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Coverage Optimization with
a Dynamic Network of Drone Relays

Edgar Arribas, Vincenzo Mancuso, Vicent Cholvi

Abstract—The integration of aerial base stations carried by drones in cellular networks offers promising opportunities to enhance the
connectivity enjoyed by ground users. In this paper, we propose an optimization framework for the 3–D placement and repositioning of
a fleet of drones with a realistic inter-drone interference model and drone connectivity constraints. We show how to maximize network
coverage by means of an extremal-optimization algorithm. The design of our algorithm is based on a mixed-integer non-convex program
formulation for a coverage problem that is NP-Complete, as we prove in the paper. We not only optimize drone positions in a 3–D space
in polynomial time, but also assign flight routes solving an assignment problem and using a strong geometrical tool, namely Bézier
curves, which are extremely useful for non-uniform and realistic topologies. Specifically, we propose to fly drones following Bézier curves
to seek the chance of approaching to clusters of ground users. This enhances coverage over time while users and drones move. We
assess the performance of our proposal for synthetic scenarios as well as realistic maps extracted from the topology of a capital city.
We demonstrate that our framework is near-optimal and using Bézier curves increases coverage up to 47% while drones move.

Index Terms—Aerial networks, Relay, UAV, Mobile networks, Optimization, Bézier curves.
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1 INTRODUCTION

C ELLULAR networks are experiencing deep changes due
to the advent of 5G technologies [1]. The need of

flexible and adaptive management solutions, to address a
highly mutable density of users, has allowed novel commu-
nication paradigms to emerge, e.g., device-to-device (D2D)
communications, smart relay and the use of reconfigurable
backhaul links controlled by Software-Defined Networking
(SDN) tools [2]. Since the interest for mobile and topology-
adaptive relays is now reviving—due to the techniques that
make it doable in operational networks rather than just
in theoretic speculations—in this paper we focus on the
analysis of a key use-case: a fleet of coordinated drones
carrying aerial relays meant to optimize cellular coverage.

The availability of broadband backhaul links allows
manned and unmanned vehicles (e.g., drones) to carry mo-
bile relays. The use of mobile relays brings unique opportu-
nities to deploy adaptive and flexible networks that provide
connectivity where fixed infrastructures lack operational
connectivity [3]. Basic advantages from relays, like the reuse
of cellular bands, have been studied by several authors, e.g.,
by Guo and O’Farrel [4], whose results illustrate how wire-
less networks are mainly impaired by interference. Other
studies confirm that interference is commonly the main
limiting factor also for the performance of relays operated
over D2D sidelinks [5]. Hence, relays need to use dedicated
frequencies in practice, which has the further advantage of
simplifying resource allocation schemes [6].

Thus, we study the case of drones as relay stations trans-
mitting on orthogonal frequencies with respect to ground
base stations. However, due to limited spectrum resources,
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Figure 1. Reference scenario: multi-drone-aided network.

drones do interfere with each other and interference cannot
be neglected both in users access and backhaul links, as we
study in our work. These aspects have not been studied
so far because existing works on drone relays focused on
the optimal placement of a single drone in isolation, mainly
under static scenarios, and neglect connectivity issues in the
backhaul links between drones and ground base stations.

Although relay optimization can be used to support
quality of service (QoS) in many different aspects, here
we focus on providing support to user applications that
require high probability to find the network available. This
is important to guarantee essential communication means
for voice and real time data communications. It is even
more important for addressing the case of safety/emergency
events and whenever notifying the status of users and
having basic real-time communication tools is vital. These
scenarios require to maximize the number of users that can
be served, rather than maximizing on the allocated data rate
or on the aggregate network rate. Therefore, we refer to QoS
in terms of network availability with basic guaranteed rate.

Unlike other proposals, in this paper we focus on the
optimization of 3–D hovering positions and flight routes for
a fleet of drone relays aiding a ground cellular network,
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as depicted in Figure 1. Drones are coordinated yet they
mutually interfere. We optimize coverage based on the QoS
offered by drones under realistic path-loss models for line-
of-sight (LoS) and non-LoS (NLoS) communications and
interference. Considering interference is key because it re-
sults in radically different coverage footprints and imposes
strict constraints on the position of drones with respect
to the position of ground base stations. We use extremal-
optimization [7] and propose the On-demand Drone Cover-
age (OnDrone) algorithm, an extremal-optimization algorithm
that computes near-optimally joint positions for drones,
based on realistic assumptions on previous drone positions
and interference, which is otherwise an intractable NP-
Complete problem. We also propose for the first time the
use of Bézier curves [8] for flight routes aiming to enhance
communications over time. We assess the benefits of our
optimization framework by (i) comparing OnDrone against
the optimal solutions and state-of-the-art approaches for
tractable cases; (ii) performing numerical simulations for
larger networks with realistic topologies and environmental
constraints; (iii) evaluating fleet repositioning using either
Bézier curves or straight paths as drone routes. Our nu-
merical results show that OnDrone is nearly optimal and
outperforms state-of-the-art coverage solutions as proposed
in [9] and [10]. Also, we show that the use of Bézier curves
is key to boost coverage when studying drone repositioning
in dense urban scenarios, and shows remarkable advantages
over straight paths, as adopted in [11].

The main contributions of this paper are summarized:
• We propose a dynamic drone relay-aided network in

which we maximize the coverage of ground users by
means of aerial base stations with an interference-
aware on-demand multi-drone coverage framework
that accounts for both user access and backhaul links.

• We prove that the problem is NP-Complete.
• We propose OnDrone, a light-weight algorithm

based on extremal-optimization that solves the prob-
lem on-demand.

• We propose the use of a strong geometrical tool to
design the flight paths of drones: the Bézier Scheme.

• We assess our proposals in realistic scenarios and
topologies in comparison with state-of-the art solu-
tions and show the gain of our proposals.

The rest of the paper is structured as follows: Section 2
provides a discussion on related work regarding aerial
networks and extremal-optimization. Section 3 presents the
system model assumptions for the reference scenario and
wireless channels, while Section 4 states and formulates the
coverage problem, and shows that it is intractable. Section 5
details the overall optimization framework. Section 6 re-
ports numerical results. Section 7 concludes the paper.

2 RELATED WORK

The usage of relays operating in the air space through
mobile and non-terrestrial devices has been studied for
several purposes, over different technologies. For instance,
satellite networks [12] have already been deployed for sev-
eral years. However, satellites aim to provide service to
huge areas, typically at relatively low transmission rates.
Moreover, satellites located hundreds of kilometers high are

not able to adjust to ground users’ topology, neither track
the movement of small masses of users. In contrast, drone
relay stations are able to dynamically change their position
in real time at low altitudes, as the system evolves.

Google and Facebook carry the Loon [13] and Aquila [14]
projects, respectively. They use aerial base stations mounted
on high-altitude platforms—e.g., balloons—that fly several
kilometers high. Balloons can drift slowly and provide basic
network services to remote and rural areas. Instead, swarms
of low-altitude drone relays can provide broadband connec-
tivity and can reposition effectively on small time scales.

In [15], Zeng et al. study the use of aerial relays to
relay traffic from two ground nodes whose links have been
disrupted (due to big obstacles, environment or loss of
infrastructures). Authors maximize throughput service and
relay trajectories with an efficient algorithm that applies
successive convex optimizations. In [16], Chen et al. extend
this problem to the case where the relay network is offered
by a swarm of multiple drones, and compare the effects
of sending the traffic over one multi-hop link with using
several two-hop links. In [17], Zhang et al. further focus on
the multi-hop link of the aerial network to optimize the
trajectories that maximize the end-to-end throughput and
minimize transmit powers. These relay problems unveil the
potentials of mounting relays on drones, and show clear
use-cases for the applicability of such scenario. However,
these problems are different to our approach, since they
focus on the relay of traffic between two ground nodes. In
contrast, we propose a drone relay-aided network that over-
lays the cellular network. Thus, we optimize the coverage
service of users in a big region where a connected cellular
infrastructure of ground base stations and mobile users
exists, although it might become temporarily insufficient.

Moving drones to optimal locations to maximize various
metrics, as coverage, is actively being investigated. Al-
Hourani et al. [18] analytically model optimal altitude for
one drone, to maximize coverage. Also, Hayajneh et al. [19]
derive optimum drone altitude to minimize outages and bit-
error rate. Mei et al. [20] propose a decentralized inter-cell
interference coordination scheme to maximize the weighted
sum-rate of one aerial station and all users, as well as the
uplink cell association over multiple resources. Mozaffari
et al. [21] found the optimal location for multiple non-
interfering drones to minimize the total transmission power.
The same authors also analyze the performance of a single-
drone-aided cell in the presence of underlaid D2D users,
using stochastic geometry [22]. Chen et al. [23] optimize
the location of drone relays to provide aerial caching for
mobile users that connect to drones by means of millimeter
wave links. Andryeyev et al. [10] estimate drone positions
to increase cellular capacity by means of a self-organization
scheme based on repulsion from base stations and drones,
and attraction by users. They use conventional ground path-
loss models for wireless channels, which differ substantially
from the actual—and more complex—air-to-ground signal
propagation model we use here.

Optimal location of multiple interfering drones was
studied by Mozaffari et al. [24] and Rohde et al. [25].
However, differently from us, the former characterizes the
network in the presence of only two drones, while the last
obviates the effects of LoS channel conditions. Although
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they shed light on the nature of the problem, using such
strong assumptions is limiting for real drone deployments.
Conversely, in a companion work [26], we propose an
optimization framework for cellular networks aided by a
fleet of interfering coordinated drones, although the target
optimization and use cases differ from the approach used
here in important aspects, and so do problem formulation
and heuristics. In [26], the network is optimized in terms of
resource allocation, so to maximize throughput and fairness
in the presence of significant crowds. That work does not
focus on path optimization and does not consider back-
haul limitations. Instead, here we maximize the amount of
users covered for use cases in which providing network
availability is the key performance indicator. Differently
from [26] here we do not need to optimize resource al-
location in detail, and can simplify the drone relocation
problem by imposing bounds on the guaranteed user data
rate. Nonetheless, we show that the problem remains NP-
Complete. Similarly, Kalantari et al. [27] also optimize user
association and fair bandwidth allocation in one cell with
multiple drones. They show that interference does not allow
to run more than three drones (per cell), and propose to
obviate the problem by using advanced interference cancel-
lation. This approach could be combined with our schemes,
although it would increase complexity significantly.

Fotouhi et al. [11] propose a distributed algorithm for
autonomous control of drones, and analyze the benefits of
repositioning for spectral efficiency using straight paths.
However, the literature does not offer yet any clever scheme
to design drone paths to assist communication networks.
Bézier curves [8] have been used to plan drone routes in [28]
for military purposes, to smooth drone routes that have
to fly over several check-points. However, Bézier curves
have not been proposed yet to improve communications
performance, as we approach for the first time in this paper.

A complete network architecture that could support
a coordinated fleet of drone relays is still under design.
Petrolo et al. [29] have designed ASTRO, a software-defined
network for tetherless coordination of autonomous drones.
Sundaresan et al. [30] have designed SkyCore, a network
module integrated into an end-to-end network architecture
called SkyLite. That is a complete network architecture for
autonomous drone relay coordination, which demonstrates
that operating an aerial network of drone relays is feasible
provided the correct optimizations, like coverage maximiza-
tion (which they do not approach). The maximum coverage
framework that we discuss in this manuscript would fit in
and be an asset for the above mentioned architectures.

We show in Section 4 that finding exact optimal drone
coverage locations is an NP-Complete problem, which is
non-linear and non-convex, thus intractable with solvers
that provide strictly optimal results. However, we adopt an
extremal-optimization scheme [7] that let us find near-optimal
solutions requiring a much lower number of iterations.

Roughly speaking, such schemes focus on, at each time
step, picking the “least fit” element of a discrete set and
change its value to the “best fit” in order to improve a
given utility function. In our case, the utility function that
we want to maximize is the coverage, and the elements that
we use to achieve such maximization are the positions of
the drones. Since the position of a given drone affects which

users other drones will cover, and also influences how the
QoS is impaired by interference, extremal-optimization repre-
sents a suitable choice for our optimum drone placement
and repositioning framework. At this point, we remark
that although extremal-optimization is a form of optimization
originally introduced to be used in a static manner, in our
work we use it to design a deployable algorithm for the
location of drones that works in a dynamic manner.

