, T P AnupXq if and only if T ˚ P AnupX
˚q.
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Proof. Note that (ii) is just a consequence of (i) since, in this case, X is, in partic-
ular, reflexive. Let us prove (i). Let Y be a uniformly smooth Banach space. Let
T P A}¨}pX, Y q. Then, }T ˚} “ }T } “ 1 and T ˚ is also norm-attaining. In order to prove
that T ˚ P A}¨}pY ˚, X˚q, let ε P p0, 1q be given and consider ηpε, T q ą 0. Set

ηpε, T ˚q :“ min

"

η

ˆ

δY ˚pεq

2
, T

˙

,
δY ˚pεq

2

*

ą 0,

where ε ÞÑ δY ˚pεq stands for the modulus of convexity of Y ˚. Pick y˚1 P SY ˚ to satisfy
}T ˚py˚1 q} ą 1 ´ ηpε, T ˚q. There is x1 P SX such that Rexy˚1 , T px1qy “ Rexx1, T

˚py˚1 qy “
}T ˚py˚1 q} ą 1´ ηpε, T ˚q. This implies that }T px1q} ą 1´ ηpε, T ˚q. Since T P A}¨}pX, Y q,
there is x2 P SX such that }T px2q} “ 1 and }x2 ´ x1} ă

δY ˚ pεq

2
. Take y˚2 P SY ˚ to be such

that Rexy˚2 , T px2qy “ }T px2q} “ 1 and notice that Rexy˚1 , T px2qy ą 1 ´ δY ˚pεq. Then,
}y˚1 ` y˚2 } ą 2 ´ 2δY ˚pεq. This shows that }y˚2 ´ y˚1 } ă ε. As T ˚ attains its norm at y˚2
which is close to y˚1 , henceforth, T ˚ P A}¨}pY ˚, X˚q.

Now we prove (iii). Since X is reflexive, we just have to prove one direction. Assume
T P AnupXq. Note that T ˚ P LpX˚q also attains its numerical radius. Now let ε ą 0 be
given and set ηpε, T ˚q :“ ηpε, T q ą 0. Let px˚1 , x

˚˚
1 q P ΠpX˚q be such that |xx˚˚1 , T

˚px˚1qy| ą
1´ ηpε, T ˚q. Since X is reflexive, there is x1 P SX such that x1 “ x˚˚1 . Then

|xx˚1 , T px1qy| “ |xx1, T
˚
px˚1qy| “ |xx

˚˚
1 , T

˚
px˚1qy| ą 1´ ηpε, T ˚q “ 1´ ηpε, T q.

Then there is px2, x
˚
2q P ΠpXq such that |xx˚2 , T px2qy| “ 1, }x2´x1} ă ε and }x˚2´x

˚
1} ă ε.

So, T ˚ P AnupX
˚q as desired. �

Given T P Lpc0q and N P N, it is not difficult to see that ranT ˚ Ă spante˚1 , . . . , e
˚
Nu

if and only if T “ T ˝ PN , where PN is the natural N -th projection on c0. A property
related to Proposition 2.9.(iii) above can be proved for c0 under this condition.

Proposition 2.10. Let T P Anupc0q be an operator such that the range of T ˚ P Lp`1q is
in spante˚1 , . . . , e

˚
Nu for some N P N. Then, T ˚ P Anup`1q

Proof. Let ε ą 0. Set ηpε, T ˚q :“ mint ε
3
, η

`

ε
3
, T

˘

u ą 0. Let px˚1 , x
˚˚
1 q P Πp`1q be such

that |xx˚˚1 , T
˚px˚1qy| ą 1 ´ ηpε, T ˚q. Let n0 ą N be big enough so that

řn0

n“1 |x
˚
1pnq| ą

1´ ηpε, T ˚q. Define px˚2 , x
˚˚
2 q P `1 ˆ `8 as follows:

(a) x˚2pnq “ p
řn0

n“1 |x
˚
1pnq|q

´1x˚1pnq for 1 ď n ď n0 and x˚2pnq “ 0 for n ą n0,
(b) x˚˚2 pnq “ x˚˚1 pnq for 1 ď n ď n0 and x˚˚2 pnq “ 0 for n ą n0.

As x˚1pnqx
˚˚
1 pnq “ |x˚1pnq| for every n P N, we get that px˚2 , x

˚˚
2 q P Πp`1q. Note that

}x˚2 ´ x
˚
1} ă 2ηpε, T ˚q ă 2ε

3
. Now,

|xx˚2 , T px
˚˚
2 qy| “ |xx

˚˚
2 , T

˚
px˚2qy| “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

x˚˚2 pnqpT
˚
px˚2qqpnq

ˇ

ˇ

ˇ

ˇ

ˇ

“

˜

n0
ÿ

n“1

|x˚1pnq|

¸´1 ˇ
ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

x˚˚1 pnqpT
˚
px˚1qqpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ą 1´ ηpε, T ˚q.
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Hence, there exists px3, x
˚
3q P Πpc0q such that |xx˚3 , Tx3y| “ 1, }x3 ´ x˚˚2 } ă

ε
3
, and

}x˚3 ´ x˚2} ă
ε
3
. Notice that |x3pnq| ă

ε
3

for every n ą n0; hence x˚3pnq “ 0 for every
n ą n0. Define x˚˚3 P B`8 by x˚˚3 pnq “ x3pnq for 1 ď n ď n0 and x˚˚3 pnq “ x˚˚1 pnq for
n ą n0. Then, px˚3 , x

˚˚
3 q P Πp`1q, }x

˚
3 ´ x

˚
1} ă ε, and }x˚˚3 ´ x˚˚1 } ă

ε
3
. Finally,

|xx˚˚3 , T
˚
px˚3qy| “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

x˚˚3 pnqpT
˚
px˚3qqpnq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

x3pnqpT
˚
px˚3qqpnq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1.

