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Abstract

In the problem of remote estimation by a centralized observer, improvements

to the accuracy of observer estimates come at a cost of higher communication

bandwidth and energy consumption. In this article we improve observer estima-

tion accuracy by reducing the measurement variance on the sensor node before

its transmission to the centralized observer node. The main contribution is to

show that measurement variance is a trade-off between dynamical system vari-

ance and sensor variance. As a result there is an optimal averaging time that

minimizes measurement variance, providing more accurate measurement to the

observer. The optimal averaging time is computable by solving a univariate

optimization problem.
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1. Introduction

Technological developments in sensor networks (SN), the Internet of Things

(IoT), and networked control systems (NCS) have led to a multitude of sensors

that send information for supervision, estimation, and control [1, 2, 3]. In
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this context, centralized remote observers receive measurements through the5

communication network from sensor nodes and provide a state estimate of the

dynamical system.

In centralized remote observers, there is a trade-off between the estimate

accuracy and network resource consumption. In fact, an increase in estimate

accuracy is normally accompanied by an increase in communication bandwidth10

and the consumption of node energy. This trade-off is tackled in the bibliog-

raphy by event triggered estimation [4], and by sensor scheduling [5]. In event

triggered estimation, the sensor nodes decide when to transmit on the basis of

triggering rules [6]. In sensor scheduling, the approach is to temporally sched-

ule the sensor nodes to minimize expected error covariance performance [7]. In15

both approaches, the goal is to orchestrate the transmission of measurements by

reducing the communication burden while minimizing estimate accuracy degra-

dation. However, no improved measurement is pursued at the sensor node before

the measurement is transmitted.

The existing approaches for measurement improvement are based on digital20

filtering [8, 9]. Digital filters are designed for noisy sensors based on the mini-

mization of some criterion [10], and are technologically implemented by means

of oversampling and averaging [11], output filtering [12], or by using integrating

analog to digital converters (ADC) [13]. Note however that the optimal pro-

cessing of the signal not only depends on the sensor noise characteristics but25

also on the relationship between stochastic dynamical system noise (i.e. process

noise) and sensor noise.

The discretization of the measurement equation in stochastic systems leads

to measurement averaging [14], because in this case the discretized sensor noise

vk := 1
∆t

∫∆t

0
v(τ)dτ and the continuous sensor noise v(t) have the same spectral30

densities [15]. The averaging procedure makes the measurement variance depend

not only on sensor variance but also on process variance. Furthermore, both

variances have effects that compete with the averaging time ∆t, because while

the sensor variance is reduced with ∆t, the process variance is increased with

∆t. As a result, there is expected to be an optimal sampling time ∆t∗ such that35
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the variance of the averaged measurement is minimized.

Bibliographical results for measurement averaging, also called integrated

measurements, are scarce [16], and focus on state estimation and fusion of

fast-rate measurements with slow-rate averaged measurements [17]. In these

studies, the existence of averaged measurements is a technological consequence40

when laboratory measurements of samples taken over time are available to be

used for state estimation. However, the bibliographical contributions do not pro-

vide any guidelines for selecting the optimal averaging time. The contribution

of the present study to the field of averaging measurements consists of comput-

ing the optimal averaging/integrating time that provides the measurement with45

minimum variance.

In summary, the aim of this study is to reduce remote observer variance by

sending the measurement with minimum variance obtained by optimal averaging

on the sensor node, and by modifying the observer equations to account for the

departure from instant sampling towards averaged sampling. The contributions50

of this article are:

1. The continuous-time stochastic dynamical model and the output model

are discretized with distinct time periods. Although the current literature

uses the same discretization period for the dynamical equation and the

output equation [18], the use of different discretization periods allows for55

separation between the measurement averaging on the sensor node and

the measurement communication to the observer node.

2. The measurement variance as a function of the averaging time is derived,

and it is shown that it captures a trade-off between process noise and

sensor noise. The shorter the averaging time the lesser the influence of60

process noise on the measurement, but the sensor noise cannot be filtered.

On the contrary, the longer the averaging time the lesser the influence of

the sensor noise, but the process noise increases the measurement variance.

We show that there is an optimal averaging time that minimizes measure-

ment variance that can be computed by solving a univariate minimization65
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problem.

3. The standard Kalman filter equations are modified for use with averaged

measurements. This is necessary to account for the use of averaged mea-

surements on the Kalman filter equations instead of instant measurements.

We show the improvement in observer accuracy.70

2. Problem Statement

The dynamical system is a stochastic multivariable continuous-time linear

time-invariant (LTI) system modelled by the following stochastic differential

equation (SDE) [19, 20] and output equation

ẋ(t) = Acx(t) +Bcu(t) +Gcw(t) (1)

x(t0) = x0

y(t) = Cx(t) + v(t) (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu , the input vector, y(t) ∈ Rny , the75

output vector, w(t) ∼ N(0, Qc) ∈ Rnw and v(t) ∼ N(0, Rc) ∈ Rny are normally

distributed white noise processes that are uncorrelated with each other and with

the initial state x0 ∼ N(x̄0, P0), with Qcδ(t−τ) ∈ Rnw×nw , Rcδ(t−τ) ∈ Rny×ny ,

and P0 ∈ Rn×n covariance matrices [21], and δ(t−τ) the Dirac delta distribution.

Ac ∈ Rn×n, Bc ∈ Rn×nu , Gc ∈ Rn×nw , and C ∈ Rny×n are the system matrices.80

Consider the problem of estimating the state x(t) of the stochastic dynamical

system by a remote observer node within a distributed network of sensor nodes,

as represented in Fig. 1. The goal is to provide the optimal estimator x̂(t), that

is, the estimator with minimum variance. The Kalman filter [14] provides the

minimum variance estimator for Gaussian, zero-mean, uncorrelated, and white85

noises [14].

