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ABSTRACT. Bimetallic Pt-based alloys have drawn considerable attention in the last decades as catalysts in Proton Exchange Mem-

brane Fuel Cells (PEMFCs), since they closely fulfill the two major requirements of high performance and good stability under 

operating conditions. Pt3Fe, Pt3Co and  Pt3Ni stand out as major candidates, given their good activity toward the challenging Oxygen 

Reduction Reaction (ORR). The common feature across catalysts based on 3d-transition metals and their alloys is magnetism. Ferro-

magnetic spin-electron interactions, quantum spin exchange interactions (QSEI), are one of the most important energetic contributions 

in allowing milder chemisorption of reactants onto magnetic catalysts, in addition to spin-selective electron transport. The under-

standing of the role played by QSEI in the properties of magnetic 3d-metals-based alloys is important to design and develop novel 

and effective electrocatalysts based on abundant and cheap metals. We present a detailed theoretical study (via Density Functional 

Theory) on the most experimentally explored bimetallic alloys Pt3M (M = V, Cr, Mn, Fe, Co, Ni and Y)(111). The investigation starts 

with a thorough structural study on the composition of the layers, followed by a comprehensive physico-chemical description of their 

resistance towards segregation and their chemisorption capabilities towards hydrogen and oxygen atoms. Our study demonstrates that 

Pt3Fe(111), Pt3Co(111) and Pt3Ni(111) possess the same preferential multilayered structural organization, known for exhibiting spe-

cific magnetic properties. The specific role of QSEI in their catalytic behavior is justified via comparison between spin polarized and 

non-spin polarized calculations.

INTRODUCTION 

Pt-based materials exhibit promising results as catalysts in 

PEMFCs,1-3 smoothing the oxygen reduction reaction (ORR); 

that is the bottleneck hampering the development of these elec-

trochemical devices.1, 4 The most widely investigated composi-

tions are Pt3M(111) alloys, where M is V, Cr, Mn, Fe, Co, Ni 

and Y metals.1-2, 4 Pt3Fe(111), Pt3Co(111) and Pt3Ni (111) are 

considered as the best Pt-based catalysts due to their optimal 

ORR activity and relatively good stability.1,5-7 Pt3V(111) and 

Pt3Cr(111) are often claimed as potential catalysts, for their 

good robustness and durability under the operating catalytic 

conditions of the electrolytic cell.2,8-9 Pt3Mn(111) remains the 

less investigated Pt-based catalyst, despite its various and inter-

esting magnetic properties.10 Few groups also mention the non-

magnetic Pt3Y(111) alloy as potential candidate.11-12  

The presence of heterometallic sublayers in a solid catalyst is 

well known to improve the catalytic properties of the surface 

composed by noble metals.3,13-14 Such enhancement in activity 

is generally explained via as ligand,15 strain16 and ensemble ef-

fects17 in heterogeneous catalysis. These chemical effects de-

pend upon the type, the stoichiometry and the distribution of the 

heterometallic centers within the catalyst structure and influ-

ence electronic properties of the catalyst by tuning the surface 

chemisorption capabilities.3,13-14 In the case of 3d-metal alloys, 

however, these effects alone do not entirely explain the catalytic 

behavior towards ORR: they cannot explain, for instance, the 

enhanced catalytic behavior of Pt3Co(111) versus Pt(111).18-20 

The missing tale to the puzzle when dealing with 3d-transition 

metals, rare earth metals and their alloys, is represented by the 

spin-dependent potentials shaping ferromagnetic and antiferro-

magnetic situations.21  

The roots of magnetism reside in the correlated movement of 

electron charges and spins. The magnetic properties of 3d-tran-

sion metals derive from correlated movements within the outer 

3d-shells, while the magnetic properties of rare earth metals de-

rive from the inner 4f-shells.22-23 The magnetism originated 

from 4f-electrons mildly affects the intermetallic chemical 

bond23 (for the shielding action of the outer 5s25p6 shells)22, but 



 

the magnetism expressed by the outer 3d-electrons plays a piv-

otal role in describing the chemical properties of light transition 

metals and their related alloys.23 A cooperative behavior known 

as collective magnetism24 is a characteristic of ferromagnetic 

(FM, parallel spin alignment) and antiferromagnetic materials 

(AFM, antiparallel alignment);25 it can only be explained 

through indirect exchange interactions.26 These interactions, 

previously named Quantum Spin Exchange Interactions 

(QSEI)27-28 are a non-classical quantum phenomenon arising 

from the imposition of the antisymmetric wave function as so-

lution of  the Schrödinger equation under Pauli exclusion prin-

ciple.26,29 The exchange couplings between electrons with the 

same spin orientation reduce their Coulomb repulsion,23,30 thus 

stabilizing the overall structure.30 In strongly correlated materi-

als31 with open-shell orbital configurations, QSEI among paral-

lel spins can lower the enthalpy of adsorption/desorption of 

chemical species onto the surface (e.g., ∆𝐻𝑐𝑎𝑡 =

∆𝐻𝑐𝑎𝑡+𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒∗ − (∆𝐻𝑐𝑎𝑡 + ∆𝐻𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒(𝑔𝑎𝑠))). 

For 3d-metals Pt-based catalysts, QSEIs become a very rele-

vant electronic factor in determining the energetics and kinetics 

of heterogeneous catalytic processes.20,27,32-34 Computational 

studies demonstrate that dominant FM interactions play a cru-

cial role in ORR35,36 and experiments confirmed the enhanced 

catalytic activity of magnetic particles in oxygen electro-catal-

ysis, due to spin-dependent delocalization of the charge carri-

ers.37,38 The QSEI stabilizing effect can be also macroscopically 

boosted by an external magnetic field when magnetic oxides are 

involved.39,40 Experiments demonstrate that the application of 

an external magnetic field can induce an overall  improvement 

in the PEMFCs catalytic performance, by accelerating the oxy-

gen transport toward the catalytic layer of the electrodes41 or 

activating the hydrogen molecules42 or aligning proton conduc-

tive channels in the fuel cell membrane.43 In summary, exoge-

nous and endogenous magnetic potentials must be unavoidably 

considered to achieve a comprehensive description of chemical, 

physical and thus catalytic properties.  