�

In Proposition 2.9, if we drop off some of the hypothesis, then it is possible to construct
operators which do not satisfy the conclusion of that result. Recall that, in Example 2.7,
we have constructed an operator T on c0 such that T ˚ P A}¨}p`1, `1q but T R A}¨}pc0, c0q.
Next, we present an operator S such that S P A}¨}pX,Xq but S˚ R A}¨}pX˚, X˚q.

Example 2.11. The operator T defined in Example 2.7 is such that T ˚˚ R A}¨}p`8, `8q
although T ˚ P A}¨}p`1, `1q . Indeed, T ˚˚ P Lp`8q is given by

pT ˚˚pzqqp1q “
8
ÿ

j“1

1

2j
zpjq and pT ˚˚pzqqpkq “ 0 @ k ě 2

for z P `8. Then, for the vector u0 “ p1, 1, 1, 1, . . .q P S`8 , we have }T ˚˚pu0q} “ 1 “ }T ˚˚}.
Let z0 P S`8 be such that }T ˚˚pz0q}8 “ 1. This implies that |z0pjq| “ 1 for all j P N.
For a given ε P p0, 1q, suppose that there is ηpε, T ˚˚q ą 0. Let n0 P N be such that
2nηpε, T ˚˚q ą 1 for every n ě n0. Consider the vector z P S`8 defined as z1pnq “ 1
for 1 ď n ď n0 and z1pnq “ 0, otherwise. Then, }T ˚˚pz1q} “

řn0

j“1
1
2j
ą 1 ´ ηpε, T ˚˚q.

However, the vector z1 cannot be close to norming points of T ˚˚ by definition. This shows
that T ˚˚ R A}.}p`8, `8q.

Our next aim is to characterize the diagonal operators which belong to A}¨} and Anu. We
give a complete characterization for these operators which belong to A}¨}pX,Xq whenever
X “ c0 or `p with 1 ď p ď 8 and for AnupXq whenever X “ c0 or `p with 1 ď p ă 8. Next
lemma describes the norm-attaining diagonal operators defined on c0 or `p. Although it
might be well-known in the literature, we present a short proof of it for the sake of
completeness and we use it to prove Theorem 2.13.

Lemma 2.12. Let X “ c0 or `p with 1 ď p ď 8. Let T P LpXq be a norm one operator
defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P Xq,

where pαnq
8
n“1 is a bounded sequence of complex numbers. Given x P SX , T attains its

norm at x if and only if the following is satisfied:

(i) Case X “ c0: there exists n0 P N such that |αn0 | “ }T } and |xpn0q| “ 1.
(ii) Case X “ `8: either the same condition as in c0 holds or there exists a sub-

sequence of the natural numbers, pnkq
8
k“1, such that |αnk | converges to }T } and

|xpnkq| converges to 1 as k Ñ 8.
(iii) Case X “ `p with 1 ď p ă 8: setting J “ tn P N : |αn| “ 1u, J is non-empty and

xpnq “ 0 for all n P NzJ .
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Proof. In all cases, it is easy to prove that }T } “ supnPN |αn| and the implication pðq is
clear. Conversely, the proofs for X “ c0 and X “ `8 are a consequence of the fact that

1 “ }T } “ }Tx} “ sup
nPN

|αnxpnq| ď sup
nPN

|αn| ď }T } “ 1,

and the proof for X “ `p with 1 ď p ă 8 is a consequence of the fact that

1 “ }Tx}p “
8
ÿ

n“1

|αn|
p
|xpnq|p “

ÿ

nPJ

|xpnq|p `
ÿ

nPNzJ

|αn|
p
|xpnq|p ď

8
ÿ

j“1

|xn|
p
“ 1.

�

Theorem 2.13. Let X “ c0 or `p, 1 ď p ď 8. Let T P LpXq be a norm one operator
defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P Xq,

where pαnq
8
n“1 is a bounded sequence of complex numbers. Then, the following assertions

are equivalent:

(a) T P A}¨}pX,Xq,
(b) Both of these conditions are satisfied:

(1) There exists some n0 P N such that |αn0 | “ 1.
(2) If J “ tn P N : |αn| “ 1u, then either J “ N or supnPNzJ |αn| ă 1.

Proof. We prove the result for X “ c0 first. The proof for X “ `8 is very similar, so we
omit it.

paq ùñ pbq: By Lemma 2.12, it suffices to show that supnPNzJ |αn| ă 1 when J ‰ N.
Assume to the contrary that supnPNzJ |αn| “ 1. Pick a sequence pnkq Ă NzJ such that

|αnk | ě 1 ´ 1
k

for each k P N. Given ε P p0, 1q, choose N P N so that N´1 ă ηpε, T q,
then }T penN q} ą 1 ´ ηpε, T q. Thus there exists x0 P Sc0 such that T attains its norm
at x0 and }x0 ´ enN } ă ε. Now, Lemma 2.12 implies that there exists k P J such that
|x0pkq| “ 1 “ |αk|. This contradicts }x0 ´ enN } ă ε.

pbq ùñ paq: If J “ N, then T attains its norm at every point in Sc0 . Suppose that J ‰ N
and supnPNzJ |αn| ă 1. Assume to the contrary that T R A}¨}pc0, c0q, then there is some

ε0 P p0, 1q such that for each n P N, there is some xn P Sc0 such that 1 ě }T pxnq} ě 1´ 1
n
,

and whenever x P Sc0 satisfies that }x ´ xn} ă ε0, we have that }T pxq} ă 1. Let n0 P N
be such that

sup
nPNzJ

|αn| ă 1´
1

n0

and
1

n0

ă ε0.

Since }T pxn0q} ě 1 ´ 1
n0

, we can choose k P J such that |xn0pkq| ě 1 ´ 1
n0

. Let yn0 P Sc0
be the point such that

(1) ynpjq :“ xnpjq for all j P Nztku,

(2) ynpkq :“
xnpkq

}xnpkq}
.

