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Abstract: Size mismatch is a serious problem in online footwear purchase because size mismatch
implies an almost sure return. Not only foot measurements are important in selecting a size, but also
user preference. This is the reason we propose several methodologies that combine the information
provided by a classifier with anthropometric measurements and user preference information through
user-based collaborative filtering. As novelties: (1) the information sources are 3D foot measurements
from a low-cost 3D foot digitizer, past purchases and self-reported size; (2) we propose to use an
ordinal classifier after imputing missing data with different options based on the use of collaborative
filtering; (3) we also propose an ensemble of ordinal classification and collaborative filtering results;
and (4) several methodologies based on clustering and archetype analysis are introduced as user-
based collaborative filtering for the first time. The hybrid methodologies were tested in a simulation
study, and they were also applied to a dataset of Spanish footwear users. The results show that
combining the information from both sources predicts the foot size better and the new proposals
provide better accuracy than the classic alternatives considered.

Keywords: size recommendation; ordinal classification; 3D foot scanner; ensemble; random forest;
clustering; archetypal analysis; supervised learning

1. Introduction

Although online shopping is an emerging marketing channel, the footwear sector
is not exploiting this channel enough if compared to other consumer goods. The main
barrier is the impossibility of trying on the footwear before buying it. In footwear, fit is a
key aspect to ensure the comfort of the product, so not choosing the correct size during
the purchase process means a sure return in most cases. If the company has a zero cost
policy for the customer, the cost of the return must be borne by the company itself. On the
other hand, it also affects customer satisfaction since having to return items purchased on
the Internet is considered frustrating by consumers, which reduces the likelihood that the
customer will buy again. Furthermore, the fear of a poor fit is the main barrier to buying
footwear online. According to Huang et al. [1], the return rate due to mismatches in shoe
size in online purchases is much higher than that for traditional retail stores, it can be up
to 35%.

Users could select the size based on their previous experience. However, each com-
pany has its own sizing, it can even change according to shoe styles, and, moreover, it can
change over time. Companies usually provide a sizing chart to online customers and size is
assigned according to foot length. However, the accuracy of the foot-length-based strategy
is low: 33.7% according to Huang et al. [1] and 34.2% with our data. Therefore, other
foot measurements besides foot length should be taken into account. However, not only
anthropometric measurements are important, but also user preferences. Some customers
prefer wearing shoes loose, i.e., they prefer a size larger than that predicted by their foot
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measurements [1]. This is the reason some approaches for size matching consider collabo-
rative filtering based on past purchases [2,3], while other approaches require customers to
provide their preferences [4].

As a consequence, our approach to footwear size matching is based on foot mea-
surements and user preferences. To find out the user’s preferences, we consider both
approaches. We use the information yielded by past purchases of the user and other
customers, but we also require the customer to input his/her usual size.

Recommending the footwear size that best fits the user is a statistical ordinal classifi-
cation problem [5], i.e., given a new user and his or her features (foot measurements and
preferences), this new case should be assigned to one of the predefined ordered categories,
i.e., sizes, based on a training set of cases whose features and size are known. However, it is
not a typical classification problem. On the one hand, it is an ordinal classification problem,
i.e., classes are ordered, they are not nominal labels. Therefore, ordinal methods should be
used since their accuracy is higher than classical nominal classification techniques [6]. On
the other hand, as we are using information on past purchases, we do not have complete
cases, i.e., we only have the size bought by users of some shoe models, which are different
for each user. We do not have the size selected by users for all possible shoe models in the
dataset. In other words, the amount of missingness is high. This prevents the use of many
classifiers, since many of them are not capable of handling missing values [7]. A previous
step could be to use imputation; in fact, we consider it here. Finally, it is a difficult problem
due to uncertainties [8]. The standard supervised classification paradigm supposes that
classes are objectively formulated, with no uncertainty or arbitrariness about class labels.
These are “laboratory conditions”, but this is not so in our case. In our real-world problem,
classes are defined more quantitatively than qualitatively. In fact, class definition in our
problem is based on each user’s subjective preference for each model. Moreover, it is
possible that none of the sizes fits the user well for a given shoe model [1] or even that
two sizes may be wearable [5]. Hand [8] argued that in real-world conditions the perfor-
mance provided by simple classification techniques is usually as good as more modern
sophisticated machine learning techniques, i.e., highly sophisticated techniques may only
be apparently superior in accuracy because this is achieved in “laboratory conditions”, but
this superiority may not translate in real-world conditions and may be illusory. In fact, this
was confirmed in a garment matching problem [5].

Our contribution is to propose several methodologies that combine the information
provided by anthropometric measurements with the information provided by user pref-
erence. This combination is carried out using several approaches. One of them is to use
ordinal classifiers that can handle missing values. Another is to impute missing values
and then use ordinal classifiers. For the imputation phase, we propose different options
based on the use of collaborative filtering [9] for the first time, which are compared with
previous imputation methodologies. Another approach consists of proposing an ensemble
of the ordinal classifier results from complete features and the collaborative filtering results
from features with missing values. Furthermore, another contribution consists of the use of
methods based on clustering and archetype analysis as user-based collaborative filtering
for the first time.

In summary, the main novelties of this work consist of:

• We design several recommendation systems that jointly combines 3D foot measure-
ments extracted from a fast, portable and low-cost 3D foot digitizer with user prefer-
ences extracted from past purchases and self-reported usual size. To the best of our
knowledge, this is the first time all this information is jointly taken into account for
footwear size recommendation.

• We use methods based on clustering and archetype analysis as user-based collaborative
filtering [9] for the first time.