In this paper, we performed a thorough Density Functional 

Theory (DFT) study on multilayered compositions for experi-

mentally relevant Pt3M (M=V, Cr, Mn, Fe, Co, Ni and Y)(111) 

alloys. Multilayered compositions received also substantial at-

tention in modern spintronics.44 We carried out a comprehen-

sive chemisorption screening of hydrogen and oxygen atoms as 

useful descriptor to identify optimal solid ORR catalysts.45 We 

also completed a segregation study to assess the thermodynamic 

stability of the most promising Pt3M(111) nanostructures. Spin 

polarized (DFT+U method) and non-spin polarized calculations 

are ubiquitously carried out to define the role of magnetism and 

particularly QSEI on the chemisorption properties of the alloys. 

 

RESULTS AND DISCUSSION 

Structural and magnetic properties of Pt3M (M=V, Cr, Mn, 

Fe, Co, Ni and Y) (111) alloys. Figure 1 shows the results of 

the speciation study for Pt3M (M=V, Cr, Mn, Fe, Co, Ni and 

Y)(111) alloys by using a six layers model. The presence of a 

Pt-skin surface is the common feature among all the most stable 

nanostructures investigated in every group, in excellent agree-

ment with experimental data on Pt-based alloys.46 The remain-

ing five sublayers (in our slab models) are diversely populated 

depending on the d-metal dopant.  

The two most stable Pt3V(111) structures show preference for 

G-type AFM ordering (43 investigated structures, see SI pp. S5-

S8). The energetic gap between the most stable AFM and FM 

orderings is a non-negligible 0.18 eV. A very similar trend is 

also observed for the two most stable Pt3Cr(111) structures: the 

preferred magnetic ordering in this case is C-type AFM (42 in-

vestigated structures, see SI pp. S18-S21). The energetic gap 

between the most stable AFM and FM orderings is 0.79 eV. 

Remarkably, Pt3V(111) and Pt3Cr(111) possess the same 3d-

metal distribution: 50 % in the 2nd and 5th layers and 25% in the 

3rd and 4th layers, respectively. The four most stable Pt3Mn(111) 

structures suggest the presence of G- and C-type AFM order-

ings (41 investigated structures, see SI pp. S31-S34). The en-

ergy gap between the most stable AFM and FM configurations 

corresponds to 0.84 eV for all the four Pt3Mn(111) nanostruc-

tures. 50% of the magnetic 3d-metals in Pt3Mn(111) are placed 

in the 2nd, 4th and 5th layers, respectively (Figure 1).  

To our knowledge, a straightforward experimental compari-

son for the structure of Pt3V(111), Pt3Cr(111) and Pt3Mn(111) 

alloys is not available at present time. On the contrary, 

Pt3Fe(111), Pt3Co(111) and Pt3Ni(111) are the most experimen-

tally investigated compositions. The four most stable 

Pt3Fe(111) structures present a very tiny difference in energy 

between A-type AFM and FM, with a gap of 0.05 eV (39 in-

vestigated structures, see SI pp. S47-S50). The full characteri-

zation of Pt3Co(111) structures has been reported in a previous 

work, showing that the energies of A-type AFM and FM order-

ings differ by < 0.1 eV.20 The same trend seen for Pt3Fe(111) 

and Pt3Co(111) is also observed for Pt3Ni(111). Four nanostruc-

tures stand out as the most stable ones (34 investigated struc-

tures, see SI pp. S68-S71). As in case of Pt3Fe(111) and 

Pt3Co(111), A-type AFM orderings in Pt3Ni(111) show negli-

gible energetic differences compared to FM orderings, with gap 

< 0.1 eV. It is worth to point out that the same magnetic atoms-

per-layer distribution, e.g. 2nd and 5th layers both populated at 

75% by 3d-metal atoms (Figure 1), is observed for iron, cobalt 

and nickel. The most stable nanostructures found for 

Pt3Fe(111), Pt3Co(111) and Pt3Ni(111) match with experi-

mental data evidencing a sub-skin layer (2nd) enriched in Fe, Co 

and Ni atoms.5-6 Even more so, the computed structure of 

Pt3Co(111) is in good agreement with recent published results 

reporting inner-layers compositions.18,19 The four most stable 

non-magnetic Pt3Y(111) structures (Figure 1) display very dis-

organized cells, where the clear separation of the different lay-

ers blurs substantially (42 investigated structures, see SI pp. 

S89-S92).  

Pt3Fe(111), Pt3Co(111) and Pt3Ni(111): multilayered struc-

ture. Figure 1 shows that Pt3Fe(111), Pt3Co(111) and 

Pt3Ni(111) possess the same four global minima characterized 

by the same 3d-transition metals layered distribution within the 

six layers model. The percentage of Fe, Co and Ni within the 

2nd and the 5th layer is a constant 75%, but with a different spa-

tial distribution within these two layers for all the three alloys. 

Figure 2 displays the multilayered nanostructures for each most 

stable slab of Pt3Fe, Pt3Co20 and Pt3Ni in detail, correlated with 

distances between the magnetic and the non-magnetic layers for 

the FM and A-type AFM orderings, respectively. Thus, hereby 

proposed multilayer structure for Pt3Fe, Pt3Co and Pt3Ni is the 

result of various benchmark carried out for each Pt3M(111) al-

loys under study. The same multilayered structural organization 

has been “tested” for Pt3V (see SI pp. S6, samples 15 and 16), 

Pt3Cr (see SI pp. S19, samples 13 and 15), Pt3Mn (see SI pp. 

S32, samples 10 and 11) and Pt3Y (see SI pp. S91, samples 28-



 

30), but ordered multilayered 3d-atomic distribution did not re-

sult to be the most stable (e.g. the latter alloys are more “single- 

phased”). 

Multilayered structures composed by a sequence of magnetic 

and non-magnetic layers have been extensively studied in the 

modern spintronics44 for their applications in magneto-optical 

storage devices.47 Magnetic multilayer systems based on Fe, Co 

and Ni separated by a noble metal spacer (e.g. Pt, Pd, Ag) pos-

sess the perpendicular magnetic anisotropy (PMA),47-50 a pref-

erential magnetization direction perpendicular to the material’s 

plane, that is very appealing for technological applications.47 

Fe, Co and Ni exhibit perpendicular anisotropy for magnetic 

layers less thick than 10 Å.49 Orientation (111) seems to be al-

ways the preferred orientation.47 Pt/Co systems displays the 

strongest PMA,48 while Pt/Fe and Pt/Ni systems present a 

marked dependence on the temperature.49,51 

 

 

Figure 1. Sketch of structures, chemical compositions and magnetic orderings of the most stable nanostructures investigated for each bime-

tallic Pt3M (M= V, Cr, Mn, Fe, Co, Ni and Y) (111) alloy. The numeric values beneath each slab represent its thermodynamic stability (H) 

versus the most unstable slab found for each alloy, in eV. Density of States (DOS) for the most stable nanostructures are reported in SI p. 

S100. 

 

Some authors explain the enhanced PMA in ultrathin Pt/Co 

systems with the formation of Pt-Co alloys at the interface.48 



 

The same intermixing is claimed to play a minor role in Pt/Fe 

systems.51 and even counterproductive in Pt/Ni systems (de-

crease of PMA).52 

Multilayer systems also display interlayer exchange cou-

pling.53 In ultrathin Co and Fe multi-layered systems separated 

by Pt as non-magnetic spacer, the strength of the interlayer cou-

pling experimentally depends on the thickness of the magnetic 

layers and usually decreases when the spacer thickness in-

creases.48,51 The interlayer exchange coupling originates at the 

interface in Pt/Co, where the magnetic Co atoms induce spin-

polarization to the neighbor Pt centers and polarized interac-

tions in adjacent Pt-Pt layers.48 The polarization decreases in 

Pt/Fe systems54 and appears to be even weaker in Pt/Ni,49 low-

ering the interlayer coupling. 

Chemisorption properties of Pt3M (M=V, Cr, Mn, Fe, Co, 

Ni and Y) (111) alloys. The chemisorption energies of O2*, O*, 

H* represent important parameters to rank catalytic effective-

ness of potential solid catalysts.45 We investigated the binding 

energies of adsorbed hydrogen (∆Hads
H*) and oxygen (∆Hads

O*) 

atoms onto the surface of Pt3M(111) alloys by identifying the 

structures providing the lowest energetically-demanding chem-

isorptions (non-magnetic Pt(111) is used as reference system). 

Published works suggest that the correlation between chemi-

sorption and reactivity can be successfully constructed for oxy-

gen reduction reaction, leading to the establishment of reactiv-

ity trends,55 while such trends are still unclear for other reac-

tions, like oxygen evolution reaction (e.g., particularly for sim-

ple oxides, where many more factors, like the creation of va-

cancies, the change of the phases, the changes valency states, 

the extrusion of oxygen atoms from bulk and surface, should be 

considered in a successful model. An interesting case is repre-

sented by Co3O4, that shows an anomalous behavior in OER,55 

but a top performance in ORR56). According to other published 

works, an optimal catalyst should display adsorbate-surface in-

teraction strength in the “right” range.45 For instance, this 

“right” range of O* chemisorption should correspond to values 

between 0.0 and 0.4 eV below the one exhibited by Pt(111) in 

ORR.11 If this relationship holds, then Figure 3 shows at glance 

that non-magnetic Pt3Y(111) adsorbs O* atoms too strongly to 

be catalytically valuable in ORR. It is also worth to mention that 

Pt3Y(111) is the only alloy within the examined pool that shows 

formation of Pt3Y-O oxide in the inner layers of the slabs, in 

agreement with recent experimental results.12  

On the other hand, following the logic, the series constituted 

by 3d-transition metal Pt3M(111) displays milder chemisorp-

tion than the reference system Pt(111), indicating that these 

magnetic alloys can be considered as good catalysts for ORR. 

The trend shown in Figure 3 for Pt3M(111) alloys may suggest 

the existence of a correlation between the milder chemisorp-

tions and the magnetic properties of the catalyst. The close con-

nection between heterogeneous catalysis56 and magnetism at 

macroscopic level is already known as magneto-catalytic ef-

fect.57 We recently demonstrated the impact of QSEI as an en-

ergy term contributing to the stabilization of clean slabs of mag-

netic Pt3Co(111) alloy and to the destabilization of chemisorbed 

oxygen atoms.20 We are hereby extending the study on the im-

portant role of QSEI in influencing the chemisorption trend 

(thus the catalytic behavior) of magnetic catalysts to other bi-

metallic Pt-based alloys. Figure 4 shows the results obtained for 

oxygen chemisorption with each isostructural magnetic and 

non-magnetic nanostructure as a function of the d-metal elec-

tronic configuration. As it can be seen the O* adsorption trends 

are different between the magnetic and the fictitious non-mag-

netic isostructural nanostructures for all the investigated mag-

netic alloys. The energy discrepancy corresponds to QSEI con-

tribution, that oscillates between 0.1 eV and 0.2 eV for the 

3d-metal Pt3M systems (almost null differences are seen for 

Pt3Y and Pt). 