It is clear that }T pyn0q} “ }yn0} “ 1 and }yn0 ´ xn0} ď
1
n0
ă ε0. This contradiction

completes the proof.
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Let us prove now the result for X “ `p with 1 ď p ă 8.

paq ùñ pbq: It suffices to check that supnPNzJ |αn| ă 1 when J ‰ N. Assume to the
contrary that supnPNzJ |αn| “ 1. Given ε P p0, 1q, pick n0 P NzJ so that |αn0 | ą 1´ηpε, T q.
Thus, }Ten0} ą 1 ´ ηpε, T q. By Lemma 2.12, if T attains its norm at x P S`p , then
|xpn0q| “ 0 which implies that }x´ en0} ě 1 ą ε.

pbq ùñ paq: If J “ N, then we are done. Suppose that J ‰ N and β :“ supnPNzJ |αn| ă
1. Assuming that T does not belong to A}¨}p`p, `pq, there exists ε0 P p0, 1q such that for
each n P N, there is some xn P S`p such that 1 ě }T pxnq} ě 1 ´ 1

n
, and whenever x P S`p

satisfies that }x´ xn} ă ε0, we have that }T pxq} ă 1. Note that
ˆ

1´
1

n

˙p

ď
ÿ

kPJ

|xnpkq|
p
` β

ÿ

kPNzJ

|xnpkq|
p
ă

8
ÿ

k“1

|xnpkq|
p
“ 1.

This implies that
ř

kPJ |xnpkq|
p converges to 1 and

ř

kPNzJ |xnpkq|
p converges to 0 as nÑ

8. Set An :“ p
ř

kPJ |xnpkq|
pq

1
p and choose n0 P N such that 1´Apn0

ă
εp0
2

. Define yn0 P S`p
by

yn0pkq “
xn0pkq

An0

for every k P J and yn0pkq “ 0 for every k P NzJ.

By Lemma 2.12 that }Tyn0} “ 1. However,

}yn0 ´ xn0}
p
ď p1´ An0q

p
`

ÿ

jPNzJ

|xn0pkq|
p
ď 2p1´ Apn0

q ă εp0.

�

Next we are proving the counterpart of Lemma 2.12 and Theorem 2.13 for numerical
radius. As in the A}¨} case, it gives a whole characterization for the set Anu for diagonal
operators on c0 and `p. Let us notice that Lemma 2.14 establishes some properties for a
numerical radius one diagonal operator on c0 and `p which attains its numerical radius.
We will use it to prove Theorem 2.15 and again we present a short proof of it for the sake
of completeness.

Lemma 2.14. Let X “ c0 or `p, 1 ď p ă 8. Let T P LpXq be a numerical radius one
operator defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P Xq,

where pαnq
8
n“1 is a bounded sequence of complex numbers. If T attains its numerical radius

at px, x˚q P ΠpXq, then we have the following:

(1) There exists n0 P N such that |αn0 | “ 1.
(2) For X “ c0, Rex˚pnqxpnq “ |x˚pnqxpnq| “ |x˚pnq| for every n P N.

For X “ `p, Rex˚pnqxpnq “ |x˚pnqxpnq| “ |xpnq|p “ |x˚pnq|q for every n P N.
(3) There exists θ P r0, 2πq such that αn “ eiθ on tn P N : |x˚pnq| ‰ 0u.

Proof. Let us see the result for X “ c0. First of all, as px, x˚q P Πpc0q, by using a convex
argument, it follows that Repx˚pnqxpnqq “ |x˚pnqxpnq| “ |x˚pnq| for every n P N. This
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proves item (2). Notice that (1) is clear as the operator T attains its norm as well (notice
that for these operators, we always have }T } “ νpT q “ 1). To see (3), observe that

1 “ |xx˚, Txy| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nPN

αnx
˚
pnqxpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

nPN

|αnx
˚
pnqxpnq| ď 1.

Therefore, there exists θ P r0, 2πq such that αn “ eiθ on tn P N : |x˚pnq| ‰ 0u. The proof
for X “ `p with 1 ď p ă 8 is similar, just keeping in mind the equality case of Hölder’s
inequality, so we omit it. �

Theorem 2.15. Let X “ c0 or `p, 1 ď p ă 8. Let T P LpXq be a numerical radius one
operator defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P Xq,

where pαnq
8
n“1 is a bounded sequence of complex numbers. Then, the following assertions

are equivalent:

(a) T P AnupXq.
(b) The following both conditions hold:

(1) There exists some n0 P N such that |αn0 | “ 1.
(2) If J “ tn P N : |αn| “ 1u, then the cardinality of the set tαn : n P Ju is finite

and supnPNzJ |αn| ă 1 when J ‰ N.

Before giving the precise proof of Theorem 2.15, let us notice that when pαnq
8
n“1 is a

bounded sequence of real numbers, we have that the set tαn : n P Ju Ď t1,´1u, that is, it
is automatically finite. Combining Theorem 2.13 and Theorem 2.15, we get the following
immediate consequence.

Corollary 2.16. Let X “ c0 or `p, 1 ď p ă 8. Let T P LpXq be a numerical radius one
operator defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P Xq,

where pαnq
8
n“1 is a bounded sequence of real numbers. Then, the following assertions are

equivalent:

(a) T P A}¨}pX,Xq.
(b) T P AnupXq.
(c) Both of the following conditions are satisfied:

(1) There exists some n0 P N such that |αn0 | “ 1.
(2) If J “ tn P N : |αn| “ 1u, then J “ N or supnPNzJ |αn| ă 1 when J ‰ N.

