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Abstract

This article describes a new procedure for automated generation of two-dimensional
locally refined quadrilateral meshes of gear drives. In this new procedure, a base
mesh is generated using a multiblock meshing procedure. Then, selected ele-
ments of the base mesh are subdivided to obtain a refined mesh in certain parts
of the gear teeth.

The proposed procedure is completed with a mesh quality enhancement tech-
nique, which is based on an optimization-based smoothing. It also includes
strategies that allow to automatically identify and refine those areas of the gear
that are typically subjected to elevated stress gradients.

The performance of the proposed procedure is illustrated with numerical
examples, and it is compared to other existing meshing procedures, both in
terms of mesh distortion and accuracy of the results.
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1. Introduction

Since Wilcox [1] started using it in 1973 to determine the stresses in gear
teeth under load, the finite element method has become an essential technology
in the research and development of gear transmissions. In the last years, this
analysis technique has been used for a wide range of applications, including the
determination of the contact and bending stresses of the gears under load [2,
3, 4, 5] and the prediction of the bulk and flash temperatures of the gears in
operating conditions [6, 7, 8].

According to Litvin [9], the development of a finite element model of the gear
drive can be accomplished by means of three steps. In the first step, a finite
element mesh is generated for the gear drive. In the second step, the potential
contact surfaces are identified and contact pairs between gear teeth are defined.
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Finally, in the third step, the boundary and loading conditions under which the
analysis is conducted are established.

Let us draw our attention to the first one of these steps, where the gear
geometries are generated and then discretized into a set of finite elements. This
is an important step in a finite element analysis, as it affects not only its compu-
tational cost, but also the accuracy of the obtained results. To build an optimal
finite element mesh, two main rules should be fulfilled: first, to obtain results
with a high level of accuracy, the finite element mesh must have a high den-
sity of elements in those regions of the model where elevated gradients of the
studied variables are produced [1, 10]; and second, to shorten the computation
time associated to the analysis, the density of the mesh should be reduced in
those regions of the model where low gradients are expected. The ability of pro-
ducing meshes with variable mesh density is usually referred to as local mesh
refinement.

Another aspect that must be born in mind during the construction of the
finite element mesh is the distortion of its elements [10], because the presence
of distorted elements may compromise the accuracy of the results of the finite
element analysis [11, 12, 13]. In particular, Coy [14] showed the negative effects
that the distorted elements have over the contact results in spur gear transmis-
sions. For these reasons, distorted elements must be avoided, especially in those
areas where elevated stress gradients are expected.

Several methods have been developed to discretize a gear geometry into
finite elements. Among them, the one proposed by Argyris et al. [15] could
be considered one of the most relevant, as there are many authors who have
decided to use it in their works [4, 6, 16, 17, 18]. Argyris’ procedure offers
the advantage of being fast and easy to implement, but it tends to generate
distorted elements in regions of the gear tooth where elevated stress gradients
are usually produced. In addition, this meshing procedure does not allow the
performance of local mesh refinement, as it generates symmetric meshes in both
the leading and the trailing sides of the tooth.

In order to produce mesh refinements in certain parts of the gear teeth, some
researchers started using structured meshes with specific element arrangements.
For example, Li [19] developed finite element models in which the finite element
meshes where refined at the fillet and the contact areas. Gonzalez-Perez [20]
used a modified version of the Argyris meshing procedure in which some features
were incorporated to the finite element models for a better control of the mesh
refinement around the contact point.

Although the mesh refinement strategies used in the aforementioned works
allowed to increase the mesh density in certain parts of the tooth (and in con-
sequence the accuracy of the analysis), the mesh propagation effect caused the
mesh refinement to be not local, but global. This means that refined meshes
are obtained in parts of the gear teeth where they are not required, and in con-
sequence, the efficiency of these meshes is reduced and their associated compu-
tational time increased. Besides that, keeping structured meshes in the refined
areas leads to the appearance of undesired distorted elements [21].

To solve these issues, Mao [2] and Gonzalez-Perez [22, 23] developed mesh-
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ing procedures where independent meshes are generated for different parts of
the gear tooth, and then they are joined together using multi-point constraints
(MPCs). By doing this, meshes with different element density can be obtained
for each part of the tooth, thus allowing the performance of local mesh re-
finement. However, Roarty [24] and Keskin [25] showed that using MPCs to
connect non-conforming meshes can produce numerical errors at the mismatch-
ing interfaces and introduce difficulties in the generation of the finite element
model.

A different approach was presented by Barbieri [21], who introduced the
idea of performing adaptive mesh refinement in the finite element meshes of the
gears. This adaptive refinement is performed using a commercial finite element
solver, where the gear geometries are introduced as non uniform rational B-
splines (NURBS). Although this approach has its advantages, it requires of
dedicated commercial software and, in addition, generic gear geometries cannot
be accurately described using NURBS.

Recently, a procedure to create finite element meshes of gear transmissions
was developed by the authors of this work [26]. This procedure has the advan-
tage of allowing the performance of local mesh refinement and, in addition, it
reduces the distortion of the elements of the mesh. However, the local mesh
refinement capabilities offered by this meshing procedure are limited, as it can
only be defined at the surface of the gears, without any control of the behavior of
the mesh underneath the surface. Besides that, it generates distorted elements
when the size of the elements in the refined area is very small compared with
the size of the elements of the base mesh.

In this work, a new meshing procedure to perform the automated generation
of quadrilateral meshes over gear sections is proposed. This new procedure is
aimed to overcome the limitations of the previously proposed meshing procedure
by enhancing its local mesh refinement capabilities, allowing the definition of
refinement areas in any part of the domain, without compromising the quality
of the resulting mesh.