• We use those and another collaborative filtering as imputation methods before the use
of an ordinal classifier for the first time.
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• We propose an ensemble of an ordinal classifier and collaborative filtering for the
first time.

• We compared the performance of the proposed methodologies with that of well-
known methods. These well-known methods are: ordinal classifiers that can handle
missing values, such as random forests, and ordinal classifiers, such as ordered logistic
regression, after using a well-known imputation method.

• We tested all these approaches in a simulation study and applying them to a novel
dataset of Spanish users.

• We have made the code of our procedure and synthetic datasets available for repro-
ducing the results (see the Data Availability Statement).

The outline of the paper is as follows. The data are described in Section 2, including
real data and simulated data. Related work in footwear recommendation is surveyed in
Section 3. Section 4 reviews machine learning background: ordinal classifiers, collaborative
filtering and ensembles. The proposed methodology is explained in Section 5. The results
are discussed in Section 6, where we present the application of the proposed methodologies
to our real dataset and simulated datasets. Conclusions are given in Section 7.

2. Data
2.1. Real Data

In total, 36 right foot scans of Spanish men were measured with DomeScan. DomeScan
is a small lightweight booth (35 × 45 × 45 cm) that consists of a U-shaped aluminum frame
with a non-reflecting vinyl bottom surface and two mirrors on the sides equipped with
a Raspberry Pi, camera, Bluetooth communication and illumination system mounted on
a bridge over the frame. It is a fast, portable and low-cost 3D foot digitizer, which can
be used in retail shops. From the images, DomeScan makes a 3D reconstruction of the
foot and foot measurements are also returned. The complete details about how DomeScan
operates can be found in [10], together with an analysis of the validity and reliability of its
measurements.

The dataset was collected from 6 July 2018 to 10 October 2018 by Valencian Biomechan-
ics Institute (Instituto de Biomecánica de Valencia (IBV)) under the project “Generación
de una metodología de asignación de talla escalable por la industria para la venta por
Internet. Aplicación en los sectores de ropa y calzado” (Generation of a methodology
for assigning scalable size by industry for online sales. Application to the clothing and
footwear sectors) (IMDEEA/2017/60) funded by the Valencian Region Government (i.e.,
Institut Valencià de la Competitivitat Empresarial, IVACE) under the program “Ayudas
dirigidas a centros tecnológicos de la Comunitat Valenciana para proyectos de I + D en
cooperación con empresas 2017” (Grants for technology centers in the Valencia Region
for R&D projects in collaboration with companies 2017). All participants signed an in-
formed consent document, complying with the applicable Spanish legislation (Organic
Law 15/1999, of December 13, on Personal Data Protection, LOPD) granting the use of the
data for research purposes. The data were collected by the IBV from volunteers. All of
them declared that they usually wear shoe size 42.

We consider the same foot measurements as in [11], which are the variables that
could most influence shoe fit, and are therefore the most relevant variables in shoe design
according to footwear experts. In particular, the features are: Ball Position (BP) (distance
from the rearmost location of the foot to the intersection of the ball area and the foot axis),
Foot Length (FL) (distance between the fore and rearmost location, the foot axis), Ball
Width (BW) (maximal distance between the extreme locations of the ball area projected
onto the ground plane), Instep Height (IH) (maximal height of the instep area, located at
50% of the FL), Toe Height (TH) (maximal height of the toe area), Ball Girth (BG) (perimeter
of the ball area), Instep to Heel Girth (IHG) (perimeter of the area that passes through the
heel to the instep, located at 50% of the FL) and Instep Girth (IG) (perimeter of the instep
area, located at 50% of FL).
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Furthermore, we built a new variable called ‘pref’ for estimating preference, which is
formed by the difference between his usually used size (42 in this case) and the technical
size that should be used according to FL. This technical size is determined by the following
equation: the smallest integer no less than (FL + 10)× 3/20. In this way, we can estimate
users who prefer tight shoes, larger sizes or if his usually used size coincides with his
technical size.

In addition, users tried on several models of different sizes. In particular, we have
eight different models of shoes, which are referred as M1–M8. Users selected the size that
fitted best for the models that they tried on. Users did not try on all the models. There
was a time restriction for trying on the models due to resource constraints. The majority
of users tried on the expected number of shoes (6 models × 3 sizes = 18 shoes). However,
some users tried on the shoes slowly and they were unable to try on the expected number
of shoes within the specified time. The majority of users (27) tried on six models and three
sizes for each model, but seven men only tried on five models (with three sizes for each
model), one man only tried on four models and another man only tried on three models
(with three sizes for each model). The sizes selected ranged from 41 to 43. In other words,
men who stated that they normally wear shoe size 42 selected sizes 41, 42 or 43, i.e., the
same size that they usually use, one size up or one size down.

In summary, the data form a 36 × 17 matrix, where the columns are the following
variables: eight anthropometric measurements, ‘pref’, and the other eight columns have
the preferred size for each model. However, in these last eight columns, there are missing
values. The percentage of missing values for these columns ranges from 22% to 39%, the
mean percentage of missing values being 29%.

2.2. Simulated Data

Two scenarios were considered. In Scenario 1, the anthropometric part may have
more influence on the selection of the size than preference, unlike Scenario 2, where the
anthropometric part is not so relevant. Both scenarios are composed of an anthropometric
predictor similar to FL, which is based on the summary statistics of the FL variable of the
previous real data. Then, the ‘pref’ variable is built as explained in Section 2.1. Afterwards,
the preferred size for four models M1–M4 is generated in different ways for each scenario,
according to Table 1. Those distributions are truncated to keep the sizes in the range of 41
to 43. In other words, if some of the sizes generated in variables M1–M4 are lower (higher)
than 41 (43), the value is changed to 41 (43, respectively). In total, 100 observations (users)
were generated for each dataset. To establish the missing values, the following mechanism
was followed: Entries 1–33 for M2, 34–66 for M3 and 67–100 for M1 were removed.