Proof of Theorem 2.15. Let us prove first the result for X “ c0. The case X “ `1 can be
proved similarly to the case X “ c0 by using duality arguments, so we omit it.

paq ùñ pbq: By Lemma 2.14, the set J is non-empty. Assume that the set tαn : n P Ju is
an infinite set. Write tαn : n P Ju “ teiθ1 , . . . , eiθn , . . .u. Then, there exists a subsequence
pnkq

8
k“1 Ă J such that eiθnk converges to some λ P C with |λ| “ 1. Given ε P p0, 1{2q, let

k0 P N be such that |eiθnk´λ| ă ηpε, T q for every k ě k0. Then, for k ‰ k1 ě k0, we obtain

that
ˇ

ˇ

ˇ

eiθnk`e
iθn

k1

2
´ λ

ˇ

ˇ

ˇ
ă ηpε, T q. Pick n ‰ n1 in J so that αn “ eiθnk and αn1 “ eiθnk1 . Then,
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ppen`en1q,
1
2
pe˚n`e

˚
n1qq P Πpc0q and

ˇ

ˇ

@

1
2
pe˚n ` e

˚
n1q, T pen ` en1q

D
ˇ

ˇ “

ˇ

ˇ

ˇ

eiθnk`e
iθn

k1

2

ˇ

ˇ

ˇ
ą 1´ηpε, T q.

However, if T attains its numerical radius at px, x˚q P Πpc0q, then, by Lemma 2.14, there
exists θ P r0, 2πq such that αm “ eiθ on A :“ tm P N : |x˚pmq| ‰ 0u. If n, n1 R A, then
for k P A, }x ´ pen ` en1q} ě |xe

˚
k, x ´ pen ` en1qy| “ |xpkq| “ 1 ą ε. Otherwise, without

loss of generality, we may assume that n P A. As αn ‰ αn1 , we have that n1 R A, i.e.,
|x˚pn1q| “ 0. It follows that

›

›x˚ ´ 1
2
pe˚n ` e

˚
n1q

›

› ě |xx˚ ´ 1
2
pe˚n ` e˚n1q, en1y| “

1
2
ą ε. This

proves that tαm : m P Ju must be a finite set. By applying a similar argument used in
the proof of Theorem 2.13, we can deduce that supmPNzJ |αm| ă 1 when J ‰ N.

pbq ùñ paq: Let us say that tαn : n P Ju “ teiθ1 , . . . , eiθmu for some m P N. Assume
to the contrary that T does not belong to Anupc0q. Then, there exists some ε0 P p0, 1q
such that for each n P N, there is pxn, x

˚
nq P Πpc0q such that 1 ě |xx˚n, T pxnqy| ě 1 ´ 1

n
,

and whenever px, x˚q P Πpc0q is such that }x´ xn} ă ε0 and }x˚´ x˚n} ă ε0, we have that
|xx˚, T pxqy| ă 1. If J ‰ N, then, by Lemma 2.14,

1 “
8
ÿ

k“1

x˚npkqxnpkq ą
ÿ

kPJ1

x˚npkqxnpkq ` . . .`
ÿ

kPJm

x˚npkqxnpkq ` β
ÿ

kPNzJ

x˚npkqxnpkq ě

ě

ˇ

ˇ

ˇ

ˇ

ˇ

eiθ1
ÿ

kPJ1

x˚npkqxnpkq ` . . .` e
iθm

ÿ

kPJm

x˚npkqxnpkq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPNzJ

αkx
˚
npkqxnpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě 1´
1

n
,

for every n P N, where Jk “ tn P N : αn “ eiθku and β :“ supnPNzJ |αn| ă 1. Passing
to a subsequence, we may assume that

ř

kPJl
x˚npkqxnpkq converges as n Ñ 8 for each

1 ď l ď m. As eiθl ‰ eiθl1 for all 1 ď l ‰ l1 ď m, we can choose 1 ď s ď m so that
ÿ

kPJl

x˚npkqxnpkq Ñ 0 for all l ‰ s, and
ÿ

kPJs

x˚npkqxnpkq Ñ 1

as nÑ 8. Also, notice that
ř

kPNzJ x
˚
npkqxnpkq Ñ 0 as nÑ 8. Pick n0 P N large enough

so that
ÿ

kPJl

|x˚n0
pkq| ă

ε

3m
for all l ‰ s, 1´

ÿ

kPJs

|x˚n0
pkq| ă

ε

3
, and

ÿ

kPNzJ

x˚n0
pkqxn0pkq ă

ε

3
.

Let yn0 “ xn0 P Sc0 and define y˚n0
P S`1 as

y˚n0
pkq “

x˚n0
pkq

γ
for every k P Js and y˚n0

pkq “ 0 for every k P NzJs,

where γ “
ř

kPJs
|x˚n0

pkq|. Then, pyn0 , y
˚
n0
q P Πpc0q,

|xy˚n0
, T py˚n0

qy| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPJs

eiθsx˚n0
pkqxn0pkq

γ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1,

and

}y˚n0
´ x˚n0

} ď pm´ 1q
ε

3m
`
ε

3
`
ε

3
ă ε.
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This is a contradiction. For the case when J “ N, we have

1 “
8
ÿ

k“1

x˚npkqxnpkq “
ÿ

kPJ1

x˚npkqxnpkq ` . . .`
ÿ

kPJm

x˚npkqxnpkq

ě

ˇ

ˇ

ˇ

ˇ

ˇ

eiθ1
ÿ

kPJ1

x˚npkqxnpkq ` . . .` e
iθm

ÿ

kPJm

x˚npkqxnpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ě 1´
1

n
,

for every n P N. Arguing as above, we may choose 1 ď s ď m and n0 P N such that
ÿ

kPJl

|x˚n0
pkq| ă

ε

2m
for all l ‰ s, and 1´

ÿ

kPJs

|x˚n0
pkq| ă

ε

2
.

By defining pyn0 , y
˚
n0
q P Πpc0q as above, we get again another contradiction.