 

Figure 2. Multi-layered organization of the most stable Pt3Fe(111), 

Pt3Co(111) and Pt3Ni(111) nanostructures with estimated distances 

(in Å) between the layers for the FM (right) and A-type AFM (left) 

orderings, respectively. 

Figure 4 also highlights a divergent behavior between Pt3V, 

Pt3Cr, Pt3Mn and Pt3Fe, Pt3Co, Pt3Ni.  The absence of spin 

terms in the wave functions for fictitious non-magnetic Pt3V, 

Pt3Cr and Pt3Mn leads to weaker O* bonding predictions than 

the corresponding isostructural magnetic nanostructures. The 

absence of spin terms leads instead to a reverse trend for Pt3Fe, 

Pt3Co and Pt3Ni, showing that the non-magnetic nano-slabs ad-

sorb O* atoms tighter than the corresponding isostructural mag-

netic ones. Such different trend between spin polarized and non-

spin polarized O* chemisorption is explained through the ener-

getic contributions defined in Eq.1.30 

∆Hcat = ∆Te−
kinetic + ΔVN+e−

Coulomb + ΔVe−−e−
Coulomb + ΔQSEI +

 + ΔEe−
correlation                                                                              (1) 

In the case of non-magnetic close-shell configurations such 

as Pt3Y(111) and Pt(111), paired electrons are maximum and 

share efficiently the inter-nuclear regions between the atoms 



 

(Fermi heaps), hence the influence of QSEI is minimum on 

Hcat, indicating that differentiating spin terms is not essential 

to reproduce a reliable model of the reactivity of close-shell cat-

alysts. Such description is typically valid for heavier transition 

metals as well, where 4d and 5d orbitals possess larger radial 

extensions than 3d and 4f orbitals due to weak on-site electronic 

repulsions. Accordingly, the fictitious non-magnetic 3d-metal 

Pt3M nanostructures are assumed as close-shell configurations, 

hence their behavior can be simply rationalized through chemi-

cal effects, as demonstrated in previously published studies on 

Pt3Co(111).20  

On the other hand, the presence of spin polarization in the 

calculations involving open-shell 3d-metal Pt3M(111) series 

provides additional energetic contributions that leads to differ-

ent O* chemisorption values depending on the magnetic order-

ing of the catalyst (Figure 4). Pt3V, Pt3Cr and Pt3Mn bind O* 

atoms more strongly upon inclusion of spin polarization. These 

three alloys possess AFM orderings, that induce strong QSEI 

localized within the 3d open-shells and a concomitant reduction 

of the on-site QSEI term (∆QSEIon−site) (Eq.2).30  

ΔQSEI =  ∆QSEIon−site +  ∆QSEIinter−atomic                          (2) 

Decreased electronic repulsions shortens the 3d-orbitals radial 

extension,58 preventing conductivity through interatomic AFM 

pair localization. Dominant intra-atomic QSEI in the 3d-orbit-

als and optimal inter-atomic nuclei attractions due to the AFM 

bonds, provide an extra stabilization to high-spin 3d5 manga-

nese and chromium. The outcome is a larger energy gap be-

tween the 3𝑑𝛼
5  occupied bonding orbitals (the Lower Hubbard 

band) and the 3𝑑𝛽
5 empty antibonding orbitals (the Upper Hub-

bard band) of Mn and Cr atoms.34 This converts Pt3Mn(111) and 

Pt3Cr(111) in more inert catalysts (Figure 3 and 4) compared 

with FM compositions, as experiments also confirm.2 G-type 

AFM Pt3V(111) presents more favorable O*-chemisorption 

(Figure 3), but in this case the electron pairs localization typical 

of AFM compositions and stability issues will yield to high ac-

tivation barriers for ORR.27,33  

 

Figure 3. H* versus O* chemisorption trend (in eV for 0.5 ML 

coverage of adsorbates) onto the most stable nanostructure found 

for each Pt3M (M = V, Cr, Mn, Fe, Co, Ni and Y) (111) bimetallic 

alloy. Diamonds correspond to the chemisorption values for G-type 

Pt3V, C-type AFM Pt3Cr, G-type AFM Pt3Mn, A-type AFM Pt3Fe, 

A-type AFM Pt3Co and A-type AFM Pt3Ni. Circles correspond to 

chemisorption values for FM Pt3Fe, FM Pt3Co, FM Pt3Ni, non-

magnetic Pt3Y and Pt(111) (Pt used as reference). Atomic charge 

distributions and magnetic contributions per layer are reported in 

SI pp. S12-S17, S25-S30, S41-S46, S56-S67, S77-S88, S97-S99, 

S101-S104 and S126-S133. 

A different situation concerns FM alloys, such as Pt3Fe, 

Pt3Co and Pt3Ni, where the inclusion of spin polarization pro-

duces milder chemisorption values than the isostructural non-

magnetic alloys (Figure 4). In these alloys the FM couplings, 

mediated by the correlated itinerant electrons, leads to an over-

all polarization of the electrons in the conduction band. This 

electronic spin-polarization decreases the adsorption of reaction 

intermediates affecting, therefore, the chemisorption process.32 

The distance between one spin-electron and another with the 

same orientation is maximized in FM orderings, generating the 

so-called Fermi holes; the decrement of the pair localization re-

duces the electronic repulsions producing a more energetically 

stable situation (the higher the number of Fermi holes in the FM 

material, the higher the reduction of electronic repulsions in the 

valence band and therefore the higher the stabilization carried 

out by QSEI). FM materials containing Fe, Co and Ni are also 

known to possess specific conductivity behaviors and transport 

properties.21, 44 Experimental results confirm their good perfor-

mance in ORR,1-3,5 in photosynthesis59 and in ammonia synthe-

sis.33 The difference in chemisorptions seen in Figure 4 for FM 

Pt3Fe, Pt3Co and Pt3Ni with respect to non-magnetic isostruc-

tural slabs, about 0.2 eV, corresponds indeed to the QSEI con-

tribution in stabilizing the clean slabs, thus concomitantly de-

stabilizing the O*-adsorption. 

