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Abstract

A computational model is presented to calculate the ground state energy
of neutral and charged excitons confined in semiconductor quantum dots.
The model is based on the variational Quantum Monte Carlo method and
effective mass Hamiltonians. Through an iterative Newton-Rhapson process,
minimizing the local energy, and (optional) parallelization of random walk-
ers, fast and accurate estimates of both confinement and Coulomb binding
energies can be obtained in standard desktop computers. To illustrate the
reach of the model, we provide Fortran programs and illustrative calculations
for colloidal CdSe nanoplatelets with large lateral dimensions and dielectric
confinement, where electronic correlations are strong. The results compare
well with exact variational calculations and largely outperform configuration
interaction calculations in computational efficiency.
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a cuboidal semiconductor nanoplatelet. Hard wall quantum confinement coexists
with dielectric confinement (self-energy and Coulomb polarization terms).

Solution method:

Variational quantum Monte Carlo with effective mass Hamiltonians, integrated
into a Newton-Rhapson solver. OMP parallelization library can be (optionally)
linked.

1. Introduction

Coulomb interactions within excitonic species in semiconductor quantum
dots (QDs) determine optoelectronic properties of interest, such as the emis-
sion wavelength and thermal stability (both related to the binding energy),
or the radiative recombination rate (related to exciton Bohr radius).[1, 2, 3]

Early studies in self-assembled QDs and colloidal nanocrystals showed
that perturbative estimates of Coulomb interaction provide a good approx-
imation of emission energies (about 95%), but they miss electronic corre-
lations, which are important in determining binding energies and effective
Bohr radius, especially for particles beyond neutral excitons.[4] Recently de-
veloped colloidal nanoplatelets (NPLs)[5, 6] are even more demanding. These
nanostructures are in an intermediate confinement regime between that of
QDs and that of quantum wells[7], and present strong dielectric confine-
ment which enhances Coulomb interactions. In these structures, large exci-
ton binding energies (around 200 meV) are observed, with non-perturbative
terms representing over half that value.[8] An appropriate description of ex-
citonic interactions becomes essential to study the photo-physics.

In order to account for electron-hole and electron-electron correlation in
QDs, configuration interaction (CI) methods are arguably the most widely
employed models to date.[1, 2, 3, 4, 9, 10, 11, 12] These methods are generally
built upon a basis set of independent particle or Hartree-Fock states, which
has been found to provide an excellent description of repulsions in few- and
many-fermion systems.[1, 10, 12] The description of strong attractions is
however more demanding, because the aforementioned basis functions are
less suited to account for short-range interactions.[13] For the same reason, in
charged excitons (trions) and multiexcitons they may not describe attractions
and repulsions with comparable accuracy. As a result, CI calculations aiming
at precise binding energies often require large basis sets,[4, 9] which make the
method computationally demanding.
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Quantum Monte Carlo (QMC) methods are an alternative to CI tech-
niques to calculate correlations with high accuracy.[14, 15] Unlike CI models,
QMC ones provide a description of the lowest state of each symmetry only,
but they have the advantage of showing no pathological behavior for short-
range interactions. Studies of excitonic complexes in QDs relying on QMC
calculations have been reported.[4, 16, 17, 18, 19, 20] Unfortunately, these
methods are computationally expensive, which has prevented widespread use
to date. Continuum QMC methods, which encompass variational and diffu-
sion QMC,[15] have been implemented in high-performance software pack-
ages such as CASINO[21] or QMCpack[22]. However, these programs were
originally developed for molecular and periodic crystal systems, and hence
use Jacobi coordinates in the Hamiltonian and wave function. This is well
suited for atomistic descriptions of QDs.[23] The description of QDs with sim-
ple and intuitive effective mass Hamiltonians, which have proved extremely
useful to understand many electronic properties of QDs,[1, 2, 3] is however
handicapped by the usual presence of potentials forbidding the use of rela-
tive coordinates. A few examples are non-parabolic confinement, strain and
non-local interaction with self-image charges.[2, 24]

In this work we present a QMC model for the study of excitons and tri-
ons in QDs within the effective mass formalism. The goal is to provide a
flexible theoretical framework, capable of describing structures all the way
from strongly confined to weakly confined regimes, with computational re-
quirements affordable by ordinary desktop computers. To this end, we use
the simple yet elegant variational Quantum Monte Carlo (VQMC) method,
which offers a ground state energy solely limited by the choice of an appropi-
ate trial wave function.[15] The latter is defined within envelope function
approximation in effective mass theory.[25] The model is integrated into a
Newton-Rhapson solver to optimize the variational parameters in few steps.
A suite of Fortran codes developed for the specific case of colloidal CdSe
NPLs, which constitute a particularly demanding system owing to the strong
electronic correlations, is provided. Illustrative calculations show that the
method largely outperforms CI calculations in terms of accuracy and com-
putational efficiency, for both neutral excitons and trions.
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2. Theoretical framework

2.1. Hamiltonians and trial functions

2.1.1. Neutral Exciton

Electron and hole states are described with single-band k·p Hamiltonians.
For excitons, the Hamiltonian is:

ĤX =
∑

i=e,h

(

p̂i
2

2mi

+ Vi

)

+ Vc(re, rh) + Egap, (1)

where e and h stand for electron and hole, mi is the effective mass of carrier
i, p̂i the momentum operator, Vi the single-particle potential, Vc(re, rh) the
Coulomb interaction between electron and hole, and Egap the bulk energy
gap. The trial wave function we use for this system is:

ΨX(re, rh, σe, σh) = Φe(re) Φh(rh) J(reh) σe σh, (2)

where Φe and Φh are the envelope functions of non-interacting electron and
hole, which vary smoothly within the QD dimensions, L, and σe(h) is the as-
sociated spin function. Φe and Φh should preferrably be analytical functions,
to allow rapid and exact evaluation of energies, gradients and Hessians, which
we shall use next. This is often possible in QDs under the envelope function
formalism.[1, 3, 25] J(reh) is a correlating Jastrow factor, which depends ex-
plicitly on the separation between electron and hole, reh. We propose to use
a short range Slater function:

J(reh) = e−areh , (3)

where a = α/rXB is a variational coefficient, rXB the exciton Bohr radius and
α the actual variational parameter. The choice of this factor is driven by the
fact that it captures the correct limits of weak and strong Coulomb interac-
tion with a single variational parameter. When interactions are secondary
to confinement (L ≪ rXB ), J(reh) → 1 and the independent particle scheme
is retrieved. When interactions are dominant (L ≫ rXB ), ΨX → J(reh),
which ensures a hydrogen atom-like function is retrieved, where carriers are
bound to each other through Coulomb attraction. In the latter case, J(reh)
permits fulfilling the Kato cusp condition,[26] whereby kinetic energy com-
pensates Coulomb potential at reh → 0, preventing energy divergence. It has
been shown in the 2D harmonium problem that a wave function like that in
Eq. (2) gives energies close to the exact solution for a broad range of con-
finement strengths.[27]
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2.1.2. Trion

We consider a positively charged trion (one electron, two holes), albeit
the procedure is analogous for the negatively charged one. The Hamiltonian
is:

ĤX+ =
∑

i=e,h1,h2

(

p̂i
2

2mi

+ Vi

)

+Vc(re, rh1)+Vc(re, rh2)+Vc(rh1, rh2)+Egap. (4)

We use a Slater-Jastrow trial wave function for the singlet ground state:

ΨX+(re, rh1, rh2, σe, σh1, σh2) = Φe(re) Φh(rh1, rh2) J(r1, r2, r12) σe [αh1βh2 − βh1αh2] ,
(5)

and choose the following Jastrow factor:

J(r1, r2, r12) = e−Zr1 e−Zr2 eb r12/(1+a r12). (6)

where r1(2) = |re − rh1(2)| and r12 = |rh1 − rh2|. The first two terms are short
range cusp forms describing the correlation of each hole with the electron, as
in the exciton case. Z = ζ/rXB is a variational coefficient, with ζ being the
parameter to be varied. The last term is a Padé Jastrow factor, which has the
property of giving the desired limits with r12. At short ranges of interaction,
r12 → 0, the term becomes eb r12 , which provides a cusp to compensate for
the divergence in hole-hole Coulomb repulsion (b > 0). At the same time,
the probability to find distant holes (r12 → ∞) is more likely than that of
proximal holes (r12 → 0) by a factor (eb/a)2. We define b = β/rXB and a =
α/rXB , and let β and α be the variational parameters. More sophisticated trial
functions have been suggested for trions in QDs or wells (see e.g. Ref.[28]),
but the present proposal has the advantage of keeping the smallest number of
parameters that captures the correct limit behavior, while being physically
consistent with that of neutral excitons, Eq. (2).

