

## **UNIVERSITAT JAUME I**

# ESCOLA SUPERIOR DE TECNOLOGIA I CIÈNCIES EXPERIMENTALS MÀSTER UNIVERSITARI EN ENGINYERIA INDUSTRIAL

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación accidental de incendio por diferentes métodos. Ventajas y ahorro económico.

TRABAJO FIN DE MÀSTER

AUTOR/A

David Medall Martos

DIRECTOR/A

Vicente Albero Gabarda

#### **Agradecimientos**

En primer lugar me gustaría agradecer a mi tutor Vicente Albero Gabarda por guiarme y apoyarme en las diferentes etapas del proyecto y por su confianza en mi.

Quiero agradecer a la Universitat Jaume I y, más concretamente, a la Escuela Superior de Tecnología y Ciencias Experimentales por ofrecerme la formación técnica necesaria para realizar el presente trabajo y a todos los compañeros que he tenido durante el camino hasta aquí.

Me gustaría agradecer el apoyo incondicional de mi familia para llevar adelante el proyecto. Sin su amor y sus ánimos hubiera sido imposible.

Por último, a Marina, por estar siempre a mi lado y animarme a cada paso. "Gràcies. Sempre."

# Resumen del proyecto

El presente trabajo consiste en diseñar y calcular la estructura de una nave industrial a dos aguas con una cercha americana. Mediante el diseño obtenido se analizará la situación de incendio por los métodos simples utilizados habitualmente y por métodos avanzados de análisis de fuego.

Habitualmente en el diseño de naves industriales el problema del diseño para fuego se trata de una forma muy superficial. Se siguen las indicaciones de la curva normalizada de fuego sin tener en cuenta las características estructurales de la nave, su utilización o los materiales que se almacenan en la misma.

El proyecto consiste en un análisis exhaustivo de las ventajas que puede suponer realizar un dimensionado de la estructura teniendo en cuenta todas estas características mediante diferentes análisis. De este modo se pretende demostrar que mediante este tipo de enfoque es posible conseguir un ahorro económico en el diseño de la nave sin poner en riesgo la seguridad de la estructura.

La metodología seguida es la que se muestra a continuación:

- ☐ Inicialmente se calculará la estructura por los medios tradicionales. Se diseñarán dos casos diferenciados de estudio: una estructura con rociadores automáticos que cumpla a R15 y una estructura con recubrimiento de mortero de vermiculita que cumpla a R30.
- Ambas estructuras se analizarán mediante los métodos básicos de análisis al fuego (curva normalizada), por métodos simples (tiempo equivalente de exposición, curva paramétrica) y por métodos avanzados (métodos de una y dos zonas).
- □ Se compararán los resultados obtenidos con los diferentes métodos y se planteará un posible redimensionamiento de las piezas más características de la estructura.
- ☐ Se calculará la instalación de rociadores necesaria para el primer caso.
- Se hará una comparación económica que muestre los beneficios de realizar este tipo de análisis y se plantearán las conclusiones pertinentes.

Los resultados esperados son el diseño de ambas estructuras y sus comprobaciones de resistencia, las temperaturas del acero según los diferentes métodos y el coste de las diferentes opciones propuestas.