3 SYSTEM MODEL

3.1 Reference scenario

We consider a ground surface S administrated by the
ground network consisting of a set G of ground base sta-
tions, as shown in Figure 1.1 We refer to ground base stations
as gNBs, using the new 3GPP jargon for next generation
base stations (BSs). In the region S , the ground network
provides service to a set U of user equipments (UEs), i.e.,
mobile users. In order to increase coverage, we consider that
coverage assistance is provided by the presence of a finite
set D consisting of D drone relay stations. Each drone is
equipped with a mobile relay that gives access to UEs on an
orthogonal downlink bandwidth with respect to the gNBs
band. We refer to drones as aerial base stations (ABSs).

We assume that gNBs provide backhaul connectivity
to ABSs over the reuse of the downlink spectrum used
for gNB–UEs access links. Current gNBs provide cellu-
lar coverage through three sectors pointing mainly to the
ground. We assume that in order to set backhaul gNB–ABS
links, gNBs have an additional full dimensional antenna
array that performs 3D–beamforming over clear LoS links2,
as suggested and studied in [31]. Therefore, access links
gNB–UEs and backhaul links gNB–ABS do not interfere.
Furthermore, gNBs equipped with this kind of antenna
array are able to perform 3D–beamforming to several relays,
and alternate transmissions over time slots on a millisecond
scale. Hence, each gNB g can provide backhaul service to a
limited number of ABSs, namely Dg .

The coverage of each ABS is an irregular ground area
that depends on the drone height, cell environment and
interference from other ABSs. The interference among ABSs
directly affects the signal-to-interference-plus-noise ratio
(SINR) that the ground users receive. The SINR depends
on the air-to-ground path-loss model, which is based on
the link LoS probability between drones and users. As
described later, such path-loss model clearly differs from
the conventional attenuation models used in ground cel-
lular networks. Indeed, such a LoS-based path-loss and
interference model for the communications channel pro-
vides a multi-ABS coverage framework for aerial networks,
which is radically different from conventional frameworks
for ground networks—as e.g., ground D2D networks [5]—
and whose characteristics we study. In this framework, we

1. New SDN tools designed to manage large networks are able to co-
ordinate ground base stations to perform any network optimization [2].

2. Based on the receiver location or instantaneous channel state in-
formation, 3D–beamforming allows to build directional beam-patterns
that focus the transmission energy on the direction where the receiver
is. This flexible technique helps to mitigate interference so to provide
higher rates. 3D–beamforming is very useful for backhaul wireless links
from one source to few relays, as in an aerial backhaul network.
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consider that a gNB g and an ABS d can realistically serve
a limited number of users, namely Ug and Ud, respectively.
We further assume that channel bandwidth is equally split
among the users that a BS serves, although more sophisti-
cated schedulers could be easily adopted in the analysis.

With the above, we aim to find optimal locations for
D drones, so to maximize the number of users covered by
gNBs and ABSs with a guaranteed bandwidth. Besides, we
identify two additional problems to support fleet reposition-
ing: (i) deciding which drone flies to which position upon
an optimization update and (ii) designing flight routes.

3.2 Air & Ground channels: path-loss and interference
We assume that the surface S is flat, so that the position of a
UE u∈U is taken as an input and denoted by πu=(xu, yu, 0).
The position of a gNB g∈G is denoted by Πg=(Xg, Yg, hg).
The positions of all ABSs d∈D are the decision variables of
the coverage problem, and denoted by Πd=(Xd, Y d, hd).

For all drone d ∈ D, and for all user u ∈ U , the
horizontal distance between u and the ground projection
of d is rd,u = ‖(Xd, Y d) − (xu, yu)‖. The elevation of d
is hd. Due to the low altitude of drones—few hundreds of
meters at most—the channel conditions of communications
between a serving drone and an end-user are much affected
by the LoS. Depending on whether the access link is free of
obstacles (like buildings, traffic, etc.), the attenuation differs
considerably [32]. Thus, the air-to-ground path-loss among
ABSs and UEs depends on the probability of LoS, which is a
complex function of the elevation angle between user u and
drone d, according to the following expression:

PLoS(d, u) =
1

1 + a · e
−b

(
180
π

arctan

(
hd

rd,u

)
−a

) , (1)

where a, b are parameters depending on the environment,
i.e., number of buildings and large signal obstructions per
unit area, building’s height distribution, ratio of built-up
area and clean surfaces, etc., as it has been derived in [18],
based on the ITU recommendations [33]. In Eq. (1), the ele-
vation angle (in radians) appears as θd,u = arctan(hd/rd,u).
As θd,u approaches π

2 , i.e., when the drone d hovers just
above the user u, the probability of LoS reaches its max-
imum value. In Figure 2, we see that the positions of the
drones directly affect blockage conditions of the ABS–UE
acess links. Thus, the higher a drone hovers, the more likely
is to have LoS. However, the strength of the signal gets
also attenuated with the distance. For single-drone missions,
there is an optimal altitude that maximizes coverage [18].
However, in a multi-drone scenario as the one we discuss in
this paper, the effects on interference from other drones are
a key additional issue to consider, one that makes the op-
timal drone hovering altitude depend on the positions and
elevations of the rest of the drones. This also precludes the
possibility to straightforwardly apply single-drone mission
approaches to multi-drone scenarios, since the former are
not designed to account for interference, as in [9].

3.2.1 Ground-to-ground channel
Ground cellular links, i.e., gNB–UE access links, operate
over an OFMDA channel with access bandwidthWA. Hence,
users scheduled by the same gNB do not suffer intra-cell in-
terference. However, ground users may enjoy poor QoS due

Figure 2. Reference illustration of LoS conditions.

to the presence of inter-cell interference, from other close
gNBs. The path-loss of these channels is based on large- and
small-scale fading, as widely studied in literature [34] and
shown in Table 1. We denote the SINR of ground access links
(g, u) as ΓAg,u and impose that its minimum user access rate,
i.e., 1

Ug
WA log2

(
1+ΓAg,u

)
, is above the guaranteed rate RAmin.

3.2.2 Ground-to-air channel

In order to provide backhaul connectivity to ABSs, gNBs
perform 3D–beamforming over clear LoS links. Hence, the
attenuation that a signal from gNB g to ABS d suffers is:

LB(g, d) = 10ηB log10

(
4πfB
cl
·
∥∥∥Πg −Πd

∥∥∥)+NσB , (2)

where ηB ≈ 2 is the path-loss exponent in free-space LoS
links, fB is the frequency of backhaul wireless links in Hz,
cl is the speed of light in m/s and NσB is a random gaus-
sian variable with zero mean and σB standard deviation,
modelling the effects of slow fading and shadowing.

3D–beamforming builds antenna patterns that radiate
much of the energy over a main lobe with a half-power
beam-width (HPBW) that may be wide, hence incurring
high interference to other ABSs in LoS. Also, the formation
of directional beam-patterns comes with the presence of
side-lobes with non-negligible radiating power, that also
incur (low) interference. Thus, depending on the radiating
angle of other gNBs, a backhaul link may enjoy better or
worse QoS, due to the presence of interference3. We denote
the backhaul SINR of link (g, d) as ΓBg,d, which is equal to:

ΓBg,d =
P gTx ·Gg · 10−LB(g,d)/10

Nd + IBg,d
, (3)

where P gTx is the transmission power of g, Gg is the antenna
gain over the main lobe of the beam-pattern of g, Nd is the
thermal noise, and most importantly, IBg,d is the actual inter-
ference that ABS d suffers from any other gNB, depending
on the angle of their beam-patterns, i.e.:

IBg,d =
∑

g′∈G\{g}

P g
′

Tx ·Gg′(φg′,d) · 10−LB(g′,d)/10, (4)

where φg′,d is the angle between the direction of the main
lobe of the antenna of g′ and the position of ABS d. We im-
pose that the minimum backhaul rate, 1

Dg
WB log2

(
1+ΓBg,d

)
,

is above a rateRBmin.WB is the backhaul channel bandwidth.

3. In general, since beamforming builds antenna patterns with direc-
tional main lobes, interference remains low for non-aligned ABSs
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Table 1
Channel modelling

Channel Path-loss Exponent

Ground-to-Ground

(gNB–UE)

10ηGlog10

(
4πfG
cl

)
+
︷︸︸︷
I

10ηGlog10 (‖Πg−πu‖) +NσG
ηG > 2

Ground-to-Air

(gNB–ABS)

10ηBlog10

(
4πfB
cl

)
+
︷︸︸︷
I

10ηBlog10

(∥∥Πg−Πd
∥∥)+NσB

ηB ≈ 2

Air-to-Ground

(ABS–UE)

10ηAlog10

(
4πfA
cl

∥∥Πd−πu
∥∥)+
︷︸︸︷
I

PLoS(d, u) · (ξLoS−ξNLoS) +

ξNLoS (+NσA +RςA )

ηA = 2

3.2.3 Air-to-ground channel
While ground cellular links suffer from conventional atten-
uation based on fast and slow fading, the path-loss of an
ABS–UE link (d, u) differs notably and is affected by an ex-
cess attenuation, depending on the LoS likelihood presented
in Eq. (1). The average attenuation is derived in [18] as:

LA(d, u) = 10ηA log10

(
4πfA
cl
·
√

(hd)2 + r2
d,u

)
+ PLoS(d, u)·(ξLoS−ξNLoS) + ξNLoS , (5)

where ξLoS , ξNLoS are the excess path-loss components in LoS
and NLoS connections respectively, ηA = 2 is the path-loss
exponent and fA is the carrier frequency in Hz. As surveyed
in [35], we have based the air-to-ground path-loss on the
average large-scale fading in order to perform the ABS–
UE association in the optimization. Nevertheless, we further
consider fast and slow fading, modelled as log-normal and
Rayleigh distributions, respectively, in the implementation
of the framework when we analyze the results. We denote
the access link SINR as ΓAd,u, which is equal to:

ΓAd,u =
P dTx · 10−LA(d,u)/10

Nu + IAd,u
, (6)

where P dTx is the transmission power of the antenna inte-
grated in the ABS d, Nu is the thermal noise, and most
importantly, IAd,u is the actual interference that user u suffers
from any other ABSs. Thus, the interference depends on the
3–D position of the rest of the ABSs, i.e.:

IAd,u =
∑

d′∈D\{d}

P d
′

Tx · 10−LA(d′,u)/10. (7)

We impose that the minimum rate, 1
Ud
WA log2

(
1+ΓAd,u

)
,

is above RAmin, where WA is the access channel bandwidth.
In our system model, ABSs operate in orthogonal band-

width with the cellular band. Thus, there is no interference
between cellular users and drone-served users, which is
commonly the main limiting factor in aided cellular net-
works, as e.g., inband D2D networks [5].

In Table 1 we gather the path-loss model used for each
kind of channel, where fG is the band used for gNB–UE
access links and is equal to the gNB–ABS backhaul links, i.e.,
fG=fA, and RςA is a random Rayleigh variable with scale
parameter ςA. In Table 2 we summarize the interference
suffered in each of the channels, as it has been described
along this section. We have shadowed the table cells that
imply presence of interference.

Table 2
Channel interference

Ground-to-
-Ground

Ground-
-to-Air

Air-to-
-Ground

Ground-to-
-Ground

Inter-cell
interference

Directional
re-use

Orthogonal
bands

Ground-
-to-Air

Directional
re-use

Low interference:
3D–beamforming

Orthogonal
bands

Air-to-
-Ground

Orthogonal
bands

Orthogonal
bands

Inter-drone
interference

4 MULTI-DRONE COVERAGE FRAMEWORK

We aim to find optimal 3–D positions for a fleet of D drones
in which the number of UEs under network coverage is
maximum. The optimization is run at regular time intervals,
considering every time the users as static, so that static
drone positions solve the coverage problem. The coverage
maximization provides a set of 3–D coordinates where
drones have to fly during the time interval, provided a
drone d has to fly towards a reachable destination, i.e., a
point within the ball Sd of radius given by the drone speed
times the duration of the optimization update interval.
However, the output of the optimization does not neces-
sarily coincide with the assignment of fleet destinations that
also minimizes flight time. Hence, we will solve the assign-
ment of fleet destinations as a secondary problem, given the
optimal coordinates found by the primary problem.