Interestingly, we calculated that the energy destabilization of 

the chemisorption introduced by QSEI, = 0.16 eV, 0.23 eV, 

0.19 eV for A-type AFM Pt3Fe(111), Pt3Co(111) and 

Pt3Ni(111), respectively, closely mirrors the QSEI destabiliza-

tion seen for the corresponding FM alloys reported in Figure 4 

(versus non-magnetic structures). A-type AFM Pt3M (M= Fe, 

Co, Ni)(111) possess milder H* and O* chemisorption values 

than C-type AFM Pt3Cr and G-type AFM Pt3Mn. This is not 

serendipitous, however, but in full agreement with previous re-

sults indicating that layered antiferromagnetism (A-type) is 

probability the most active AFM configuration in catalysis.20, 60 

In A-type AFM configurations, QSEI provide dominant ferro-

magnetic stabilization within the planes of a magnetic layers, 

but two magnetic layers interact with each other through an an-

tiferromagnetic coupling. The oscillations with the orbital oc-

cupancy in Figure 3 also indicate that the d-band approximation 

is not precise for magnetic compositions based on 3d-metals, 

where catalytic properties must be analyzed considering all the 

relevant quantum potentials. A complete theory of the elec-

tronic factors in (electro-) catalysis must include the specific 

quantum description of the relevant electronic correlations.  

Figure 4 reinforces the statement previously made for mag-

netic Pt3Co(111)20 and extends it to the other 3d-transition metal 

Pt3M(111) alloys: the study of chemical effects alone is not 

enough to fully describe the chemisorption properties of mag-

netic catalysts. Cooperative QSEI associated to open-shells 

have a huge footprint on the complex magnetic and electronic 

properties reported for 3d-based highly-correlated materials, 

where several magnetic centers are linked together by covalent 

bonds.20, 31 



 

 

Figure 4. O*-chemisorption trend (in eV) as a function of the d-

metal electronic configuration for the isostructural magnetic and 

non-magnetic (NM) slabs of each most stable Pt3M (M= V, Cr, Mn, 

Fe, Co, Ni and Y)(111) nanostructure.  is the difference between 

calculated spin polarized and non-spin polarized chemisorptions. 

Squares correspond to non-magnetic structures, diamonds corre-

spond to AFM structures and circles correspond to FM Pt3Fe, FM 

Pt3Co and FM Pt3Ni. Triangles correspond to non-magnetic struc-

tures treated with spin polarization.  

Segregation study on 3d-transition metal Pt-based alloys. 

Two main requirements should be fulfilled for a catalyst to be 

employed in fuel cells (i.e. PEMFCs): binding of transient spe-

cies (e.g. H* and O*) onto the catalytic surface in the “right” 

range of strength (too strong or too weak binding energies might 

limit the catalytic process)45 and stability of the catalyst 

throughout every catalytic cycle.46, 61 It goes without saying that 

a catalyst with a stable solid structure ensures the preservation 

of its catalytic activity and durability under the FC operating 

conditions.46, 61  

In bimetallic solid compositions one of the main causes of the 

loss of catalytic activity is represented by the migration of het-

eroatoms from the sub-layers (usually the sub-skin) to the sur-

face. This phenomenon is known as segregation and it changes 

the surface composition and electrochemical properties of the 

catalyst.46,61 Different factors induce the segregation of the het-

eroatoms: the subsurface atomic structure, the size and the co-

ordination number of the heterometals, the surface energy and 

the presence of adsorbed species like O*, OH* and H2O*.61-62 

The surface energy and the atomic radii are decisive factors for 

the surface segregation in vacuum.62



 

 

Figure 5. Calculated single-, double- and triple-segregation energies (in eV) under vacuum (left) and under oxygen-adsorption environments 

(O coverage at 0.5ML) (right) versus Pt3M(111) species. Straight lines have no physical meaning, rather they are a tool to improve trend 

visualization. 

On the other hand, in the presence of adsorbed species, such 

as oxygen atoms, the stabilization of the catalytic structure is 

influenced by the forces involved in the adsorption process, that 

can or cannot promote the atomic exchange process.62 Moreo-

ver, the segregation of magnetic 3d-transition metals can be in-

fluenced by further important factors, above all the magnetic 

properties.62-63 We carried out a computational thermodynamic 

investigation on segregation of heterometals under vacuum and 

oxygen-adsorbed environments for the most stable 3d-metal 

Pt3M(111) nanostructures found in our previous structural study 

presented in Figure 1. We decided to skip the calculations on 

the segregation of Y atoms in the non-magnetic Pt3Y(111) alloy 

since the global minimum presents an erratic pattern with O* 

atoms embedded into the slab structure itself.  