The observer node requires the discretized dynamic Eq. (1) for non-periodic

updates on the received measurements at each time instant tk, resulting in a

variable sampling time µk := tk+1−tk. The sensor node requires the discretized
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x̂(t)

yl(t) u(t)

Figure 1: Remote estimation problem in sensor networks. The set of ny sensor nodes send

the measurements yl, l ∈ {1, 2, . . . , ny} to the observer node. Likewise, input u(t) is sent to

the stochastic dynamical system and to the observer.

measurement Eq. (2) with discretization time δl := tk+1 − tylk . Note that we90

consider a constant averaging time δl that is independent from the sampling

interval k. The reason is that as the stochastic processes are stationary, the

optimal averaging time δ∗l does not depend on any particular time interval. In

Fig. 2 we can see both discretization times, µk and δl.

The discretization of the measurement equation results in a measurement95

yδl that is the average of the continuous time output [15], that is, yδl :=

1
δl

∫ tk+1

t
yl
k

yl(τ)dτ . The variance of the averaged measurement for sensor l de-

pends on the averaging time δl. There is an optimal value for the averaging

time δ∗l that provides the measurement with minimum variance, optimizing the

trade-off between sensor noise variance, reduced with larger δl, and process100

noise variance, reduced with shorter δl. One contribution of the article is to

compute, for each sensor node l ∈ {1, 2, . . . , ny}, its optimal averaging time δ∗l

that provides the measurement with minimum variance to the observer node.

3. Stochastic Process Discretization

The discretization of the stochastic system provided in the bibliography [14]105

uses the same discretization time period for the dynamical model (1) and the

output model (2). Although this approach might be adequate for wired or cen-

tralized systems, the dynamical model and the output model may be discretized
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Figure 2: The observer node receives a measurement at time tk. The measurement update is

computed giving estimate x̂+k and covariance P+
k . Before a new measurement is received at

time tk+1 the time update gives estimate x̂−k+1 and convariance P−
k+1. The process repeats

with measurement at time tk+1 providing new estimate x̂+k+1 and covariance P+
k+1. The time

between received measurements at observer node is µk := tk+1 − tk. The sensor node l sends

a measure to the observer node at time instant tk+1. In this article, instead of sending the

output value sampled at time instant tk+1, that is yl(tk+1), we consider sending an averaged

value yδl := 1
δl

∫ tk+1

t
yl
k

yl(τ)dτ , with δl := tk+1 − t
yl
k . We show that there is an optimal value

δ∗l that provides the measurement yδl with minimum variance, hence improving the observer

estimation accuracy.

using distinct time intervals because they attend to different goals. The dynam-

ical model discretization time is related to the data communication between110

sensor nodes and observer node. The output model discretization results in an

averaged measure that is controlled by the sensor node. In what follows we

discretize the continuous-time process using distinct discretization periods for

the model and the output equations.

3.1. Dynamical Model Discretization115

The solution of the SDE (1) for an arbitrary time interval µk := tk+1 − tk is
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x(tk+1) = eAcµkx(tk) +

∫ tk+1

tk

eAc(tk+1−τ)Bcu(τ)dτ︸ ︷︷ ︸
deterministic integral

+

∫ tk+1

tk

eAc(tk+1−τ)Gcw(τ)dτ︸ ︷︷ ︸
stochastic integral

(3)

with x(t0) = x0.

The first integral on the right hand side of (3) is a deterministic integral, whereas

the second integral is of a stochastic nature. The discretization of (1), when

the control input u(t) is a zero-order hold (ZOH), (i.e. u(t) = u(tk) ∀t ∈120

[tk, tk+1), k = 0, 1, . . . , N − 1), is given by

xk+1 = Axk +Buk + wk (4)

with xk := x(tk), uk := u(tk), and

A := eAcµk (5)

B :=

∫ tk+1

tk

eAc(tk+1−τ)Bcdτ
λ=tk+1−τ−−−−−−−→

∫ µk

0

eAcλBcdλ (6)

wk :=

∫ tk+1

tk

eAc(tk+1−τ)Gcw(τ)dτ
λ=tk+1−τ−−−−−−−→

∫ µk

0

eAcλGcw(tk+1 − λ)dτ

(7)

We remark that system matrices A and B, and stochastic signal wk, depend on

time increment µk and are independent from the particular time instant tk and

tk+1. The change of variable λ = tk+1− τ on the integrals is performed to show125

their dependence on the sampling time µk.

Now, the stochastic properties of wk are derived. First, the expectation of wk

is 0, because as stated in the problem statement E[w(t)] = 0 and the integral is

a linear operator. The covariance Qs := E[wkw
T
k ] is given as follows
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Qs = E
[∫ tk+1

tk

eAc(tk+1−τ1)Gcw(τ1)dτ1

∫ tk+1

tk

w(τ2)TGTc e
ATc (tk+1−τ2)dτ2

]
= E

[∫ ∫ tk+1

tk

eAc(tk+1−τ1)Gcw(τ1)w(τ2)TGTc e
ATc (tk+1−τ2)dτ1dτ2

]
=

∫ ∫ tk+1

tk

eAc(tk+1−τ1)GcE[w(τ1)w(τ2)T ]GTc e
ATc (tk+1−τ2)dτ1dτ2

=

∫ ∫ tk+1

tk

eAc(tk+1−τ1)GcQcδ(τ2 − τ1)GTc e
ATc (tk+1−τ2)dτ1dτ2

=

∫ tk+1

tk

eAc(tk+1−τ)GcQcG
T
c e

ATc (tk+1−τ)dτ

λ=tk+1−τ−−−−−−−→
∫ µk

0

eAcλGcQcG
T
c e

ATc λdλ (8)

The computation of Qs does not generally have a closed form and must be130

computed numerically [14]. The most common approach is the one proposed by

Van Loan [22]. However, we must keep the dependence of covariance Qs with

time interval µk for optimization purposes, hence the computation of Qs is based

on the exponential matrix expansion of eAcµk , as presented in the Appendix 9.

Example 1 (From [23], Example 2.6 page 87). Consider the continuous-135

time dynamical system of a mass with a force given by

ẋ(t) =

∣∣∣∣∣∣0 1

0 0

∣∣∣∣∣∣︸ ︷︷ ︸
Ac

x(t) +
1

m

∣∣∣∣∣∣01
∣∣∣∣∣∣︸ ︷︷ ︸

Bc

u(t) +

∣∣∣∣∣∣0 0

0 1

∣∣∣∣∣∣︸ ︷︷ ︸
Gc

w(t), Qc = qa

∣∣∣∣∣∣0 0

0 1

∣∣∣∣∣∣ (9)

with state x(t) = [x1(t) x2(t)]T , being x1(t) the mass position and x2(t) the

mass velocity, u(t) is the input force, and w(t) = [w1 w2]T the process noise.