Although it is possible to formulate the coverage max-
imization and the minimum flight time assignment in one
optimization problem, we believe that it is more clear to
decouple both problems and solve them separately, while
having the same optimal solution. This is due to the fact that
the set of optimal drone positions is not changed by solving
the secondary problem and at least one feasible solution
exists for the secondary problem, which is the output of
the primary problem. Thus, we first present the optimal
aerial coverage (Section 4.1) and then the assignment of fleet
destinations (Section 4.2).

4.1 Optimal aerial coverage

Coverage Problem C: Given a fleetD of drone relays in a cellular
network managed by a centralized orchestrator, U ground users,
a height range [hmin, hmax] for the ABSs, guaranteed coverage
rates RAmin, RBmin for access and backhaul channels respectively,
and a maximum number of users Ug and Ud that gNBs andABSs
can cover, find the optimal 3–D positions Πd = (Xd, Y d, hd) of
drones so to maximize the amount of users covered by ground-
and drone-cells.

Since the positions of drones, including their heights,
affect the shape of the covered regions, we can math-
ematically formulate the Coverage Problem C to search
for optimal values of the continuous decision variables
Πd = (Xd, Y d, hd) ∈ R3 that maximize the number of
users under network coverage. Denoting by Cb,u the binary
variable that takes value 1 if BS b ∈ G ∪A covers user u
and 0 otherwise, and by Bg,d the binary variable that takes
value 1 if gNB g provides backhaul service to drone d and 0
otherwise, the formulation of the Coverage Problem C is:



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927335, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

max
{Πd}d∈D

∑
u∈U

(∑
g∈G

Cg,u +
∑
d∈D

Cd,u

)
;

subject to:
Access network constraints:
1
Ub
WA log2

(
1 + ΓAb,u

)
≥ RAmin · Cb,u, ∀b∈G∪D, ∀u∈U ;∑

g∈G
Cg,u +

∑
d∈D

Cd,u ≤ 1, ∀u∈U ;∑
u∈U

Cg,u ≤ Ug;
∑
u∈U

Cd,u ≤ Ud, ∀g∈G,∀d∈D;

Backhaul network constraints:
1
Dg
WB log2

(
1 + ΓBg,d

)
≥ RBmin ·Bg,d, ∀g∈G,∀d∈D;∑

g∈G
Bg,d ≤ 1, ∀d∈D;∑

d∈D
Bg,d ≤ Dg, ∀g∈G;

Access–backhaul constraints:
Cd,u ≤

∑
g∈G

Bg,d, ∀d∈D, ∀u∈U ;∑
d∈D

∑
u∈U

Bg,d · Cd,u ≤ Ug; ∀g ∈ G;

Drone air-space constraint:
Πd ∈ Sd, ∀d∈D.

(8)

Access network constraints: The first constraint guaran-
tees that the access link rate between BS b and user u is
above RAmin as soon as u accesses the network via b; the
second constraint tells that a user cannot be covered by more
than 1 BS; the third constraint accounts for the number of
users that each BS (either gNB or ABS) can serve.

Backhaul network constraints: The forth constraint guar-
antees that the backhaul link rate between gNB g and ABS d
is above RBmin as soon as d connects to the network via g; the
fifth constraint tells that each ABS cannot connect to more
than 1 gNB; the sixth constraint limits the number of drones
that each gNB g can serve to a maximum of Dg drones.

Access–backhaul constraints: The seventh constraint
states that a user u can connect to a drone d only if d is under
the coverage of some gNB. Hence, each drone that provides
network access to at least one ground user is connected to
the network via one backhaul link, so that, every ground
user served by a drone is indeed attached to the cellular
network. The eighth constraint states that the number of
users covered by those drones attached to the same gNB g
is limited by the maximum capacity of users Ug in g.

Drone air-space constraint: Finally, the air location of a
drone d has to be within a 3–D region Sd ⊆ S×[hmin, hmax]
which can be reached in the time interval used for optimiza-
tion, depending on flight speed and current drone position.

Feasibility. The optimization problem in Eq. (8) is al-
ways feasible. For instance, consider a general instance of
the problem. Take a random position for each ABS d inside
their reachable regions Sd. Now set all binary variables
{Cb,u}, {Bg,d} equal to 0. Since the SINR functions ΓBg,d,
ΓAb,u are always positive (see Eqs. (3), (6), respectively), the
solution satisfies all the constraints. This solution provides
a utility function of 0 users covered, but it is feasible.

Complexity. Problem C is NP-Complete because, as
shown in Appendix A, the well-known NP-Complete min-
imum geometric disk cover (MGDC) problem [36] can be re-
duced, in polynomial time, to a particular case of Problem C.

The first constraint on the user access rate, when b ∈ D,
is non-linear and very complex (also the forth constraint),
since it depends on the air-to-ground path-loss shown in

Eq. (5) for one link, but also for the interfering links from
other drones. To make the constraint more visual and
remark its non-linearity and complexity, we develop its
expression for a drone d as follows:

K1

(hd)2+r2
d,u
·10K2PLoS(hd,rd,u)

Nu+
∑

d′∈D\{d}

K1

(hd
′
)2+r2

d′,u
·10K2PLoS(hd

′
,rd′,u)

≥(2K3−1)·Cd,u, (9)

where the continuous variable rd,u = ‖(xu, yu)−(Xd, Y d)‖
is the distance between user u and the ground projection of
drone d, and K1 = P dTx ·

(
cl

4πfc

)2 ·10
ξNLoS

10 , K2 = ξNLoS−ξLoS
10

and K3 =
Ud·RAmin

WA
are constant. In Eq. (9) we see that

this constraint depends on the position decision variables
(Xd, Y d, hd) not only as an attenuation from the distance,
but they also affect the LoS probability, as shown in Eq. (1).

Unlike previous works like [3], [9], [37], in which the
drone-service condition is based only on the attenuation or
the Signal-to-Noise Ratio (SNR), in (8) we have formulated
a novel 3–D drone placement optimization that accounts for
the actual inter-drone interference suffered by ground users.

Eq (8) represents a Mixed-Integer Non-Convex Program
(MINCP), which is not tractable with currently available
optimizers dealing with problems that are, at least, convex.
Since problem (8) presents a non-convex formulation mainly
because of the attenuation depending on the LoS probability,
we cannot apply any off-the-shelf optimizer to optimally
solve this problem. In addition, the problem itself is NP-
Complete, so we resort to a heuristic, as detailed in Section 5.

4.2 Assignment of fleet destinations

The second problem to solve when users move and drones
have to be repositioned is an assignment problem. Since it
does not matter which ABS goes to which destination (as
long as such destination is reachable), we enforce each drone
to fly towards the positions that minimize the aggregated
flight-time by the fleet. Formally, we dispose of a fleet of D
drones that must fly from source positions {πd}d∈D and
reach target positions {Πd′}Dd′=1. Thus, we formulate the
following assignment problem:

min
Fd,d′

Ufly =
∑
d∈D

D∑
d′=1

T
(
πd,Πd′

)
· Fd,d′ ;

subject to:
D∑
d′=1

Fd,d′ = 1, ∀d ∈ D;∑
d∈D

Fd,d′ = 1, ∀1 ≤ d′ ≤ D;

Fd,d′ ∈ {0, 1},
∀d ∈ D;

∀1 ≤ d′ ≤ D,

(10)

where we have introduced the binary variable Fd,d′ ∈ {0, 1}
to denote whether drone d flies from πd to Πd′ or not.
T
(
πd,Πd′

)
is the assignment weight, and depends on the

time that drone d needs to fly from source position πd to the
destination Πd′ . The equality constraints ensure that each
destination Πd′ is reached by only one drone d, and that
each drone d reaches only one destination Πd′ . The utility
Ufly is used to minimize the flight time of the fleet of drones.

For simplicity, we assume that drones d fly at a constant
speeds of vd. Thus, the time needed to fly from πd to Πd′ is:

T ∗
(
πd,Πd′

)
=
∥∥∥πd −Πd′

∥∥∥/vd. (11)
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However, each drone d can reach only those destinations
with coordinates within their reachable region Sd. Hence,
we impose infinite required time for each drone d to reach
all destinations Πd′ that fall outside Sd:

T
(
πd,Πd′

)
=

{
T ∗
(
πd,Πd′

)
, if Πd′ ∈ Sd;

+∞, if Πd′ /∈ Sd.
(12)

Hence, the optimization in Eq. (10) assigns to each drone d
one destination Πd′ such that d is able to reach Πd′ and the
aggregated flight time is minimized.

Feasibility. The optimization problem presented in
Eq. (10) is always feasible and finite. For instance, assigning
to each drone d the destination Πd = (Xd, Y d, hd) obtained
as an output of the optimization problem of Eq. (8) provides
a (finite) feasible solution.

Complexity. The optimization problem in Eq. (10) is a
special case of mixed-integer linear program (MILP), one
that can be solved efficiently in polynomial time through the
Hungarian method [38], with complexity O(D3). Therefore,
this second problem related to dynamic networks is easy to
address optimally in low-degree polynomial time.

5 DYNAMIC DRONE REPOSITIONING ALGORITHMS

So far we have discussed the optimization of the placement
of a fleet of ABSs hovering over a ground cellular network
(see Section 4.1), and the optimal flight assignment that
minimizes the flight time (see Section 4.2), thus overlaying
a legacy cellular network managed by an orchestrator. Nev-
ertheless, since users move, the optimization is reconsid-
ered periodically, with updated drone air-space constraints.
Repositioning has to be run frequently, so that we need
efficient heuristics. Next, we describe how to practically
implement the optimization framework described so far.

5.1 OnDrone: an algorithm suit for on-demand drone
coverage optimization
Coverage Problem C is NP-Complete, thus optima cannot
be reliably solved on-demand for fast placement of drones,
which is key for dynamic repositioning cases. Thus, even
if the problem was optimally solvable, the need of having
an efficient heuristic would remain. To this aim, we propose
here an On-demand Drone Coverage (OnDrone) algorithm,
based on an extremal-optimization algorithm (EOA) that runs
in polynomial time. For benchmarking purposes, we further
consider state-of-the-art proposals from [9] and [10].

5.1.1 OnDrone for multi-drone coverage
EOAs are evolutionary algorithms that restrict the search
space and achieve near-optimal results in polynomial
time [7]. EOAs are based on a fitness metric and, at each
step, try to improve the configuration of the element of
the system that yields the least contribution to the fitness
metric. Therefore, EOA’s principles perfectly match the na-
ture of the coverage problem addressed. Specifically, the
fitness function is the number of covered users and the least
significant contribution comes from the drone that covers
the least number of users. Such drone may be either far from
users, where its transmissions are severely affected by the
interference coming from the rest of ABSs, or in a position

Figure 3. Cylindrical Lattice with
Nρ=10, Mθ=30, H=3.
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Figure 4. Circular base grid with
Nρ=10, Mθ=30.

where the backhaul service is low. Thus, it is convenient to
reposition such drone and increase the coverage.