Let us prove the result for X “ `p with 1 ă p ă 8.

paq ùñ pbq: Note that Lemma 2.14 implies (1). Assume that the set tαn : n P Ju is
an infinite set, say tαn : n P Ju “ teiθ1 , . . . , eiθn , . . .u. Then, there exists a subsequence

pnkq
8
k“1 Ă J such that eiθnk converges to some λ P C with |λ| “ 1. Given ε P p0, p1

2
q
1
q q, let

k0 P N be such that |eiθnk´λ| ă ηpε, T q for every k ě k0. Then, for k ‰ k1 ě k0, we obtain

that
ˇ

ˇ

ˇ

eiθnk`e
iθn

k1

2
´ λ

ˇ

ˇ

ˇ
ă ηpε, T q. Pick n ‰ n1 in J so that αn “ eiθnk and αn1 “ eiθnk1 . Thus,

pp1
2
q
1
p pen ` en1q, p

1
2
q
1
q pe˚n ` e

˚
n1qq P Πp`pq and

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˆ

1

2

˙
1
q

pe˚n ` e
˚
n1q, T

˜

ˆ

1

2

˙
1
p

pen ` en1q

¸G
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

eiθnk ` eiθnk1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ą 1´ ηpε, T q.

However, if T attains its numerical radius at px, x˚q P Πp`pq, then, by Lemma 2.14, there
exists θ P r0, 2πq such that αm “ eiθ on A :“ tm P N : |x˚pmq| ‰ 0u. If n, n1 R A,
i.e., |x˚pnq| “ |x˚pn1q| “ 0, then Lemma 2.14 implies that |xpnq| “ |xpn1q| “ 0. Thus,
›

›

›
x´

`

1
2

˘
1
p pen ` en1q

›

›

›

p

ě 1
2
` 1

2
“ 1 ą ε. Otherwise, without loss of generality, we may

assume that n P A. As αn ‰ αn1 , we have that n1 R A, i.e., |x˚pn1q| “ 0. It follows that
›

›

›
x˚ ´

`

1
2

˘
1
q pe˚n ` e

˚
n1q

›

›

›

q

ě 1
2
ą εq. This proves that tαm : m P Ju must be a finite set.

By applying a similar argument used in the proof of Theorem 2.13, we can deduce that
supmPNzJ |αm| ă 1 when J ‰ N. As the implication pbq ùñ paq can be proved in a similar
way as before, we omit its proof. �

One may wonder whether or not there is a characterization for diagonal operators in
the set A}¨} when the domain is different from the range space. As a matter of fact, there
is. Similar techniques as in Theorem 2.13 and Theorem 2.15 yield the following result on
operators from c0 into `p and from `p into c0. Notice that in this case we cannot consider
the set AnupXq.

Theorem 2.17. Let 1 ď p ă 8 be given.

(I) Let T P Lp`p, c0q be a norm one operator defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P `pq,
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where pαnq
8
n“1 is a bounded sequence of scalars. Then, the following assertions are

equivalent:
(a) T P A}¨}p`p, c0q.
(b) If J “ tn P N : |αn| “ 1u, then J is non empty and

(1) J “ N or
(2) supNzJ |αn| ă 1

(II) Let T P Lpc0, `pq be a norm one operator defined as

Tx “ pαnxpnqq
8
n“1 px “ pxpnqq8n“1 P c0q,

where pαnq
8
n“1 is a sequence of scalars with p-norm equal to 1. Then, the following

assertions are equivalent:
(a) T P A}¨}p`p, c0q.
(b) There is some N P N such that αn “ 0 for all n ą N .

The previous theorems provide a wide class of operators that belong to our sets. For
instance, the canonical projections PN P LpXq belong to both A}¨}pX,Xq and AnupXq for
the Banach spaces X “ c0 or `p, with 1 ď p ă 8, and to A}¨}pX,Xq when X “ `8.

Corollary 2.18. Let N P N be given.

(1) PN P A}¨}pc0, c0q and PN P A}¨}p`p, `pq for 1 ď p ď 8.
(2) PN P Anupc0q and PN P Anup`pq for 1 ď p ă 8.

3. Connecting the sets A}¨} and Anu

In this section, we introduce a natural approach to connect the sets A}¨} and Anu

through direct sums. Throughout the section, we will be using the following notation.
Given two Banach spaces X1 and X2, consider the mappings Pi P LpX1‘X2, Xiq such that
Pipx1, x2q :“ xi, i “ 1, 2, and ιj P LpXj, X1‘X2q such that ιipxq :“ xei, where e1 “ p1, 0q
and e2 “ p0, 1q. For Banach spaces W and Z, if we have an operator T P LpW,Zq, then

there is the simplest way to define rT P LpW ‘ Zq: consider rT :“ ι2 ˝ T ˝ P1, that is,
rT pw, zq “ p0, Twq for every pw, zq P W ‘ Z. Conversely, we can define a pseudo-inverse

process as follows: if we have an operator S P LpW‘Zq, then we can consider qS P LpW,Zq
defined as qS :“ P2 ˝ S ˝ ι1, that is, qSpwq “ pP2 ˝ Sqpw, 0q for every w P W . We start with
the following result, which establishes a bond between the assertions T P A}¨}pW,Zq and
rT P AnupW ‘1 Zq under some assumptions on the spaces.

Proposition 3.1. Let W and Z be two Banach spaces, and let T P SLpW,Zq. Then,

(a) If rT P AnupW ‘1 Zq, then T P A}¨}pW,Zq.
(b) Suppose that W and Z are uniformly smooth Banach spaces. If T P A}¨}pW,Zq,

then rT P AnupW ‘1 Zq.

Proof. (a). Assume rT P AnupW ‘1 Zq and for a given ε ą 0, set ηpε, T q :“ ηpε, rT q ą
0. Pick w0 P SW to be such that }T pw0q} ą 1 ´ ηpε, T q. Let z˚0 P SZ˚ be such that
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|xz˚0 , T pw0qy| “ }T pw0q} ą 1 ´ ηpε, T q. Let w˚0 P SW˚ be such that xw˚0 , w0y “ 1 and

consider the point pxpw˚0 , z
˚
0 q, pw0, 0qy P ΠpW ‘1 Zq. Since rT P AnupW ‘1 Zq and

|xpw˚0 , z
˚
0 q,

rT pw0, 0qy| “ |xz
˚
0 , T pw0qy| ą 1´ ηpε, T q “ 1´ ηpε, rT q,

there is xpw˚1 , z
˚
1 q, pw1, z1qy P ΠpW ‘1 Zq such that

νprT q “ |xpw˚1 , z
˚
1 q,

rT pw1, z1qy|, }pw1, z1q ´ pw0, 0q}1 ă ε and }pw˚1 , z
˚
1 q ´ pw

˚
0 , z

˚
0 q}8 ă ε.