The segregation energies in vacuum are calculated as the dif-

ference between the energy of the segregated and the corre-

sponding non-segregated nanostructures, (Eq. 3):62 

𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚 = 𝐸𝑠𝑒𝑔𝑟

𝑐𝑙𝑒𝑎𝑛.𝑠𝑙𝑎𝑏 − 𝐸𝑛𝑜𝑛−𝑠𝑒𝑔𝑟
𝑐𝑙𝑒𝑎𝑛.𝑠𝑙𝑎𝑏                                (3) 

The segregation energies under oxygen-adsorbed environment 

are obtained as the sum between the segregation energy under 

vacuum condition and the difference between the adsorption en-

thalpies of the segregated and non-segregated systems, (Eq.4): 
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𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

= 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚 + (∆𝐻𝑠𝑒𝑔𝑟

𝑎𝑑𝑠,𝑂∗
− ∆𝐻𝑛𝑜𝑛−𝑠𝑒𝑔𝑟

𝑎𝑑𝑠,𝑂∗
)    (4) 

In accordance with the purposes and the philosophy of this man-

uscript, this study aimed also to include the role of magnetism 

and QSEI in the segregation process, by running spin polarized 

and non-spin polarized calculations on isostructural 3d-segre-

gated and non-segregated 3d-metal nanostructures. Figure 5 

displays the results of the segregation study for up-to-three 3d-

metals in vacuum (left) and with O* (right). The segregation 

energies in vacuum (𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚 , via Eq. 3) display positive 

values for both isostructural spin and non-spin polarized calcu-

lations (Figure 5, left). Positive 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚  values indicates 

that the segregation of 3d-metals is not thermodynamically fa-

vored in all the most stable clean Pt3M (M= V, Cr, Mn, Fe, Co, 

Ni)(111) alloys. This confirms that the Pt-skin configuration is 

the most thermodynamically stable atomic arrangement under 

vacuum for these bimetallic alloys, in excellent agreement with 

experimental and computational data.62,64 Nonetheless, remark-

ably interesting differences are observed between isostructural 

spin polarized and non-spin polarized 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚 . For in-

stance, the trend of non-spin polarized series suggests that 

Pt3V(111) and Pt3Cr(111) are the most thermodynamically sta-

ble alloys against the segregation process, while the spin polar-

ized trend points at Pt3Co(111) and Pt3Ni(111) alloys as the less 

prone to the 3d-segregation in vacuum. Thus, the exclusion of 

spin terms in Pt3V(111) and Pt3Cr(111) greatly overestimates 

𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚 . For instance, 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑐𝑢𝑢𝑚  for the segregation of 

one Cr atom in the fictitious non-magnetic Pt3Cr is 0.82 eV, 

when 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚  is 0.29 eV in the realistic C-type AFM Pt3Cr 

(0.53 eV lower!), due to the presence of the spin polarization. 

On the contrary, an opposite trend is observed for magnetic 

Pt3Co(111) and Pt3Ni(111). For example, the segregation of one 

Ni atom results more thermodynamically disfavored in FM 

Pt3Ni (0.58 eV) than in the hypothetical isostructural non-mag-

netic nanostructure (0.37 eV). In this latter case QSEI contrib-

ute to thermodynamically stabilize the Pt-skin configuration of 

FM Pt3Ni by a non-negligible 0.21 eV. It is also very important 

to mention that the exclusion of spin polarization can also lead 

to different atomic dispositions. Remarkably, non-spin polar-

ized calculations for the segregation of one Mn atom in 

Pt3Mn(111) alloy provide a lowest energy segregated 

nanostructure structurally different from the one provided by 

the inclusion of spin polarization (see SI pp. S110- S111).  

Similar discrepancies are observed in Figure 5, right, between 

spin and non-spin polarized calculations in the oxygen-induced 

segregation energies, (𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 via Eq. 4). 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 is a 

combination of the contribution of the segregation energy in 

vacuum (𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚 ) and the contribution of the difference be-

tween the O*-adsorption on the 3d-segregated (∆𝐻𝑠𝑒𝑔𝑟
𝑎𝑑𝑠,𝑂∗

) and 

on the initial non-segregated nanostructures (∆𝐻𝑛𝑜𝑛−𝑠𝑒𝑔𝑟
𝑎𝑑𝑠,𝑂∗

) (see 

SI pp. S118-S120). 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 < 0 is obtained when 

(∆𝐻𝑠𝑒𝑔𝑟
𝑎𝑑𝑠,𝑂∗

− ∆𝐻𝑛𝑜𝑛−𝑠𝑒𝑔𝑟
𝑎𝑑𝑠,𝑂∗

) term prevails on 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑐𝑢𝑢𝑚  contri-

bution, thus favoring segregation, vice versa, when 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 

> 0 is obtained, the segregation is disfavored. In the latter case, 

the Pt-skin configuration of the nanostructures results to be ther-

modynamically stable enough to prevent the segregation pro-

cess when O* atoms are adsorbed onto the surface. Figure 5, 

right, shows that G-type Pt3V(111) and C-type Pt3Cr(111) al-

loys generally exhibit the most negative 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 values. For 

instance, 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 is -1.24 eV for a mono-segregation of V 

onto the surface. Positive values, 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 > 0, are only ob-

tained for the spin polarized calculations of magnetic 

Pt3Co(111) and Pt3Ni(111), when double- and triple-segrega-

tions take place (e.g. two or three segregated atoms onto the 

surface). For instance, 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 values for A-type AFM 

Pt3Co are 0.10 eV and 0.30 eV when two and three Co atoms 

segregate to the surface, respectively. Magnetic Pt3Fe(111) rep-

resents an exception in the series, since a positive 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 is 

only observed when all the three Fe metals are exchanged to the 

surface.  