The search space for drone locations is restricted to a
lattice, as shown in Figure 3. We derive a cylindrical lattice
that contains the ground network surface S composed by
the positions over which OnDrone moves the ABSs to get
the best coverage utility. Those lattice points that fall outside
the ground region S are discarded, so the design of the
lattice applies to any shape of S . We split the base into a grid
of equal areas (see Figure 4), and the height into equidistant
altitudes. This leads to a cylindrical lattice of equal volume
subspaces. Specifically, we divide the square of the radius
and the angle of the base grid in Nρ and Mθ equal pieces.
In polar coordinates, the resulting points and base grid are:

ρi =
√
i/Nρ ·RC , i = 1, ..., Nρ;

θj = 2π · (j − 1)/Mθ, j = 1, ...,Mθ;

G = {(ρi, θj) ∈ D(0, RC) | 1 ≤ i ≤ Nρ, 1 ≤ j ≤Mθ},
where D(0, RC) is the closed disk in R2 centered at the
origin and of radius RC (where RC is big enough to make
D(0, RC) contain S). In this way, the base area is divided
into Nρ ×Mθ regions with the same area A = Ai =
π
Mθ

(ρ2i+1 − ρ2i ) =
πR2

C

NρMθ
, for i = 1, ..., Nρ − 1, which does

not depend on i (see Figure 4). The height of the cylinder is
divided intoH equidistant segments in the interval between
minimum and maximum drone hovering height, hmin and
hmax. In cylindrical coordinates, the resulting lattice is

L = {(ρ, θ, hk) ∈ G×R | 1 ≤ k ≤ H}. (13)

The proposed EOA—OnDrone—begins with an initial
feasible and suboptimal (random) implementation of the
system. Then, it updates the positions of theABSs providing
worst individual contribution to the full performance, i.e.,
the drone covering less users. At each iteration, the “least
fit” ABS is selected and moved to a reachable position where
the system utility increases as much as possible, considering
the coverage by ground- and drone-cells. Also, OnDrone
provides a new position where the drone can be attached to
a gNB that provides backhaul service with the guaranteed
QoS. To decrease the probability of finding only local op-
tima, we consider that if the worst performing drone cannot
be moved to improve coverage, then we try to reposition
the next worst-performing drone. OnDrone keeps moving
the ABSs with lowest contribution until it does not find
any better location for any ABS, or it reaches a maximum
number of iterations i0∈N. The optimality of this algorithm
is studied in Section 6.

Complexity. Algorithm 1 reports the pseudocode of the
proposed OnDrone, in order to target maximum ground-
plus-air users coverage, thus approximating the optimal so-
lution of Coverage Problem C. The complexity of OnDrone
can be evaluated as follows. At each iteration, one drone
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Algorithm 1 OnDrone: On-demand Drone Coverage for 3-D
Drone Placement
Require: Lattice L, BSs G∪D, users U , Signal parameters.

1: Randomly place all d at Πd ∈ L. Define Π = {Πd}d∈D .
2: Compute number U

′

d(Π) of UEs covered by all g ∈ G
and d∈D

(
If 1

Dg
WB log2

(
1+ΓBg,d

)
<RBmin,∀g ∈G, then

U
′

d(Π) = 0
)
.

3: Select d0 = arg mind∈D{U
′

d(Π)}.
4: Take Πd0 = arg maxπ∈L{] of UEs covered if d0 is at π |
∃g ∈ G : 1

Dg
WB log2

(
1+ΓBg,d0

)
≥ RBmin in π}.

5: If the same coverage remains when placing d0 at Πd0 ,
go back to step 3 ignoring unsuccessful d0’s.

6: Place d0 at Πd0 and set Π← {Πd}d∈D .
7: Go back to step 2 until:

• Ground-plus-air coverage is no longer improved.
• Maximum number of iterations i0 is reached.

d0 ∈ D is selected and repositioned. Such drone d0 selects
the 3–D position Πd0 in the lattice L (see Eq. (13)) at which
gNBs and ABSs cover more users as long as there exists
g ∈ G providing the guaranteed backhaul QoS in that
position. A user u is covered by an ABS d only if the user
rate experienced is greater than minimal user access rate
RAmin and d is covering at most Ud users, so that u enjoys
the guaranteed QoS. Thus, the signal strength from d0 and
from the rest of the drones in D\{d0}must be checked. This
means that the complexity of each iteration is O(|L| ·D ·U),
where L is the size of the lattice. Since i0 is the maximum
number of iterations needed for the algorithm to converge
to a solution, the complexity of OnDrone isO(i0 · |L|·D ·U),
where i0 is constant and can be omitted.

We remark that, unlike the NP-Complete problem pre-
sented in the previous section, OnDrone requires few itera-
tions. Indeed, we have performed all the experiments in this
paper in few seconds in a personal computer, on average. As
a matter of fact, OnDrone is intended to be used in an on-
demand fashion, dynamically repositioning drones to adapt
to user’s moves over time. OnDrone is then practical and
can be executed at the network orchestrator.

5.1.2 Seq: Sequential Multi-Placement

In addition to OnDrone, we have also developed a sim-
ple heuristic that finds feasible solutions to the Coverage
Problem C in polynomial time. We base this algorithm
on the Efficient 3-D Placement—hence the name of
the algorithm—scheme derived in [9], and thus we adapt
it to Sequential Multi-Placement (Seq) in order to
support aerial networks with more than one ABS. In [9],
the authors model the presence of one drone providing
coverage in one single cell, i.e., they maximize coverage
for single drone missions. They model a circular drone
footprint, which allows to formulate a convex optimization
problem due to the presence of only one drone. We adapt
the proposal in [9] to place ABSs one by one, according
to realistic interference metrics not originally considered in
that work. Seq will be used as a benchmark for OnDrone.

We build the Seq heuristic by induction as follows:
Since the framework proposed in [9] only considers drone-
coverage, we first compute the amount of users covered

by ground-cells. Second, we select one ABS and maxi-
mize coverage as described in [9] (i.e., using Efficient
3-D Placement) for the remaining non-covered users,
namely U ′ . Here, the placement space for drones is restricted
to those positions where at least one gNB provides backhaul
connectivity with the guaranteed QoS. We denote as U1 to
the set of users that are covered by the first selected ABS.
For this first ABS, there are no interference issues.

Let i > 1 and assume that we have located i−1 ABSs
and that we want to locate the i-th ABS. Assume that Uik
are the sets of UEs that each previous ik-th ABS covers
at the moment of its placement. Then, Seq finds a 3–D
position at which the i-th ABS covers more users from
the set U ′ \

⋃
1≤ik<i Uik and at least one gNB provides the

requested backhaul QoS. Thus, the i-th ABS aims to cover
the maximum number of users that are not covered yet.

Seq ends when the D-th ABS is located. After this,
the algorithm computes the actual number of users served
according to interference (in both the backhaul and access
network). Hence, Seq has the same objective as OnDrone:
covering the maximum number of users according to QoS
guarantees. We report the pseudocode in Algorithm 2.

At each iteration i > 1, the i-th ABS sequentially se-
lects the best position for it based on Efficient 3-D
Placement from [9] maximizing its own coverage, no
matter how its position affects the coverage of the remaining
ABSs or the already set backhaul links. Since placing the
new i-th ABS adds interference to the system, the previous
i−1 drone-cells shrink, and cover less UEs than the ones
originally intended by the Seq choice.

Complexity. The complexity of Seq is evaluated as
follows. Seq makes D steps, one per each drone. At each
step d, Seq defines the final position of drone d∈D. In [9],
the authors do not propose any algorithm for placing the
drone, but they solve a convex mixed-integer non-linear
program with a convex optimizer. Such optimizer does not
run an algorithm with polynomial-time complexity. Instead,
it performs a combination of interior-point methods with
a branch&bound search [39]. Hence, we opt for approxi-
mating their problem through a search on the lattice L. As
in OnDrone, checking whether a user is covered requires
to check the signal strength of the serving drone along
with the interfering drones, i.e., D signal strengths. The
complexity of this process is O(|L| ·D ·U). After the last

Algorithm 2 Seq: Sequential Multi-Placement

Require: BSs G∪D, users U , and Signal parameters.
1: Compute the number of users covered by ground-cells.
2: Find Πd1 ∈ R3 where d1 covers more users from U ′ and
∃g ∈ G | 1

Dg
WB log2

(
1+ΓBg,d1

)
≥ RBmin.

3: Define the set of users covered by d1: U1 ⊆ U
′
.

4: for 2 ≤ i ≤ D
5: Find Πdi ∈R3 where di covers more UEs in U ′\

⋃
1≤ik<i

Uik
such that ∃g ∈ G | 1

Dg
WB log2

(
1+ΓBg,di

)
≥ RBmin in Πdi .

6: Define the set of UEs served by di: Ui ⊆ U
′ \

⋃
1≤ik<i

Uik .

7: end for
8: Derive the actual covered UEs according to interference.
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iteration, the algorithm checks which users are actually
covered, since those users that at some iteration i were
covered, may no longer enjoy the guaranteed QoS because
of the repositioning of other drones in successive iterations.
This check has a complexity of O(D2 ·U). Thus, the com-
plexity of the Sequential Multi-Placement algorithm
is O(|L| ·D ·U + D2 ·U), that is similar to the complexity
of OnDrone because |L| ≥ D, since drones cannot be co-
located and so the number of possible distinct drone posi-
tions cannot be smaller than the number of drones (indeed,
in a well designed system, |L| � D).

5.1.3 RA: a Repulsion-Attraction scheme
Here we briefly describe the Repulsion-Attraction
(RA) scheme derived in [10]. RA is a multi-drone placement
scheme in which several self-organized ABSs dynamically
change their position to track clusters of users. The approach
is based on the assumption that ABSs will be attracted by
the presence of users in the ground, and will be repulsed by
gNBs and other ABSs in order to avoid interference.

Complexity. RA consists into maximizing a non-integer
metric without any constraints. Hence, one can apply stan-
dard methods like line-search or trust-regions methods
for unconstrained optimization. Such methods have low
complexity and their performance depends on the tar-
get tolerance on the error. Moreover they converge really
quickly [39], with a linear dependance on the number of
iterations iRA, i.e., the complexity is O(iRA).

5.2 Bézier flight routes

The last problem to solve consists in designing drone’s
trajectories. The output of OnDrone (Section 5.1), and the
Hungarian method (Section 4.2), provide the source and
destination for each drone carrying an ABS. Therefore, we
now design a route optimization scheme.

While drones fly, both the backhaul and users association
change. Initially, each ABS attaches to a gNB with the
required QoS and starts the flight. Once the backhaul QoS
level is low due to long distance or interference impairment,
the ABS sets a backhaul link with a new gNB with the
guaranteed QoS. Similarly, while a drone flies, UEs attach
to that ABS in case that the minimum access data link rate
(i.e., QoS) is guaranteed. Upon arrival to the destination, the
association is already optimal in terms of coverage.

On the one hand, drones have high aerial mobility and
fly over a ground cellular network in a 3–D space, without
many restrictions of walls, streets or vehicles. On the other
hand, drones hovering over regions with good QoS from
some gNBs or under-populated regions with a big surface
may lead to under-utilizedABSs and low coverage, depend-
ing on the topology of users. Furthermore, if a drone is not
fast enough, it might occur that when the drone arrives at
the destination the users topology has changed too much so
the destination is no longer optimal, and the network needs
to be re-optimized. To avoid such undesired effects, and
knowing that drones may have to be redirected while flying
towards a destination, we propose drone paths following
Bézier curves [8], instead of commonly assumed straight
lines, as adopted in [11]. Indeed, using Bézier curves allows
to deflect drone trajectories towards areas with higher user

Algorithm 3 Bézier Scheme

Require: P0 = {πd,Πd}, ω, B, τ = (1 + α) · λ
(
βP0(t)

)
.

1: UP0 = U ∩ Sω
(
βP0(t)

)
.

2: k = 0.
3: while |Pk| < B & λ

(
βPk(t)

)
< τ , do:

4: for u ∈ UPk , gPku = |{u′ ∈ UPk | ‖u′ − u‖ ≤
ω/2}|/

(
πω2/4

)
.

5: uk+1 = arg maxu∈UPk
{
gPku | λ

(
βPk∪{u}(t)

)
≤ τ

}
.

6: Pk+1 = Pk∪{uk+1}, UPk+1 = UPk∩Sω
(
βPk+1(t)

)
.

7: k = k + 1.
8: end while
9: P = Pk−1.

density, so to enhance drone coverage and enable unique
coverage opportunities while drones seek their optimal po-
sition. Since we leverage on the notion of Bézier curve,
Appendix B provides some background on the subject.

In our proposal, we define the set of anchor points for
our Bézier-based flight path and use the standard de Castel-
jau algorithm [8] to derive the Bézier curve corresponding
to the selected anchor points (see Appendix B for details).