The continuous-time covariance matrix Qc shows that there is a random dis-

turbing force whereas the velocity is not affected by any random disturbance.140

Matrix Ac is nilpotent because Anc = 0 for n ≥ 2. As a result, the calculation

equations provided in the Appendix 9 are exact for N = 2, giving the following

discrete-time dynamical model
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xk+1 =

∣∣∣∣∣∣1 µk

0 1

∣∣∣∣∣∣︸ ︷︷ ︸
A

xk +
1

m

∣∣∣∣∣∣
µ2
k

2

µk

∣∣∣∣∣∣︸ ︷︷ ︸
B

uk + wk, Qs = qa

∣∣∣∣∣∣
µ3
k

3
µ2
k

2

µ2
k

2 µk

∣∣∣∣∣∣ (10)

3.2. Output Model Discretization

Recall the vector output Eq. (2)145

y(t) = Cx(t) + v(t) (11)

with y(t) = [y1(t) . . . yl(t) . . . yny (t)]T , x(t) = [x1(t) . . . xm(t) . . . xn(t)]T , v(t) =

[v1(t) . . . vl(t) . . . vny (t)]T , and C ∈ Rny×n. Consider the discretization of the

scalar output yl(t) ∈ R with l ∈ {1, 2, . . . , ny}. Discretization of the measure-

ment process with interval δl results in measurement averaging, because in this

case the discretized sensor noise vδl and the continuous sensor noise vl(t) have150

the same spectral densities [14, 15]. As a result the discretized measurement is

1

δl

∫ tk+1

t
yl
k

yl(τ)dτ︸ ︷︷ ︸
=:yδl

= cl
1

δl

∫ tk+1

t
yl
k

x(τ)dτ︸ ︷︷ ︸
=:xδl

+
1

δl

∫ tk+1

t
yl
k

v(τ)dτ︸ ︷︷ ︸
=:vδl

(12)

with cl the lst row of output matrix C. We can write the discretized output in

compact form as

yδl = clxδl + vδl (13)

Note that in case δl → 0, then yδl = y(tk+1) and we recover the instant sampled

signal as a particular case.155

We now derive the statistics of the random variable vδl . The expectation of

vδl is 0 because E[vl(τ)] = 0, and the expectation is a linear operator. The

covariance r := E[vδlv
T
δl

] is
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E[vδlv
T
δl

] = E

[
1

δl

∫ tk+1

t
yl
k

vl(τ1)dτ1
1

δl

∫ tk+1

t
yl
k

vl(τ2)T dτ2

]

= E

[
1

δ2
l

∫ ∫ tk+1

t
yl
k

vl(τ1)vl(τ2)T dτ1dτ2

]

=
1

δ2
l

∫ ∫ tk+1

t
yl
k

E[vl(τ1)vl(τ2)T ]dτ1dτ2

=
1

δ2
l

∫ ∫ tk+1

t
yl
k

rclδl(τ2 − τ1)τ1dτ2

=
1

δ2
l

∫ tk+1

t
yl
k

rcldτ

=
rcl
δl

(14)

with rcl the continuous-time density variance of vl(t). Note that the covariance

of the discretized noise is inversely proportional to the discretization time δl.160

In what follows we relate the measurement process as performed by electronic

circuits. The objective is to link the mathematical meaning of integration time

of sensor l, that is δl, to the physical meaning on the signals processed. The

typical measurement process is to convert an analogue signal, provided by the

transducer and the signal conditioning circuitry, to a digital value through an165

analogue to digital converter (ADC). The ADC converter performs a digital

conversion on the basis of a stable analogue signal by means of the sampler

and hold (S&H) circuit, with TSH being the time for which switch SSH is

closed, as can be seen in Fig. 3. Note that the analogue signal converted is

the measured signal y(t) filtered by a first order low pass filter composed of the170

follower operational amplifier output impedance and the capacitor CSH . The

time constant of this filter is very small. Hence we have the conversion of an

instant output value y(tk+1).

The implementation of the averaged measurement Eq. (13) requires integra-

tion of the measure that is to be converted, as shown in the schematic of Fig. 4.175

Thus the analog signal is integrated for time δl. This is controlled by switch

SI on the first operational amplifier. The sampler and hold works in the same
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Figure 3: Analogue signal and ADC converter with sampler and hold. The train of pulses on

the switch set the sampler and hold times.

way as before, but now holds the value of the integrated measure. Varying the

integration time we are able to control the sensor variance. In whatever case,

we claim that the implementation of the averaged measurement should be per-180

formed by the simple circuitry presented in Fig. 4. Another implementation of

the same idea can be performed digitally by oversampling and averaging [11],

or using integrating ADC converters [13].

Example 2. Following on from the previous example, consider the continuous-

time output equation185

y(t) =

∣∣∣∣∣∣1 0

0 1

∣∣∣∣∣∣︸ ︷︷ ︸
C=

∣∣∣∣∣∣∣∣
c1

c2

∣∣∣∣∣∣∣∣

x(t) + v(t), Rc =

∣∣∣∣∣∣rc1 0

0 rc2

∣∣∣∣∣∣ (15)

where y(t) = [y1(t) y2(t)]T is the output with y1(t) the measurement of the mass

position and y2(t) the measurement of the mass velocity, v(t) = [v1(t) v2(t)]T

are the position and velocity noise respectively, with diagonal covariance matrix

given by Rc. The discretized output equations, each with its integration time

δi i ∈ {1, 2}, are190
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Figure 4: Electronic implementation of the averaged measurement equation. Switch SI de-

termines the integration time. Its complementary switch S̄I is used for discharging capacitor

CI for resetting purposes. By varying the integration time δl we are able to modify the sensor

noise variance rcl/δl.

yδ1 = c1xδ1 + vδ1 , r1 =
rc1
δ1

(16)

yδ2 = c2xδ2 + vδ2 , r2 =
rc2
δ2

(17)

where c1 and c2 are the first and second row of matrix C respectively.