Table 1. The variables are sampled independently from the following distributions. Tria(a, c, b) stands
for the triangular distribution, with values in [a, b] and mode in c; ceiling returns the smallest integer
not less than the corresponding element; and round rounds the values.

Variables Scenario 1 Scenario 2

FL Tria(245, 259.6, 277) Tria(245, 259.6, 277)
pref 42 − ceiling((FL + 10) × 3/20) 42 − ceiling((FL + 10) × 3/20)
M1 pref + round(Tria(−1, 0, 1)) round(Tria(40.5, 42, 43.5))
M2 M1 + round(Tria(−2, 0, 2)) round(M1 + Tria(−1.5, 0, 1.5))
M3 M1 + round(Tria(−1, 1, 1.5)) round(M1 + Tria(−1, 1, 1.5))
M4 42 + pref + round(Tria(−1, 0, 1)) 42 + pref + round(Tria(−1, 0, 1))

Note that values are random and independently generated, so the deleting mecha-
nism used in each shoe model is equivalent to a missing completely at random (MCAR)
mechanism. However, the missing mechanism for the whole dataset is not MCAR, but
missing not at random (MNAR). In real data, we need to have users who share some past
purchases. This is the reason we used this missing mechanism.
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In Scenarios 1 and 2, M1, M2 and M3 are related to one another, but in Scenario 1
they are also related to FL and ‘pref’ variable, unlike in Scenario 2. The scenarios were
also built to test the influence of variability and average bias inside a model. This is the
reason in both scenarios M2 has more variability than M3, and M3 is biased. M3 was
built to test whether having models where the size selection is somewhat biased influences
the performance.

3. Related Work

In Section 1, some methods for footwear size recommendation are mentioned, but
here we review those and other related methods in more detail.

The simplest method is using the foot length provided in companies’ sizing charts.
However, this approach reports very low accuracy, as previously mentioned. Another
approach would be to consider other foot measurements besides foot length. This is the
idea in [12]. Nevertheless, user preferences are very important in this problem, since
subjects with similar foot shapes have different size preferences, as shown in [1]. Some
approaches examine only user preference. For example, users are asked what size they
usually wear in [13], similarly to our ‘pref’ variable. Other approaches recommend a shoe
size based on the best fitting shoes previously purchased by the user [3]; in this case, they
consider the measurements of the inner dimensions of shoe sizes. Internal dimensions of
footwear items are also considered in [4], together with self-reported preference about a
more or less tight fit. This kind of subjective preference was also requested by Marks [14],
who additionally considered information from 3D foot scans. Huang et al. [1] used 3D foot
measurements too, in addition to 3D shoe last measurements and user’s preference, which
is determined by comparing the user selection with the most frequently selected size for
each shoe type and foot shape combination. Note that, in practice, this kind of information
is not usually available.

The most similar method to our approach is the one by Lu and Stauffer [2], since they
considered both anthropometric measurements and historical purchases. They clustered
users by self-reported height, body-mass index and historical purchases and based their
size recommendation on comparisons with other users in the same cluster. However,
there are important differences with the approach in [2] and ours. Firstly, we do not use
self-reported foot measurements, which could be very unreliable since common people
are not expert in carrying out anatomical foot measurements. Secondly, our approach for
carrying out the recommendation is also completely different.

To the best of our knowledge, our approach is the first method for footwear size
recommendation that combines 3D anthropometric information obtained objectively by
a low-cost 3D foot digitizer and user preferences by self-reported usual size and past
purchases by the user and other customers.

4. Background
4.1. Ordinal Classifiers

In ordinal classification, classes are ordered, i.e., labels are levels of an ordinal variable.
Although nominal classification is often used in ordinal classification problems, taking
into account the order improves the performance, Gutiérrez et al. [6] surveyed ordinal
classifiers with complete cases since the majority of methods do not handle missing values.
We review here two methods for ordinal classification that yielded excellent performance
in an extensive comparison with other methods carried out by Pierola et al. [5] in a garment
matching problem.

4.1.1. Ordered Logistic Regression

Let X be an N ×M matrix with M explanatory variables in N cases and y a vector, an
ordered factor with Q levels, with the values of the dependent variable. The cumulative link
model was described in detail by Agresti [15] (Chapter 7). The model is logit (P(y <= q|x))
= ζq − η, where each cumulative logit is yielded by ζq parameters, the linear predictor β1x1
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+ . . . + βMxM is η and the logit link function, logit(p) = log(p/(1− p)), is the inverse of
the standard logistic cumulative distribution function. In our implementation, the model
is selected by a forward stepwise model selection using Akaike’s information criterion
(AIC). This model forecasts the class probabilities for a new case, once the parameters
have been estimated. We carried out the implementation using the polr and extractAIC
functions from the R package MASS [16]. This method needs complete cases. We refer to
this method as POLR. We assign a new case to the class with the highest probability.

If there are missing values, a classic way to handle them is to impute them and then
apply POLR. A well-known imputation method is MICE (Multivariate Imputation by
Chained Equations) implemented in mice from the R package MICE [17], which was a
satisfactory imputation method in the comparison carried out by Hao and Blair [18]. We
refer to this method as POLR-MICE.