We obtain the set of anchor points inductively, as de-
tailed next. Let πd and Πd be source and destination of a
drone d ∈ D, let ω>0 be the width for the two-sided offset
region of the curves and let B>1 be the maximum number
of anchor points for the Bézier curve. B is determined as
the density of users covered per drone-cell, since in case a
drone cannot cover more than B users, it does not make
sense that such drone wishes to deflect its path attracted
by more than B users. We take ω = 2Rd, where Rd is the
maximum range at which drone d can provide coverage in
its optimal position. We define as the initial set of anchor
points P0 both nodes: P0 = {πd,Πd}. Thus, we define the
Bézier curve βP0(t) for P0, which is the segment joining
πd and Πd, computed with the de Casteljau algorithm [8].
Now, we iteratively modify the current Bézier curve until we
derive the final Bézier path. Given a curve β(t), we denote
its length as λ (β(t)), and take λ

(
βP0(t)

)
as a reference

length for the final Bézier curve. Indeed, we build a Bézier
Scheme such that the obtained curve is not longer than
τ = (1+α) · λ

(
βP0(t)

)
, for a given α > 0. α is determined

as the fraction of the time interval in which a drone would
have already arrived to its destination in case of following
a straight path. Hence, we make sure that a drone reaches
its destination but has the flexibility to deflect its path to
improve coverage. Let Sω(β(t)) be the two-sided offset
region of width ω that results from stroking a curve β(t),
and let UP0 = Sω

(
βP0(t)

)
∩ U be the set of users that are

inside the offset region of βP0(t). We denote by gP0
u the

gravity of a user u ∈ UP0 and define it as the density of
users in a disk centered in u with radius ω/2:

gP0
u =

∣∣∣{u′ ∈ UP0 | ‖u− u′‖ ≤ ω/2}
∣∣∣/ (πω2/4

)
. (14)

The first user u1 selected as anchor point is the one with
highest gravity in UP0 such that the resulting Bézier curve
is not longer than τ = (1+α) · λ

(
βP0(t)

)
, i.e.:

u1 = arg max
u∈UP0

{
gP0
u | λ

(
βP0∪{u}(t)

)
≤ τ

}
. (15)

Now, P1 = P0∪{u1} defines a new Bézier curve, βP1(t).
The sorting of positions in the sets Pk is important, since
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Table 3
Summary of Algorithms’ Complexity

Algorithm Complexity

Optimal Aerial Coverage (Section 4.1) NP-Complete
Assignment of Fleet Destinations

(Section 4.2)
O(D3)

OnDrone (Section 5.1.1) O(|L|·D·U)

Seq (Section 5.1.2) O(|L|·D·U +D2 ·U)

RA (Section 5.1.3) O(iRA)

Bézier Scheme (Section 5.2) O(B3)

Overall Optimization Framework
with OnDrone (Section 5.3)

O(|L|·D ·U) +O(D3)

each order defines a different curve. Thus, we sort the
points in increasing order according to the distance to the
source, πd. Finally, UP1 =UP0 ∩ Sω

(
βP1(t)

)
is the updated

set of users for next iteration. Then, we keep selecting
anchor points for the Bézier curve while they exist, until
the length of the Bézier curve exceeds τ or the maximum
number B of anchor points is reached. At each iteration k,
we build a new curve from Pk−1, UPk−1 and βPk−1(t).

Complexity. We show the derived Bézier Scheme in
Algorithm 3. Its complexity can be evaluated as follows.
There is an iteration of the de Casteljau algorithm to derive
each Bézier curve βPk(t). The complexity of the de Casteljau
algorithm is quadratic with the number of anchor points
of the Bézier curve that it builds [8]. The Bézier Scheme
runs at most B iterations, and at each iteration k it uses
k+2 = |Pk| ≤B anchor points. Thus, the complexity of the
Bézier Scheme is O(B3), where B is the maximum number
of anchor points allowed.

5.3 Overall complexity
In Figure 5 we show the flow chart of the proposed
optimization framework for drone-aided dynamic cellular
networks. As we have fully detailed in the paper, first we
solve, through OnDrone, the framework for maximizing
network coverage in polynomial time. OnDrone outputs
the optimal 3–D positions at which drones must locate,
given their previous positions. However, drones do not
move instantaneously. The Hungarian method solves then
the assignment problem that minimizes the distance flown
in polynomial time, and outputs the source and destina-
tion of each drone concretely. Finally, our Bézier Scheme
designs the flight routes of drones in order to deflect their
paths towards clusters of users and increase the coverage
efficiency over the time interval. This is another polynomial
time algorithm. Therefore, the overall optimization frame-
work runs in polynomial time. The overall complexity of
our framework for fast repositioning of drone-aided cells
is the result of summing the complexities of the schemes
that compose such framework, which is shown in Figure 5.
When the 3–D placement optimization is performed by
OnDrone, the complexity isO(|L|·D·U)+O(D3)+O(B3) =
O(|L| ·D · U) +O(B3), since |L| � U � D.

In Table 3 we summarize the complexities of the detailed
algorithms, including the overall optimization framework.

5.4 Orchestration of the optimization framework
The possibility to integrate the above described framework
into a communication system raises several alternatives

Figure 5. Flow chart of the drone-aided dynamic network.

regarding where the different algorithms can be executed.
First, there is the issue of deciding where the drones must
be located at each time instant. This task (i.e., to execute
OnDrone for drone placement) should be assigned to a
device on which all drones have direct communication and
therefore can easily know what must be their destination.
Therefore, the gNBs seem to be an appropriate place for the
orchestration of drones’ positions. In alternative, and con-
sidering current trends in 5G networks architecture design,
the orchestrator can be a software slice in the MEC, which
is the edge-cloud computing platform of future 5G cellular
networks and which resides just next to base stations [40].

The second issue consists in designing drone’s trajecto-
ries, provided it must change its current location. However,
the Bézier curves used for the flight routes have been al-
ready designed in a discretized manner with the de Casteljau
algorithm, using short straight segments to build a Bézier
curve. At this point, we note that currently, most drones
are already capable of autonomously travel to concrete
positions following straight lines (see for instance [41]).
So, drones can follow such short segments (using their
originally integrated traveling mechanisms) without sig-
nificantly deviating from the flight route provided by the
Bézier scheme. In that case, those responsible for such tasks
(i.e., obtain the discretized Bézier curves and follow the
corresponding straight segments) are the drones themselves.

6 EXPERIMENTAL RESULTS

Here we numerically assess the performance of our multi-
drone optimization framework. We assess the coverage
offered by the network, with the assistance of a fleet of
drones, in a circular surface. We compare optimal placement
results yielded by OnDrone (presented in Section 5.1.1) with
the ones obtained with Seq (based on [9] and described
in Section 5.1.2) and with the RA scheme (from [10], and
described in Section 5.1.3). We also compare the results
with the optimal achieved by means of Monte Carlo sim-
ulations, since computing exact optima is not doable in
networks with as few as a fistful of UEs, gNBs, and drones.
Besides, we compare our scheme to a modified OnDrone
that neglects interference (referred as “iNeg” in the figures).
Hence, we assess the importance of introducing interference
in the analysis. We also compare coverage results while
drones reposition following the Bézier Scheme (presented
in Section 5.2) with a simpler Straight Scheme, as adopted
in [11], which consists in moving drones over straight paths
towards a certain destination identified with the Hungarian
method (see Section 4.2). Since RA has been designed in [10]
to dynamically track UEs, we compare also the Bézier and
Straight Schemes when the path planning is based on RA.

We mainly study the placement and repositioning of
drones in synthetic and realistic scenarios, and the effects
of interference and LoS on user coverage over time, under
four classes of environmental scenarios: suburban, urban,
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Table 4
Environmental parameters for the computation of LoS probability

Environment suburban urban dense high-rise
ξLoS [dB] 0.1 1 1.6 2.3
ξNLoS [dB] 21 20 23 34

a 4.88 9.61 12.08 27.23
b 0.43 0.16 0.11 0.08

dense and high-rise. These four environments correspond to
different densities of elements (e.g., buildings) that affect the
LoS probability. Moreover we study three distinct cases of
deployment scenarios, in which the location of users follows
different distributions:

• PPP : We place UEs in a circular surface, according to
a Poisson point process.

• Cheese : We define a surface that includes certain
regions which are not accessible to UEs, and locate
UEs uniformly random in the rest of the network.
Then, we have a surface with empty areas (like in
a Swiss cheese). This users’ distribution is typical of
public gardens or areas with restricted zones.

• Capital : We also run our numerical evaluation over
a simplified map of the center of a dense capital city,
Madrid, considering main zones of people affluence
and no users in indoor installations.

In the PPP and Cheese scenarios, we locate gNBs ac-
cording to the same distribution. Heterogeneous synthetic
distributions would be of interest for traffic demand-based
optimizations [42], which is out of the scope of this paper,
and we therefore do not consider them. However, in the
Capital scenario, we consider the actual locations of those
gNBs that belong to the main network operator in the city.
In all experiments, the number of iterations required by
OnDrone was very small (see Appendix C.1).

Table 4 gathers the parameters for the air-to-ground
path-loss model and the probability of LoS described in
Eqs. (1) and (5), depending on the density of the environ-
ment that we consider in the numerical simulations. These
parameters are obtained based on the number of buildings
and large signal obstructions per unit area, building’s height
distribution, ratio of built-up area and clean surfaces, etc., as
it has been derived in [18], based on the ITU recommenda-
tions [33]. Such parameters allow to differentiate the main
four environmental conditions.

Table 5 gathers the parameters that, unless otherwise
specified, we have used for the network model, regardless
of the simulation environment. We take a circular surface
of RC = 1.5 km of radius where there are 10 gNBs, and a
height range between hmin = 60 m and hmax = 600 m for
drones. This is a generally doable height range,4 since lower
values would be too close to ground (and, e.g., vehicles or
even people) and higher elevation would be affected by
high-speed winds which are unsafe for an aerial network
of simple drones. However, in our numerical evaluation
the actual maximum drone altitude is rather determined by
the environment density. For instance, in a high-rise envi-
ronment, although high altitudes increase the probability

4. Such under-kilometer altitudes comply with current possibilities of
commercial drones. For instance, DJI Phantom 4 has an elevation range
of few thousands of meters, according to its commercial specifications.

of LoS, the attenuation is much stronger, so that drones
need to fly closer to the ground. In contrast, the suburban
or urban environments do not suffer strong attenuation, so
that drones can fly higher. However, a high altitude turns
into links with higher LoS probability, thus yielding more
interference for far ground users.

The power transmission from ABSs is 10 dBm, as
adopted in [43], [44], [45], which is notably lower than the
usual 44 dBm used for gNBs in the ground network (as
we adopt). This is because ABSs have much higher LoS
probability than ground base stations and do not use om-
nidirectional antennas, and hence require much less power.
Using higher ABS transmission power, as 25 or 44 dBm,
may provide better coverage due to better signal strength,
although also provides less resilience to interference im-
pairment, as we discuss in our results. Moreover, ABSs
are carried by flying drones, which spend most of their
energy into hovering, flying towards desired positions at a
given speed, and carrying the weight of the communication
equipment. This poses serious constraints on transmission
power, as evaluated in [43]. Hence, we have chosen to use a
10 dBm of power transmission for analyzing our framework
and algorithms. The guaranteed user data rate is 0.72 Mbps,
which guarantees video streaming with 240p resolution [46],
and allows 360p and 480p resolution in many cases over the
MPEG-4 standard. It also allows adequate videoconferenc-
ing quality using video compression [47]. Such guaranteed
rate, with customary 20 MHz bands and assuming that no
more than 100 users can attach to a BS, corresponds to
guaranteeing that the SINR is higher than γA=10.9 dB, ac-
cording to the Shannon capacity formula (see Appendix C.2
for a discussion on the minimum data rate experienced
under coverage). Besides, such SINR value allows for a
16QAM modulation and a coding rate of 1/2 in LTE com-
munications, as derived in [48], although we also study
the impact of using other guaranteed rates. The carrier fre-
quency used by gNBs (either for backhaul channels between
gNBs and ABSs or access channels between gNBs and UEs)
and for the access channel between ABSs and users are
1815.1 MHz and 2630 MHz, respectively. These channel
parameters are as in the LTE/LTE-A network provided by
Movistar in Madrid. As it has been discussed in [31], the
antenna patterns of gNBs for backhaul connectivity are di-
rectional with a HPBW of 65 degrees, according to the 3GPP
technical specifications [49]. For dynamic experiments, we
slot time into intervals of length T = 60 s. This means
that every minute, we re-optimize the network by means
of OnDrone (or with any of the benchmark schemes, as Seq
or RA schemes) and immediately re-direct drone flights for
dynamic repositioning using the solution of our assignment
problem and a flight route computed with either the Bézier
or the basic Straight Scheme from [11]. Users move accord-
ing to the random way-point model (RWP)5 (see [50], [51])
with an average speed of 2 m/s. We update user’s positions
every second, while drones fly at a constant speed of 15 m/s
over a continuous path. Moreover, such flight speed allows
for low drone energy consumption, according to the energy
consumption model for aerial aircrafts derived in [43].