4. Measurement Variance

In this section, we derive the expression of the measurement variance for

sensor l, that is E[(yδl − E[yδl ])(yδl − E[yδl ])
T ], with respect to the averaging

time δl. The measurement variance, not to be confused with the previously195

derived sensor variance rl, depends not only on the sensor noise but also on the

process noise. As a result, the output variance is a trade-off between sensor and

process noise.

Theorem 1. The measurement variance for sensor l is given by
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E[(yδl − E[yδl ])(yδl − E[yδl ])
T ] =

cl

(
1

δ2
l

∫ δl

0

(∫
eAcλdλ

)
GcQcG

T
c

(∫
eA

T
c λdλ

)
dλ

)
cTl +

rcl
δl

(18)

The first term in Eq. (18) is the effect of the process noise whereas the second200

term is the effect of the sensor noise, both as a function of the averaging time

δl.

Proof. The variance of the averaged output yδl is by definition E[(yδl−E[yδl ])(yδl−

E[yδl ])
T ] and by substitution of the output Eq. (13) results

E[(yδl − E[yδl ])(yδl − E[yδl ])
T ] = E[(clxδl + vδl − E[clxδl + vδl ])(clxδl + vδl − E[clxδl + vδl ])

T ]

= E[(clxδl + vδl − clE[xδl ])(clxδl + vδl − clE[xδl ])
T ]

= E[(cl(xδl − E[xδl ])(xδl − E[xδl ])
T cTl ] + E[vδlv

T
δl

] (19)

The second equality follows because E[vδl ] = 0. The third equality follows be-205

cause the expectation of the cross products E[cl(xδl−E[xδl ])v
T
δl

] and E[vδl(cl(xδl−

E[xδl ]))
T ] are also zero, as the expectation of sensor noise is zero and sensor and

process noise are uncorrelated.

Define the integral of the state space as xI(t) :=
∫
x(t)dt, then the averaged

state space xδl is easily related to the integrated state space by means of δl,210

because xδl = 1
δl
xI . As a result

E[((xδl − E[xδl ])(xδl − E[xδl ])
T ] = E

[(
1

δl
xI − E

[
1

δl
xI

])(
1

δl
xI − E

[
1

δl
xI

])T]

=
1

δ2
l

E[(xI − E[xI ])(xI − E[xI ])
T ] (20)

The variance of xI can be obtained by extending the state space of the dynamic

model (1) with the integral xI(t) and computing its variance in an analogous

manner as shown in Section 3.1. The differential equation to add is ẋI(t) = x(t).

As a result we have the extended dynamical system215
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∣∣∣∣∣∣ ẋ(t)

ẋI(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣Ac 0

I 0

∣∣∣∣∣∣︸ ︷︷ ︸
Ae

∣∣∣∣∣∣ x(t)

xI(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣Bc0
∣∣∣∣∣∣︸︷︷︸

Be

uk +

∣∣∣∣∣∣Gc0
∣∣∣∣∣∣︸︷︷︸

Ge

wk (21)

As shown in Section 3.1, the system variance is defined as

Q =

∫ δl

0

eAeλGeQcG
T
e e

ATe λdλ (22)

=

∣∣∣∣∣∣∣∣∣∣

Qs︷ ︸︸ ︷
E[(x− E[x])(x− E[x])T ] E[(x− E[x])(xI − E[xI ])

T ]

E[(xI − E[xI ])(x− E[x])T ] E[((xI − E[xI ])(xI − E[xI ])
T ]︸ ︷︷ ︸

QI

∣∣∣∣∣∣∣∣∣∣
The calculus of Eq. (22) requires first the computation of eAeλ, which is done

by expanding the matrix exponential in series as follows:

eAeλ = I +Aeλ+A2
e

λ2

2!
+A3

e

λ3

3!
+ . . .

=

∣∣∣∣∣∣I 0

0 I

∣∣∣∣∣∣+

∣∣∣∣∣∣Ac 0

I 0

∣∣∣∣∣∣λ+

∣∣∣∣∣∣A
2
c 0

Ac 0

∣∣∣∣∣∣ λ
2

2!
+

∣∣∣∣∣∣A
3
c 0

A2
c 0

∣∣∣∣∣∣ λ
3

3!
+ . . .

=

∣∣∣∣∣∣I +Acλ+A2
c
λ2

2! +A3
c
λ3

3! + . . . 0

λ+Ac
λ2

2! +A2
c
λ3

3! + . . . I

∣∣∣∣∣∣
=

∣∣∣∣∣∣ eAcλ 0∫
eAcλdλ I

∣∣∣∣∣∣ (23)

By substitution of the matrix exponential eAeλ as given by Eq. (23) into Eq. (22)

and multiplying matrices, we have the resulting expression for computing the220
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covariance matrix Q

Q =

∫ δl

0

eAeλGeQcG
T
e e

ATe λdλ

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Qs︷ ︸︸ ︷∫ δl

0

eAcλGcQcG
T
c e

ATc λdλ
∫ δl

0
eAcλGcQcG

T
c

(∫
eA

T
c λdλ

)
dλ∫ δl

0

(∫
eAcλdλ

)
GcQcG

T
c e

ATc λdλ

∫ δl

0

(∫
eAcλdλ

)
GcQcG

T
c

(∫
eA

T
c λdλdλ

)
︸ ︷︷ ︸

QI

∣∣∣∣∣∣∣∣∣∣∣∣∣
Thus the integrated state’s covariance matrix QI is

E[((xI − E[xI ])(xI − E[xI ])
T ] =

∫ δl

0

(∫
eAcλdλ

)
GcQcG

T
c

(∫
eA

T
c λdλ

)
dλ (24)

The final result follows by substitution of Eqs. (24) and (20) in the first term of

Eq. (19), and by substituting Eq. (14) in the second term of Eq. (19). �

In summary, in this section we have found the expression of the measurement225

variance as a function of δl. In the next section we show how the optimal δ∗l

can be found to minimize the output variance.