So 1 “ |xpw˚1 , z
˚
1 q,

rT pw1, z1qy| “ |xz˚1 , T pw1qy| ď }z˚1 }}T pw1q} ď 1. This implies that
}T pw1q} “ 1 and that z1 “ 0. So }w1 ´ w0} ă ε. This proves that T P A}¨}pW,Zq.

(b). Suppose T P A}¨}pW,Zq. It is plain to check that rT attains its numerical radius

and νprT q “ 1. Given ε P p0, 1q, we set

ηpε, rT q :“ min

"

η

ˆ

min

"

δW˚pεq

2
,
δZ˚pεq

2
,
ε

2

*

, T

˙

,
δW˚pεq

2
,
δZ˚pεq

2
,
ε

2

*

ą 0,

where ε ÞÑ δW˚pεq and ε ÞÑ δZ˚pεq are the modulus of convexity of W ˚ and Z˚, respec-
tively. Let ppw1, z1q, pw

˚
1 , z

˚
1 qq P ΠpW ‘1 Zq be such that

|xz˚1 , T pw1qy| “

ˇ

ˇ

ˇ
xpw˚1 , z

˚
1 q,

rT pw1, z1qy
ˇ

ˇ

ˇ
ą 1´ ηpε, rT q.

As we have

}T pw1q} ě |xz
˚
1 , T pw1qy| ą 1´ η

ˆ

min

"

δW˚pεq

2
,
δZ˚pεq

2
,
ε

2

*

, T

˙

,

there is w2 P SW such that

}T pw2q} “ 1 and }w2 ´ w1} ă min

"

δW˚pεq

2
,
δZ˚pεq

2
,
ε

2

*

.

Since }w1} ě |xz
˚
1 , T pw1qy| ą 1 ´ ηpε, rT q, we have that }z1} ă ηpε, rT q. Let w˚2 P SW˚ be

such that xw˚2 , w2y “ 1, then
ˇ

ˇ

ˇ

ˇ

xz˚1 , z1y ´ xw
˚
1 , w2 ´ w1y

2

ˇ

ˇ

ˇ

ˇ

ď |xz˚1 , z1y| ` }w
˚
1}}w2 ´ w1} ă δW˚pεq.

So, we have
›

›

›

›

w˚1 ` w
˚
2

2

›

›

›

›

ě

ˇ

ˇ

ˇ

ˇ

B

w˚1 ` w
˚
2

2
, w2

Fˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2´ xz˚1 , z1y ` xw
˚
1 , w2 ´ w1y

2

ˇ

ˇ

ˇ

ˇ

ě 1´

ˇ

ˇ

ˇ

ˇ

ˆ

xz˚1 , z1y ´ xw
˚
1 , w2 ´ w1y

2

˙ˇ

ˇ

ˇ

ˇ

ą 1´ δW˚pεq,

which implies that }w˚2 ´ w
˚
1} ă ε.

Let θ P R be such that xz˚1 , T pw2qy “ eiθ|xz˚1 , T pw2qy|. Notice that

|xz˚1 , T pw2qy| ě |xz
˚
1 , T pw1qy| ´ |xz

˚
1 , T pw2 ´ w1qy| ě 1´ δZ˚pεq.

Now, let z˚2 P SZ˚ be such that xz˚2 , T pw2qy “ eiθ. Observe that
›

›

›

›

z˚1 ` z
˚
2

2

›

›

›

›

ě

ˇ

ˇ

ˇ

ˇ

B

z˚1 ` z
˚
2

2
, T pw2q

F
ˇ

ˇ

ˇ

ˇ

“
1` |xz˚1 , T pw2qy|

2
ą 1´ δZ˚pεq;
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hence }z˚2 ´ z˚1 } ă ε. Finally, considering the point ppw2, 0q, pw
˚
2 , z

˚
2 qq P ΠpW ‘1 Zq, we

conclude that rT P AnupW ‘1 Zq. �

Remark 3.2. Proposition 3.1.(b) no longer holds in general if we consider arbitrary Ba-
nach spaces instead of uniformly smooth ones. Indeed, consider the real Banach space
`1. Example 2.7 provides an operator that belongs to A}¨}p`1, `1q but not to Anup`1q.
We will show that this operator does not satisfy the property stated in Proposition
3.1.(b). Indeed, let S P Lp`1q be the operator defined in Example 2.7. Note that if
ppx, yq, px˚, y˚qq P Πp`1 ‘1 `1q satisfies

(3) |xpx˚, y˚q, rSpx, yqy| “ |xy˚, Spxqy| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“1

y˚pjqxp1q

2j

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1,

then, one gets easily that y˚pjqxp1q has to be equal to either 1 or ´1 for all j P N.
From here, we get that the only possibilities have the form x “ se1, y “ 0, x˚ “
ps, x˚p2q, x˚p3q, . . .q, and y˚ “ pr, r, r, . . .q with |x˚pjq| ď 1 for all j ą 1, where s, r P

t´1, 1u. Now, suppose by contradiction that for a given ε P p0, 1q, there is ηpε, rSq ą 0.

Let n0 P N be such that
řn0

j“1
1
2j
ą 1 ´ ηpε, rSq, and set w “ e1, z “ 0, w˚ “ e˚1 , and

z˚ “ e˚1`. . .`e
˚
n0

. It is immediate to check that ppw, zq, pw˚, z˚qq P Πp`1‘1`1q and also that

|xpw˚, z˚q, rSpw, zqy| ą 1´ηpε, rSq. Then, there must be some ppx, yq, px˚, y˚qq P Πp`1‘1 `1q
satisfying (3) and such that }pw, zq ´ px, yq}1 ă ε and }pw˚, z˚q ´ px˚, y˚q}8 ă ε. But
this is already a contradiction, since }px˚ ´ w˚, y˚ ´ z˚q}8 ě }y

˚ ´ z˚}8 ě 1. Therefore
rS R Anup`1 ‘1 `1q as desired, even though S P A}¨}p`1, `1q.