2.2. Variational Monte Carlo

Within the VQMC framework,[14, 15] the variational energy correspond-
ing to a Hamiltonian Ĥ (in our case ĤX or ĤX+) is:

〈E〉 =
∫

dRΨ∗(R)ĤΨ(R)
∫

dR′Ψ∗(R′)Ψ(R′)
=

∫

dR p(R)EL(R), (7)

where Ψ(R) is the trial function, EL is the local energy:

EL(R) =
ĤΨ(R)

Ψ(R)
. (8)
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and p(R) the probability distribution:

p(R) = |Ψ(R)|2/
∫

dR′|Ψ(R′)|2. (9)

The Metropolis algorithm is used for importance sampling. Thus, particles
are moved to different trial positions in a random walk. The new positions
are accepted if the following condition is satisfied:

p(Rnew)

p(Rold)
> w, (10)

where w is a random number homogeneously distributed between 0 and 1.
For a sufficiently long calculation, this random walk allows to simplify Eq. (7)
as:

〈E〉 ≈ 1

N

N
∑

i=1

EL(Ri), (11)

whereN is the number of accepted points Ri taken in the walk. Alternatively,
an equivalent form can be used in the estimator, which considers not only
accepted steps, but also rejected ones:

〈E〉 ≈ 1

N

N
∑

i=1

[p(Rnew)EL(Rnew) + (1− p(Rnew))EL(Rold)] (12)

with N here being the total number of sampled points (whether accepted or
not). Eqs. (11) and (12) have the same average, but the latter reduces the
fluctuations caused by the acceptance of unlikely configurations and tends
to have smaller variance.[14] As a result, for all the cases under study in this
work, Eq. (12) is found to be at least as accurate as Eq. (11) in obtaining
the correct energy 〈E〉 with the same number of accepted points, and often
more so. We shall then opt for it.

When evaluating the local energy, EL, it is convenient to rewrite the
kinetic energy term of a particle i,

Ki = −~
2/(2mi) (∇2Ψ)/Ψ, (13)

as
Ki = 2Ti − F 2

i , (14)

6



where:

Ti = −1

2

~
2

2mi

∇2
i lnΨ, (15)

and:

Fi =

(

~
2

2mi

)1/2

∇i lnΨ. (16)

Both forms of the kinetic energy term give the same average values, but
latter has the advantage that the derivation of logarithms provides simpler
mathematical expressions when the wave function is composed by products
of functions, as in ΨX and ΨX+ . It can be further shown that 〈Ti〉 = 〈F 2

i 〉,
which is sometimes used to simplify 2 〈Ti〉 − 〈F 2

i 〉 = 〈Ti〉. However, Eq. (14)
gives significantly smaller variance.[14]

〈E〉 is evaluated for NW independent random walkers, and the mean value
is used. To compute the associated variance, one can further calculate:

〈E2〉 ≈ 1

N

N
∑

i=1

[

p(Rnew)E
2
L(Rnew) + (1− p(Rnew))E

2
L(Rold)

]

(17)

and then define:

σ2 =
1

NW

NW
∑

i

(

〈E2〉 − 〈E〉2
)

, (18)

Because each walker has an independent starting point, they are uncorre-
lated, and the overall statistical error can be taken as σ/

√
NW . Notice how-

ever this is an upperbound estimate, as it assumes that the N steps inside
each walk are fully correlated, which is not the case.