5. Minimization of the Measurement Variance

In this section, we provide one of the main contributions of the article,

namely to show how to compute the optimal averaging time that minimizes230

the variance of the measured output, due to the trade-off between sensor noise

and process noise. With the optimal averaging time, we can program the sen-

sors averaging time to provide, in expectation, the measurement with minimum

variance.

Given the expression of the measured output variance, the objective is to mini-235

mize it by solving the following problem

min
δl∈[TSH ,µk]

cl

(
1

δ2
l

∫ δl

0

(∫
eAcλdλ

)
GcQcG

T
c

(∫
eA

T
c λdλ

)
dλ

)
cTl +

rcl
δl

(25)
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Note that this is a constrained optimization problem, because the averaging

time δl must be greater than the sampler and hold time TSH , and smaller than

the time between the communication of measurements µk. The first term of the

cost function (25), despite its apparent complexity, has a series expansion as240

shown in Appendix 9. For the sake of readability define M := GcQcG
T
c , hence

we have

∫ δl

0

(∫
eAcλdλ

)
M

(∫
eA

T
c λdλ

)
dλ =

∞∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n+ 1− j)!(j + 1)!

 δn+3
l

n+ 3
(26)

As a result, the cost function in Eq. (25) can be approximated using a finite

number N of terms of the series as

cl

 N∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n+ 1− j)!(j + 1)!

 δn+1
l

n+ 3

 cTl︸ ︷︷ ︸
scalar

+
rcl
δl

(27)

Cost function (27) is a univariate function of δl that is amenable to be minimized245

by appropriate existing methods. Once solved it provides a sub-optimal value

of the averaging time. However, the series being convergent, the accuracy of the

solution can be improved by increasing the number of terms N .

One simple approach to optimize cost function (27) is the use of search

methods (e.g. Golden search). Another approach is to use standard calculus to250

obtain the necessary condition for a minimum as follows

d

dδl

cl
 N∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n+ 1− j)!(j + 1)!

 δn+1
l

n+ 3

 cTl +
rcl
δl

 = 0

cl

 N∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n+ 1− j)!(j + 1)!

 n+ 1

n+ 3
δn+2
l

 cTl − rcl = 0 (28)

As a result the possible candidates for optimal averaging time are given as the

roots of Eq. (28). Eq. (28) is in fact a univariate polynomial in δl, so optimal
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averaging time candidates are the roots of a univariate polynomial, which is a

standard problem.255

Example 3. We follow with example 1. Lets compute the first term of the cost

function (27). Recall matrix Ac is nilpotent, as a result the computation of the

first term of Eq. (27) is exact for N = 2. First lets compute the following series

expansion

N=2∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n+ 1− j)!(j + 1)!

 δn+1
l

n+ 3
= M

δl
3

+

(
AcM

2!1!
+
MATc
1!2!

)
δ2
l

4
+
AcMATc

2!2!

δ3
l

5

=

∣∣∣∣∣∣0 0

0 qa

∣∣∣∣∣∣ δl3 +

1

2

∣∣∣∣∣∣0 1

0 0

∣∣∣∣∣∣
∣∣∣∣∣∣0 0

0 qa

∣∣∣∣∣∣+
1

2

∣∣∣∣∣∣0 0

0 qa

∣∣∣∣∣∣
∣∣∣∣∣∣0 0

1 0

∣∣∣∣∣∣
 δ2

l

4
+

+
1

4

∣∣∣∣∣∣0 1

0 0

∣∣∣∣∣∣
∣∣∣∣∣∣0 0

0 qa

∣∣∣∣∣∣
∣∣∣∣∣∣0 0

1 0

∣∣∣∣∣∣ δ
3
l

5

=

∣∣∣∣∣∣0 0

0 qa

∣∣∣∣∣∣ δl3 +
1

2

∣∣∣∣∣∣ 0 qa

qa 0

∣∣∣∣∣∣ δ
2
l

4
+

1

4

∣∣∣∣∣∣qa 0

0 0

∣∣∣∣∣∣ δ
3
l

5

=

∣∣∣∣∣∣
qa
20δ

3
l

qa
8 δ

2
l

qa
8 δ

2
l

qa
3 δl

∣∣∣∣∣∣
The minimum variance problem of the position measurement has c1 = |1 0|,260

with rc1 the continuous time variance of the position sensor. The optimization

problem, which is solvable by standard calculus, and the optimal integration

time for the position sensor δ∗1 are

min
δ1

qa
20
δ3
1 +

rc1
δ1

→ δ∗1 = 4

√
20

3

rc1
qa

(29)

Likewise, for the velocity output we have c2 = |0 1|, with rc2 the continuous

time variance of the velocity sensor. The optimization problem and the optimal265

integration time for the velocity sensor δ∗2 are

min
δ2

qa
3
δ2 +

rc2
δ2

→ δ∗2 = 2

√
3
rc2
qa

(30)
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Figure 5: (a) Position variance and optimal integration time. (b) Velocity variance and

optimal integration time. (c) Comparisson of position and velocity optimal integration times

and achieved output variances. The red dot is the output variance when the averaging time

is 10−5 seconds.

Consider the following numerical values qa = 10 (cm/sec2)2, rc1 = 10−5 cm2,

and rc2 = 10−5 (cm/sec)2. The cost function together with the optimal vari-

ance and integration time are shown in Fig. 5. The optimal integration time for

the position variance is δ∗1 = 0.0508 seconds. On the contrary, for the velocity270

measurement, the optimal integration time is δ∗2 = 0.0017 seconds, a smaller or-

der of magnitude. Although both sensors have the same variance, their optimal

averaging time differs because the state variances are different. As a result it

is not possible to determine a priori the optimal averaging time based only on

the sensor characteristics, and process characteristics must also be considered.275

Note that the optimal solution depends on the ratio between sensor variance

and process variance. If the process variance is much greater than the sensor
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Figure 6: (a) Averaged position yδ1 and velocity yδ2 outputs as a function of integration time

δ1 and δ2 respectively. It can be seen that for optimal averaging values δ∗1 = 0.0508 seconds

and δ∗2 = 0.0017 seconds the realizations show the minimum variance. (b) The previous

intuition is confirmed by computing the numerical variance shown by the blue dots. It can

be seen that there is a close match with the theoretical output variance function plotted in

green.

variance, the optimal integration time tends to zero, which means instant sam-

pling. On the contrary, if the sensor variance is much greater than the process

variance, the optimal integration time tends to infinity, because noise can be280

better averaged without being affected by process variance.