5. The RWP model is one of the most studied and used mobility
models to assess mobile networks. It is simple and has wide availability.
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Table 5
System and simulation parameters

Parameter Value
Circular surface radius RC 1500 m
Height range, [hmin, hmax] [60, 600] m

gNB, ABS Tx power, P dTx, P gTx 10 dBm, 44 dBm
Users guaranteed QoS 0.72 Mbps

gNBs Carrier frequency, fB 1815.1 MHz
ABSs Carrier frequency, fA 2.63 GHz
gNB, ABS Bandwidths 20 MHz
Thermal Noise Power −174 dBm/Hz

HPBW of gNBs 65 degrees
Time interval length T 60 secs

UEs, Drones speed 2 m/s, 15 m/s
Lattice dimensions Nρ, Mθ , H 20, 40, 40
Monte Carlo runs per instance 107

Instances of simulations 1000

We use MATLAB R2018a to simulate channel conditions
and mobility of drones and UEs. For small networks, we
have performed Monte Carlo simulations to search for the
optimal drone placement. For each network instance, we
have run 107 random positions for the fleet and taken
the settings for the best coverage. Such simulations are
very time-consuming even for small networks, yet we have
observed that such number of Monte Carlo runs per instance
provides a coverage output that is hard to improve, since the
output placement provided remains invariable for a large
number of additional runs, as we have preliminary tested.
We have simulated every scenario 1000 times in order to
derive the statistics shown in the figures.

As mentioned earlier, the high complexity of the exact
solution of the Coverage Problem C, allows us to find
optima only for small instances of the problem, with a
reduced number of gNBs, ABSs and UEs. Instead, as further
discussed in Appendix C.1, OnDrone only requires a few
iterations to converge. Thus, for realistically larger deploy-
ments, we only show the results obtained with OnDrone,
and compare the results to what achieved by Seq based
on [9], the RA scheme [10], and a modified OnDrone scheme
that neglects inter-ABS interference (“iNeg” in the figures).
We have evaluated the coverage performance with denser
lattices in OnDrone and observed that the results cannot
be significantly improved (since they are already close to
optimal, as shown in the comparison with the optimal place-
ments), while imposing more computational complexity.
We also evaluate the impact of Bézier routes vs. straight
flying routes [11]. The flight assignment problem is solved
optimally and efficiently by the Hungarian method [38], so
we do not comment on its performance. At the end of the
section we also provide a summary of the lessons learnt
from our performance evaluation study.

6.1 Coverage optimization
Here we numerically evaluate the coverage performance at
a precise time instant. We pictorially show the drone foot-
prints and indicate the altitude, computed with the different
schemes that target coverage maximization, namely with the
optimum (i.e., with its approximation obtained by means of
Monte Carlo simulations), with OnDrone, and with Seq.
With OnDrone, we clearly see in Figure 6 that ABSs are
positioned very close to the optimal positions, while in
Figure 7 we see that the Seq scheme locates drones in much

distinct positions (as well as the RA scheme, not shown
here to keep the figure clear). Indeed, Seq makes a greedy
decision at each step for a given drone. Hence, Seq finds
a good position for such drone knowing the interference
incurred by the previously located drones. However, the
additional interference from drones located afterwards is
ignored, which results on shrunk coverage areas as the
final performance. Also, the altitudes provided by Monte
Carlo simulations and OnDrone are only slightly different.
In general, ABSs avoid locations already covered by gNBs.

Another important aspect to pay attention to is the shape
of the drone footprints. Unlike in currently used models [3],
[21], [22], [27], the area served by a drone is not circular, due
to inter-drone interference, which is not considered in the
mentioned works. In Figure 8, we show the average number
of covered users in a network with 100 users distributed in
the ground surface according to a PPP, and different fleet
sizes. Solid bars represent the total amount of covered users,
while stripped bars represent users covered by ABSs. The
figure shows that OnDrone approximates well the optimal
solution (within a mere 1% from reaching the optimal)
both to total coverage and ABS coverage, while neglecting
interference leads to very inaccurate results, getting worse
as the fleet size increases (and hence backhaul and inter-
drone interference increases). In the figure, we also see that
Seq only covers around 80% of the optimal coverage, de-
pending on the fleet size. RA is not even able to outperform
the coverage results from Seq, and its performance soon
decays due to interference issues in the presence of as few as
5ABSs. This shows that although it is practical, the intuition
behind RA is not accurate enough for optimizing coverage.

In Figure 9 we further compare the coverage achieved
when considering the four reference environments of Ta-
ble 4, for the same PPP case discussed above. The LoS
likelihood between ABSs and UEs decreases in denser
environments. Thus, drone-cells shrink, and ABSs cover
less users. Indeed, the figure shows a factor ∼6 between
the ABS coverage achievable in suburban and high-rise
environments, and also that the ground network handles
higher total coverage percentages as the environment grows
denser, at least for small fleet sizes. Here, we again see the
high accuracy of OnDrone in comparison to the optimum
searched by means of Monte Carlo simulations, in both total
and ABS coverage. As before, Seq and RA provide coverage
noticeably lower. We also see that neglecting interference
is very counter-productive for ABS coverage in low dense
environments, since there is higher LoS probability and links
are attenuated easily from interfering signals. The opposite
behavior is observed with RA, which provides reasonable
results for suburban scenarios (better than Seq) but then its
performance decays with denser environments (and RA be-
comes the worst scheme). Results derived in the Cheese and
Capital scenarios are qualitatively similar to those discussed
above for the PPP scenario. Thus, we omit the results here.

To give a performance sample of OnDrone for larger
fleets, Figures 10 and 11 show the placement of 8 and 6ABSs
in a dense Cheese and Capital scenario, respectively. Here,
drones tend to follow UEs distribution, avoiding empty ar-
eas and regions covered by gNBs. Indeed, OnDrone avoids
also overlapping drone-cells, thus incurring low inter-ABS
interference and being able to cover more users.
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Figure 6. Drone 3–D placement.D=2, U=100.
Scenario: urban, PPP.
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Figure 7. Drone 3–D placement.D=3, U=100.
Scenario: dense, PPP.

Figure 8. Comparison of algorithms on to-
tal coverage (solid bars) and ABS coverage
(stripped bars), U=100. Scenario: dense, PPP.

Figure 9. Impact of environment on total
coverage (solid bars) and ABS coverage
(stripped bars) coverage. D = 3, U = 100.
Scenario: PPP.
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Figure 10. Drone 3–D placement. D = 8,
U=1000. Scenario: dense, Cheese.
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Figure 11. Drone 3–D placement. D = 6,
U=1000. Scenario: dense, Capital.

(a) Scenario: dense, PPP. (b) Scenario: dense, Cheese. (c) Scenario: dense, Capital.

Figure 12. Total coverage (solid lines) and ABS coverage (dashed lines) for U=1000 UEs.
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(a) Impact of SINR value γA in total coverage
(solid lines) and ABS coverage (dashed lines).
The x axis indicates SINR values in dB, and
then, in between parentheses, the correspond-
ing coding rate (c.r.), MCS, and guaranteed user
data rate (in Mbps) with a 20 MHz channel and
with at most 100 users per BS.

(b) Impact of fixed height hd in total coverage
(solid bars and solid lines) andABS coverage
(stripped bars and dashed lines). The bars
show coverage with adaptive height.

(c) Impact of drone transmission power
P dTx in total coverage (solid lines) and ABS
coverage (dashed lines) for D=2, ..., 10.

Figure 13. Study of tunable network parameters: Guaranteed bandwidth, fixed drone height hd, and drone transmission power P dTx. U=1000 UEs.
Scenario: dense, Cheese.
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In Figure 12 we further study the impact of the fleet
size on coverage, with U = 1000 users, for each scenario.
Here, solid lines represent total coverage and dashed lines
report the portion of users that would be served by ABSs.
We also show coverage performance in absence of drones,
labelled as Ground in the figures. First, for the PPP sce-
nario in Figure 12(a), adding more drones increases total
and ABS coverage because there are more ABSs that can
cover larger areas with limited interference. Each analyzed
scheme behaves significantly different. When the fleet size
becomes larger than D = 7, the coverage remains stable or
even slightly decays for OnDrone. Here, we notice that the
larger the fleet is, the more interference issues appear in
both, the backhaul and the access network. OnDrone is able
to maintain a stable coverage by reallocating positions to
drones to have good backhaul connectivity while providing
stable and wide coverage to users, thanks to the design
based on extremal-optimization. However, Seq does not have
a design that allows a reconfiguration of the aerial network.
Hence, it suffers more from interference in the access and
backhaul sides. The figure also shows that neglecting in-
terference leads to very poor coverage, as well as with the
RA scheme. In both cases, adding drones becomes soon
counter-productive. While we have adapted in Seq the
scheme proposed in [9] to account for interference, the RA
scheme proposed in [10] does not target any specific inter-
ference metric in the computation of its repulsion component.
This explains why RA behaves poorly with as few as 4
or more ABSs in a dense scenario. Instead, as we have
checked numerically, when the interference is neglected—or
approximated by a constant value—the coverage apparently
never stops increasing with the fleet size. In fact, without
interference, having more drones implies covering more
non-interfering drone-cells. However, in reality, it happens
that there is an exact number of drones that maximizes coverage,
depending on the environment.

In Figures 12(b) and 12(c) we show the same type of
graph for the Cheese and Capital deployment, respectively.
The Cheese case confirms that OnDrone is a good option
for irregular deployments, in which the area to cover in the
ground surface is smaller than the complete circular surface,
so drone positions are more packed. Here, we observe more
clearly the effect that increasing the fleet size is not beneficial
for coverage purposes, since the surface S is irregular, so
that users are more packed and hence it is harder for ABSs
to fully avoid interference. Indeed, Seq is not able to avoid
interference as good as OnDrone, and suffers larger perfor-
mance drops with more than 5 drones, as well as the scheme
neglecting interference. RA appears to be able to manage
interference issues, although with no good coverage results
overall. In the Capital case, no matter the adopted scheme,
once the optimum number of ABSs is reached, it is hard to
add more drones without incurring interference, although
in this scenario Ondrone substantially overcomes the rest of
schemes. This is due to the fact that users are concentrated in
relatively small areas and nearby drones can interfere large
masses of users. In any case, OnDrone largely outperforms
any other benchmarking schemes also in realistic networks
as the one extracted from a dense capital city (Madrid).