2. Generation of a base quadrilateral mesh over a gear tooth section

Figure 1 shows a generic tooth section whose geometry is defined by eight
boundary curves (representing the left and right fillets, left and right profiles,
top land and the parts of the corresponding rim) that are interconnected at
points Pi {i = 1, 2, ..., 8}. Note that points P3 and P4 are the frontier between
fillet and profile curves. The tooth section is referred to a local coordinate
system, whose origin OL coincides with the center of the gear section. Its ZL

axis is perpendicular to the section plane and the YL axis is oriented in such a
way that it is centered with respect to the gear section.

In this section a procedure to generate a structured quadrilateral mesh over
this generic tooth section is proposed. The development of this procedure is
carried out assuming that the parametric equations of the curves that define
the geometry of the tooth section are known. The resulting quadrilateral mesh
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Figure 1: Geometry of a typical gear tooth section

is aimed to serve as a base mesh for the application of the local mesh refinement
method described in section 3.

As it can be observed in Fig. 1, a tooth section is a non-convex domain with
complex boundaries and, in consequence, generating a mesh over it represents
a serious and even intractable problem. To get around these difficulties, re-
searchers [27, 28] recommend using multiblock meshing procedures. The main
idea behind these procedures is to decompose the domain into several simpler
sub-domains (patches) where a local meshing scheme can be applied. Thus, in
the proposed approach, the typical steps of a multiblock meshing procedure are
followed to generate a structured quadrilateral mesh over the tooth section:

Step 1. The tooth section is decomposed into simple patches, in such a way that
each patch is suitable for the local meshing scheme that will be applied
to it. The proposed decomposition is described in section 2.1.

Step 2. Mesh seeds are defined over each one of the boundary curves of the
patches. These mesh seeds represent the position that the nodes of the
resulting mesh will occupy over them. This step is further discussed in
section 2.2.

Step 3. A local meshing scheme is used to generate a quadrilateral mesh over
each one of the patches. In this work an algebraic interpolation method
based on transfinite interpolation [29] has been selected for such a pur-
pose (described in section 2.3).

Once these steps are concluded, the final mesh is constructed by merging
the sub-meshes generated for each patch of the decomposition. In the aim of
brevity, the meshing procedure is described for one tooth, since its extension to
mesh several adjacent gear teeth is trivial.
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2.1. Decomposition of the tooth section in simple patches

There are several aspects that need to be taken into account when choosing
a decomposition for the tooth section. Some of them are requirements of the
selected meshing scheme, which must be necessarily fulfilled, while others are
simple considerations that are made to improve the quality of the resulting
mesh.

In this case, the requirement of the selected meshing scheme [29] is that
the patches must be bounded by four parametric curves, being topologically
equivalent to a square [27]. Besides that, and in order to avoid self-folded and
distorted meshes, the patches must be as close as possible to convex regions and
the discontinuities in the slope of their boundary curves should be avoided [28].
Furthermore, in order to ease the discretization of the boundary curves and
guarantee the continuity of the mesh lines across the boundaries of the patches,
the resulting decomposition must be conformal, which implies that any bound-
ary curve cannot be shared by more than two patches.

These requirements and considerations lead us to several ways of decompos-
ing the tooth section, which have been investigated in depth. Among them,
the one that proved better results is the one shown in Fig. 2. In this figure,
an asymmetric tooth has been selected to explore the most general case, since
symmetric teeth are simpler and could be a particular case of asymmetric teeth.

Figure 2: Decomposition of a generic asymmetric tooth section into simpler patches

Starting from the boundary curves of Fig. 1 and their limiting points (Pi),
this decomposition is based on the determination of eight auxiliary points, which
are denoted by Qi {i = 9, 10, ..., 16} (Fig. 2a). The connections between these
auxiliary points and the points Pi allow us to draw lines that divide the tooth
section into eight patches (patches A to H in Fig. 2b). To ease the reading of
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this work, the boundary curves of the resulting patches are renamed to ci {i =
1, 2, ..., 23}, as indicated in Fig. 2c.

In the proposed procedure, the positions of the auxiliary points Qi are de-
termined by means of the following steps:

i. Point Q9 is located at the middle of the top land (Fig. 3a).

Figure 3: Determination of the position of the auxiliary points in a generic asymmetric tooth
section.

ii. Normal vector u3 at P3 is determined from the equations of the profile
curve. Then, point P ′3 is obtained as the intersection of axis YL with the
straight line defined by P3 and u3. Similarly, P ′4 is obtained from P4, its
associated normal vector u4 and YL. Finally, Q10 is determined as the
middle point of the segment between P ′3 and P ′4.

iii. Points Q11 and Q12 are located at the middle point of the left and right
fillet curves, respectively (Fig. 3b). At these points, the normal vectors u11

and u12 are determined.

iv. Point Q′11 is determined as the intersection of the axis YL and the straight
line defined by Q11 and u11 (Fig. 3b). Similarly, Q′12 is determined as the
intersection of YL and the line defined by Q12 and u12. Then, Q13 is located
at the middle point of the segment between Q′11 and Q′12.

v. Distance dA is defined as the average length of segments P3Q10 and P4Q10.

vi. Points Q14 and Q15 are located over the rim sides at a distance dA from P5

and P6, respectively (Fig. 3c).

vii. Finally, point Q16 is obtained as the intersection of axis YL and the bottom
rim boundary curve (Fig. 3c).

When the tooth is symmetric, the procedure becomes simpler because P ′3
and P ′4 are coincident (so is Q10), and this also happens to Q′11, Q′12 and Q13.

The resulting decomposition satisfies all the requirements of the local mesh-
ing scheme, which are specified at the beginning of this section. In addition, it
minimizes the difference in the length of the opposite boundary curves of the
patches, which helps improving the aspect ratio of the elements of the resulting
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Table 1: General meshing requirements

Requirement Affected patches Mathematical condition
R1 F, H n8 = n23 = n14

R2 E, G n1 = n22 = n13

R3 C, D n2 = n16 = n7

R4 A, C, E n4 = n18 = n20 = n9

R5 B, D, F n5 = n19 = n21 = n10

R6 A, B n3 = n15 = n6

R7 G, H n11 = n17 = n12

mesh. The proposed decomposition also tries to maximize the orthogonality of
the boundary curves at the vertices of the patches, which helps reducing the
skewness of the elements of the mesh.

2.2. Specification of mesh seeds along the boundary curves

In this step, a set of ni + 1 mesh seeds is specified over each boundary curve
ci {i = 1, 2, ..., 23} of the tooth decomposition (Fig. 2c). These seeds represent
the position that the nodes of the resulting mesh will occupy over the boundary
curves, and divide each one of them in ni segments (or divisions).

The number of divisions in the boundary curves of the patches determines
which type of mesh can be generated over them. For example, the generation
of a quadrilateral mesh requires the patch to have an even number of divisions
in their boundary curves. Moreover, in this particular case a structured quadri-
lateral mesh is desired, and this requires that the opposite boundary curves of
the patches have the same number of divisions. This requirement leads to the
seven mathematical conditions shown in Tab. 1, whose fulfillment is mandatory
to continue with the meshing process.

Furthermore, the number and the position that the mesh seeds occupy over
the boundary curves have a significant impact on the quality of the resulting
mesh. In this line, section 3.3 provides some guidelines to distribute these seeds
over the boundary curves in order to maximize the quality of the resulting mesh.

2.3. Generation of a quadrilateral mesh over each one of the patches

An algebraic interpolation method based on the transfinite interpolation [29]
is selected to mesh the patches in which the tooth section is decomposed. To
describe this method, let us consider a generic patch as the one shown in Fig. 4a,
which is defined by four boundary curves ci {i = 1, 2, 3, 4}. Over each boundary
curve there are distributed ni + 1 mesh seeds that divide it in ni segments. The
requirements described in Tab. 1 cause that the opposite boundary curves of
the patch are divided into the same number of segments.

The quadrilateral mesh is generated over this patch following four steps:
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Figure 4: Meshing quadrilateral patches using hierarchical templates

i. The patch is represented in the computational space by a unit square, in
such a way that each boundary curve of the patch is logically equivalent to
an edge of the unit square ei {i = 1, 2, 3, 4}, as shown in Fig. 4b.

ii. The mesh seeds are transferred from the boundary curves of the patch to
the edges of the unit square.

iii. A structured quadrilateral mesh is generated over the unit square using a
bilinear interpolation of the transferred mesh seeds (Fig. 4c).

iv. The mesh is mapped from the unit square in the computational domain to
the patch using transfinite interpolation [30] (Fig. 4d)

3. Performing local mesh refinement

This section describes a procedure to perform local mesh refinement over
a base quadrilateral mesh of a gear section, which may consist of one or more
teeth. This procedure is developed under the assumption that the base mesh
is generated following the instructions given in section 2, and it consists of two
main steps. In the first step (section 3.1), selected elements of the base mesh
are recursively subdivided until a certain level of refinement is achieved. The
element subdivision causes the appearance of hanging nodes (i.e. nodes that ap-
pear in the edges of adjacent elements with different refinement levels), which are
removed in the second step of the procedure (section 3.2). In section 3.3, some
recommendations for the application of the local mesh refinement are given.
Finally, the automatization of the mesh refinement is discussed in section 3.4.

3.1. Element subdivision

The proposed mesh refinement procedure is based on the recursive subdivi-
sion of the elements of the base mesh. The parts of the domain that are to be
refined are selected using refinement areas, which are defined by a closed poly-
gon, as illustrated in Fig. 5a. A maximum element size is associated to each
refinement area, in such a way that when the refinement process is completed,
these areas are covered by elements whose size is smaller than the maximum
element size specified for each refinement area.
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Figure 5: Mesh subdivision process

The element subdivision process is similar to the one followed in a quadtree
structure [31]. All the elements of the mesh are checked in turn, and they are
divided into four sons when the following conditions are simultaneously fulfilled:

� The area of the element coincides (totally or partially) with a refinement
area.

� The size of the element exceeds the maximum element size specified for
the particular area.

The process is repeated until no element in the mesh satisfies both conditions.
All the element splitting operations are performed in the logical space. By doing
so it is ensured that no further adjustments will be required in the position of
the nodes in the physical space to match the geometry of the gear tooth.

Each element of the mesh has an associated level number, which represents
the number of subdivisions that are required to reach this particular element
from an element in the base mesh. The level of the elements of the base mesh
is 0, and each time an element is divided, the level of its sons is increased by
one. Note that the level of an element can be used to define its relative size
with respect to its ancestor in the base mesh. For this reason, the level of the
elements is used to define the maximum element size in a refinement area.

After completing the mesh subdivision, a further operation is conducted to
ensure that the resulting mesh is strongly-balanced. A strongly-balanced mesh
is one where the level difference between any two neighboring elements is either
0 or 1. If this condition is violated, the element with a lower level is divided
until that condition is fulfilled. Figure 5c shows an example (in dashed line)
of an element that is split to achieve a strongly-balanced mesh. A stongly-
balanced mesh is required in order to remove the hanging nodes that arise as a
consequence of the mesh subdivision.
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3.2. Removing hanging nodes

The element subdivision process described before produces elements with
hanging nodes. These hanging nodes produce connectivity issues in the mesh
that can cause problems during the finite element analysis, so they need to be
removed. Following up the example shown in the previous section, Fig. 6a shows
the hanging nodes resulting from the mesh subdivision illustrated in Fig. 5.

Hanging
node

!0
!1

!2

Transition
node

Transition
element

Γ1

(a) (b) (c)

Inactive
node

Active
node

Transition
template

Figure 6: Removing hanging nodes in Γ2.

Let us define a sub-mesh Mi as the union of all the elements of a givel level
i. Two sub-meshes Mi and Mi+1 intersect along a polyline Γi, which can be
non-manifold and may consist of disconnected polylines. All those elements in
Mi that contain a node in Γi are defined as transition elements, and all those
nodes of the transition elements that lie on Γi are defined as transition nodes.
Figure 6a shows the three sub-meshes Mi {i = 0, 1, 2} that arise from the mesh
subdivision illustrated in Fig. 5. Figure 6b shows the polyline Γ1, which defines
the border between sub-meshes M1 and M2 and includes all the transition nodes
of the transition elements in M1.

In order to remove the hanging nodes in the mesh, the 2-refinement strategy
proposed by Schneiders [32] is used. This strategy consists in dividing the tran-
sition elements using the templates shown in Fig. 7, which establish connections
between the hanging nodes and the rest of the nodes of the mesh.

(a) Template 1 (b) Template 2

Figure 7: 2-refinement templates for quadrilateral meshes
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In the process of removing the hanging nodes, one frontier Γi is dealt at a
time. Initially all the transition nodes in Γi are considered active, and then
they are alternatively deactivated, as shown in Fig. 6c. Then, all the transition
elements that contain one active transition node are divided using template 1
(Fig. 7a), and the transition elements that contain two or more active transitions
nodes are divided using template 2 (Fig. 7b). Note that template 1 is oriented
based on the relative location of the active node. This process is repeated for
all the frontiers Γi between meshes, and the hanging nodes are sequentially
removed.

3.3. Guidelines for the application of the mesh refinement

As it has been said before, the proposed mesh refinement strategy is based
on the recursive subdivision of the elements of the base mesh. This refinement
strategy implies that the quality (in terms of element distortion) of the elements
of the refined mesh is highly conditioned by the quality of the elements of the
base mesh.

When the base mesh is generated using the procedure described in section 2,
its quality is controlled by the number and the position of the mesh seeds over
the boundary curves of the patches. This fact is illustrated in Fig. 8a and 8b,
where the effect of using two different seeding schemes to mesh the same gear
tooth is shown. It can be observed that the elements of the base mesh in Fig. 8a
have a poorer aspect ratio than the elements of the base mesh in Fig. 8b.

Figure 8: Guidelines for mesh refinement

The elements of the base meshes in Fig. 8a and 8b are subdivided, in order
to produce a refined mesh in the right part of the tooth. As it can be observed,
the distortion of the elements of the base mesh is propagated through the refined
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elements, which evidences the importance of constructing a good quality base
mesh in order to increase the quality of the refined mesh.

In order to obtain a high quality final mesh, it is interesting to have a
seeding scheme that maximizes the quality of the base mesh and automatizes
the mesh generation process. After some investigations related to this matter,
the following seeding scheme is proposed:

1. Operation I-U: curves c8, c23 and c14 are divided into nseg segments of
equal length (fulfilling restriction R1 of Tab. 1, Fig. 8c). Then, the same
division is performed on curves c1, c22 and c3 (fulfilling restriction R2)
and on curves c2, c16 and c7 (fulfilling restriction R3).

2. Operation IIa-GP: starting from the length of c18 and the length of the
adjacent elements of c2 and c16 (obtained in operation I-U), the parame-
ters of a geometric progression (number of elements, nII , and progression
ratio rII) are computed to distribute elements along c18 growing from size
of c2 to size of c16. The resulting number of elements (nII) is rounded to
the nearest integer.

3. Operation IIb-GP: starting from the length of the curve, the smallest
adjacent element (from all adjacent curves) and the number nII obtained
in operation IIa-GP, the progression ratio and the size of all elements are
computed for a geometric progression to distribute elements along curves
c9 and c20.

4. Operation IIc-GP: starting from the length of c4, the numbers of elements
nII and the progression ratio rII are used to distribute elements along c4
in a geometric progression.

5. Operation IIIa-GP: similar to operation IIa, but applied to curve c19 and
obtaining parameters nIII and rIII .

6. Operation IIIb-GP: similar to operation IIb, but applied to curves c21 and
c10.

7. Operation IIIc-GP: similar to operation IIc, but applied to curve c5.

8. Operation IV-GP: considering the length of the curve, and the length of
the adjacent elements (of adjacent curves), the parameters of a geometric
progression (number of elements and progression ratio) are computed on
curves c3 and c6. Then, an average number of elements is considered,
which is rounded to the nearest integer. With this number of elements,
geometric progressions are computed to distribute elements on curves c3,
c15 and c6.

9. Operation V-U: finally, considering the size of the adjacent elements,
curves c11, c17 and c12 are uniformly divided by the same number of
elements.

Note that this seeding scheme is fully parametrized through the number of
divisions nseg in the boundary curves involved in meshing requirements R1, R2
and R3.

The shape of the elements of the base mesh is not the only source of distorted
elements in the refined meshes. Figure 6c shows that, even in the best of the
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cases in which all the elements of the base mesh are perfectly squared, elements
with skewed angles will arise when template 1 (Fig. 7a) is used to remove the
hanging nodes that appear during the subdivision of the elements of the mesh.
The appearance of these distorted elements is unavoidable, as they are required
in the transition from a coarse to a fine mesh. For this reason, it is strongly
recommended to perform a mesh optimization (see section 4) once the mesh
refinement process is completed.

3.4. Automatization of the mesh refinement for stress analysis

Once the refinement approach has been defined, the next step is to decide
which regions of the domain are candidates for refining. In the case of a stress
analysis, refinement of the local mesh is required in those areas of the domain
that are subjected to elevated stress gradients. And in gear transmissions, it
is known that these areas are usually those affected by the tooth contact and
bending stresses. Thus, the mesh refinement process could be automatized by
detecting those points where the stresses reach their maximum value and refining
the areas that surround them.

On the one hand, the stresses derived from the bearing contact arise in the
vicinity of the contact area, and they usually reach their maximum value near
the spot where the initial point of contact (Q in Fig. 9a) is produced [33]. This
initial point of contact can be easily determined by means of an unloaded tooth
contact analysis of the transmission.

Figure 9: Guidelines for automated mesh refinement

On the other hand, bending stresses are produced in the vicinity of the tooth
fillets. Although it is not easy to perform an accurate prediction of the points
where these stresses reach their maximum values, a quick estimation can be
made following the ideas presented in ISO 6336 standard [34]. In this standard,
maximum bending stresses are located at the points where straight lines which
make an angle of 30◦ with the local YL axis are tangential to the fillet curve
(points T and C in Fig. 9a).
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After the points P , T and C are located, refinement areas are defined around
them. There are many ways to perform this but, in this work and in the aim
of simplicity, these refinement areas are defined as circles characterized by their
center and radius r. The center of these circles may coincide with the points
of maximum stress (Fig. 9b), or it may be displaced a distance s along the
boundary curve normal direction, as indicated in Fig. 9c. Note that the radius
r and the offset distance s could be different for each refinement area, and could
also be positive (outside displacement) or negative (inside displacement).

As it is observed in Fig. 6, the proposed refinement strategy produces abrupt
changes between the size of the elements of the base mesh and the elements of
the refined mesh. In some cases, this abrupt transition can produce negative
effects over the accuracy of the solution of the finite element model, causing
local disturbances in the stress field [35]. For this reason, it is interesting to
specify smooth transitions between coarse and refined meshes. To do so, over-
lapped refinement areas can be defined, with a progressive increase of the level
of refinement, as shown in Fig. 11b.

For a specific position of the gear transmission, the parametric generation of
the tooth geometry, the tooth contact analysis to determine the point of contact,
the mesh generation and refinement algorithm, the optimization of the mesh
(described in section 4) and the automation of the mesh refinement according
to the rules explained in this section have been implemented in a stand-alone
application with a graphic user interface, by using MS Visual Studio and C# as
programming language. The output of this application is an input file for the
Abaqus FEM solver including all the required information of the finite element
model.

4. Mesh quality and optimization

It is well known that the presence of distorted elements in the mesh reduces
both the convergence rate and the accuracy of the finite element analyses [11,
12, 13]. Unfortunately, automatic finite element mesh generation procedures
(as the one presented in this work) cannot avoid the appearance of undesired
distorted elements [36] and, for this reason, they are usually completed with
mesh improving techniques.

These techniques are aimed to reduce the distortion of the elements once the
mesh is generated, and they have been developed under several points of view,
giving place to a big number of different methods which Park [37] classified
in three groups: adaptivity, smoothing and swapping. In particular, in mesh
smoothing the inner nodes of the mesh are moved to an optimum position, in
such a way that the distortion of its elements is reduced. Traditionally, mesh
smoothing methods have been classified into Laplacian [38] and optimization-
based methods. Although the former are more suitable in terms of computa-
tional cost, the latter lead to better quality meshes.

In the optimization-based smoothing, the optimum position of the inner
nodes of the mesh is determined by solving local or global optimization prob-
lems. In these optimization problems, the objective functions are usually re-
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lated to mesh quality metrics, which measure the degree of distortion of the
elements of the mesh. There is a wide range of mesh metrics that can serve as
objective functions in optimization-based smoothing. Among them, the mesh
metric proposed by Oddy [39] has proven to be effective in mesh optimization
approaches [40].

The mesh quality metric developed by Oddy (fO) manages to account for
element distortions produced by combinations of shearing and stretching effects.
In addition, it is independent of the element size and it is not affected by rigid
body motions. Its value is zero when the element is undistorted (i.e. it is a
square), and it grows to infinity as the distortion of the element increases.

Oddy’s metric is calculated for every element of the mesh using the equation
presented in Ref. [39]. Then, the quality of a group of elements can be assessed
through the average (fO,avg) and the maximum value (fO,max) of fO calculated
for the elements in that group.

As it has been said before, the optimization can be performed from a local
or a global point of view. Although the global approach [41] has proven inter-
esting for meshes with a small number of nodes, it is impractical for meshes
containing a large number of nodes [36]. For this reason, the local optimization
approach [40] is preferred in this work.

In the local approach the position of each interior node of the mesh is opti-
mized separately. The objective function for the optimization problem is fO,avg,
which is evaluated considering all the elements that are connected to the node
whose position is optimized. In this case, the objective function is a function of
the coordinates of the target node, which are given by the position vector xi.
Following the ideas presented by Knupp [40], the local optimization is performed
using a modified Newton scheme:

xi+1 = xi −H(xi)
−1 ·G(xi) (1)

where xi+1 is the optimized position of the node, and G and H are the gradient
and the Hessian matrix of the objective function, respectively. The local opti-
mization is performed for each interior node of the mesh, and the global process
is repeated until a certain stopping condition is reached. More details about
this process can be found in Ref. [40].

5. Numerical examples and discussion of results

The performance of the proposed procedure is illustrated through the de-
velopment and analysis of a finite element model of a spur gear transmission
(denoted as Proposed model). The transmission selected for this example
consist of two identical standard spur gears, whose geometry is defined by the
design parameters included in Tab. 2. The material parameters and operating
conditions of the transmission are also shown in Tab. 2.

A typical finite element model of a gear transmission (Fig. 10) is composed
by the geometries of the drive and the driven gears, which may consist of one or
several teeth. A rigid edge is defined around the rim of each gear geometry, and
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Table 2: Parameters of the transmission

Parameter Value

Gear
design

parameters
(both gears)

Module 2 mm
Pressure angle 20 deg

Addendum of standard basic rack tooth 2 mm
Dedendum of standard basic rack tooth 2.5 mm

Fillet radius of the basic rack 0.5 mm
Tooth number 30

Facewidth 20 mm

Material
parameters

Elastic modulus 210 GPa
Poisson’s coefficient 0.3

Operating
conditions

Nominal torque 120 Nm
Center distance 60 mm

it is rigidly connected to a reference node coincident with the center of rotation
of the gear. These reference nodes, which are denoted by O1 and O2, are used
to specify the boundary conditions of the finite element model.

Figure 10: Typical finite element model of a generic gear transmission

Displacements along x and y directions are restricted at reference nodes O1

and O2. Rotation around z direction is allowed at node O1, where a nominal
torque T is applied. In contrast, rotation around z direction is prescribed with
a certain magnitude at the reference node O2, which restricts the rotation of the
system. The finite element analysis is performed under plane strain hypotheses,
in which a linear elastic behavior is assumed for both drive and driven gears.

The gear geometries are generated and then discretized into finite elements
using the proposed procedure. The mesh generation process for a gear geometry
consisting of a single tooth is illustrated in Fig. 6. In this example, it is assumed
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Table 3: Definition of mesh refinement areas

Refinement area Base point Offset s Radius r Level of refinement
RA1 Q 0.0 mm 0.5 mm 3
RA2 Q 0.0 mm 0.9 mm 2
RA3 T 0.2 mm 0.5 mm 3
RA4 T 0.2 mm 1.0 mm 2
RA5 C 0.2 mm 0.5 mm 3
RA6 C 0.2 mm 1.0 mm 2

that the contact with the mating gear is produced at the pitch point. First, a
base mesh is generated over the gear geometry using the procedure described
in section 2. The seeding scheme described in section 3.3 has been followed
to define the density of the base mesh, selecting nseg = 2. As a result, the
base mesh shown in Fig. 11a is obtained, which consist of 136 elements and 165
nodes.

Figure 11: Mesh generation process

After the base mesh is generated, the ideas described in section 3.4 are
followed to perform an automated element subdivision that will turn into a
localized mesh refinement. As it can be observed in Fig. 11b, six refinement areas
are specified (denoted as RA1, RA2, etc.), which are defined by the parameters
shown in Tab. 3. To produce a smooth transition between the refined and the
base mesh, two concentric refinement areas are defined around each point of
maximum stress, with progressive levels of refinement specified for each one of
them.

After the elements of the base mesh are subdivided, the hanging nodes that
arise during the element subdivision process are removed as explained in sec-
tion 3.2, giving place to the mesh shown in Fig. 11c. In the process of removing
the hanging nodes, 197 new elements and 250 new nodes are created.
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Finally, the mesh smoothing technique described in section 4 is applied to
reduce the distortion of the elements of the mesh and, as a result, the final mesh
shown in Fig. 11d is obtained. For the optimization process, 10 iterations of
the mesh smoother have been considered. The number of nodes and elements
in the mesh is not affected by mesh smoothing, because this technique does not
change neither the connectivity nor the number of nodes of the discretization.

Following these ideas, the geometries of the drive and the driven gears are
independently meshed and then included into the finite element model of the
gear transmission. It must be pointed out that finite element models in which
the gear geometries consist of a single tooth are seldom used, because they
do not allow to obtain a realistic load sharing distribution between teeth when
simultaneous contacts are produced. In addition, the presence of rigid edges near
stressed areas may introduce inaccuracies in the solution of the finite element
model. For these reasons, gear geometries including three or more teeth are
typically used in the finite element models, as the one shown in Fig. 12a.

Figure 12: Discretization of the gear geometries

The mesh shown in Fig. 12a has been generated following the same steps
as in Fig. 11, considering the refinement parameters shown in Tab. 3. As the
drive and driven gears have the same geometry and the contact between them is
produced at the pitch point, the meshes generated for both gear geometries are
identical. Each one of these meshes consist of 1654 elements and 1777 nodes.

Since it is interesting to evaluate the performance of the proposed procedure
compared to other existing procedures, an additional finite element model has
been created, in which the gear geometries have been meshed using the Ar-
gyris [15] procedure (denoted as Comparison model). This well-known mesh-
ing procedure produces a uniform quadrilateral structured mesh over the gear
geometries, as the one shown in Fig. 12b. This mesh has been developed trying
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to minimize the distortion of the elements of the mesh, with the constraint that
its number of nodes and elements must be in the same order of magnitude than
in the mesh generated with the proposed procedure (Fig. 12a).

Regarding the computational cost, the generation of the mesh for both gears
in the Proposed model (Fig. 12a) took less than 2 seconds, where 22.4% of the
time was spent generating the mesh itself (first part) and the other 77.6% of
the time was spent optimizing the mesh (second part). On the other hand, the
generation of the mesh of the Comparison model (Fig. 12b) took less than 0.3
seconds, a time of the same order of magnitude than the one associated to the
first part of the proposed approach.

Beyond the obvious differences that are revealed by a visual comparison be-
tween both meshes, a more exhaustive comparison can be established in terms of
the distortion of their elements, measured using Oddy’s mesh quality metric [39].
For such a purpose, Fig. 13 shows a contour plot of the element distortion over
the drive gear of both models. In this figure the amount of element distortion
is indicated using a grayscale code, where the elements become darker as their
distortion increases.

Figure 13: Distortion metrics for the meshes generated using the proposed and Argyris’ pro-
cedures

As it can be observed in Fig. 13a, the proposed procedure tends to generate
distorted elements in the areas where a transition from a coarse to a fine mesh is
produced. Besides these transition elements, no distorted elements can be found
inside of the refinement areas. On the other hand, Fig. 13b shows that Argyris
procedure may be capable to produce undistorted elements in the external layers
of the mesh, but elements with severe distortion are generated in the central
part of the gear teeth.

The maximum element distortion (fO,max) in the mesh generated using Ar-
gyris’ procedure is 3 times greater than in the mesh generated using the proposed
procedure, and the average element distortion (fO,avg) is 13 times higher in the
mesh generated by Argyris’ procedure than in the mesh generated using the pro-
posed procedure. These values indicate that the proposed procedure generates
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meshes with less distortion than Argyris’ procedure.
To assess the performance of these meshes, both finite element models are

analyzed and the accuracy of the obtained results is evaluated. This comparison
requires of some reference results, which are obtained using a third finite element
model (denoted by Reference model), in which the gear geometries are meshed
using an extremely refined uniform mesh. These meshes are created using the
procedure described in section 2, considering the seeding scheme proposed in
section 3.3 with nseg = 32. As a result, each gear geometry is discretized into
105795 nodes and 104448 elements.

Note that the Reference model is about 100 times larger (in terms of num-
ber of nodes and elements) than the Proposed model, so its associated com-
putational cost is increased. The Reference model is not shown because the
finite element mesh is so dense that results in a black-filled figure. However,
certain parts of this mesh are shown in Fig. 15a and Fig. 16a.

Abaqus FEA solver [42] was used to perform a static analysis of the three
finite element models. For such a a purpose, element type CPE4 was assigned
to the elements of the mesh, which is a plane strain 4-node bilinear element with
selectively reduced integration. Abaqus solved the Proposed and Comparison
models in less than 6 seconds, but it needed 228 seconds to solve the Reference
model.

Figure 14a shows the contact pressure distribution that arises as a conse-
quence of the contact between the gear teeth. In this figure, each point repre-
sents the contact pressure associated to a node of the drive gear contact profile.
The figure also shows the theoretical solution predicted by the Hertz contact
theory [43, 44], which consists in a semielliptic function characterized by the
maximum contact pressure and the width of the contact area.

Figure 14: Relevant results of the finite element analyses

The maximum contact pressure and the width of the contact area obtained
from each one of the studied models are summarized in Tab. 4. Judging the
results shown in Fig. 14a and Tab. 4, it can be said that the best approximation
to the theoretical solution (in terms of contact pressure distribution, maximum
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Table 4: Relevant contact results

Contact parameters Hertz Reference Proposed Comparison
Avg. element size − 0.023 mm 0.047 mm 0.126 mm

Max. contact pressure 1233 MPa 1218 MPa 1203 MPa 875 MPa
Width of the contat area 0.22 mm 0.30 mm 0.37 mm 0.63 mm

contact pressure and width of the contact area) is achieved using the Refer-
ence model. On the contrary, the worst approximation is obtained from the
Comparison model, where the maximum contact pressure is 29% lower than
the theoretical result. The Proposed model represents a slightly worse approx-
imation than the Reference model, but its accuracy is significantly better than
the Comparison model.

Table 4 also summarizes the average size of the elements within the contact
area, having the Reference model the smallest elements and the Comparison
model the largest ones. It can be observed that there exists an explicit relation
between the size of the elements in the the contact area and the accuracy of the
obtained results, which evidences the importance of having a refined mesh in
the vicinity of the contact area.

On the other hand, Fig. 14b shows the von Mises stress plot over the ge-
ometry of the drive gear, which is obtained using the Proposed model. As
expected, the maximum von Mises stress is produced in the vicinity of the con-
tact area and, in addition, elevated von Mises stresses are produced at the fillet
regions. The regions where these stresses reach their maximum values are shown
in greater detail in Fig. 15b and Fig. 16b.

Figure 15a shows the von Mises stress plot obtained from the Reference
model for the area denoted as Region A in Fig. 14b. The small size of the
elements in which the gear geometries of this model have been discretized allows
for a proper representation of the stress field. The von Mises contact stress
reaches a maximum value of 753.4 MPa at a certain distance below the contact
surface, which is in good agreement with the theoretical solutions included in
Ref. [33].

The von Mises stress plot obtained using the Proposed model is shown in
Fig. 15b. Although the level of mesh refinement at this part of the mesh is
coarser than in the Reference model, this model is still capable of represent-
ing accurately the stress field in this area (including a realistic location of the
maximum stress point under the tooth surface), with a deviation lower than
2% respect to the maximum stress value predicted by the Reference model.
This deviation is much larger in the results obtained from the Comparison
model, which is shown in Fig. 15c. In this case, the maximum contact stress is
almost a 15% lower than in the Reference model, and the stress field presents
important differences with the one obtained from the Reference model. As
an example, this model predicts that the maximum stress point is on the tooth
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Figure 15: Von Mises contact stress in region A

surface, which is not realistic.
Regarding the bending stresses, Fig. 16a shows the von Mises stress plot

obtained from the Reference model for the area denoted as Region B in
Fig. 14b. As it can be observed, the maximum von Mises stress in this area
reaches 259.5 MPa and it is located at the fillet surface. In the case of the Pro-
posed model, whose result is shown in Fig. 14b, a deviation lower than 3% is
obtained in comparison with the Reference model. Finally, and following the
trend observed in the contact stresses, the maximum von Mises stress calculated
using the Comparison model is 12% lower than the reference results.

Figure 16: Von Mises bending stress at the right fillet of the tooth (region B)

As a summary of this comparison, it can be said that the finite element
model developed using the proposed procedure (Proposed model) is capable
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of obtaining results with the degree of accuracy of the Reference model, but at
a much lower computational cost. This comparison has also revealed that the
results obtained from the Proposed model are more accurate than the results
obtained from the Comparison model, having both of them a similar associated
computational cost. In fact, it has been observed that the Comparison model
tends to underestimate both the maximum contact pressure and bending stress,
and this could compromise the integrity of the transmission designed using these
results.

The previous example demonstrates the performance of the proposed pro-
cedure when studying a situation in which the contact is produced between a
single pair of teeth. But this procedure can also be used to develop meshes in
situations where a multi-tooth contact is produced, as it is illustrated in Fig. 17.
In this case, the fillets and the contact profiles of the two teeth bearing the load
are refined. In Fig. 17a, the refinement parameters shown in Tab. 3 have been
used, whereas in Fig. 17b one level of refinement has been decreased in all the
refinement areas.

Figure 17: Multi-tooth contact

Comparing the meshes shown in Fig. 17a and Fig. 13a, it can be observed
that the addition of more refinement areas does not have a significant negative
repercussion over the distortion metrics of the mesh. Note that, since the mesh
refinement is based on the subdivisions of the elements of the base mesh, and
the elements of the base mesh are smaller near the tip of the tooth than in the
root, refined elements with the same level of refinement are also smaller in the
tip than in the root. On the other hand, the comparison between the meshes
shown in Fig. 17a and Fig. 17b shows that reducing the level of refinement also
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reduces the distortion of the elements of the mesh, since a minor number of
transition elements are required.

6. Conclusions

In this work a new meshing procedure for automated generation of two-
dimensional quadrilateral meshes of gear drives is proposed. The procedure is
developed to enable the performance of fully controlled local mesh refinement, as
it is an important feature to increase the accuracy of the results of the analyses
and reduce its computational cost. It consists of two sequential steps: in the
first step, a base quadrilateral mesh is generated using a multiblock meshing
scheme and, in the second step, the elements of the base mesh are subdivided
to achieve a refined mesh in specific areas of the gear teeth.

To improve the quality of the resulting meshes, the proposed procedure is
completed with a mesh quality enhancement technique, which consists in an
optimization-based smoothing. The proposed procedure also includes strategies
that allow to automatically identify and refine those areas of the gear where
elevated mesh densities are usually required (as they are subjected to elevated
stress gradients).

The performance of the proposed procedure has been illustrated with nu-
merical examples consisting in the development and analysis of a finite element
model of a spur gear transmission. The obtained mesh has been compared to a
traditional meshing procedure, demonstrating high capabilities in terms of mesh
quality and accuracy of the obtained results.

Future work on this topic can be directed towards adapting the proposed
procedure to mesh three dimensional gear geometries. The same steps followed
in this work (i.e. generation of a base hexahedral mesh, performance of mesh
refinement using three dimensional refinement templates and optimization of
the generated mesh) could be followed for such a purpose. However, further
investigations should be made to extend the used methods to the three dimen-
sional case, ensure their robustness and guarantee the quality of the resulting
mesh.
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2015.

[43] K. L. Johnson, Contact Mechanics, Cambridge University Press, 1985. doi:
10.1017/CBO9781139171731.

[44] ISO/FDIS 6336-2, Calculation of load capacity of spur and helical gears.
Part 2: Calculation of surface durability, Tech. rep., International Organi-
zation for Standarization, Geneva, Switzerland (2006).

28

https://doi.org/10.1016/j.procs.2011.04.031
https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<401::AID-NME880>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<401::AID-NME880>3.0.CO;2-D
https://doi.org/10.1016/0168-874X(93)90056-V
https://doi.org/10.1017/CBO9781139171731
https://doi.org/10.1017/CBO9781139171731

	Introduction
	Generation of a base quadrilateral mesh over a gear tooth section
	Decomposition of the tooth section in simple patches
	Specification of mesh seeds along the boundary curves
	Generation of a quadrilateral mesh over each one of the patches

	Performing local mesh refinement
	Element subdivision
	Removing hanging nodes
	Guidelines for the application of the mesh refinement
	Automatization of the mesh refinement for stress analysis

	Mesh quality and optimization
	Numerical examples and discussion of results
	Conclusions