In Fig. 6 we plot the averaged position yδ1 and averaged velocity yδ2 , as a

function of the integration time δ1 and δ2 respectively, for 100 realizations. For

averaging times smaller than 0.0508 seconds the averaged position yδ1 has higher

variance due to sensor noise. For averaging times greater than 0.0508 seconds the285

averaged position has higher variance due to process noise. Below, we graph the
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theoretical variance as a function of δ1 together with the experimental variance

computed from the 100 realizations. The match confirms the accordance with

the theory. The same discussion can be performed for velocity variance but with

optimal averaging time given by 0.0017 seconds.290

6. Observer Equations

6.1. From instant error to averaged error

In this section we derive the equations of the Kalman filter with averaged

measurements and show how its estimates reduce their variance. First we modify

the standard Kalman filter equations to account for the departure from instant295

sampling values to averaged values. Recall that the standard Kalman Filter

estimation equation with instant measurement is

x̂+
k = x̂−k +Kk (yk − Cx̂−k )︸ ︷︷ ︸

Instant Error

(31)

However with the use of optimally averaged measurements Eq. (31) must be

modified as follows

x̂+
k = x̂−k +Kk (yδ − Cx̂δ)︸ ︷︷ ︸

Averaged Error

(32)

Thus the error is the difference between averaged measurements yδ and averaged300

model estimations Cx̂δ, as shown in Eq. (32). The averaged model estimation

Cx̂δ is defined as

Cx̂δ :=

∣∣∣∣∣∣∣∣∣∣∣∣

c1x̂δ1

c2x̂δ2
...

cny x̂δny

∣∣∣∣∣∣∣∣∣∣∣∣
∈ Rny (33)

with cl, l ∈ {1, 2, . . . , ny} the lst row of the output matrix C, and x̂δl , l ∈

{1, 2, . . . , ny} the averaged model state with time δl, that is given by
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x̂δl =
1

δl

∫ tk+1

t
yl
k

x̂(t)dt (34)

The computation of the term x̂δ requires the integration of the model state305

evolution x̂(t) given by

x̂(t) = eAc(t−t
yl
k )x(tylk ) +

∫ t

t
yl
k

eAc(t−τ)Bcu(τ)dτ (35)

By substitution of Eq. (35) in Eq. (34) we are able to compute the averaged

state with time δl as

x̂δl =
1

δl

∫ tk+1

t
yl
k

eAc(t−t
yl
k )dtx̂(tylk ) +

∫ tk+1

t
yl
k

∫ t

t
yl
k

eAc(t−τ)dτdtBcu(τ) (36)

Note, however, that before computing Eq. (36) we still need to compute the

state at time tylk , that is x̂(tylk ). This is the time when the sensor starts to310

average the measurements (See Fig. 2). This is easy because we know the

a posteriori estimate at time instant tk, x̂+
k , which was already calculated in

previous iteration by the observer. x̂(tylk ) is given by

x̂(tylk ) = eAc(t
yl
k −tk)x̂+

k +

∫ t
yl
k

tk

eAc(t
yl
k −τ)Bcu(τ)dτ (37)

6.2. Observer Implementation

The averaged Kalman filter measurements are given by the following equa-315

tions, which are computed for each time step k = 1, 2, . . ., with initial observer

variance matrix P0:

P−k = AkP
+
k−1Ak +Qk−1 (38)

Kk = P−k C
T (CP−k C

T +Rδ∗)−1 (39)

x̂−k = Ak−1x̂
+
k−1 +Bk−1uk−1 (40)

x̂+
k = x̂−k +Kk(yδ − Cx̂δ) (41)

P+
k = (I −KkC)P−k (I −KkC)T +KkRδ∗K

T
k (42)
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1. The dynamical system matrices Ak, Bk are given by Eq. (5) and Eq. (6),

respectively. The output matrix C is given in Eq. (2).

2. The system covariance matrix Qk−1 is given by Eq. (8) and the optimal320

measurement covariance matrix Rδ∗ is a diagonal matrix with l× l entries

given by Eq. (18) particularized for each sensor l with optimal averaging

time δ∗l .

3. The averaged model estimations Cx̂δ are given by computing Eq. (36) for

all sensors l ∈ {1, 2, . . . , ny} and computing Eq. (33).325

In summary, in this section we have provided the new observer equations with

optimal averaged measurements. We have referred the observer matrices to the

theoretically derived ones in the text. In the Appendix 9 we provide computa-

tionally amenable forms to implement the observer numerically.

Example 4. Following the previous example, we consider observer implemen-330

tation when only velocity is measured. We start by computing x̂(tylk ) as given

by Eq. (37). We make use of the expressions (52) and (53) in the Appendix 9.

x̂(tylk ) =

∣∣∣∣∣∣1 µk − δ2
0 1

∣∣∣∣∣∣ x̂+
k +

∣∣∣∣∣∣
(µk−δ2)2

2

µk − δ2

∣∣∣∣∣∣uk (43)

We now apply Eq. (36) to compute x̂δ2 . Using again (53) results in

x̂δ2 =

∣∣∣∣∣∣1
δ2
2

0 1

∣∣∣∣∣∣ x̂(tylk ) +

∣∣∣∣∣∣
δ22
3!