Remark 3.3. There exists an operator S P LpW ‘1 Zq, with both W and Z being

uniformly smooth Banach spaces, such that S P AnupW ‘1 Zq but qS R A}¨}pW,Zq (note

that this does not contradict Proposition 3.1, since our S is not of the form rT for any
operator T ). Indeed, let S P Lp`2 ‘1 `2q be defined as

Spx, yq “ ppxp1q, 0, 0, ¨ ¨ ¨ q, p0, 0, 0, ¨ ¨ ¨ qq, @px, yq P `2 ‘1 `2,

where `2 is a real space. Note that νpSq “ 1 and S attains its numerical radius. For ε P
p0, 1q, suppose that |xpx˚, y˚q, Spx, yqy| ą 1´ε ą 0 for some ppx, yq, px˚, y˚qq P Πp`2‘1 `2q.
Then |xp1q| ą 1´ ε, |x˚p1q| ą 1´ ε and }y} ă ε. Note also that

1 ě |xp1q|2 `
ÿ

n‰1

|xpnq|2 ě |xp1q|2 ą p1´ εq2

which implies that p
ř

n‰1 |xpnq|
2q1{2 ă p2ε´ ε2q1{2.

On the other hand,

1 “
ÿ

n

xpnqx˚pnq `
ÿ

n

ypnqy˚pnq ď }x}}x˚} ` }y}}y˚} ď }x} ` }y} “ 1

From this, we have }x˚} “ }y˚} “ 1. As above, we can see that p
ř

n‰1 |x
˚pnq|2q1{2 ă

p2ε´ ε2q1{2. If we define pairs of vectors

prx, ryq “

ˆˆ

xp1q

|xp1q|
, 0, 0, ¨ ¨ ¨

˙

, 0

˙

and pĂx˚, ry˚q “

ˆˆ

x˚p1q

|x˚p1q|
, 0, 0, ¨ ¨ ¨

˙

, y˚
˙

,
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then }px, yq ´ prx, ryq} ď ε`
?

2ε and }px˚, y˚q ´ pĂx˚, ry˚q} ď
?

2ε.

It is clear that
´

prx, ryq, pĂx˚, ry˚q
¯

P Πp`2 ‘1 `2q and that |xpĂx˚, ry˚q, Sprx, ryqy| “ 1. This

proves that S belongs to Anup`2 ‘1 `2q. However, qS P Lp`2q is the operator such that

qSx “ pP2 ˝ Sqpx, 0q “ P2ppxp1q, 0, 0, ¨ ¨ ¨ q, p0, 0, 0, ¨ ¨ ¨ qq “ 0

for every x P `2; hence qS “ 0, and the null operator cannot belong to A}¨}p`2, `2q.

We proceed now to prove the analogous results for `8-sums but under different hypoth-
esis on the underlying spaces.

Proposition 3.4. Let W and Z be two Banach spaces, and let T P SLpW,Zq. Then:

(a) If rT P AnupW ‘8 Zq, then T P A}¨}pW,Zq.
(b) Suppose that Z is a uniformly convex Banach space and W is a uniformly smooth

Banach spaces. If T P A}¨}pW,Zq, then rT P AnupW ‘8 Zq.

Proof. (a). Suppose rT P AnupW ‘8 Zq. Given ε P p0, 1q, we set ηpε, T q :“ ηpε, rT q ą 0.

Let w0 P SW be such that }T pw0q} ą 1´ ηpε,T q
2
. Take rz0

˚
P SZ˚ to be such that

|xrz0
˚, T pw0qy| “ }T pw0q} ą 1´

ηpε, T q

2
.

By the Bishop-Phelps theorem, there is z˚0 P SZ˚ and rz0 P SZ such that |xz˚0 , rz0y| “ 1 and

}z˚0 ´ rz0
˚
} ă

ηpε,T q
2

. Since xz˚0 , rz0y “ eiθ for some θ P r0, 2πq, we take z0 :“ e´iθ rz0 P SZ
which satisfies xz˚0 , z0y “ 1 and

|xz˚0 , T pw0qy| “ |xrz0
˚, T pw0qy ` xz

˚
0 ´ rz0

˚, T pw0qy|

ě |xrz0
˚, T pw0qy| ´ }z

˚
0 ´ rz0

˚
}

ą 1´ ηpε, T q.

Consider the point ppw0, z0q, p0, z
˚
0 qq P ΠpW ‘8 Zq. Then, since νprT q “ 1 and

|xp0, z˚0 q, rT pw0, z0qy| “ |xz
˚
0 , T pw0qy| ą 1´ ηpε, T q “ 1´ ηpε, rT q,

there is ppw1, z1q, pw
˚
1 , z

˚
1 qq P ΠpW ‘8 Zq such that

|xpw˚1 , z
˚
1 q,

rT pw1, z1qy| “ 1, }pw1, z1q ´ pw0, z0q}8 ă ε and }pw˚1 , z
˚
1 q ´ p0, z

˚
0 q}1 ă ε.

So, since 1 “ |xpw˚1 , z
˚
1 q,

rT pw1, z1qy| “ |xz
˚
1 , T pw1qy| ď }T pw1q} ď 1, we get that }T pw1q} “

}w1} “ 1. Finally, }w1´w0} ď }pw1, z1q´pw0, z0q}8 ă ε. This shows that T P A}¨}pW,Zq.