Figure 3 shows that the trend in O*-chemisorption with non-

segregated slabs increases along the period, with FM 

Pt3Fe(111), -0.48 eV, < FM Pt3Co(111), -0.53 eV, < FM 

Pt3Ni(111), -0.61 eV, but, most interestingly, the chemisorption 

trend for the mono-segregated slabs is completely reversed, 

with FM Pt3Fe(111), -1.67 eV, > FM Pt3Co(111), -1.57  eV, > 

FM Pt3Ni(111), -1.56 eV (this also stands true for double- and 

triple-segregations, see SI  pp. S118-S120). These data, show-

ing mild chemisorptions and good resilience to segregation, 

suggest unequivocally that magnetic Pt3Co(111) are definitely 

a good catalytic choice in fuel cells at present times and, more 

importantly, that multilayered magnetic Pt3Fe(111) might be-

come an even better choice, once the stability issues are com-

pletely resolved (the strong affinity of Fe for oxygen leads to 

stronger binding with the surface and easier segregation of the 

Fe atoms). Recent experiments strongly support our computa-

tional results proving that magnetic PtFe nanoparticles, com-

posed by consecutive layers of Pt and Fe atoms, exhibit an en-

hanced ORR catalytic activity and a higher durability than the 

commercial Pt/C catalyst upon doping with Au atoms.65 

For comparison, the exclusion of the spin polarization pro-

duces thermodynamically favored 3d-segregations for all the 

investigated cases. The cases of Pt3Co(111) and Pt3Ni(111) are 

outstanding, since the calculations in absence of spin terms pre-

dict a completely opposite trend for double- and triple-segrega-

tions compared to spin polarized calculations. For instance, 

𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 > 0 (0.30 eV and 0.19 eV for A-type AFM and FM 

Pt3Co, respectively) is found for triple-segregation of Co atoms 

when the spin polarization is included in the calculations, while, 

in absence of spin polarization, 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 = -0.72 eV indi-

cates instead a thermodynamically feasible process. Two con-

siderations are essential at this point: it is evident that QSEI 

plays a central role in the stabilization of magnetic nanostruc-

tures (this is especially true for magnetic Pt3Fe(111), 

Pt3Co(111) and Pt3Ni(111)) and that the exclusion of spin po-

larization from the calculations of strongly-correlated models 

leads to unphysical artifacts.  

Since Pt3Fe, Pt3Co and Pt3Ni show good resistance towards 

the segregation of magnetic atoms, it is reasonable to believe 

that their layered arrangements provide a certain degree of in-

ertia toward segregation. Indeed,  the comparison with other 

less ordered 3d-metal distributions for these three alloys (e.g., 

these distributions resemble more closely a single-phase than 

the layered structures) shows that the structural benefit of the 

multilayered arrangement provides an overall thermodynamic 

stabilization toward the degradation of the catalytic  structure 

both under vacuum and oxygen environments (see SI pp. S121-

S126). 



 

Figure 6 correlates the segregation in FM and A-AFM O*-

adsorbed Pt3Co(111) nanostructures with the length and mag-

netization of the non-magnetic Pt-spacer (3rd and 4th layers). 

 

Figure 6. Pt-spacer length (Å, in blue) and spin density plots for non-, mono-, double- and triple-segregated FM and A-type AFM Pt3Co(111) 

nanostructures (from left to right). The yellow and cyan isosurfaces (0.004 𝑎0
−3, where a0 is Bohr radius) represents spin-up and spin-down 

polarizations, respectively. Pt, Co and O atoms are colored in grey, blue and red, respectively.

Figure 6 shows that the mono-segregation of Co atoms from 

the magnetically active 2nd layer in Pt3Co(111) weakens, but 

does not completely destroy, the layered structure; this mono-

segregation is, in fact, exothermic with 𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 = -0.45 and 

-0.40 eV for FM and AFM structures, respectively. The polari-

zation of the non-magnetic spacer (3rd and 4th layers) decreases 

slightly from the clean structure (Figure 6, first step). The dou-

ble-segregation weakens ulteriorly the layered structure (only 

one Co is left in the 2nd layer now) and the polarization of the 

Pt-spacer visibly decays further from the mono-segregated case 

(Figure 6, second step). This further disruption of the original 

cooperative layered structure is strongly antagonized, however, 

and the second exchange is thermodynamically disfavored 

(𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 = 0.06 and 0.10 eV for FM and AFM structures, 

respectively). When all the three Co atoms are segregated to the 

surface (𝐸𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑠,𝑂∗

 = 0.19 and 0.30 eV for FM and AFM 

structures, respectively), the original layered structure with ~6.7 

Å Pt-spacer is destroyed, forming a new layered structure with 

~8.9 Å Pt-spacer: the increment of the length of the Pt-spacer 

(three-layers wide now) leads to a concomitant decrement of 

spin polarization in the spacer, clearly observable in Figure 6, 

third step (the A-type AFM ordering only loses polarization on 

the 3rd layer). The increment of the spacer length in multilayered 

Pt/Co structures is known experimentally to influence the effec-

tiveness of the interlayer exchange coupling, affecting the trans-

fer of magnetic information among the FM layers.48 Similar 

trends are obtained for FM and A-AFM Pt3Fe(111) and A-AFM 

Pt3Ni(111) nanostructures; the decrement of the polarization of 

the Pt-spacers qualitatively follows the thermodynamic trend 

seen for the segregations (the loss of polarization in the spacer 

is milder in Pt3Fe, but seems to be severe for Pt3Ni, see SI  pp. 

S112-S117). We think that the magnetism effects provide ther-

modynamic stability to these nanostructures. Our claim is even 

more amplified if we consider the completely opposite trend 

shown by fictitious non-magnetic Pt3Fe(111),  Pt3Co(111) and 



 

Pt3Ni(111) for the segregation in Figure 5: the complete absence 

of magnetic effects, while retaining unchanged ligand, strain 

and ensemble effects (the fictitious non-magnetic nanostruc-

tures are isostructural with the magnetic ones), leads to strongly 

exothermic mono-, double- and triple-segregation for all the 

three alloys. Under this perspective, then, each catalytic event 

is not only structurally and energetically influenced by the sur-

face properties of the solid catalyst, but also by the whole cata-

lytic structure.56  

CONCLUSIONS 

This work proposes a detailed computational study on d-tran-

sition metal Pt based alloys, Pt3M (M= V, Cr, Mn, Fe, Co, Ni 

and Y)(111), from their structural organization to oxygen chem-

isorption capabilities and resistance against segregation of sub-

skin magnetic atoms. The aim of the study clearly lies in pro-

posing theoretical models as synthetic targets. A speciation to 

identify the most stable 3d-metal distribution within the theo-

retical slabs has been carried out and multilayered structures 

have been found to be the most stable structures for Pt3M (M = 

Fe, Co, Ni).  