δ2
2

∣∣∣∣∣∣uk (44)

Finally we have to compute c2x̂δ2 , with c2 = |0 1|, which results in

c2x̂δ2 =
∣∣∣0 1

∣∣∣ x̂+
k +

(
µk −

δ2
2

)
uk (45)

We implement the modified Kalman filter with a constant measurement335

communication period of µk = 2.8× 10−4 seconds. The observer initial state is

the zero vector and the initial covariance matrix is 106I2×2. The input is zero up
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to time 4.48×10−2 seconds, a positive ramp up to time 6.44×10−2 seconds, and

a final negative ramp. Three simulations are performed with sensor averaging

times δ2 = {10−5, 1.7×10−4, 2.8×10−4} seconds. Recall that 1.7×10−4 seconds340

is the optimal averaging time that minimizes the measurement output variance

of the measured velocity. In Fig. 7 we can see the state estimates of position

and velocity for each averaging time. The left plot represents the position and

the right plot the velocity. In blue we have the true state evolution and the red

dots show the estimation provided by the observer. The upper line shows the345

Kalman filter performance for measurements averaged for 10−5 seconds. The

measurement variance is very high due to sensor noise and, although the Kalman

filter improves the state estimation, it is not accurate. The middle line shows

the Kalman filter performance for optimal averaging of 1.7×10−4 seconds. The

observer accuracy is dramatically improved. Finally, the bottom line shows the350

Kalman filter performance for measurements integrated in 2.8 × 10−4 seconds,

a longer time than the optimal integral time. The observer accuracy degrades

slightly, although the averaging time has doubled.

7. Application Examples

7.1. Two Tanks [17]355

In [17] a laboratory experiment consisting of two interconnected tanks is

presented to evaluate the performance of the Integrated Measurement Kalman

Filter (IMKF), designed for state estimation and fusion of fast rate measure-

ments with averaged slow rate measurements. In the two-tank system, water

is pumped into the left tank which is connected to the middle tank and each360

tank is equipped with a differential pressure cell (DP-cell) level sensor. The

linearized continuous-time model is given by

ẋ(t) =

∣∣∣∣∣∣−0.0101 0.0101

0.0101 −0.0147

∣∣∣∣∣∣︸ ︷︷ ︸
Ac

x(t) +

∣∣∣∣∣∣0.0041

0

∣∣∣∣∣∣︸ ︷︷ ︸
Bc

qi(t) + w(t) (46)
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Figure 7: The left plots represent the position and the right plots the velocity. In blue we have

the true state evolution and the red dots show the estimation provided by the observer. (a)

The first line plots show the simulation for δ2 = 10−5 seconds. (b) The second line plots show

the Kalman filter performance for δ2 = 1.7 × 10−4 seconds, which is the optimal averaging

value. (c) The third line plots shows the Kalman filter performance for δ2 = 2.8 × 10−4

seconds.
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Only the height of the middle tank is measured, so the output equation is

y(t) =
∣∣∣0 1

∣∣∣︸ ︷︷ ︸
C

x(t) + v(t) (47)

The process noise and sensor noise are obtained experimentally as

Qc = 10−5

∣∣∣∣∣∣ 1.305 −0.061

−0.061 1.198

∣∣∣∣∣∣ (cm2), Rc = 2.420× 10−6(cm2), (48)

Furthermore in [17] the middle tank DP-cell is artificially contaminated with365

some extra Gaussian random noise with variance Rm = 5× 10−3 cm2. This is

important for the discussion that follows.

Fig. 8 shows the middle tank level variance as a function of averaging time.

The upper plot considers only the DP-cell sensor noise with variance 2.420 ×

10−6 cm2. The optimal averaging time that provides the minimum variance370

measurement is δ∗ = 1.2182 seconds. In [17] the measurement averaging time

proposed is 10 seconds. Note that this provides a measurement variance that is

three times longer than the optimal one (see the red dot in Fig. 8). It can be

concluded that the 10 second averaging time does not provide a more accurate

measurement than the 1 second averaging time.375

The lower plot is the middle tank level variance with the DP-cell contaminated

with extra Gaussian noise of variance 5×10−3 cm2. The optimal averaging time

that provides the minimum variance measurement is in this case δ∗ = 43.5088

seconds. In [17] the proposed 10 second averaging time provides a measurement

variance that is again larger than the optimal one (see the red dot in Fig. 8).380

However, in this case the measurement variance is similar to the optimal one

due to the flatness of the cost function around the minimum. The contribution

of this article allows computation of the optimal averaging time so as to produce

the minimum variance measurement, to be used for instance in the IMKF.

Finally we assess the impact of measurement accuracy in the modified Kalman385

filter derived in Section 6. The observer initial state is the zero vector and the
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Figure 8: Middle tank level variance as a function of averaging time. (a) Upper plot is for

sensor noise with variance 2.420× 10−6 cm2. The optimal averaging time is 1.2182 seconds.

(b) Lower plot is for sensor noise with variance 5 × 10−3 cm2. The optimal averaging time

is 43.5088 seconds
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initial covariance matrix is 106I2×2. We apply the modified Kalman filter with

three sampling rates of 1 second, 10 seconds, and 40 seconds. The averaging time

in each case is equal to the sampling rate. The results can be seen in the first,

second, and third rows of Fig. 9, respectively. Note that in this case the data390

transmission rate is not constant. The best observer performance is obtained

with the averaging time of 40 seconds, approximately the optimal one. The

observer performance with averaging time of 1 and 10 seconds is less accurate,

despite the data transmission rate being higher than in the 40 second case. This

example shows the impact of optimal averaging time at the observer node prior395

to communication to the remote observer.

7.2. Aerial Navigation

We consider the problem of estimating the position of an airplane with a

continuous-time model given by

ẋ(t) =

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Bc

u(t) + w(t) (49)

with x(t) := [Px Py Pz] the position in the three axes, u(t) := [Vx Vy Vz] the400

input velocity in the three axes, and w(t) a random disturbance. We consider

that the airplane is flying at a constant velocity in the x axis, hence Vx = 10 m/s

and Vy = Vz = 0 m/s, with initial altitude of 500 meters. We measure the

position on the three axes, hence the output equation is

y(t) =

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
C

x(t) + v(t) (50)

with y(t) = [yx yy yz] the position measures in the three axes, and v(t) the405
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Figure 9: Tank level variations around the set point. The left plots represent the left tank

and the right plots the middle tank. In blue we have the true state evolution and the red dots

show the estimation provided by the observer. (a) Modified Kalman filter performance with

averaging time and sampling rate equal to 1 second. (b) Modified Kalman filter performance

with averaging time and sampling rate equal to 10 seconds. (c) Modified Kalman filter

performance with averaging time and sampling rate equal to 40 seconds.
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sensor noise. The process noise and the sensor noise covariance matrices are

given as

Qc =

∣∣∣∣∣∣∣∣∣
0.5 0 0

0 0.5 0

0 0 0.5

∣∣∣∣∣∣∣∣∣ (m
2/s2), Rc =

∣∣∣∣∣∣∣∣∣
0.04 0 0

0 0.04 0

0 0 1

∣∣∣∣∣∣∣∣∣ (m
2), (51)

The sensor noise in the x and y axis measurement has equal variance of value

0.04 m2 because in both cases the position is given as the integration of ac-

celerometer measurements. On the contrary, the position of the axis z (i.e. the410

altitude) is measured by a radar with larger variance of value 1 m2. However,

the radar provides an absolute measure in contrast to the accelerometers that

are subject to error accumulation over time.