4.1.2. Random Forests

Random forest (RF) is a classification and regression method where decision trees are
combined. This method can handle missing values. If the response is an ordinal factor,
the classic RF version proposed by Breiman [19] does not take into account the order, i.e.,
it is treated as a nominal classification problem. We refer to this method as ClassRF. We
used the randomForest function from the R package randomForest [20] with the default
parameters, which implements the RF algorithm of Breiman [21].

An alternative RF method based on a conditional inference framework that takes the
ordering information of the response into account when building the trees is that proposed
by Hothorn et al. [22]. We refer to this method as CondRF. We used the c f orest function
with the default parameters from the R package party [23,24].

According to Janitza et al. [25], there are only small differences in prediction accuracy
in favor of CondRF versus ClassRF when the response is ordinal. This is the reason we
analyzed both alternatives.

As previously mentioned, RF are ensembles of trees. The growth of each tree is
governed by random vectors. On the one hand, a group of m (m << M) input variables is
randomly selected to split at each node of the tree. On the other hand, it bootstraps training
set samples. Therefore, the non-selected observations, which are called out-of-bag (OOB),
can be used to estimate the error rate.

4.2. Collaborative Filtering

Collaborative filtering (CF) uses the known selections or preferences of a group of
customers to predict the unknown selections or preferences for other customers. According
to Su and Khoshgoftaar [9], CF tools are divided into memory-based techniques and
model-based techniques, and hybrid techniques, which combine different techniques.

CF memory-based techniques rely on the computation of the similarity between users
or items. We use the Recommender function with the default parameters from the R package
recommenderlab [26], with the ’UBCF’ method, a user-based CF. User-based CF assumes
that customers with similar selections will choose items similarly. It predicts the selection
of a customer by first finding a neighborhood of similar customers and then aggregating
the selections of these customers to give a prediction. We refer to this method as UBCF.

CF model-based techniques use unsupervised machine learning techniques, such
as clustering. We propose the use of some unsupervised machine learning techniques
for missing data as CF tools for the first time. Therefore, their use as CF is explained in
Section 5. In particular, we use k-POD [27], a method for k-means clustering of missing
data and AAcMDS and AAHP [28], two methods for carrying out archetypal analysis
(AA) [29] with missing data.

k-POD obtained very accurate results even with a very high percentage of missingness
in [27]. k-POD results were better or equivalent to those obtained after imputing and
carrying out k-means, when imputation did not fail, since imputation fails at high levels of
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overall missingness. Similar to classic k-means, k-POD returns the centroids of each cluster
and the assignations indicating the cluster to which each observation is allocated.

We chose AAcMDS and AAHP since both are based on projecting dissimilarities be-
tween cases and computing AA, and this kind of methodology provided the most accurate
results with Rand score, even better or equivalent to k-POD in [28]. In AAcMDS and AAHP,
pairwise Euclidean distances are estimated with missing data and then projected before
AA is executed. The projection is carried out with classic multidimensional scaling and h-
plot [30] for AAcMDS and AAHP, respectively. Similar to classic AA, AAcMDs and AAHP
return the archetypes and, for each observation, a vector with the mixture coefficients that
approximate the given observation by the weighted average (a convex combination) of
the archetypes. The Euclidean distances are estimated using the function daisy from the R
package cluster [31] that uses the Partial Distance Strategy (PDS) for missing data [32]. If
some pairwise dissimilarities cannot be estimated because both users have not coincided
in selecting any shoe model, then that dissimilarity is given a high value, larger than the
other dissimilarities (a value of 10 is used in the experiments). If there is a missing value in
an archetype, we impute it with the common size selected (usually 42 in the experiments).

Although we are dealing with a supervised problem, we can use CF as classifiers,
despite being unsupervised tools. The response is treated as another predictor by CF. CF
returns the recommended size as a real number, not a level of the ordered factor. Thus, we
round the recommendation to the nearest integer in order to assign a new case to that size.
Note that Spanish footwear sizes are integer numbers.

4.3. Ensembles

An ensemble of classifiers is a combination of classifiers whose individual predictions
are merged somehow to predict the class of new observations. Greater accuracy is usually
obtained by ensembles than that of the individual members that compose them. In order
for an ensemble of classifiers to be more accurate than any of its individual classifiers, a
necessary and sufficient condition is that the classifiers are accurate and diverse [33]. On the
one hand, error rates of the individual classifiers should be lower than random guessing, i.e.,
the lower, the better. On the other hand, the more different are the errors they make on new
observations, the more diverse the classifiers are, and the better they are for the ensemble.
Pierola et al. [5] proposed an ensemble for two ordinal classifiers that return the predicted
class probabilities. Soft voting is used. The predicted class probabilities for each classifier
are mixed by a convex combination, i.e., they are weighted with values between zero and
one and whose sum is one, and then aggregated. The final predicted class label is assigned
based on the maximum of these weighted average probabilities. The weights are based
on the ranked probability score (RPS) for probabilistic forecasts of ordered events [34,35].
RPS takes the order of the labels into account. With this measure, the cumulative density
function (CDF) of a probabilistic forecast is compared with the CDF of the respective case
over a given number of discrete probability levels. Moreover, we raise the scores to a
power r to expand the effective range of weight values. Specifically, the weights wi of each
classifier are wi = 1 − Sr

i /(Sr
1 + Sr

2), where Si is the RPS associated with classifier i, with
i = 1, 2. We considered r = 4, following the suggestion by Pierola et al. [5]. We refer to this
method as EN.