# Índice de documentos

- □ MEMORIA
- ☐ ANEXOS A LA MEMORIA
- □ PLANOS
- ☐ PLIEGO DE CONDICIONES
- ☐ PRESUPUESTO Y MEDICIONES





MEMORIA Página 2/98



# Índice de la memoria

| Índice de la memoria                                                                                                                                                                                                                             | 3                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Índice de tablas                                                                                                                                                                                                                                 | 5                                |
| Índice de imágenes                                                                                                                                                                                                                               | 9                                |
| 1. Objeto y justificación                                                                                                                                                                                                                        | 11                               |
| 2. Alcance y antecedentes                                                                                                                                                                                                                        | 11                               |
| <ul><li>3. Normas y referencias aplicables</li><li>3.1 Normativa de aplicación</li><li>3.2 Herramientas y programas de cálculo</li></ul>                                                                                                         | <b>12</b><br>12<br>12            |
| 4. Bibliografía                                                                                                                                                                                                                                  | 13                               |
| 5. Términos y definiciones                                                                                                                                                                                                                       | 14                               |
| <ul> <li>6. Datos de partida</li> <li>6.1 Localización de la nave</li> <li>6.2 Utilización de la nave</li> <li>6.3 Justificación de seguridad contra incendios</li> <li>6.4 Tipología estructural</li> <li>6.5 Distribución en planta</li> </ul> | 15<br>15<br>18<br>19<br>20<br>23 |
| 7. Estructura portante                                                                                                                                                                                                                           | 25                               |
| 7.1 Bases de cálculo                                                                                                                                                                                                                             | 25                               |
| 7.2 Pórtico tipo                                                                                                                                                                                                                                 | 28                               |
| 7.3 Definición de la estructura                                                                                                                                                                                                                  | 30                               |
| 7.4 Resistencia al fuego                                                                                                                                                                                                                         | 34                               |
| 7.5 Cálculo de la estructura y resultados                                                                                                                                                                                                        | 35                               |
| 7.6 Placas de anclaje y cimentación                                                                                                                                                                                                              | 39                               |
| 8. Cálculos de fuego                                                                                                                                                                                                                             | 42                               |
| 8.1 Curvas temperatura-tiempo nominales                                                                                                                                                                                                          | 43                               |
| 8.1.1 Curva de incendio normalizado                                                                                                                                                                                                              | 43                               |
| 8.1.2 Temperatura del acero                                                                                                                                                                                                                      | 45                               |
| 8.1.3 Otras curvas temperatura-tiempo nominales                                                                                                                                                                                                  | 46                               |
| 8.2 Modelos basados en incendios reales                                                                                                                                                                                                          | 49                               |
| 8.2.1 Modelos simplificados                                                                                                                                                                                                                      | 50                               |
| 8.2.1.1 Tiempo de exposición equivalente al fuego normalizado                                                                                                                                                                                    | 50                               |
| 8.2.1.2 Fuegos de sector: curvas temperatura-tiempo paramétricas                                                                                                                                                                                 | 52                               |
| 8.2.1.3 Temperatura del acero                                                                                                                                                                                                                    | 56                               |

MEMORIA Página 3/98



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

| 8.2.2 Modelos avanzados                         | 62 |
|-------------------------------------------------|----|
| 8.2.2.1 Modelos de dos zonas                    | 62 |
| 8.2.2.2 Modelos de una zona                     | 62 |
| 8.2.2.3 Parámetros en OZone                     | 62 |
| 8.2.2.4 Resultados                              | 69 |
| 8.3 Capacidad portante en situación de incendio | 73 |
| 8.4 Redimensionado                              | 77 |
| 8.5 Comparación de resultados y conclusiones    | 80 |
| 9. Rociadores                                   | 84 |
| 9.1 Predimensionado                             | 84 |
| 9.2 Verificación con Epanet                     | 90 |
| 10. Comparación económica                       | 97 |
| 11. Conclusiones y trabajo futuro               | 98 |

MEMORIA Página 4/98



## Índice de tablas

- Tabla 1: Características de la zona donde se sitúa la parcela según el PGE (2019).
- Tabla 2. Condiciones establecidas por el PGOU de Castellón.
- Tabla 3: Características de la parcela seleccionada.
- Tabla 4. Nivel de riesgo intrínseco según la densidad de carga de fuego.
- Tabla 5. Densidad de carga de fuego de Paletas de madera extraída de la Tabla 1.2 del Anexo I del RD 2267/2004.
- Tabla 6. Tabla 2.3 del Anexo II del RSCIEI.
- Tabla 7. Tabla 2.4 del Anexo II del RSCIEI.
- Tabla 8: Dimensiones de la nave industrial de estudio.
- Tabla 9: Parámetros geográficos de la nave de estudio.
- Tabla 10. Materiales utilizados en el dimensionado de la nave.
- Tabla 11. Criterios de aptitud al servicio.
- Tabla 12. Peso y sobrecarga de los cerramientos
- