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ABSTRACT Crime activity in many cities worldwide causes significant damages to the lives of victims and
their surrounding communities. It is a public disorder problem, and big cities experience large amounts of
crime events. Spatio-temporal prediction of crimes activity can help the cities to have a better allocation of
police resources and surveillance. Deep learning techniques are considered efficient tools to predict future
events analyzing the behavior of past ones; however, they are not usually applied to crime event prediction
using a spatio-temporal approach. In this paper, a Convolutional Neural Network (CNN) together with a
Long-Short Term Memory (LSTM) network (thus CLSTM-NN) are proposed to predict the presence of
crime events over the city of Baltimore (USA). In particular, matrices of past crime events are used as input
to a CLSTM-NN to predict the presence of at least one event in future days. Themodel is implemented on two
types of events: ‘‘street robbery’’ and ‘‘larceny’’. The proposed procedure is able to take into account spatial
and temporal correlations present in the past data to improve future prediction. The prediction performance
of the proposed neural network is assessed under a number of controlled plausible scenarios, using some
standard metrics (Accuracy, AUC-ROC, and AUC-PR).

INDEX TERMS CNN and LSTM neural networks, crime prediction, deep learning, spatial and temporal
structure.

I. INTRODUCTION
Crime related problems are at the base of important and
crucial issues for many societies living in large cities world-
wide. Reference [1] showed that crime and neighborhood
disorder may negatively impact the health of urban residents
by increasing the resident risk of experiencing violence and
impacting their mental health as a form of depression for
being in constant contact with assaults, blows and shots.
Thus, crime rate reduction is at the core of many local policies
driven by active plans supported by police action and local
authorities. In this line, the use of mathematical, statistical
and/or computational models able to predict crime events
beforehandwould help the police to generate preventive plans
for areas at high risk, and to speed up the process of solving
crimes, with the consequent reduction of crime rate. Indeed,
a number of studies have been developed for the analysis and
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prediction of crime events in many parts of the world (see, [2]
and the references within), and several cities have made
their data available for investigations (these are the cases of
Chicago, Seattle, Detroit or Baltimore, to name just a few).
Among the proposed solutions to predict crime events, the use
of machine learning techniques have gained great importance
due to its recent success in solving real world problems.
Reference [3] applied linear regression, additive regression
and decision trees for the prediction of three types of crimes
in the state of Mississippi, obtaining a correlation coefficient
of 99%. Reference [4] used five different machine learning
algorithms to predict which category of crime is most likely
to take place at particular times and space (places) in Chicago.
A decision tree model provided the best performance, achiev-
ing an accuracy of 99.88%. Reference [5] analyzed crime
events in YD county from 2012 to 2015, and applied different
prediction models such as a Bayesian networks, Random
Trees and Neural networks. The work showed that the best
result was obtained with Random Trees, with an accuracy
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of 97.4%. Some machine learning methods for crime pre-
diction in the town of San Francisco were proposed by [6],
where the main aim was to classify a criminal incident by
type, depending on its occurrence at a given time and loca-
tion. The results highlighted AdaBoost as the best classifier
together with RandomForest using the SMOTE method, with
accuracies of 81.93% and 71.43%, respectively. Due to recent
approaches of machine learning in the sub-field of deep learn-
ing, new neural network models have been proposed consid-
ering spatial and temporal correlations. Typical deep learning
models include the Long Short-Term Memory (LSTM) neu-
ral networks and the Convolutional Neural Network (CNN).
In the context of crime prediction, [7] applied a LSTM for
classifying crime incidents related to public safety. By using
only five features of the data set published by Chicago city
police, they were able to obtain 87.84% of accuracy. Refer-
ence [8] applied a Feed Forward Neural Network (FFNN),
a Recurrent Neural Network (RNN), a Convolutional Neural
Network (CNN) and a mixture of Recurring Networks with
Convolutions (RNN + CNN). Using data from Chicago city,
the results showed RNN + CNN as the best neural network
in terms of prediction, obtaining 75.6% and 65.3% accuracy
for Chicago and Portland, respectively. Here, the authors
argue that the weather and the amount of traffic influence the
prediction by decreasing the accuracy of the models. Refer-
ence [9] provided a survey on some data mining techniques
based on neural networks used for detection and prediction
of crimes. They propose methods consisting of collecting
data, classifying and finding patterns, predicting, visualizing
and taking actions with the predictions given by neural net-
works. A similar work using deep learning comes with the
application of a recurrent LSTM proposed by [10], where
the LSTM layers have been chosen for the ability to store
temporal patterns. Different optimization algorithms (such as
Adagrad, RMSProp, SGDNesterov optimizers, AdaDelta and
Adam) were compared, and Adam resulted with the smaller
loss function. In [11] the city of Chicago is divided into
77 communities, where for each community they have social
information such as the number of police stations in a sector,
number of schools, bookstores, type of crime and calls to 311.
This information was then used for running three regression
models: a polynomial regression, a self-regressive model, and
the support vector regression (SVR). The SVR obtained the
best results (i.e. the lowest root mean square error (RMSE))
for predicting the amount of crimes in an area.

With the growth of technology, the local authorities and
police departments had to deal with large amounts of data
in order to understand criminal patterns. In this context, [12]
presented a spatio-temporal crime prediction approach based
on spatial auto-regressive models to automatically detect
high-risk crime regions in urban areas, and to reliably fore-
cast crime trends in each region. They used crime data in
Chicago over the period 2014-2016, and obtained a maxi-
mum mean absolute prediction error (MAPE) between 8.7%
and 11.9%. A spatio-temporal approach was also proposed
by [13] building a spatio-temporal Bayesian model to analyze

spatio-temporal patterns of urban crime and determine devel-
oping trends. The model was then applied to analyze data
regarding burglaries occurred in Wuhan (China) during the
first eight months of 2013. Using different socio-economic
features, the results showed a strong correlation between the
burglary crime rate with the average resident population per
community and number of local internet bars.

Reference [14] presented a novel approach using
spatio-temporal analysis and a Generalized Linear
Model (GLM) for Crime Site Selection (CSS). The authors
were able to find the most likely crime location and predict
crime trends. The model was applied to data of India regard-
ing vehicle thefts from 2010 to 2015, and out of nine studied
districts, the method identified the three districts with higher
probability of occurrence of crimes. Recently, a CNN has
been used jointly with integro-difference equations (IDE) for
a spatio-temporal probabilistic prediction ([15]). In this case,
the CNN is used to learn about the parameters governing
the dynamics from the most recent behavior of the (partially
observed) process.

In this paper, a new approach based on a Convolutional
Long-Short Term Memory neural network (CLSTM-NN) is
proposed to predict crime events in the town of Baltimore
in the period from January 2016 to December 2018. The
proposed neural network model contains convolutional and
long short term memory layers, using as input a stack of
matrices representing the number of crimes spatially dis-
tributed in the city of Baltimore on different past days in order
to predict the number of crimes of the next day. Each element
of the matrices represents the number of crimes within an
area defined by its latitude and longitude. In order to test
the performance of the model, matrices of size 8 × 8 were
considered jointlywith two types of crimes (larceny and street
robberies). Different scenarios (considering different number
of past days as input data) are evaluated for choosing the best
model. Typical metrics (such as accuracy, area under roc and
precision-recall curves) are considered for comparing results.

The CLSTM model was proposed for the first time some
few years ago by [16] to predict rainfall intensity. It then was
applied in different scientific contexts such as travel demand
prediction, ([17]), video segmentation ([18]), depth esti-
mation ([19]), pollution prediction ([20]), marketing inten-
tion detection ([21]), forecasting photovoltaic system output
power ([22]), to name a few cases. However, the CLSTM-NN
has not yest been applied to the problem of crime prediction.
Differently to other types of data such as pollution levels
or rainfall where the studied variables are measurements at
fixed points in space and regular in time, crime events have
the particularity that the spatial distribution is not known
and event occurrences are not regular in time. Also, in the
case of Baltimore, the events rarely occur in space and time
(on average 10 events for day in an area of approximately
100 Km2).

The paper is organized as follows. In Section II, the prob-
lem and the crime data dataset of Baltimore city are presented.
A description of the LSTM and CNN neural networks is
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provided in Section III. Section IV describes themethodology
based on the CLSTM-NN model. The results are shown
in Section V. A discussion is reported in Section VI. The
paper ends with some final conclusions and a discussion
(Section VII).

II. BALTIMORE CRIME DATA
Baltimore is an important seaport in the Maryland state of
United States of America. The city is significantly known
for high crime rate which ranks higher than the national
average. A series of news reports and few crime studies ( [23],
[24]) depict the surge of violent crimes since 2011, in par-
ticular of homicides. The lowest homicide toll of 196 was
recorded in the year 2011, and since then there has been
a steady upward trend. According to data compiled by the
Baltimore Sun (https://homicides.news.baltimoresun.com/),
the number of homicides is steady above 300 with the highest
value recorded in the year 2015. In the same year, Balti-
more’s level of violent crimes was much higher (55.4 per
100000) than the national average (5.1 per 100000). Bal-
timore Police Department is taking initiatives by seeking
assistance from the Federal Bureau of Investigations and
other federal agencies, to control antisocial activities and
to provide a safer and more secure environment in the city.
The city government along with Office of the Mayor provide
public access to crime data in the BaltimoreOpenData portal
(https://data.baltimorecity.gov/). This data is updated every
week with an additional lag time due to processing time.
The open data portal maintains organized primary and sec-
ondary data published by the city council, local authorities,
police department and public bodies. The data is available
under Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/). The data set
used in the current study contains detailed information of
crimes from January 2016 to December 2018 that have
occurred in the city of Baltimore, USA. This crime data set
has been downloaded from the Public Safety domain of the
OpenBaltimore portal (https://data.baltimorecity.gov/Public-
Safety/BPD-Part-1-Victim-Based-Crime-Data/wsfq-mvij).
A total of 148303 records of crime are reported for these
three years. Each crime record comes with both spatial
(latitude and longitude) and temporal (date and time of
occurrence) information alongwith the specific type of crime.
This includes eleven different categories of crimes such as
homicide, robbery, larceny or rape.

The database includes the following variables: date and
time of crime occurrence, crime code, address where it hap-
pened, description of the crime (if the crime was committed
within a home or outside), district, latitude, longitude, and
zone (street, parking lot, or hotel).

As shown in Fig. 1, there are some types of crimes with
a very low number of events, such as ‘arson’,‘rape’, ‘ or
homicide’, while the ’larceny’ and ’common assault’ crime
events are the most frequent. The present study focuses on
street robbery and larceny crimes that comprise 29.4% ( 7.1%
for street robbery and 22.3% for larceny) of the sampled data

FIGURE 1. Amount of events for type of crime.

FIGURE 2. Crime events (red points) in the town of Baltimore for the
years 2016, 2017, and 2018. Black line represents the road network.

set. The decision to select these two crimes is fundamentally
due to the need to experiment the proposed neural network
model to data sets with high frequency of events and with a
different behavior in space and time.

Both types of crime events in the town of Baltimore for the
years 2016-2018 are depicted over the street network in Fig. 2
using red points. For illustrative purposes, the street network
of the city has been accessed from Open Street Map (OSM)
repository using R-package osmdata [25]. The package facil-
itates downloading OSM data using overpass API. OSM data
is free and licensed under the Open Data Commons Open
Database License (ODbL) by the OpenStreetMap Foundation
(OSMF) [26]. Boxplots of the daily events for each year
(in Fig. 3) show the different distribution of the two types
of crimes over the period 2016-2018.

III. LSTM AND CNN NEURAL NETWORKS
In this section two neural network architectures are
described: the Long-Short Term Memory Recurrent Neu-
ral Network (LSTM-RNN) and the Convolutional Neural
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FIGURE 3. Boxplot of daily events per year for the larceny type (red
colour) and for the the street robberies (blue colour) crimes.

Network (CNN-NN), typically used for the predictions of
temporal and spatial data, respectively. The compositions of
these two network, called Convolutional Long-Short Term
Memory Neural Network (CLSTM-NN), will be considered
in this work for the spatio-temporal prediction of Baltimore
events.

A. LONG-SHORT TERM MEMORY RECURRENT NEURAL
NETWORKS (LSTM-RNN)
Recurrent neural networks (RNN) are a kind of neural net-
works with a memory given by recurrent layers, where each
one takes two inputs: the output of the preceding layer, and
the output of the same recurrent layer from the last point
it was processed (see [27], [28]). In such way, the RNN
naturally handles sequential data, being a suitable choice for
dealing with time series data. Nonetheless, these networks are
not able to remember the context behind longer sequences.
On contrast, Long Short Term Memory (LSTM) networks,
proposed by [29], are a variant of RNN designed to model the
long term dependency of recurrent networks. LSTM recurrent
networks have cells as processing units that apply information
loops inside each one of the cells and between the cells
themselves (see [30]). Each cell s(t)i (for each time step t
and cell i) corresponds to the basic unit of a LSTM-RNN.
In addition, each cell has gating units defined as f (t)i that
regulate the information stream inside and between cells, then
a sigmoid unit is applied in order to scale the outputs to range
[0− 1]. The formula of gating units is given by

f (t)i = σ

bfi +∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

 (1)

where x(t) is the input vector, h(t) is the hidden layer activation
vector, containing the outputs of all the cells, and bf ,U f ,W f

are biases, input weights, and recurrent weights for the forget
gates, respectively. The sigmoid unit is given by σ , and the
internal state of each cell is then updated with a conditional
self-loop weight f (t)i as follows

s(t)i = f (t)i s(t−1)i + g(t)i σ

bi +∑
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(t)
j +

∑
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(2)

where b,U ,W denote the biases, input weights, and recurrent
weights into each cell, respectively. The external input gate
unit g(t)i is similarly computed to the forget gate as

g(t)i = σ
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j +

∑
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j

 (3)

Finally, the LSTM cell output is defined as h(t)i which
comes in terms of the output gate q(t)i that uses the sigmoid
unit for gating

h(t)i = tanh(sti )q
(t)
i (4)

with

q(t)i = σ

boi +∑
j

Uo
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j

 (5)

andwhere bo,Uo,W o are biases, input weights, and recurrent
weights for the output gate, respectively.

B. CONVOLUTIONAL NEURAL NETWORKS (CNNS)
Convolutional neural networks are a kind of neural networks
which are commonly used for automatic image and data
recognition tasks. They are neural networks that use convo-
lution in place of general matrix multiplication in at least
one of their layers. A CNN is composed by a set of multiple
layers where each convolutional layer generally considers
convolution, pooling and activation operations. This neural
network searches for local patterns of features detected by
the filters applied in the convolution operation. Each filter
corresponds to a kernel that is represented by a matrix of
numbers, which is typically consistent with the pattern that
the filter is trying to detect (see [28]). A generic forward
propagation of a CNN layer consists of three phases: First,
the layer performs multiple convolutions in parallel to pro-
duce a set of linear matrix transformations. A convolution is
given by applying the filter over the input data by all possible
locations. Then, the resulting linear matrix operation given
by convolution over input is processed through a nonlinear
activation function. Typically, this function corresponds to
sigmoidal, rectified linear or leaky rectified linear functions.
Finally, CNN usually uses a pooling function to modify the
output of the layer further (see [30]). The pooling layer is used
to downsampling feature maps by aggregating the presence of
these features. ACNN is composed by different combinations
of these layers, producing an output dependent on the nonlin-
ear function used in the last one. After the parameter training
procedure, a CNN learns a series of convolutional filters sets
which are optimized with respect to the cost function given
by the learning task (e.g. classification or regression).

IV. METHODOLOGY
The methodology proposed in this work can be summarized
as follows. First, crime events of larceny and street robberies
are selected for the years 2016, 2017, 2018. Then, for each
type of crime the entire area of Baltimore town is divided
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FIGURE 4. Workflow of the methodology.

into a grid of size k× k cells, and the number of crime events
are evaluated in each grid cell for d days (d = 1, 2, . . . , dK ).
Sequences of l matrices are then used as input to the CLSTM-
NN. The application of the CLSTM-NN provides a matrix as
output representing the crime probability in each square of the
grid for the next d days. The probability in each cell is then
approximated to 0 and 1 to evaluate the absence of a crime
or the occurrence of at least one, respectively. Finally, some
classical metrics (such as accuracy, AUC-ROC, and AUC-
PR) are applied for assessing the performance of the proposed
model. A scheme of the proposedmethodology is represented
in Fig. 4. Details of the methodology are described below.

A. BUILDING THE INPUT OF THE CLSTM-NN
As crimes are assumed to be spatially correlated, the data are
represented as a tensor where each slice correspond a crime
map, with each cell representing the amount of crimes at
particular d days for d = 1, 2, . . . , dK . First, an empty square
matrix for each d daysis assigned to represent the crime map,
where the four corner cells correspond to the combinations
of maximum and minimum longitudes and latitudes chosen
from the georeferenced map of Baltimore. The number of
rows and columns depends on the desired resolution of crime
map and considers an equidistant geographical division of
the city. Then, each cell (i, j) of this matrix is filled with the
number of crimes committed in that area. Each cell of the
matrix contains the number of crimes in d days for a particular
area. Although different sizes of grids could be considered,
in this work, only the 8 × 8 (corresponding to 806 × 806
squared meters) and 16×16 grids are used. Sizes smaller than
8×8 would further reduce the spatial model precision, so that
they were not considered in this work. Finally, the matrices
are stacked to a tensor which corresponds to the input data
of the neural network. Finally, a Convolutional Long-Short
Term Memory neural network (CLSTM-NN) is applied for
the spatio-temporal prediction of larceny and street robbery
events over the period 2016-2018.

FIGURE 5. Structure of the proposed neural network. A CNN is considered
where its last layer is linked to a LSTM neural network. The classification
is obtained with a dense layer over the output layer of LSTM.

B. CONVOLUTIONAL LONG-SHORT TERM MEMORY
NEURAL NETWORK
In this section a brief description of the proposed
CLSTM-NN for spatio-temporal crime prediction is pre-
sented. This approach combines sequentially a convo-
lutional neural network (CNN) and a Long-Short Term
Memory (LSTM) neural network. The parameters of the
LSTM are associated with each individual LSTM cell
(see III-A), and the parameters of the CNN are associ-
ated with the convolution operation (see III-B). Indeed,
CLSTM-NN uses the classical back-propagation algorithm
in order to estimate the model parameters, i.e. to train the
network.

The CLSTM-NN uses as input data a k × k × l tensor that
constitutes a sequence of maps representing the crimes for
l consecutive d days and k grid divisions in Baltimore city.
An example of the architecture of the network with k = 8
and l = 1 is represented in Fig. 5. Each map represents a
geographical grid over the city. A grid has size k × k where
each cell represents the number of crimes occurred in a day
inside a specific quadrangular region of the city. The tensors
represent the evolution of the patterns along the time axis.
A shared convolution layer conformed by 16 filters is then
applied to each temporal tensor component of the input data.
The size of the convolutional kernel is 2×2, and the TimeDis-
tributed wrapper of Keras library is considered. Next, a max
pooling layer reducing the dimensionality to the half size of
maps (from k × k × l down to k/2× k/2× l) is applied. The
next step is to introduce a recurrent LSTM layer with 2 output
neurons considering a linear activation function. This layer
allows to find the structure of the temporal patterns between
time slices of the input tensor. The output layer consists of
a dense layer where the number of neurons is equal to the
number of cells of the output matrix, which corresponds to the
k×k binary crimemap of the l+1 day, where a cell is assigned
to 1 if it has at least one crime and 0 otherwise. As the
aim is focused on the presence of crimes, this layer uses a
sigmoid activation function. This neural network is inspired
by the proposal of [31], where new links are predicted in
a graph, by applying convolutions and LSTM layers to the
adjacency matrix. In our experiments, maps with parameter
k ∈ {8, 16} for l = 5 days stacked in chronological order are
considered. A similar architecture can be used by considering
an input map representing the sum of crimes at different
days.
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C. EXPERIMENTAL SETTING
The prediction performance of the proposed neural network
are assessed by considering the following three scenarios for
the larceny and street robbery crimes in Baltimore:

1) An l sequence of daily crime maps of size 8 × 8 are
used as input to CLSTM-NN to predict the presence
or absence of events at the next day. Up to 7 past days
are used as input for the prediction on the next day (see
Tables 1 and 2).

2) The total of crime events for the past d = 1, . . . , 7 days
over amap of size 8×8 are used as input to CLSTM-NN
to predict the presence or absence of events on the next
d days (see results in Tables 3 and 4).

3) The total of crime events for the past d = 1, . . . , 7
days over a map of size 16 × 16 are used as input
to CLSTM-NN to predict the presence or absence of
events on the nextthe d days (see Tables 5 and 6).

For all scenarios, a hold-out validation scheme is con-
sidered with the 70% of the data assigned to the training
set, and the remaining 30% to the testing set. To check the
performance of the corresponding neural network, the fol-
lowing metrics were considered: the accuracy, the AUC-ROC
curve, and the AUC-PR curve (see, [32]–[34]). For the neural
network training, the Adam optimizer (see, [35]) was used for
assigning the weight to the neurons. This algorithm works
as a stochastic gradient algorithm, where the learning rate
is dynamically adapted for minimizing the loss function at
each iteration. As the problem corresponds to a classification
task, the loss function was given by the binary cross-entropy
function. The training process in our experiments considered
100 epochs and a batch value of 32 (i.e. the number of
matrices used in each training iteration). The machine used
to carry out the experiments had a GTX 1080Ti card able to
process the training and tests of the network, each training
being carried out in three minutes given the capacity of the
card. The most time consuming process is the mapping of the
city in matrices with the number of crimes, being the creation
of grids of size 64×64 a process that takes approximately two
hours.

V. RESULTS
The results of the three scenarios for the testing sets are
shown in Tables 1 to 6. For the first scenario, maps of size
8 × 8 of larceny and street robbery crime events were used
as input to the CLSTM-NN neural network, for predicting
the presence of crime events one day ahead using d past
days, with d = 1, . . . , 7 (see Table 1 for larceny crime
and Table 2 for street robbery). From a preliminary analysis,
temporal correlations resulted very low for more than 7 days.
The best accuracy resulted by using a number of past days less
or equal to 5 (see Table 1 for larceny crimes). The use of past
6 and 7 days as input caused a slight overfitting in the training
sets causing lower values of the performance metrics in the
testing sets. Moreover, although the total accuracy reached
relatively good values (more than 73%), the area under the

TABLE 1. Performance metrics (Accuracy, AUC-ROC, and AUC-PR) on the
testing set for one day ahead prediction of larceny crimes using different
number of past days as input to the CLSTM-NN neural network.

TABLE 2. Performance metrics (Accuracy, AUC-ROC, and AUC-PR) on the
testing set for one day ahead prediction of robbery street crimes using
different number of past days as input to the CLSTM-NN neural network.

ROC precision recall curves always resulted under 0.62 and
0.54, respectively, especially due to the low number of events
per day (since only 25% of the cells has at least one event,
the model tends to predict 0 events when the number of events
is very low). A similar situation resulted for street robbery
crimes (in Table 2) where the accuracy reached the value
0.89 and the AUC-PR is less than 0.50 with only 11% of
cells with at least one event. Also, the best accuracy resulted
by taking the last 5 days for predicting ahead. However,
the AUC- ROC and AUC-PR are slightly better using the last
6 and 7 days.

For solving the problem of unbalanced data, sequences
of aggregated numbers of crime events of the last k days
were used as input to the proposed CLSTM-NN for the
experiments in the second scenario. Tables 3 and 4 show the
results of k days ahead prediction of both types of crimes
using five sequences of d aggregated events as input for
the CLSTM-NN neural network. For example, for d = 1,
5 sequences of 8 × 8 matrices were used as input to the
CLSTM-NN for predicting the 8× 8 matrix of the next day;
for d = 2 5 sequences of 8 × 8 matrices were used for
predicting the 8 × 8 matrix of the next two days; and so on
until d = 7.
In the case of larceny crimes (Table 3) almost all the con-

sideredmetrics (Accuracy, AUC-ROC, andAUC-PR) (except
the accuracy for k = 1) increase with k running from 1 to 7,
reaching an accuracy of 0.86, an AUC-ROC of 0.80 and an
AUC-PR of 0.93. This means that the model improves the
predictions when more days are grouped together. Note that
for k = 7 it means that the probability that in the next 7 days
there will be at least one larceny crime event is predicted.
In the case of k = 1 the data set includes only 26% of
the cells with at least one event reaching 70% for k = 7.
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TABLE 3. Performance metrics (Accuracy, AUC-ROC, and AUC-PR) on the
testing set using a 8× 8 grid for the larceny crimes. The metrics are
calculated on d days ahead prediction using five sequences of matrices
of events in d days events as input to the CLSTM-NN neural network.

TABLE 4. Performance metrics (Accuracy, AUC-ROC, and AUC-PR) on the
testing set using a 8× 8 grid for the street robbery crimes.The metrics are
calculated on d days ahead prediction using five sequences of matrices
of events in d days events as input to the CLSTM-NN neural network.

TABLE 5. Performance metrics (Accuracy, AUC-ROC, and AUC-PR) on the
testing set using a 16× 16 grid for the larceny crimes.The metrics are
calculated on d days ahead prediction using five sequences of matrices
of events in d days events as input to the CLSTM-NN neural network.

This explains the low AUC-PR for k = 1. The accuracy, the
AUC- ROC, and AUC-PR improve significantly for k = 3
where the percentage of at least one event is around 50%.

A similar behavior is shown for street robbery predictions
in Table 4 where all metrics increase as the d increases. In this
case the percentage of the cells with at least one event is
only 11% for k = 1 explaining the high level of accuracy
and very low AUC-ROC (the model tends to predict quite
all zeros). For k = 7 all the indexes are relatively high
with only 37.5% of the cells with one or more events. This
means that the model is able to provide good predictions
with a relatively small number of events. As expected, these
performance indicators improved for higher d reaching the
values of 0.84 for the accuracy and AUC-ROC, and 0.82 for
the AUC-PR.

The same effect can be noted by increasing the spatial
resolution. Tables 5 and 6 show the results for larceny and
street robbery, respectively, by considering a grid of 16× 16
as described by the third scenario.

As expected, in both cases the accuracy decreases and the
AUC-ROC and AUC-PR increase with higher values of d .

TABLE 6. Performance metrics (Accuracy, AUC-ROC, and AUC-PR) on the
testing set using a 16× 16 grid for street robbery crimes. The metrics are
calculated on five days ahead prediction using d sequences of five days’
aggregated events as input to the CLSTM-NN neural network.

FIGURE 6. Loss functions for the CLSTM model with d = 5 and grid size
8× 8 for larceny (a) and robbery street (b) crimes. The blue line
represents the loss obtained by the model in the training set at each
iteration, while the red line indicates the loss for the testing set.

Given the poor representativeness of the predictions on the
16 × 16 grid size (due to the low number of cells with at
least one event) in the following some particular results of
the second scenario will be described.

As an example, the losses (for the training and testing sets)
for the larceny and street robbery crimes with d = 5 and
for a grid size 8 × 8 are shown in Fig. 6a) and Fig. 6b),
respectively. As can be noted in Fig. 6, the loss of the model
converges rapidly in the first 20 epochs, with the training
curve providing a loss lower than the testing one. The dif-
ference between the two curves slightly increases with the
iterations. To visualize the learning skills of these models,
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FIGURE 7. Prediction performance for the CLSTM model with k = 5 and
grid size 8× 8 for larceny crimes. (a) ROC curve: the area under the red
line represents the percentage of cases correctly classified while the
dashed red line indicates a randomly classification. (b) Precision-recall
curve: the area under the red line represents the percentage of true cases
which are correctly classified, while the red dashed line indicates a model
which is not able to classify an event as a true case.

the AUC-ROC and AUC-PR curves are shown in Fig. 7a) and
Fig. 7b) for larceny crimes, and in Fig. 8a) and Fig. 8b) for
street robberies.

Fig. 7a) represents the ROC curve for d = 5 (in Table 5)
when predicting larceny events. The area under this curve
approximately equals to 0.77 (higher than 0.5 given by the
dashed line indicating that the CLSTM-NN model is able to
correctly classify the presence of larceny cases in more than
77% of the cases. The Precision-Recall metric represented
by the area under the curve shown by Fig. 7b) indicates that
the proposed model procedure is able to correctly classify
positive cases (presence of at least one crime) in the 89% of
the cases. A similar behavior can be noted in Fig. 8a) and
Fig. 8b) for street robbery cases, where the CLSTM model is
able to correctly classify the presence of street robbery cases
in more than 82% of the cases (Fig. 8a), and the 78% positive
cases (Fig. 8b).
Fig. 9 and Fig. 10 represent an example of the predictions

and the observed crime events for the larceny and street
robbery crimes, respectively, for a period of d = 5 days
(d = 5 is considered a reasonable period for the decision

FIGURE 8. Prediction performance for the CLSTM model with d = 5 and
grid size 8× 8 for robbery street crimes. (a) ROC curve: the area under the
red line represents the percentage of cases correctly classified, while the
dashed red line indicates a randomly classification. (b) Precision-recall
curve: the area under the red line represents the percentage of true cases
which are correctly classified, while the red dashed line indicates a model
which is not able to classify an event as a true case.

maker in taking decisions for preventing crime events and
therefore it was worth visualizing the corresponding results).
In both cases the output of the CLSTM-NN model was a
matrix consisting of the cumulative events in a 8 × 8 size
map while 5 sequences of 5 days were taken as input. For
both crime types, the total events on the days February, 5,
6, 7, 8 and 9 of the year 2018 were considered as input to the
CLSTM-NNmodel for predicting the presence of at least one
crime in the next 5 days (February 10, 11, 12, 13 and 14) of
the same year.

Fig. 9a) and Fig. 10a) show the probability of occurrence
of at least one event with the observed events overlapped
(red points); Fig. 9b) and Fig.10b) show the probability of
occurrence of at least one event with the observed events
overlapped (red points), and Fig. 9c) and Fig. 10c) show the
distribution of the areas where the events occurred (white
squares). Observing these results, it is noted the highest crime
rates are concentrated at Baltimore downtown. Comparing
the predictions with the observed points, there are few pre-
dictions errors (given by the red points on the gray squares)
showing the ability of the proposed neural network to learn
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FIGURE 9. Prediction of larceny crimes in a 8× 8 grid from 2/10/2018 to
2/14/2018 using 5 sequences of 5 days as input: (a) prediction of
probability of one or more events with observed events overlapped
(darker cell: less predicted probability of crime; true crime events: red
points); (b) Prediction of absence/presence of events (gray color:
absence; white color: presence of at least one event) with observed
events overlapped (red points); (c) Matrix of absence/presence (gray
color: absence; white color: presence of at least one event).

about the spatial and temporal structures and predict crime
presence on the future. Also, by comparing the probability
output with the location of observed events, only few events
(red points) correspond to the lowest probabilities (darker
squares).

FIGURE 10. Prediction of street robbery crimes in a 8× 8 grid from
2/10/2018, to 2/14/2018 using 5 sequences of 5 days as input:
(a) prediction of probability of one or more events with observed events
overlapped (darker cell: less predicted probability of crime; true crime
events: red points); (b) Prediction of absence/presence of events (gray
color: absence; white color: presence of at least one event) with observed
events overlapped (red points); (c) Matrix of absence/presence (gray
color: absence; white color: presence of at least one event).

VI. DISCUSSION
This work proposes a deep learning model for predicting
crimes using LSTM and Convolutional layers to generate
predictions at crime sub-zones. Past number of events per
day in each sub-zone have been considered as input to the
model, and a map of 0 and 1 (0=zero events, 1=at least
one event) as output. Since the generated matrices of events
by day included a large number of 0 values (more than the
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TABLE 7. Moran’s I test for the larceny and street robbery crime events in
the years 2016, 2017, and 2018: Moran’s I statistic, Standard Deviate (SD),
and P-value.

50%) providing an unbalanced dataset, aggregation of events
over different days are considered in order to have input
matrices with higher percentages of events. Two types of
crimes, larceny and street robberies, were chosen for this
study in the city of Baltimore. In order to assess the perfor-
mance of the model, the following metrics have been applied:
the accuracy, the area under the ROC and precision-recall
curve. The best results were obtained for larceny crime by
considering a 8 × 8 grid map, and 5 sequences of 7 days as
input. In this case the proposed model provided an accuracy
of 86%, and an AUC-ROC of 77%, and an AUC-PR of 93%.
For street robbery crime, the best results, obtained with the
same structure (d = 7), were 83%, 81% y 77% for the three
indicators.

There are not other published works on the application
of machine learning on crimes at Baltimore town accord-
ing to our revision; however, by comparing our results with
those obtained by the application of deep learning tech-
niques to the prediction of crime at other cities in the world,
our method results competitive, by outperforming exist-
ing proposals in many occasions. For example, [8] imple-
mented a recurrent neural network (RNN) and a convolutional
one (CNN) for predicting the next day crime counts in the
cities of Chicago and Portland. By considering additional
variables related to weather, census data and transportation,
they reached an accuracy of 75.6% and 65.3% for Chicago
and Portland, respectively. An LSTM model was used by [7]
for predicting future class labels of crime incidents. They
validated their method over Chicago by using some input
features obtaining an accuracy rate of 87.4% and showing
its ability to work with big data sets. Differently to our
work, no spatial variability was taken into account in this
work.

A spatio-temporal approach has been considered by [11]
and [12]. Reference [11] used a regressionmodel (polynomial
regression, support vector regression, and auto-regressive
regression) for predicting crime activity in the city of Chicago
using social information sources from network analytic
techniques. By comparing the models, the support vector
regression provided better performances in terms of RMSE.
Reference [12] presented the design and implementation of
an approach based on spatial analysis and auto-regressive
models to automatically detect high-risk crime regions in
urban areas, and to reliably forecast crime trends in each
region. The results (in terms of MAE) showed that crimes
decrease for smaller areas. A different approach using

autoencoder architecture with convolutions for predicting the
number of crimes in the town of Chicago has been pro-
posed by [36]. The results provided a very good performance
(around 97% of R2) when using a small dataset (less or
equal to a year). The use of a spatio-temporal approach
in this work is mainly justified by the presence of spatial
and temporal correlations in crime data. The assumption of
spatial auto-correlation can also be confirmed by the results
of Moran’s I test ( [37]), presented in Table 7, that always
rejected the null hypothesis of spatial randomness when tak-
ing temporal aggregation of crime events.

VII. CONCLUSION AND FURTHER DEVELOPMENTS
In the context of machine learning, the use of neural networks
plays an important role in data analysis. In particular, neural
networks are shown to be useful to learn from the past patterns
to predict the future. In this paper, the Convolutional Long
Short Memory Neural Network (CLSTM-NN) is proposed to
predict the presence of crime events over the city of Baltimore
(USA). The model constitutes a novelty for this kind of data
since the CLSTM-NN is more often used in the transport
field and other applications (see, [38]). Also, there are no
works that predict the crimes of Baltimore town using deep
learning.

Three scenarios were considered by taking a different num-
ber of events for predicting the crime events in the next d
days. The CLSTM-NN provided better results in the second
scenario by reaching and accuracy of 0.86 and a AUC-PR
of 0.93 for the larceny crime using sequences of matrices of
events occurred in d = 7 days. The obtained results show
that the network model is able to learn past spatial patterns to
predict future presence of crimes. The main results could be
summarized as follows: (i) the temporal and spatial resolution
is relevant in the performance of the model; (ii) the type of
crime could influence the performance of the neural network;
(iii) an opportune pre-processing of data and the use of an
optimal architecture of neural network are important ingre-
dients for crime prediction. A good prediction of when and
where will happen the future crime events would help the
police to make better use of limited resources. However,
the main limitation of CLSTM-NN is due to the poor perfor-
mance for low percentage of crime events (given by sparse
spatio-temporal matrices) which affects the spatio-temporal
resolution of predictions. The problem of sparsity has been
partially solved by [39] by representing the hourly crime data
of Chicago and Los Angeles towns with a spatio-temporal
weighted graph (STWG). In order to improve the pre-
dictions on higher resolution scales, the graph approach
of [39] together with other deep learning methods (see,
the reviews [38] and [40] and the references within) will
be explored in future works. Also, attention-based neural
networks will be applied to improve crime prediction con-
sidering exogenous variables related to crime events (such
as weather and socio-demographic data). Finally, other types
of crime (such as common assault, burglary, etc.) will be
considered for the spatio-temporal prediction.
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