5. Proposed Methodologies

We explain here our proposals about how the information provided by anthropometric
measurements is combined with the information provided by user preference for footwear
size matching.

POLR, POLR-MICE, CondRF, ClassRF and UBCF are well-known methods. However,
k-POD, AAcMDS, AAHP, the respective CO-methods and the EN-methods are introduced
for the first time, not only in the footwear size matching problem, but also in a classifica-
tion problem.
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POLR POLR is applied to the anthropometric measurements and the variable ‘pref’, which
are the variables with complete cases, without missing values.
POLR-MICE POLR-MICE applies POLR to the anthropometric measurements, the variable
‘pref’ and the variables with the preferred size for each model except the variable used as
output, after imputing the missing values with MICE.
CondRF CondRF is applied to the anthropometric measurements, the variable ‘pref’ and
the variables with the preferred size for each model, which contain missing values, except
the variable used as output. This method handles missing values by using surrogate splits
when predictors are missing [22].
ClassRF ClassRF is applied to the anthropometric measurements, the variable ‘pref’ and
the variables with the preferred size for each model, which contain missing values, except
the variable used as output. For handling missing data, we use the r f Impute function
from the R package randomForest that imputes missing values in predictor data using
proximity from randomForest, before using the randomForest function.
UBCF UBCF is applied to the variables with the preferred size for each model, which
contain missing values.
k-POD k-POD is applied to the variables with the preferred size for each model, which
contain missing values. We consider k = 3 since users select their usual size or one size up
or one size down, as mentioned above. To give a recommendation, i.e., to predict a missing
value of a given observation, we use the value for that variable of the cluster centroid of
the cluster to which the given observation is assigned by k-POD.
AAcMDS AAcMDS is applied to the variables with the preferred size for each model,
which contain missing values. We consider k = 3, as with k-POD. To give a recommendation,
i.e., to predict a missing value of a given observation, we use the approximation given by
the archetypes to the referred observation.
AAHP AAHP is applied to the variables with the preferred size for each model, which
contain missing values. We consider k = 3, as with k-POD. To give a recommendation, i.e.,
to predict a missing value of a given observation, we use the approximation given by the
archetypes to the referred observation.
CO-POLR-UBCF CO-POLR-UBCF combines the information of the variables with com-
plete cases with the user preference information with missing data using UBCF. UBCF is
used as an imputation method. UBCF is used with the variables with the preferred size for
each model to give a recommended size for the missing values. Then, we apply POLR to
these data together with the anthropometric measurements and the variable ‘pref’.
CO-POLR-k-POD CO-POLR-k-POD combines the information of the variables with com-
plete cases with the user preference information with missing data using k-POD. k-POD is
used as an imputation method. k-POD is used with the variables with the preferred size
for each model to give a recommended size for the missing values. Then, we apply POLR
to these data together with the anthropometric measurements and the variable ‘pref’.
CO-POLR-AAcMDS CO-POLR-AAcMDS combines the information of the variables with
complete cases with the user preference information with missing data using AAcMDS.
AAcMDS is used as an imputation method. AAcMDS is used with the variables with the
preferred size for each model to give a recommended size for the missing values. Then,
we apply POLR to these data together with the anthropometric measurements and the
variable ‘pref’.
CO-POLR-AAHP CO-POLR-AAHP combines the information of the variables with com-
plete cases with the user preference information with missing data using AAHP. AAHP is
used as an imputation method. AAHP is used with the variables with the preferred size
for each model to give a recommended size for the missing values. Then, we apply POLR
to these data together with the anthropometric measurements and the variable ‘pref’.
EN-POLR-UBCF EN-POLR-UBCF builds an ensemble of the two previous methods POLR
and UBCF, as described in Section 4.3. EN needs the predicted class probabilities for each
classifier. POLR returns them, but not UBCF. UBCF returns a real number as a recommen-
dation. Thus, we recast these recommendations as the role of probabilities as follows. If
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the recommendation is between 41 and 42, we consider that the predicted probability for
size 41 is 1 − (recommendation − 41), while the predicted probability for size 42 is 1 − (42-
recommendation) and zero for size 43. On the contrary, if the recommendation is between
42 and 43, we consider that the predicted probability for size 42 is 1 −(recommendation −
42), while the predicted probability for size 43 is 1 − (43− recommendation) and zero for
size 41.
EN-POLR-k-POD EN-POLR-k-POD builds an ensemble of the two previous methods,
POLR and k-POD, as described in Section 4.3. As with UBCF, k-POD does not return proba-
bilities but real numbers as recommendations. Therefore, we follow the same strategy with
k-POD as with UBCF in EN-POLR-UBCF to obtain probabilities and build the ensemble.
EN-POLR-AAcMDS EN-POLR-AAcMDS builds an ensemble of the two previous methods,
POLR and AAcMDS, as described in Section 4.3. Again, we follow the same strategy as with
UBCF in EN-POLR-UBCF to obtain probabilities and build the ensemble, since AAcMDS
does not return probabilities either.
EN-POLR-AAHP EN-POLR-AAHP builds an ensemble of the two previous methods,
POLR and AAHP, as described in Section 4.3. Again, we follow the same strategy as with
UBCF in EN-POLR-UBCF to obtain probabilities and build the ensemble, since AAHP does
not return probabilities either.

POLR needs the response, the ordered factor, to have three or more levels. In one of
the models, M7, users only selected two different sizes (41 and 42); therefore, POLR cannot
be used. For that case, we use linear discriminant analysis (LDA) with stepwise variable
selection instead, using the greedy.wilks function of the R package klaR [36].