So far we analyzed our framework in comparison with
significant state-of-the-art proposals, and shown that our

approach provides significant gain. We now show, in Fig-
ures 13(a)–13(c), users’ coverage obtained with OnDrone
when tuning a few key parameters. Specifically, in a dense
Cheese deployment, we consider that case in which the
guaranteed user data rate varies based on the SINR value
γA, the drone height becomes fixed, and the ABS power
transmission increases, respectively. We show in any case
both total and ABS coverage. In Figure 13(a), we consider
fleet sizes of D = 2, 4, 6 drones with different user data
rate guarantees. Such SINR values correspond to the MCS
(Modulation and Coding Scheme) values marked in the
figure, according to [48]. Here, we observe that γA=10.9 dB
is a good election: on the one side, lower γA values provide
higher total and ABS coverage since the QoS requirement
is less strict, but the MCS is only QPSK, which renders a
considerably lower final user throughput; on the other side,
the highest QoS requirements lead to much better MCS
and coding rate (“c.r.” in the figure), but here the QoS re-
quirement gets too strict so that coverage performance falls
notably. In Figure 13(b), we fix the drone height to altitudes
between 60 and 600 meters, for fleet sizes of D = 2, 4, 6
drones. Moreover, in the left side of the figure we show a
histogram with the total and ABS coverage results when the
height is left as an adaptive choice of OnDrone, as intended
by the framework proposed in this paper. The results show
that, depending on the fleet size, there is an optimal fixed
height for the fleet where signal strength is good and the
interference impairment remains stable, hence providing the
best coverage. However, the difference with respect to the
case in which the height is adaptive is around 20% for ABS
coverage, which supports the idea that flexible non-uniform
altitudes are convenient for drone-aided networks. In Fig-
ure 13(c), we analyze the impact of transmission power. We
have selected three typical values for P dTx: 10 dBm [43], [44],
25 dBm [16], [52], and 44 dBm [25] (besides, 44 dBm is the
power transmission used for gNBs in cellular networks).
Here, we clearly see that with 25 and 44 dBm the coverage is
significantly increased due to better signal strength from the
serving drone. However, fleet size increases, the framework
is not able to keep the coverage stable and the interfer-
ence quickly impairs coverage performance. Conversely,
a 10 dBm power transmission allows the framework to
combat the interference from multiple ABSs and keep the
coverage stable. This shows that lower power transmissions
make the framework more resilient. Moreover, since aerial
networks are very energy-limited [43], using high power
transmission needs to guarantee that the performance is
more efficient. Note also that the difference in Watts from
10 to 25 dBm is more than 96%, while the corresponding
coverage improvement is only 30% in the best case.

6.2 Continuous repositioning

Having assessed the basic properties and performance fig-
ures of OnDrone for drone placement in Section 6.1, we
now consider flight routes. Specifically, we study the per-
formance of OnDrone and RA (specifically proposed for
dynamic cases) with repositioning routes computed with
either the Bézier Scheme or with the Straight Scheme every
T = 60 s, in two practical and realistic scenarios: Cheese and
Capital. Irregular topologies like Cheese and Capital are
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more interesting to study with respect to regular PPP cases
because they clearly provide visual fact of the importance of
our Bézier Scheme or alike schemes using deflected routes
when several regions have really low densities of users.

In order to assess dynamic topologies, we consider a
random initial position of drones in the network. In the
successive time intervals, the source position of each drone
is the last location it was occupying in the previous interval.

In order to compute the Bézier curves used as flight
routes, we keep adding anchor points and run iterations
of the de Casteljau algorithm in the Bézier Scheme until the
segments of the piece-wise curve approximating the Bézier
curve are all shorter than 3 m, which corresponds to flight
segments of 0.2 s. Hence we can consider the network as
practically static in each of such segments, and solve the
corresponding coverage problem.

In Figures 14 and 15 we analyze the performance of
continuous ABS repositioning with the Bézier Scheme, in
comparison to the Straight Scheme in the dense Cheese and
high-rise Capital scenarios, respectively. In both cases, we
show an illustration of drone trajectories (subfigure (a)) with
the corresponding ABS coverage over time (subfigure (b))
and the average ABS coverage for the scenario obtained
with longer and repeated simulation runs (subfigure (c)).

In Figure 14(a) we show an instance of a network surface
where four empty regions have no user (or few users)
demanding for coverage, and 1 drone provides coverage as-
sistance. While a drone following straight lines can be barely
used during the full time interval since (i) it traverses part
of the empty regions and (ii) it does not avoid ground cells
covered by fixed gNBs, the Bézier Scheme deflects drone
routes towards regions with denser population, avoiding
empty regions and gNB-served users. The resulting gain
of a simple example is quantified in Figure 14(b). The
figure depicts the count of ABS-covered users over time for
60 s (the count is updated at each segment of the piece-
wise curve approximating the Bézier path, every 0.2 s). In
contrast with the Straight Scheme, in this example the Bézier
Scheme provides a coverage gain from the beginning of the
interval, and shows a gain of 26% after about 45 seconds.
The gain remains high until the drone ends its path. The
figure also shows that OnDrone largely outperforms RA.
Indeed, Bézier and Straight Schemes used with RA most
of the time perform worse than OnDrone with the Bézier
Scheme. These coverage performance gaps vary depending
on the instance. Hence, to fairly compare each scheme, in
Figure 14(c) we report the average cumulated ABS coverage
with each scheme, calculated over the entire numerical sim-
ulation of the scenario and over the tested initial positions.
On average, by using Bézier flight paths in combination
with OnDrone, at the end of an interval T , ABS cover-
age increases by a remarkable 18% compared to Straight
Scheme. Using Bézier paths is beneficial also when using
the RA placement algorithm. However, since the coverage
guarantees of RA are much weaker than with OnDrone, the
achievable coverage is lower.

In Figure 15(a) we show a snapshot of drone trajectories
optimized with the Bézier Scheme over high-rise environ-
mental conditions in the Capital scenario with 1000 UEs
located uniformly at random over the city, plus five masses
of 200 UEs. Again, to make the presentation visual and

simpler, we use a case with a single drone, although the
results for more drones are similar. In the figure, we also
report the corresponding flight path computed with the
Straight Scheme. We observe that the ABS flies from the
bottom towards the right side of the city, where there are
more users. Moreover, the Bézier path avoids two gNBs in
order not to overlap ABS coverage with gNB coverage. In
addition, although not shown to keep the figure clear, the
Bézier path meets two masses of 200 users on its way to
the final destination, where another mass of 200 users is
targeted also by the Straight Scheme. However, the path fol-
lowed under the Straight Scheme does not avoid coverage
overlapping with gNBs and includes regions with very low
density of users, hence missing key coverage opportunities.
Figure 15(b) quantifies the gain due to deflected drone paths
for an example over these conditions. The figure shows that
the Bézier Scheme considerably increases the cumulated
number of users covered since the beginning of the interval,
reaching a coverage efficiency increase of 33% with respect
to the Straight Scheme, and with minimal route adjustments.
As done in the dense Cheese scenario, to fairly compare the
performance obtained with either Bézier or straight paths,
in Figure 15(c) we report the average gain in terms of the
count of users covered since the beginning of a time interval
T . We see that, on average, by using Bézier flight paths
in combination with the OnDrone placement algorithm, at
the end of an interval T the ABS coverage is increased
by a remarkable 47%. Using Bézier paths is beneficial also
when using the RA placement algorithm. However, since
the coverage guarantees of RA are much weaker than with
OnDrone, the achievable coverage is much lower.

To show the repositioning operation of multiple drones
with OnDrone and the Bézier Scheme, in Figure 16(a) we
show the trajectories of 4 drones in the high-rise Capital
scenario, during an interval of duration 10T . Here, we
capture the main behaviours of our repositioning schemes.
The figure reflects backhaul gNB associations by showing
multi-color paths, each color corresponding to a different
gNB indicated on the map with a marker of the same color.
Drones at the bottom and left side start at a suboptimal
position. On their path, they deflect over more populated
zones and follow streets that connect the origin and final
destinations. Once they get to optimal positions, they re-
main hovering the zone, adjusting according to changes in
the presence of users. The drone starting at the top behaves
similarly, although it does not benefit from following any
street from source to destination because (i) this street is
partially covered by the yellow gNB and (ii) user density is
low. The remaining drone has the longest path and traverses
several regions. First, it flies upwards to comply with the
optimal position of the first stages, but soon deflects its path
towards the center of the city where a new optimal position
is identified, and remains hovering this central region over
the rest of the time. We also see that when this drone is
very close to the red gNB, it does not switch its back-
haul association because the yellow gNB provides enough
connectivity while the drone coming from the top has no
alternative but to attach to the red gNB. Pictorially showing
correlation between drone trajectories and user movements
is not simple with the scenarios presented throughout this
paper. However, for a simple case with a dozen of users
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(a) Example of drone trajectories.

Time [s]
0 10 20 30 40 50 60

N
u
m
b
er

o
f
co
ve
re
d
u
se
rs

20

40

60

80

100

120

140

160

180
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(b) Covered UEs over time in one instance.
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(c) Average covered UEs over time.

Figure 14. Continuous repositioning. D = 1, U = 1000. Scenario: dense, Cheese.

(a) Example of drone trajectories.

Time [s]
0 10 20 30 40 50 60

N
u
m
b
er

of
co
v
er
ed

u
se
rs

0

10

20

30

40
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(b) Covered UEs over time in one instance.
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Bézier OnDrone
Straight OnDrone
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(c) Average covered UEs over time.

Figure 15. Continuous repositioning. D = 1, U = 2000. Scenario: high-rise, Capital.

(a) Bézier trajectories. Each solid line rep-
resents one drone. Trajectory segments are
colored with the color of the backhaul asso-
ciated gNB. Scenario: high-rise.
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Figure 16. Continuous repositioning during 10 minutes, D = 4, U = 2000. Scenario: Capital.

and one ABS, we refer the reader to the illustrative example
described in Appendix C.3.

Finally, in Figures 16(b) and 16(c) we analyze, for the
same experiment with four repositioning drones, the ABS
coverage count (i.e., the average number of users covered
by drones in a one-minute time window) and the average
time during which an ABS-covered user receives service
within the same one-minute time window. We use the
Capital scenario in all possible environmental density cases,
with 2000 users in total. Figure 16(b) shows that the Bézier
Scheme provides a coverage gain around 25% with respect
to using straight paths. More interestingly, the denser en-
vironments present higher coverage gains. While the urban
environment provides a gain of 25%, the dense environment
increases such gain up to a remarkable 33%. Therefore, de-
flected paths are more important in denser scenarios, like in
historical districts of old cities and in modern downtowns.

The number of seconds spent under ABS coverage,
reported in Figure 16(c), tells the quality of coverage oppor-
tunities offered by drones on the move. The figure shows little

coverage time differences between the Bézier and Straight
Schemes, with some improvements observed with the for-
mer. Therefore, we can conclude that the increased coverage
count offered by using deflected flight paths is not obtained
at the expenses of the time spent by users under coverage. In
general, we remark that although the Bézier Scheme needs
more time to reach the optimal placement identified with
OnDrone, it outperforms significantly approaches based on
straight flights for ABSs.

6.3 Discussion and lesson learnt
Our analysis has shown that optimizing the position of a
fleet of drones in a coordinated manner is unfeasible with
standard solvers. However, using extremal-optimization tech-
niques, we have seen that it is possible to achieve nearly-
optimal results in polynomial time. Thus, it is doable to
run drone repositioning on a minute time scale. Indeed, our
results show that with realistic topologies, drones are able
to follow mobile masses of people over time, or either react
quickly to changes, thanks to OnDrone.
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The performance of OnDrone that we have proposed
and validated depends on the thickness of the lattice used
to reduce the space of options used to seek (near-)optimal
drone positions. Denser lattices would result in improved
accuracy, although at the expense of computational cost.
With as much as 10 drones and a few thousands of users, it
is possible to achieve accurate near-optimal results on a sub-
second time scale using commodity hardware, as we have
done for our numerical evaluation. For larger fleets, more
powerful hardware is required, which is not a big problem
for base stations and definitely not a problem for cellular
back-offices, e.g., in the MEC of future 5G networks [53].

Our numerical results have quantitatively shown the
importance of integrating a fleet of drones in a cellular
network. The presence of inter-drone interference is key in
the optimization of drone positions, so that it cannot be
neglected, contrary to what so far used in the literature.
The presence of interference makes the optimal number of
drones finite, with no advantages coming from deploying
unnecessarily dense fleets.