The intriguing multilayered structure (two magnetic layers 

separated by a non-magnetic spacer), probably unusual in the 

context of heterogeneous catalysis, but very popular in the 

fields of spintronics and solid-state devices, is a global mini-

mum in the structural organization of Pt3Fe(111), Pt3Co(111) 

and Pt3Ni(111) alloys. Such magnetic layered structural organ-

ization enables catalytically favorable chemisorption of H* and 

O* atoms and partially hampers migration of sub-skin magnetic 

atoms onto the solid surface (segregation), compared to all the 

other Pt3M(111) alloys in this study.  

Our a priori calculations suggest that magnetic multilayered 

Pt3Fe(111), Pt3Co(111) and Pt3Ni(111) nanostructures fulfill 

the catalytic requirements of optimal behavior and some stabil-

ity resulting to be, as we know, the actual candidates for fuel 

cells. Despite the inherently difficult synthetic challenge of ob-

taining a monoatomic layer of pure metals or alloys, ultrathin 

layers, composed by few monoatomic layers, closely resem-

bling our theoretical model, are accessible via magnetron sput-

tering.66 Multilayered systems have been synthesized by physi-

cists tuning magnetic and structural interplay between the layers 

(e.g. thickness of the layers, the size and the type of materials).67 

Pt3Ni displays the best level of structural stability, but stronger 

chemisorption of transient species. Pt3Co satisfies both the cri-

teria of stability against segregation and mild chemisorption of 

species. Pt3Fe(111) possesses very low chemisorption of transi-

ent species and, after resolution of its stability issues towards 

oxygen, may become an excellent catalytic choice, as strongly 

confirmed independently by recent experimental studies on Au-

doped PtFe nanoparticles.65  

The rational design of optimal catalysts based on abundant and 

cheap 3d-metals for the production of clean energy in PEMFCs 

cannot be achieved without a deep understanding of the elec-

tronic structure-catalytic activity correlation,57 where mag-

netism plays a fundamental role. This work demonstrates that 

structure, quantum spin exchange interactions (QSEI) and 

chemisorption properties (thus catalytic activity) are subtly con-

nected one another. The inclusion of spin terms into the calcu-

lations of bimetallic Pt3M(111) alloys (and in general of mag-

netic catalysts based on 3d-metals) is a conditio sine qua non a 

comprehensive and correct description of physical and chemi-

cal properties of the material cannot be achieved. In plain terms, 

QSEI allow the electrons with the same spin to have (the actual) 

quantum mechanisms to run away from each other, reducing 

their mutual repulsion. Such mechanism yield to the concept of 

FM enhanced nobility: milder chemisorption values and spin-

mobility.  

 

COMPUTATIONAL METHODS 

The study was performed by periodic Density Functional The-

ory (DFT) calculations using VASP.68-71 The exchange-correla-

tion energy was calculated within the generalized gradient ap-

proximation using the Perdew-Burke-Ernzerhof functional re-

vised for solids (PBEsol).72 The DFT+U approach was applied 

to account for the strong correlation among the electrons in the 

3d-metals (U = 2-3).73 The electron-ion interactions for the at-

oms were described by the projector augmented wave method 

developed by Blöchl.74-75 For the expansion of the wave func-

tion into the plane wave, the cut-off energy was set at 400 eV. 

The Monkhorst–Pack scheme was chosen for the integration in 

the reciprocal space.76 Every Pt3M slab model was made of 6 

metallic layers in 2x2 unit cells and about 15 Å vacuum gap. 

The optimized lattice parameters are the following: for 

Pt3Co(111), Pt3Ni(111) and Pt3Fe(111) close-packed surfaces a 

= 23.6-23.8 Å, b  5.4 Å and c  4.5 Å; for Pt3Cr(111) and 

Pt3V(111) close-packed surfaces a = 23.3 Å, b  5.4 Å and c 

 4.6 Å; for Pt3Mn(111) close-packed surfaces a  23.2-23.3 Å, 

b  5.5 Å and c  4.5 Å; for Pt3Y(111) close-packed surfaces a 

 22.3 Å, b  5.2 Å and c  5.0 Å. The reciprocal space was 

sampled with a (1x7x7) k-point grid for all the investigated al-

loys. The segregation model was built by exchanging the posi-

tions of the Pt atoms on the surface with the underneath 3d-

metal atoms within the most stable nanostructure with O-cover-

age at 0.5 ML found for each alloy: a maximum double segre-

gation was considered for Pt3V(111), Pt3Cr(111) and 

Pt3Mn(111) (the 2nd layer contains only 50 % of 3d-metal) and 

a maximum triple segregation was considered for Pt3Fe(111), 

Pt3Co(111) and Pt3Ni(111) (the 2nd layer contains only 75 % of 

3d-metal). We calculated the segregation energies using the re-

ported method in literature (see SI for further details).62 As cus-

tomary in the field, the computational studies presented in this 

article were carried out at 0 K. Bringing the model up to the 

working temperatures of modern fuel cells needs the inclusion 

of the thermal expansion of the unit cell and a substantial 

amount of thermal corrections to the electronic energy and en-

tropy that are outside of the scope of the present work. 
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