Figure 1 presents an overview of the footwear size recommendation system frame-
work. The well-known methods appear in bold font, while the proposed methodologies
appear in normal font. As shown in Figure 1, the inputs are foot measurements, the ‘pref’
variable and past purchases and the information sources are different for each method.
The recommendation size can be a single size if we only report the size with the highest
probability, or we can return the probability of assignation to each size. In this way, the
user can have more information and make a more informed decision.

Figure 1. Overview of the recommendation system framework.

Experimental Set-Up

To evaluate the methods of the shoe size recommendation system, the experimen-
tal set-up is as follows. We use the real data and the simulated data introduced in
Sections 2.1 and 2.2, respectively. In total, 10 datasets for Scenarios 1 and 2 were gen-
erated to assess the stability of the results. Table 2 shows the functions and parameter
setting used in the implementation of the methods.
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Table 2. Summary of the implementation of each method. Default parameters are denoted by d.p.

Methods Implementation

POLR polr and extractAIC from MASS [16] with d.p.
POLR-MICE mice from MICE [17]
ClassRF randomForest from randomForest [20] with d.p.
CondRF cforest form party [23,24] with d.p.
UBCF Recommender from recommenderlab [26] with method = “UBCF” and d.p.
K-POD kpod form kpodclustr [27] with k = 3 with d.p.

AACMDS/AAHP
daisy from cluster [31] (missing dissimilarities are replaced by 10) with d.p.
stepArchetypesRawData_ and norm_frob from adamethods [37] with k = 3
(missing values in archetypes are replaced by 42) and d.p.

CO-methods the implementation used in the respective method
EN-methods the implementation used in the respective method, with r = 4

To assess the performance of the methods, CondRF and ClassRF use the accuracy
reported by the OOB samples, while the accuracy is estimated by leave-one-out (LOO)
cross-validation for the other methods. In this case, in each trial, one subject is left out for
all the methods involving POLR (POLR, CO-POLR-UBCF, CO-POLR-k-POD, CO-POLR-
AAcMDS, CO-POLR-AAHP, EN-POLR-UBCF, EN-POLR-k-POD, EN-POLR-AAcMDS and
EN-POLR-AAHP), which constitutes the test set, while the remaining subjects constitute
the training set of that trial. For UBCF, k-POD, AAcMDS and AAHP, the following LOO
strategy is followed: in each trial, each known value is replaced by a missing value and its
value is predicted.

6. Results and Discussion

The performance estimates for the synthetic data from Scenarios 1 and 2 are shown in
Tables 3 and 4, respectively, while the estimated accuracies for the real data are shown in
Table 5.

Table 3. Mean and standard deviation, in brackets, of accuracy (percentage) over 10 simulations of
the classifiers for the different models of Scenario 1 and their average. The maximum value in each
column appears in bold.

Models M1 M2 M3 M4 Average

POLR 88.3 (0.03) 66 (0.06) 80.6 (0.05) 88.9 (0.02) 81.0
POLR-MICE 83 (0.05) 63.3 (0.06) 79.1 (0.03) 88.1 (0.03) 78.4

CondRF 81.4 (0.08) 61.5 (0.1) 79.1 (0.07) 86.2 (0.03) 77.0
ClassRF 84.5 (0.04) 59.3 (0.08) 79.9 (0.04) 85.5 (0.03) 77.3
UBCF 76.7 (0.08) 63.4 (0.16) 79 (0.06) 72.2 (0.03) 72.8
k-POD 68.9 (0.18) 60.6 (0.11) 63.3 (0.2) 71 (0.04) 66.0

AAcMDS 80.6 (0.04) 42.2 (0.24) 76.7 (0.05) 76.6 (0.04) 69.0
AAHP 77.1 (0.08) 45.2 (0.14) 78.2 (0.06) 74.2 (0.04) 68.7

CO-POLR-UBCF 87.6 (0.04) 66.9 (0.08) 80.9 (0.04) 88.9 (0.02) 81.1
CO-POLR-k-POD 86.2 (0.04) 65.7 (0.05) 80 (0.02) 88.2 (0.03) 80.0

CO-POLR-AAcMDS 86.8 (0.04) 66.9 (0.08) 82.1 (0.05) 88.4 (0.03) 81.0
CO-POLR-AAHP 87.6 (0.03) 69.1 (0.08) 81 (0.03) 88.5 (0.03) 81.6
EN-POLR-UBCF 89.1 (0.02) 67.2 (0.08) 81 (0.04) 88.9 (0.02) 81.5
EN-POLR-k-POD 88.3 (0.03) 66 (0.06) 81.5 (0.04) 88.9 (0.02) 81.2

EN-POLR-AAcMDS 88.6 (0.02) 66.4 (0.07) 79.3 (0.06) 88.8 (0.03) 80.8
EN-POLR-AAHP 88.5 (0.02) 66 (0.06) 80.9 (0.04) 88.9 (0.02) 81.1
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Table 4. Mean and standard deviation, in brackets, of accuracy (percentage) over 10 simulations of
the classifiers for the different models of Scenario 2 and their average. The maximum value in each
column appears in bold.