(b). Suppose T P A}¨}pW,Zq. It is not difficult to see that νprT q “ 1 and that rT attains

its numerical radius. Now let ε P p0, 1q be given and set ηpε, rT q as the positive real number

ηpε, rT q :“ min tε0, η pε0, T qu , where

ε0 “ min

"

1

2
δZ˚

ˆ

min

"

δZpεq

2
,
ε

2

*˙

,
δZpεq

2
,
ε

2

*

.
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Let ppw1, z1q, pw
˚
1 , z

˚
1 qq P ΠpW ‘8 Zq be such that

|xz˚1 , T pw1qy| “

ˇ

ˇ

ˇ
xpw˚1 , z

˚
1 q,

rT pw1, z1qy
ˇ

ˇ

ˇ
ą 1´ ηpε, rT q.

Since }T pw1q} ě |xz
˚
1 , T pw1qy| ą 1´ ηpε, rT q, there is w2 P SW such that }T pw2q} “ 1 and

}w2 ´ w1} ă ε0. Since }z˚1 } ě |xz
˚
1 , T pw1qy| ą 1´ ηpε, rT q, we get that }w˚1} ă ηpε, rT q ď ε

2
.

Let θ P R be such that xz˚1 , T pw2qy “ |xz˚1 , T pw2qy|e
iθ. Pick z˚2 P SZ˚ to be such that

xz˚2 , T pw2qy “ eiθ and notice that |xz˚1 , T pw2qy| ą 1 ´ 2ε0 ą 1 ´ δZ˚
´

min
!

δZpεq
2
, ε
2

)¯

.

Thus,
›

›

›

›

z˚1 ` z
˚
2

2

›

›

›

›

ě

ˇ

ˇ

ˇ

ˇ

B

z˚1 ` z
˚
2

2
, T pw2q

F
ˇ

ˇ

ˇ

ˇ

“
|xz˚1 , T pw2qy| ` 1

2
ą 1´ δZ˚

ˆ

min

"

δZpεq

2
,
ε

2

*˙

.

This implies that }z˚2 ´ z
˚
1 } ă min

!

δZpεq
2
, ε
2

)

. By using the above estimates,

›

›

›

›

T pe´iθw2q ` z1
2

›

›

›

›

ě

ˇ

ˇ

ˇ

ˇ

B

z˚1 ,
T pe´iθw2q ` z1

2

F
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

|xz˚1 , T pw2qy| ` 1´ xw˚1 , w1y

2

ˇ

ˇ

ˇ

ˇ

ě

ě

ˇ

ˇ

ˇ

ˇ

|xz˚1 , T pw2qy| ` 1

2

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

xw˚1 , w1y

2

ˇ

ˇ

ˇ

ˇ

ě 1´ δZpεq

and so }T pe´iθw2q ´ z1} ă ε. Finally, we conclude that rT attains its numerical radius
at the point

`

pw2, T pe
´iθw2qq, p0, z

˚
2 q
˘

P ΠpW ‘8 Zq which is close to ppw1, z1q, pw
˚
1 , z

˚
1 qq;

hence rT P AnupW ‘8 Zq. �

Remark 3.5. Similar to what happened on Proposition 3.1, Proposition 3.4.(b) is not
true in general for arbitrary Banach spaces. Indeed, consider the real Banach space
`1. Like we did in Remark 3.2, we will show that the operator introduced in Example
2.7 does not satisfy the property stated in Proposition 3.4.(b): Let S P Lp`1q be the

operator defined in Example 2.7 and let rS P Lp`1‘8 `1q be defined accordingly. Notice as

before that if ppx, yq, px˚, y˚qq P Πp`1 ‘8 `1q satisfies |xpx˚, y˚q, rSpx, yqy| “ |xy˚, Spxqy| “
ˇ

ˇ

ˇ

ř8

j“1
y˚pjqxp1q

2j

ˇ

ˇ

ˇ
“ 1, then y˚pjqxp1q has to be equal to either 1 or ´1 for all j P N. From

here, we get that the only possibilities have the form x “ se1, y “ pyp1q, yp2q, yp3q, . . .q
with

ř8

j“1 ypjq “ r, x˚ “ 0, and y˚ “ pr, r, r, . . .q, where s, r P t´1, 1u. Assuming that

for ε P p0, 1q, there exists ηpε, rSq ą 0, we get a contradiction in the same manner as in
Remark 3.2.

Remark 3.6. Once again, there exists an operator S P LpW ‘1 Zq, with W uniformly

smooth and Z uniformly convex, such that S P AnupW ‘8 Zq but qS R A}¨}pW,Zq (note

that this does not contradict Proposition 3.4, since our S is not of the form rT for any
operator T ). Indeed, the same argument used in Remark 3.3 shows that S P Lp`2‘8 `2q,
which is defined as

Spx, yq “ ppxp1q, 0, 0, ¨ ¨ ¨ q, p0, 0, 0, ¨ ¨ ¨ qq, @px, yq P `2 ‘8 `2,

where `2 is a real space, belongs to Anup`2 ‘8 `2q. However, qS “ 0 cannot belong to
A}¨}p`2, `2q.
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We finish the paper by noting that Propositions 3.1.(b) and 3.4.(b) are no longer true
for p-sums with 1 ă p ă 8. Indeed, let X be a uniformly convex and uniformly smooth
Banach space and consider the identity operator IdX P LpXq. Clearly, IdX belongs to

A}¨}pX,Xq. On the other hand, rIdX P LpX ‘p Xq is defined as rIdXpx1, x2q “ p0, x1q for

all x1, x2 P X. Then νp rIdXq ď } rIdX} “ } IdX } “ 1. If |xpx˚1 , x
˚
2q,

rIdXpx1, x2qy| “ 1 for
some ppx1, x2q, px

˚
1 , x

˚
2qq P ΠpX ‘p Xq, we would have |xx˚2 , x1y| “ 1, which would imply

}x˚2} “ }x1} “ 1. Because of this, we would have x˚1 “ x2 “ 0 since }x˚1}
q ` }x˚2}

q “ 1 “
}x1}

p ` }x2}
p with 1

p
` 1

q
“ 1, contradicting the assumption xx˚1 , x1y ` xx

˚
2 , x2y “ 1. So,

rIdX cannot attain its numerical radius; hence cannot belong to AnupX ‘p Xq.
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