In Fig. 10 we plot the measurement variance of the accelerometers and the

radar as a function of averaging time. The optimal averaging time for the415

accelerometers is 0.49 seconds, whereas for the radar it is 2.45 seconds. Fig. 11

shows the position estimation in the three axes. The position estimation in

the x and y with optimally averaged measurements is shown in red. In black

we show the estimation with averaging time of 2.45 seconds, which is larger

than the optimal averaging time of 0.49 seconds. We can see that the estimate’s420

accuracy degrades and that there is a lag in the estimates, due to the increase in

the averaging time. The position estimation in the z axis, measured with radar,

with optimally averaging time is shown in red. In black we show the estimation

with averaging time of 0.49 seconds, which is shorter than the optimal averaging

time of 2.45 seconds. We can see that the estimate’s accuracy degrades because425

of the sensor noise, due to the decrease in the averaging time. This example

shows the impact on appropriate selection of the averaging time on the variance

of the Kalman filter estimates.
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Figure 10: Averaged measurement variance as a function of the averaging time δ for measure-

ment of position yx, yy , and yz . (a) Upper plot is for measurement of positions yx and yy

given by integration of accelerometers with sensor variance 0.04 m2. The optimal averaging

time is 0.49 seconds. (b) Lower plot is for measurement of position yz given by radar with

variance 1 m2. The optimal averaging time is 2.45 seconds.
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Figure 11: Airplane position estimation. In blue we have the true state evolution, the red dots

show the estimation provided by the observer with optimal averaging time, and the black dots

show the estimation provided by the observer with non-optimal averaging time. (a) In red,

estimation with optimal averaging time equal to 0.49 seconds. In black, estimation with non-

optimal averaging time equal to 2.45 seconds. (b) In red, estimation with optimal averaging

time equal to 0.49 seconds. In black, estimation with non-optimal averaging time equal to

2.45 seconds. (c) In red, estimation with optimal averaging time equal to 2.45 seconds. In

black, estimation with non-optimal averaging time equal to 0.49 seconds.
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8. Conclusions

In this article, we have shown that for stochastic dynamical systems there430

is an optimal averaging time that provides the measurement with minimum

variance. The existence of the optimal averaging time is an outcome of the

trade-off between process noise and sensor noise, which have competing effects

on the variance of the averaged measurement. This optimal averaging time is

obtained by solving a univariate optimization problem. However, for a particular435

realization, the optimal averaging time may differ from the optimal in expected

averaging time. This opens the possibility for programming smart sensors with

algorithms that provide minimum variance measures for any realization. Finally,

the a posteriori estimation equations of the classical Kalman filter have been

adapted to take into account averaged measurements. The new filter might440

be designed to tackle the trade-off between sampling time and accuracy, in

such a way that the optimal averaging time could be obtained by minimizing

the estimate variance instead of the measurement variance. This is an open

research area under investigation.
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9. Appendix450

The article results require computation of integrals of exponential matrices

that, in general, have no closed form. Although there are well established numer-

ical methods to calculate these integrals, we still need to obtain the calculations

as a function of a generic time interval for optimization purposes. To accomplish

this goal we make use of the series expansion of the matrix exponential [24]455
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eAcλ = I +Acλ+A2
c

λ2

2!
+A3

c

λ3

3!
+ . . .

(52)

As a result, by substituting the term eAcλ with its series expansion we are able

to approximate the following integrals that appear throughout the article.

The series expansion is absolutely convergent [25], thus the integral of the

exponential matrix is

∫ λ

0

eAcλdλ =

∞∑
n=0

Anc
(n+ 1)!

λn+1 (53)

This is used in the discretization of the dynamical model in (6) and in the460

computation of the state and the averaged state in Eqs. (35) and (36).

The following integral is required to compute the covariance of the state

space in Eq. (8)

∫ λ

0

eAcλMeA
T
c λdλ =

∞∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n− j)!j!

 λn+1

n+ 1
(54)

Finally, the next integral computes the covariance matrix of the integral

of the state space, which appears in the minimization problem of the output465

variance in Eq. (25)

∫ λ

0

(∫
eAcλdλ

)
M

(∫
eA

T
c λdλ

)
dλ =

∞∑
n=0

 n∑
j=0

An−jc M(Ajc)
T

(n+ 1− j)!(j + 1)!

 λn+3

n+ 3
(55)

By truncating the expansion of the previous convergent series by taking its first

N + 1 terms, the desired accuracy approximation can be found. In Table 1 we

summarize the computation formulae for the truncated series up to a certain

index N. Note that the computation is a univariate matrix polynomial in λ.470
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Table 1: Summary of the proposed computation formulae

Definition Computation

eAcλ
∑N
n=0

Anc
n! λ

n∫ λ
0
eAcλBcdλ

∑N
n=0

AncBc
(n+1)!λ

n+1∫ λ
0
eAcλMeA

T
c λdλ

∑N
n=0

(∑n
j=0

An−j
c M(Ajc)

T

(n−j)!j!

)
λn+1

n+1∫ λ
0

(∫
eAcλdλ

)
M
(∫

eA
T
c λdλ

)
dλ

∑N
n=0

(∑n
j=0

An−j
c M(Ajc)

T

(n+1−j)!(j+1)!

)
λn+3

n+3
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