2.2.1. Random walk in confined structures

A brief discussion on the random walk nature is in order. In the Metropo-
lis algorithm, trial steps in the walk are taken as a change in position
Rnew = Rold+ r, where r is a random vector uniformly distributed in a cube
of predefined side r0 centered at Rold. Random walks are usually applied to
particles one by one.[14]

Hamiltonians (1) and (4) are written in absolute coordinates, because the
single-particle potentials Vi generally prevent the use of Jacobi coordinates.
On the other hand, excitonic complexes in QDs feel an attractive Coulomb
interaction Vc(re, rh), which shows a sharp peak as electron and hole approach
coalescence (reh → 0). This short-range potential can have a profound impact
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on the wave function, especially if confinement is weak. In order to obtain
reliable importance sampling, we observe that local energy and other magni-
tudes of interest can be evaluated with absolute, Cartesian coordinates, but
the random walk must be applied on the corresponding relative coordinates.
Once the new position is set, we revert to absolute coordinates again. For
the neutral exciton, relative coordinates can be center-of-mass and relative
electron-hole motion. For the positive trion, optimal sampling is obtained
using absolute coordinates for the electron, and relative coordinates of the
two holes with respect to the electron. By doing so, the relative motion pro-
vides the Metropolis algorithm sensibility to the Coulomb singularity near
reh = 0, while center-of-mass (or absolute) motion provides sensibility to the
confinement of the QD walls. Because of the different lengthscale of the two
potential terms, it is also recommended that rrel0 < rCM

0 , i.e. the cube where
rrel is inscribed has smaller size than that of rCM ,

Optimizing the maximum step size (r0) in the random walk is also conve-
nient. If it is too large, only a small fraction of trial points is accepted, and
the sampling is inefficient. If it is too small, a large number of trial points is
accepted, but it takes too long to sample over the whole interval of interest.
We want about half of the steps to be accepted.[14] Then, at the beginning of
the random walk, a thermalization process should be included. An arbitrary
r0 is chosen, and a random walk is taken to estimate the ratio of accepted
points (with no need to calculate local energies). Once the walk is over, we
count accepts and failures and redefine the step size to fit the desired factor
1/2 of successful trial steps.

2.3. Newton-Rhapson solver

Having defined the Hamiltonians, trial wave functions and local energy
estimator, we can evaluate the average energy for a given set of variational
parameters, M = (α) in the case of the exciton, or M = (ζ, β, α) in the
case of the trion. In order to find the parameters that minimize 〈E(M)〉,
we resort to the iterative Newton-Rhapson method. We look for the zero of
the energy gradient, |g(M)〉. Given a set of parameters Mi, the next set of
parameters is given by:

Mi+1 ≈ Mi − (H(Mi))
−1 |g(Mi)〉. (19)

where H is the energy Hessian matrix. After labelling Ψ′
Mi

the logarithmic
derivative of Ψ with respect to the variational parameter Mi, the components
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of |g〉 and H can be written as:[29]

|g〉Mi
=

∂E(M)

∂Mi

= 2
[

〈ELΨ
′
Mi
〉 − 〈EL〉〈Ψ′

Mi
〉
]

(20)

and

HMi,Mj
=

∂2E(M)

∂Mi∂Mj

= 2
[

〈ELΨ
′′
Mi,Mj

〉 − 〈EL〉〈Ψ′′
Mi,Mj

〉 +

2
[

〈ELΨ
′
Mi
Ψ′

Mj
〉 − 〈EL〉〈Ψ′

Mi
Ψ′

Mj
〉
]

−〈Ψ′
Mi
〉 |g〉Mj

− 〈Ψ′
Mj

〉 |g〉Mi
+ 〈Ψ′

Mj

∂EL

∂Mi

〉
]

. (21)

It is worth noting that for i 6= j the last term, 〈Ψ′
Mj

∂EL

∂Mi
〉, is not symmetric

when approximated by a finite sample, whereas the true Hessian should be.
We make it symmetric by replacing the term as 2〈Ψ′

Mj

∂EL

∂Mi
〉 = 〈Ψ′

Mj

∂EL

∂Mi
〉 +

〈Ψ′
Mi

∂EL

∂Mj
〉.[30] Additional considerations are in order to reduce the variance

in the stochastic calcualtion. For real wave functions, the expectation value
of the first derivative of the local value of any Hermitian operator with respect
to a real parameter is zero.[29] Thus, 〈∂EL