We have also seen that repositioning is a key component
of the overall drone-aided network framework. Reposition-
ing requires solving not only for 3–D drone positions, but
also finding a flight assignment and deflect flight routes. We
have used the Hungarian method to solve the assignment
problem optimally and Bézier curves to obtain very efficient
and dynamic trajectories that offer coverage opportunities to
many users without reducing their time under drone cover-
age. Such dynamic behavior is key for network surfaces in
which some regions cannot host users that can benefit of the
presence of ABSs, e.g., in forests or in indoor installations in
residential and commercial areas, and also to avoid flying
over those ground regions already served by gNBs.

Indeed, our dynamic Bézier Scheme presents remark-
able results, and we have observed that it enhances a lot
coverage experienced in realistic topologies, especially in
densely populated cities with dense or high-rise profiles.
Where main avenues and landmarks attract users, our
Bézier Scheme allows the drones to easily follow masses
of users on selected paths and areas.

In general, we have shown that it is feasible to have an
autonomous dynamic aerial network that reorganizes itself
to optimize network coverage.

7 CONCLUSIONS

In this paper we have proposed a novel optimization frame-
work for drone-aided cellular networks in terms of user
coverage under guaranteed signal quality. The framework is
novel because it addresses multiple coordinated drones as
well as legacy gNBs and analytically accounts for complex
interference expressions caused by drone transmissions un-
der non-negligible and variable LoS probability. Specifically,
we have studied the integration of a finite fleet of drones
acting as aerial base stations connected to and aiding a ground
network of gNBs, from/to which they are able to relay
traffic. Since cellular users can move, we have shown that
implementing a solution for our framework requires solving
three important subproblems: finding optimal positions of
drones at a given time instant, map drones onto coverage

points, and plan deflected flight routes, to optimize network
coverage also while moving the drones.

The coverage problem is a non-linear, non-convex and
mixed-integer NP-Complete problem, so it is not possible
to handle it with conventional off-the-shelf optimizers. The
main issue in our novel formulation lies in the intertwined
nature of interference, drone positioning, and LoS prob-
ability. Hence, we have proposed OnDrone, an extremal-
optimization algorithm that performs near-optimally in low-
order polynomial time for various user topologies and un-
der different density of LoS obstructions, from suburban to
high-rise scenarios. OnDrone outperforms state of the art
mechanisms because they do not address the root causes of
interference. Interestingly, we have found out that unneces-
sarily large drone fleets would only have negative impacts
on coverage, due to interference. Besides, we have unveiled
that optimally mapping drones onto coverage targets is
doable in negligible time and, most importantly, we have
introduced and evaluated a novel and dynamic scheme to
compute intelligent drone trajectories upon repositioning.
With our Bézier Scheme, it is possible to deflect flight routes
of drones so to dramatically improve coverage performance
(up to 47% in our experiments) in a variety of scenarios,
including in real, dense and high-populated cities.
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APPENDIX A
PROOF OF NP-COMPLETENESS

Theorem 1. The Coverage Problem C is NP-Complete.

Proof. We claim that the coverage problem C is NP-
Complete, since the minimum geometric disk cover (MGDC)
problem can be reduced, in polynomial time, to a particular
case of the Coverage Problem C. Since the MGDC problem
is a very well known NP-Complete problem [36], then C is
also NP-Complete. We prove such claim in what follows.

Let M be the MGDC problem. From the statement of
problem M, we have a set of points U (users in our case)
and a fixed radius R > 0. Thus we want to minimize the
number of disks with radius R that cover all the points of
U . We consider a specific set of instances of the Coverage
Problem C in which the interference is negligible, all drones
hover at the same elevation and are fast enough to reach
any position in the surface in the time interval (i.e., Sd=S).
In this way, the ground coverage area of each ABS is a
circle with a radius that depends on the elevation. Let’s
use elevation hR at which the ground coverage area has
the radius R of the MGDC. Thus, we show that this is
a particular set of instances of the coverage problem that
cannot be deterministically solved in polynomial time.

Assume, reductio ad absurdum, that we can solve prob-
lem C in polynomial time for all its instances. Then, we
present in Algorithm 4 an algorithm that solves any instance
of the MGDC problem in polynomial time. Specifically, the
MGDC problem that finds the minimal number of disks of
radius R that cover all points in a set of 2–D coordinates
can be solved by a linear search of the minimum number of
disks. The search proceeds by adding a disk per iteration.
It verifies that a given number of disks covers all points by
solving the Coverage Problem C for the special instances
described above. If the solution of the Coverage Problem C
covers all points, the algorithm stops since we have found
the minimum number of disks that cover all points. Note
that in Algorithm 4, the iteration counter d (which is also
the number of disks to use in one iteration) is bounded by
the number of points |U|. Thus, Algorithm 4 has a polyno-
mial complexity, since we are assuming that problem C is
solvable in polynomial time, which is a contradiction with
the fact that the MGDC problem is NP-Complete.

Since MGDC is NP-Complete [36], the claim follows.

APPENDIX B
BÉZIER CURVES FOR DRONE FLIGHT PATHS

Bézier curves are an outstanding geometrical tool that de-
flects the trajectory of an ABS close to clusters of UEs
while targeting the optimum positioning. Bézier curves are
smooth, endpoint interpolators—i.e., the curve begins and
ends in a provided source and destination—and are con-
tained in the convex hull of a set of anchor points. The curve
is attracted by anchor points, which in our case are specific
users. Below, we mathematically define a Bézier curve.

Definition 1. Given a set of points P = {Pk}nk=0 ⊂ Rm, the
resulting Bézier curve is:

βP(t) =

n∑
k=0

(
n

k

)
· Pk · tk · (1−t)n−k, t ∈ [0, 1]. (16)

Algorithm 4 Solution for the Minimum geometric disk cover
problem based on the solution of the Coverage Problem C.
Require: Set of points U , radius R>0.

1: d← 1.
2: found← False.
3: while not found
4: Solve problem C for the set U and fixed elevation hR.
5: if problem C covers all points U , then found← True.
6: d← d+1.
7: end of while

From the definition, we see that the Bézier curve βP(t)
begins at the source βP(t = 0) = P0, and ends at the
destination βP(t=1)=Pn. The variable range for variable t
can be adapted with a linear transformation to modify the
speed of the curve. Since we are interested only in the flight
path, i.e., the trajectory of the curve, we consider t∈ [0, 1].

We need to obtain the offset region of the Bézier curve
(a.k.a. stroking the curve). Since Bézier offset curves are not
analytically obtainable [54], we use the de Casteljau algo-
rithm [8]. This is the main recursive and numerically stable
method to draw Bézier curves from a set of anchor points P ,
by approximating the curve with small segments. We use
Bézier curves for the ground projection of the trajectories,
while the elevation of drones varies linearly from source to
destination heights, indicated as hsrc and hdest. The actual
3–D trajectory of a drone with anchor points P is:

ϑP(t) =
(
βP(t), hsrc + t · (hdest−hsrc)

)
, t ∈ [0, 1]. (17)

Finally, we stroke βP(t) by stroking the segments ob-
tained by the de Casteljau algorithm.

APPENDIX C
NOTES ON ONDRONE OPERATION

C.1 Convergence of the OnDrone algorithm
Notwithstanding the complexity of the problem formulation
expressed in Eq. (8), our near-optimal heuristic, OnDrone,
requires few iterations. We report in Figure 17 a typical
example of OnDrone iterations for each of the three deploy-
ment types studied in the manuscript, with 1000 users and
6 drones. The figure plots coverage vs. number of iterations.
Coverage increases fast in the initial iterations and then
flattens until the OnDrone stopping condition is reached.
In each of the deployment scenarios of this case, we do not
need more than 14 iterations to converge. With up to 10
drones and 2000 users, we have observed that convergence
never required more than a few tens of iterations.

C.2 Guaranteed user data rate
The coverage optimization problem addressed in this paper
aims to maximize the amount of ground users that are
covered, either by gNBs or by ABSs, with a guaranteed
service availability that allows for a minimum user data
rate. Hence, as soon as we determine parameters as the
maximum number of users Ug and Ud allowed to attach to
a gNB g or ABS d, respectively, and the data rates RAmin

and RBmin, there is a user data rate guaranteed for each
covered user. In this paper, we mainly use an SINR value
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Figure 17. Convergence of OnDrone with
D = 6 ABSs and U = 1000 UEs. Scenario:
dense.
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Figure 18. Minimum user data rate achieved
in comparison with the user guaranteed rate.
U=1000. Scenario: dense.

Figure 19. Network dynamics in a small sce-
nario during 10 minutes. D = 1, U = 12.
Scenario: high-rise, Capital.

of 10.9 dB because it allows to use a 16QAM MCS and a
reasonable coding rate of 1/2, so that covered users can
enjoy a decent network access service. Indeed, we have
evaluated in Figure 13(a) the impact of varying the SINR
values studied in [48], and observed that higher values
let coverage decay considerably. In contrast, lower values
do not present much relevant impact on coverage, albeit
they guarantee worse data rates. Moreover, the maximum
allowed number of users served by a gNB or an ABS is set
here to 100 users, which reflects the capacity scale of current
3GPP-compliant cells in terms of active users per BS sector.

In Figure 18, we show the minimum data rate expe-
rienced by covered users. The rate is computed with the
Shannon formula, using simulated SINR values for a net-
work of 1000 UEs with up to 10 ABSs. With the selected
SINR thresholds (10.9 dB) and maximum number of users
per base station (100), and with a bandwidth of 20 MHz,
the guaranteed data rate is 0.72 Mbps, which is plotted as
an horizontal dotted line in the figure.

On the one side, since in the PPP scenario the distribu-
tion of users is uniform, the footprint of gNBs and ABSs
is not sufficient to cover the maximum allowed number of
users. Hence, resources are split among less users, so that
they experience rates well above the guaranteed one. On the
other side, scenarios like Cheese and, more clearly, Capital
present a non-uniform distribution of users, with groups
that form spontaneously. Hence, as previously seen in Fig-
ure 12, coverage is higher than for the PPP scenario. The
result is that both gNBs and ABSs tend to cover almost as
many users as they are allowed to cover, and minimum rates
approach the guaranteed one. In all scenarios, increasing the
number of drones is beneficial because the resulting number
of users per base station diminishes, on average.

The analysis of other scenarios, thresholds, limits in the
number of users per base stations and in the backhaul, and
environmental conditions lead to very similar qualitative
conclusions, so we do not include those results in the figure.

Overall, here we have shown that the good performance
discussed for our coverage optimization schemes, are not
obtained in change of poor or, what would be worst, un-
controllably low data rates. In contrast, the guaranteed rate
computed based on a fistful of optimization constraints
in our problem formulation, results in a realistically close
approximation for the lower bound of users performance.

C.3 User mobility and drone trajectories
In order to evaluate the relation between user mobility and
drone trajectories, in Figure 19 we picture a small scenario
with 12 UEs and 1 ABS. We depict both the ABS movement
and the users movement, during 10 minutes. Here, to further
simply presentation, we have took out gNBs.

In the figure, trajectories are marked with positions
sampled once per minute, although the actual movement
followed by users is more erratic, according to the random
way-point model simulated with a one-second time resolu-
tion. An X marks the starting point for each user, while a
green diamond indicates the initial position of the drone.

If we analyze the trajectories minute by minute, we can
observe the evolution of optimum coverage over time. For
instance, at the beginning, the drone only covers users 4, 5
and 6, which is optimum at that stage (other users are far
and there are no larger groups to cover). However, after one
minute, these three users walk away from each other mak-
ing not possible to cover them altogether, so that the ABS
immediately reacts and flies where it can cover other three
users. Note that, on its first-minute trajectory, the drone
deflects its path towards user 4 to cover it momentarily.
The effects caused by using the Bézier Scheme are evident
throughout the entire trajectory of the drone. During the
following minutes, the drone hovers on the left side of the
map, until the users begin to gather in the area on the right
part of the map. Hence, the drone quickly reacts to this
change and gets repositioned on this region, where it stays
for the last few minutes, eventually covering four users.

From what presented in this appendix, the proposed
OnDrone heuristic, with the help of Bézier trajectories, is
suitable for fast reconfiguration and therefore allows to
dynamically adjust network coverage at the same time-scale
at which the topology of users evolves. The presence of
users plays the role of “attractor” for both optimizing the
position of drones and for shaping the trajectories followed
while repositioning.
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