Models M1 M2 M3 M4 Average

POLR 55.9 (0.05) 37.6 (0.12) 51.3 (0.05) 88.8 (0.02) 58.4
POLR-MICE 52.6 (0.09) 48.2 (0.07) 54.2 (0.06) 88.1 (0.03) 60.8

CondRF 54.4 (0.07) 42.7 (0.08) 52.5 (0.08) 86.7 (0.03) 59.1
ClassRF 51.8 (0.1) 43.3 (0.05) 51.6 (0.07) 85.8 (0.03) 58.1
UBCF 53.8 (0.07) 46.3 (0.1) 55.8 (0.08) 41.2 (0.05) 49.3
k-POD 56.1 (0.09) 40.4 (0.1) 54.2 (0.15) 49.7 (0.12) 50.1

AAcMDS 58 (0.05) 53.1 (0.07) 50.6 (0.11) 48.3 (0.09) 52.5
AAHP 58 (0.05) 52.1 (0.08) 49 (0.11) 51.6 (0.07) 52.7

CO-POLR-UBCF 60.3 (0.09) 51.9 (0.09) 61.2 (0.08) 88.6 (0.02) 65.5
CO-POLR-k-POD 60.8 (0.1) 55.8 (0.08) 62.4 (0.07) 88.7 (0.02) 66.9

CO-POLR-AAcMDS 57.7 (0.11) 51.2 (0.08) 58.7 (0.08) 88.7 (0.02) 64.1
CO-POLR-AAHP 58.3 (0.11) 52.2 (0.09) 60.3 (0.07) 88.4 (0.02) 64.8
EN-POLR-UBCF 54.5 (0.09) 45.4 (0.09) 57.5 (0.08) 88.8 (0.02) 61.5
EN-POLR-k-POD 58 (0.06) 37.6 (0.12) 58.7 (0.08) 88.8 (0.02) 60.8

EN-POLR-AAcMDS 57.7 (0.06) 52.1 (0.08) 50 (0.1) 88.8 (0.02) 62.2
EN-POLR-AAHP 58 (0.05) 51.6 (0.07) 50.3 (0.11) 88.8 (0.02) 62.2

Table 5. Accuracy (percentage) of the classifiers for the different models of shoes and their average
for the real dataset. The maximum value in each column appears in bold. Underlined numbers
indicate that LDA had to be used instead of POLR.

Models M1 M2 M3 M4 M5 M6 M7 M8 Average

POLR 37 58 85 59 44 54 83 50 58.8
POLR-MICE 37 65 63 55 68 50 70 54 57.8

CondRF 48 65 78 50 0 57 57 58 51.6
ClassRF 44 88 70 64 60 54 74 54 63.5
UBCF 70 81 67 73 52 46 78 65 66.5
k-POD 63 81 74 64 48 54 74 46 63

AAcMDS 74 77 74 68 76 57 87 62 71.9
AAHP 74 77 78 64 68 50 78 62 68.9

CO-POLR-UBCF 41 81 52 55 80 46 87 65 63.4
CO-POLR-k-POD 52 81 56 41 84 50 83 62 63.6

CO-POLR-AAcMDS 59 85 48 59 68 36 87 54 62
CO-POLR-AAHP 56 77 56 55 52 39 87 58 60
EN-POLR-UBCF 70 77 85 73 52 54 83 69 70.4
EN-POLR-k-POD 56 81 85 64 52 57 83 50 66

EN-POLR-AAcMDS 74 81 85 68 76 57 83 58 72.8
EN-POLR-AAHP 74 81 85 64 68 54 83 62 71.4

6.1. Synthetic Data Results

Models where anthropometry and preference are relevant give the best performance:
The best accuracies are achieved by the models that are more closely related to ‘pref’, i.e.,
M1 (89.1%) and M4 (88.9%) for Scenario 1 and M4 (88.8%) for Scenario 2. On the contrary,
the models built without a relationship with ‘pref’ and anthropometric data (FL) give the
worst results: M1 (60.8%), M2 (55.8%) and M3 (62.4%) for Scenario 2. This makes sense
since these last models can only be predicted by the preferred sizes of other models. This is
the reason accuracies for Scenario 1 are higher than for Scenario 2.
Performance is more affected by high variability in size selection than by bias: The best
accuracy for M3 in Scenario 1 (82.1%) is higher than that for M2 (69.1%) in Scenario 1.
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This also happens in Scenario 2. The data in M2 are generated with more variability, and
therefore, less predictability.
CO-methods and EN-methods are good alternatives to established tools: For Scenario 1,
the CO-methods and EN-methods return very competitive results with the different CF
strategies. This also happens in Scenario 2, but in this scenario CO-POLR-k-POD seems to
be the best option. In both scenarios, the use of classic MICE for imputation yields worse
results than using CF strategies for imputation, i.e., our proposed CO-methods are better.
Our proposed CO-methods and EN-methods also provide better results than established
tools, such as CondRF and ClassRF.