∂Mi
〉 = 0. It is then convenient to

rewrite the non-symmetric terms in covariance form, i.e., 〈a b〉−〈a〉〈b〉 instead
of 〈a b〉, for the fluctuations of 〈a b〉−〈a〉〈b〉 are smaller than those of 〈a b〉.[30]
Therefore, we use:

2〈Ψ′
Mj

∂EL

∂Mi

〉 = 〈Ψ′
Mj

∂EL

∂Mi

〉 − 〈Ψ′
Mj

〉 〈∂EL

∂Mi

〉+ 〈Ψ′
Mi

∂EL

∂Mj

〉.− 〈Ψ′
Mi
〉 〈∂EL

∂Mj

〉.
(22)

One can also note that the second derivatives of logarithmic functions van-
ish in some cases, which simplifies the results of Eq. (21). From Eq. (2),
(Ψ′′

X)a,a = 0. From Eq. (5), (Ψ′′
X+)Z,Z = (Ψ′′

X+)b,b = (Ψ′′
X+)Z,a = (Ψ′′

X+)Z,b =
0.

Eq. (19) is recursively applied until convergence. Convergence can be set
by a threshold either in the energy (〈E(Mi+1)〉−〈E(Mi)〉) or in the distance
between variational parameters (|Mi+1 −Mi|).

2.4. Computational considerations

The whole calculation method we have described can be implemented
computationally following the flowchart of Figure 1. Input data is first pro-
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vided with all relevant Hamiltonian parameters (effective masses, QD dimen-
sions, band offsets and dielectric constants definint potential terms) along
with an initial guess of variational parameters (M0).

Figure 1: Flowchart of the VQMC-Newton Rhapson model.

Random walkers are then generated to evaluate the magnitudes of inter-
est. In order to avoid a possible bias induced by the random initial position
of a walk, it is customary to evaluate not one but several walkers. The
mean value of the computed magnitude (e.g. 〈E〉) is then taken. From a
computational point of view, it is both simple and efficient to distribute dif-
ferent walkers among different CPU processes. Rather than resorting to MPI
parallelization, which is best suited for high-performance computing centers
with multiple nodes/servers/computers instances, one can use OpenMP par-
allelization, which is easily applied to current standard computers.

For every trial point R, the walkers compute local magnitudes: den-
sity probability, energy, gradient vector and Hessian matrix. If the point
fulfills Eq. (10), the step is accepted as a starting point for future moves.
With a sufficiently high number of points and walkers, average estimates
of the variational values of E(M0), |g(M0)〉 and H(M0) are obtained using
Eq. (12).[31, 32] These values are used to propose the next set of variational
parameters M1 in a Newton-Rhapson iteration, Eq. (19). The process is
repeated until convergence is achieved. The resulting energy and variational
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parameters are then written in an output file.
Because local magnitudes are calculated on-the-fly and only accumulated

values are stored, memory requirements in the VQMC calculations we pro-
pose are minimal. Together with the conceptual simplicity and the ease of
parallelization, this is an additional asset for the model to be efficient in
ordinary computers.

3. Case study: semiconductor nanoplatelets

Semiconductor NPLs are a particularly challenging system to calculate ex-
citonic interactions. These nanostructures typically show rectangular cuboid
shape, with only a few atomic monolayers thickness (1 − 2 nm) in one di-
rection, and tens of nm in the other two.[5, 6] They constitute intermedi-
ate structures betweeen zero-dimensional QDs and two-dimensional quantum
wells.[7] Besides, Coulomb interactions are strongly enhanced by dielectric
mismatch with the surrounding organic ligands.[33] As a result, correlations
play a significant role and quantitative estimates of exciton properties are
beyond perturbational and standard CI calculations.[27]

For neutral excitons in CdSe NPLs, an accurate description of the ground
state has been obtained through a full variational calculation of ΨX , with a
number of approximations to reduce the six-dimensional Coulomb integrals
to two-dimensional ones.[8] For the trion, however, the larger number of
variational parameters and particle coordinates renders this approach com-
putationally impractical. In this section, we show how the VQMC model
presented above enables such a study with modest computational require-
ments.

3.1. Neutral exciton

Following Ref. [8], excitons in CdSe NPLs can be described by giving HX

the specific form:

HX =
∑

i=e,h

(

p‖
2

2m‖,i

+
p2z

2mz,i

+ Vi

)

+ Vc(re, rh) + Egap, (23)

where m‖,i is the in-plane mass of carrier i and mz,i that along the strongly
confined direction ([001]). The single particle potential is written as Vi =
V pot
i + V self

i , where V pot
i is the confining potential set by the band offset

between the NPL core and its surrounding material. We take V pot
i = 0 inside
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the NPL and V pot
i = ∞ outside. V self

i is the self-energy potential resulting
from the interaction of carriers with their image charges in the dielectric
medium, which we model as in quantum wells.:[24]

V self
i =

∑

n=±1,±2,...

qn q
2
e

2ǫin [zi − (−1)nzi + nLz]
. (24)

with qe being the electron charge, qn = ((ǫin − ǫout)/(ǫin + ǫout))
|n|, ǫin (ǫout)

the dielectric constants inside (outside) the NPL and Lz the thickness of the
NPL.

For the electron-hole Coulomb interaction, we also take into account the
influence of polarization due to the dielectric mismatch:[24]

Vc =
∞
∑

n=−∞

qn q
2
e

ǫin
[

(r‖,e − r‖,h)2 + [ze − (−1)nzh + nLz]
2]1/2

. (25)

The trial wave function is of the form:

ΨX(re, rh, σe, σh) = Φe(re) Φh(rh) e
−ar‖,eh σe σh, (26)

where r‖,eh =
√

(r‖,e − r‖,h)2 is the in-plane distance between electron and
hole. Φe and Φh are particle-in-box electron and hole single-particle states:

Φi = cos kxxi cos kyyi cos kzzi. (27)

Here kj = π/Lj, with Lj being the dimensions of the NPL along the direc-
tion j = x, y, z. Notice that, because Lz ≪ Lx ∼ Ly, the Jastrow factor
in Eq. (26) contains in-plane Coulomb terms only. Also, normalization con-
stants are omitted in ΨX because they cancel out in the evaluation of local
magnitudes, see Eq. (8).

The program we provide in this work, vqmc-ema, uses the VQMC-Newton
Rhapson model to obtain the exciton ground state of Eq. (23), with the
trial function in Eq. (26). The code needs no external libraries other than
OpenMP, and only in case we want the calculation of random walkers to be
paralellized. The program determines the optimal variational parameter α
and its associated exciton energy, for any input NPL dimensions and material
parameters (effective masses, dielectric constants).[34]

A number of calculations in CdSe NPLs are run to validate the model.
The same effective masses as in Ref. [8] are taken, relative dielectric constants
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are set to ǫin = 6 and ǫout = 2, and Egap = 1.76 eV.[35] We first calculate the
energy as a function of the variational parameter α in a NPL with dimensions
(Lx, Ly, Lz)=(30, 10, 1.4) nm. The result is shown in Figure 2(a), for different
values of (m,NW ), where m is the number of accepted points per walker and
NW the number of walkers used to evaluate Eq. (12). The black solid line
shows the result obtained with the full variational integration of Ref. [8], for
comparison. A clear minimum of 〈E〉 develops around α = 0.72 in all cases.
Since we define the exciton Bohr radius in the 2D limit, rXB = ǫin/2µ (atomic
units, µ is the exciton in-plane reduced mass), this means the effective Bohr
radius (1/a) in a NPL is intermediate between that of a 2D exciton (α = 1)
and a that of 3D one (α = 0.5). The agreement with the exact variational
calculation is rough for (m,NW ) = (106, 10). However, it becomes excellent
when the total number of points is increased from NW ·m = 107 to 109.

In Fig. 2(b) we compare the VQMC result with the exact variational
one for different NPL sizes. Since Ly = 10 nm, the platelet changes from
square to rectangular with increasing Lx. Also, by weakening confinement,
the electronic correlations become more important. One can see in the figure
that the stochastic calculation matches the exact result in all cases with
sub-meV error. This is under 0.15% relative error with respect to the total
exciton (confinement plus Coulomb) energy. The inset in Fig. 2(b) shows
the same results including errorbars given by σ/

√
NW . For NW = 5000 the

statistical error ranges from 10 to 20 meV (as mentioned in Section 2.2, this
is an upperbound estimate, as confirmed by the close matching of the mean
value to the exact variational result).