6.2. Real Data Results

Accuracies depend on the shoe model: The best accuracies vary according to the shoe
model, ranging from 57% for model M6 to 88% for model M2. This is also shown in
Section 6.1. However, the average of the best accuracies for all the shoe models is 77%.
In any case, these results are much higher than the accuracy obtained by the traditional
foot-length-based strategy, which was 34.2%, as previously discussed in Section 1.
The best result is obtained with different methods for each shoe model: There is no
single method that is the best for all shoe models. For some of them, the information on
past purchases is sufficient. Only for model M3 is the best classification obtained with
the anthropometric measurements and ‘pref’ (its own preference, not relative to the other
users), although for model M7 this comment could also be valid. Very good results are
obtained with POLR and LDA for both with M3 and M7. For the other shoe models, the
information given by the size selection made by other users is useful to the point that, in
four of the shoe models, M1, M4, M6 andM7, the best classification is obtained without
taking the anthropometric measurements and ‘pref’ into account, just the size selections. In
the remaining models (M2, M5 and M8), both measurements and selections are useful for
obtaining accurate predictions. In short, it is clear that the selections made by other users
are important.
EN-methods are very competitive: In global terms, if the mean accuracy for all the shoe
models is analyzed, the best method is EN-POLR-AAcMDS (72.9%), followed by AAcMDS
(71.9%), EN-POLR-AAHP (71.4%) and EN-POLR-UBCF (70.4%). On the one hand, the
ensemble methodologies (EN-methods) provide excellent results. They are better than other
ways of combining the different kinds of information, such as the use of RFs or classification
by POLR after imputation (CO-methods). Furthermore, the ensemble methodologies
improve the results of the individual classifiers in all cases when global results are analyzed:
mean accuracy of EN-POLR-UBCF (70.4%) is higher than that of UBCF (66.5%), and
the same happens for EN-POLR-k-POD (66%) versus k-POD (63%), EN-POLR-AAcMDS
(72.9%) versus AAcMDS (71.9%) and EN-POLR-AAHP (71.4%) versus AAHP (68.9%).
Collaborative filtering techniques with past purchases return very competitive results:
The two techniques that we propose for the first time as collaborative filtering tech-
niques, AAcMDS (71.9%) and AAHP (68.9%), provide higher mean accuracy than the
well-established technique UBCF (66.5%).
Suitability of CF tools in classification problems with uncertainties: Our results may
seem to disagree with the message given by Hao and Blair [18]. They showed that user-
based collaborative filtering was consistently inferior to logistic regression and random
forests with different imputations on clinical prediction. However, there are relevant
differences in both studies. First of all, Hao and Blair [18] indicated that CF may not be
desirable in datasets where classification is an acceptable alternative, but this is not the
case in our situation. Note that global accuracies for RFs (51.6% and 63.5% for CondRF and
ClassRF, respectively) are lower than for CF in general (71.9%, 68.9%, 66.5% and 63% for
AAcMDS, AAHP, UBCF and k-POD, respectively). Moreover, the problems are different.
The responses and input variables of their clinical datasets are objective. However, in our
problem, the size selection is quite subjective; each user has his own preferences even when
they have similar anthropometric measurements. Therefore, ours is a difficult problem due
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to the presence of uncertainties in all parts of the problem: the outcome and the inputs. In
fact, in other medical problems [38], their CF-based approach achieved a higher predictive
accuracy than popular classification techniques such as logistic regression and support
vector machines.

6.3. What Are the Advantages and Limitations of Our Proposal?

One of the advantages is the use of objective data for making footwear recommenda-
tion. In this way, we remove noise that could deteriorate the performance. On the one hand,
some approaches use self-reported anthropometric measurements, which can be unreliable
in the case of feet, since people are not experts in taking this kind of measurements at home.
Instead, we use a low-cost 3D foot digitizer available in retail shops. We could have used
Avatar3D, which is a smartphone app that acquires three images of each foot [10]. On the
other hand, other approaches use self-reported opinion about tightness preference when
wearing shoes. However, this opinion is not reliable either, since the perception is very
subjective: there are people who say they prefer wearing loose shoes, when in fact they
wear tight shoes according to a shoe expert. As limitations, we have to know the selected
size of several users, although this is essential in any classification method. Our proposal
depends partially on the information about historical purchases: the more information
about past purchases we have, the better for our proposal.

Another advantage of our proposal is the good performance of the proposed methods
that improve on the performance of well-known methods. As a limitation, in the case of
big data, the computation could be slow for archetypal-based methods. In that case, we
could use more efficient algorithms, as explained in [39] (e.g., [37,40–43]).

Another advantage is that the application of the proposed methods is not limited to
footwear recommendation. The proposed procedures are not ad hoc, but they could also
be applied to other real problems.

As positive impacts, the proposed methods based on clustering and archetypal analy-
sis have proven to be excellent CF tools. Not only that, they have proven to be suitable for
imputation. The results obtained are very satisfying and they improve on the performance
of previous methods in on-line footwear size assignation. This is even more important
in the current context, since the spread of COVID-19 makes customers seek more online
services. Therefore, our proposal can help reduce the return rate.

7. Conclusions

We propose to combine information from a 3D foot measurements from low-cost 3D
foot digitizer, past purchases and self-reported size. The results in Section 6.2 show that
information on past purchases is very useful. In some cases, the information from 3D foot
measurements is not very relevant, although in others it is.

We propose two approaches for combining information from those sources in the
matching footwear size problem. On the one hand, we propose to use CF methodologies
for imputing missing data before using a classifier (CO-methods). On the other hand, we
propose an ensemble for joining the information from a classifier and CF methodologies
(EN-methods). Furthermore, we propose the use of several unsupervised statistical learning
techniques as CF methodologies for the first time: k-POD, AAcMDS and AAHP. We
compares our proposals with several classic alternatives, such as the use of common
imputation methods (MICE) and other techniques, such as RFs, with synthetic and real data.
In both cases, our proposals returned better or comparable results to classical alternatives.

The EN-methods showed very good performance on the real dataset. EN-POLR-
AAcMDS was the best method, with 72.9% accuracy. The ensemble methods outperform
the results of each individual classifier in the ensemble.

We also show that the performance is more affected by high variability in size selection
than bias.

As future work, the preliminary results on the real dataset could be tested with a
larger dataset. The proposals could also be applied to other kinds of real problems, where
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uncertainties have a prominent role. Other classifiers could be also considered instead of
POLR with CO-methods and EN-methods. Other recent CFs could be tested (e.g., [44–46]).
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