Because our model is intended to describe excitonic interactions even
in the limit of weak confinement, we test its accuracy in fulfilling Kato cusp
conditions.[26] To this end, because the Jastrow factor considers in plane cor-
relations only, we rewrite the Coulomb terms in (25) removing z coordinates.
From Hamiltonian (1) and the trial function (2), assuming homogeneous rel-
ative dielectric constant ǫin = ǫout and negligible confinement, it is easy to
check that the Coulomb divergence at r‖,eh → 0 is compensated by kinetic en-
ergy if a = 2µ/ǫin = 1/rXB . That is, a 2D hydrogen atom-like limit should be
retrieved. Fig. 2(c) shows the VQMC model successfully converges towards
this value for large NPLs, since the value of α minimizing the exciton energy
tends to 1, and then a → 1/rXB . For smaller NPLs, however, kinetic energy
terms coming from Φe and Φh make α deviate from the 2D limit. The latter
result illustrates that quantum confinement prevents inferring the value of
variational parameters from simple bulk cusp conditions, and in general we
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need to optimize all the parameters in the trial wave function numerically.

3.2. Trion

For a positive trion in a NPL, Hamiltonian (4) takes the form:

HX+ =
∑

i=e,h1,h2

(

p‖
2

2m‖,i

+
p2z

2mz,i

+ Vi

)

+Vc(re, rh1)+Vc(re, rh2)+Vc(rh1, rh2)+Egap.

(28)
By analogy with the exciton case, for the trial wave function we use ΨX+

as in Eq. (5) but with Jastrow factors accounting for in-plane coordinates
only. Φe, Φh1 and Φh2 are particle-in-box functions, as in Eq. (27). vqmc-

ema addressed the trion case as well. It optimizes the variational parameters
(ζ, β, α) of the ground state and provides the associated energy, for a given
input of NPL dimensions, effective masses and dielectric constants.

As an illustrative calculation, Figure 3 compares the energy of neutral
and charged excitons in a CdSe NPL with (Lx, Ly, Lz) = (30, 10, 1.4) nm, as
a function of the dielectric mismatch. The outer medium dielectric constant
is varied from ǫout = 2, which is a typical value for organic ligands passivating
NPLs,[33] to ǫout = ǫin, which suppresses dielectric confinement. Fig. 3(a)
and (b) show the total energy of exciton and trion, respectively. The exci-
ton behavior is well known. With decreasing dielectric contrast, the energy
decreases due to the weakening of self-energy repulsion, which exceeds the
weakening of electron-hole Coulomb attraction.[36] We observe this behavior
both with VQMC calculations (dots) and with the full variational integra-
tion of Ref. [8] (black line). The same trend is found for the positive trion,
which reveals that self-energy terms prevail over Coulomb enhancement in
charged excitons too. In fact, the shift in energy is more pronounced than
for the exciton, because the larger number of particles translates into a more
relevant contribution of self-energy repulsion.

Colored lines in Fig. 3 show exciton and trion energies calculated using
a CI method, as described in Ref. [37]. Two basis sets are used, one built
from all possible combinations (Hartree products and, for the trion, Slater
determinants) obtained from the lowest 12 electron and hole spin-orbitals,
and another from the 24 lowest ones. While the qualitative trend is con-
sistent with that of the QMC calculations, a deviation of few tens of meV
is observed in both cases, well above the (upperbound) statistical error of
the QMC results. It is clear that CI calculations are far from convergence,
and VQMC offer more accurate description. Remarkably, this is in spite of
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VQMC calculations requiring CPU time of several minutes (see next), as
compared to few days in the case of the CI method.[38]

The binding energies of exciton and trion, which are known to be sensitive
to correlation energy,[4] are plot explicitly in Figs. 3(c) and (d), respectively.
For the exciton, we define Eb(X) = E(X) − Ee − Eh, with E(X) the to-
tal exciton energy, Ee that of an independent electron and Eh that of an
independent hole. That is, Eb(X) is the stabilization energy as compared
a to non-interacting electron and hole pair. For the trion, it is defined as
Eb(X

+) = E(X+) − E(X) − Eh, where E(X+) stands for the total energy
of the trion. Then, Eb(X

+) is the stabilization energy compared to one ex-
citon plus one hole. One can see that CI results underestimate the binding
energies as compared to VQMC calculations, which is indicative of the latter
capturing a larger amount of correlation energy. In the case of the trion, the
improved description reveals a qualitative trend opposed to that predicted
by CI calculations, whereby Eb(X

+) is weakened for small εout. This is in-
dicative of dielectric mismatch enhancing Coulomb repulsions, Vc(rh1, rh2),
over attractions, Vc(re, rh1(2)).

Figure 4 provides more details on the computational efficiency of the
VQMC model. As mentioned before, the calculation of random walkers can
be distributed among different threads using OpenMP directives. We bench-
mark the results of the parallelization in the figure. Simulations were run
on a workstation with Dual Intel Xeon E5-2660v4 core (2.2 GHz), which ad-
mits a number of parallel threads (hereafter nt) of up to 40. The code was
compiled with Intel Fortran compiler and OpenMP library l ibomp5. For
the neutral exciton, the time required per iteration of the Newton-Rhapson
process shows a nearly perfect scaling with 1/nt, see Fig. 4(a). For energy
convergence threshold of about 1 meV, a few iterations suffice. Then, the
total execution time is of a few minutes only. The scaling versus number of
walkers NW , for a fixed number of threads, shows a nearly linear behavior as
well, see Fig. 4(b). Linear scalings hold for trions too, as shown in Figs. 4(c)
and (d), albeit the execution times increase by a factor ∼ 1.5, owing to the
larger number of coordinates, wave function terms and variational parame-
ters compared to excitons. The linearity of the previous plots confirms that
the distribution of walkers among threads is well balanced.
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4. Conclusions

We have developed Fortran programs to calculate exciton and trion ground
state properteis in colloidal NPLs. The codes are based on a VQMC-effective
mass model which can be easily extended to semiconductor QDs with dif-
ferent shapes and potentials. The model is conceptually simple and com-
putationally efficient (fast execution times, further accelerated by OpenMP
parallelization, and minimal memory requirements), and hence susceptible of
being used in standard desktop computers. By using Jastrow factors which
capture short range interactions, it outperforms standard CI calculations in
both accuracy and computational efficiency. It also outpeforms full vari-
ational integrations used in previous studies for weakly confined NPLs, in
that it gives access not only to neutral exciton but also to trion species, with
only a moderate increase in execution time.
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Figure 2: Exciton energy in CdSe NPLs. (a) Energy as a function of the variational
parameter α, for a NPL with (Lx, Ly, Lz)=(30, 10, 1.4) nm. (b) Variational energy as a
function of the NPL side Lx. The legend is (m,NW ), where m is the number of points per
walker and NW the number of walkers. Solid lines show the result of Ref. [8] model for
comparison. The inset shows the statistical error obtained with NW = 5000. (c) Optimal
variational parameter for different lateral dimensions in a square NPL, see text for details
of this calculation.
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Figure 3: Ground state total (a-b) and binding (c-d) energies in CdSe NPLs as a function
of the outer medium dielectric constant. (a,c) Neutral exciton. (b,d) Positive trion. Dots
are VQMC calculations, with (m,NW ) = (2 · 106, 600). Colored lines are CI calculations
with a basis set built from single-particle spin-orbitals. Black line in (a) indicates the full
variational calculation. .
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Figure 4: Execution time per iteration of the Newton-Rhapson solver in the VQMC model.
(a) Exciton, as a function of the number of threads. (b) Exciton, as a function of the
number of walkers. (c) Trion, as a function of the number of threads. (d) Trion, as a
function of the number of walkers. In (a) and (c), (n,NW )=(2 · 106, 600). In (b) and (d),
nt = 40. The calculations correspond to the same NPL studied in Fig. 3.
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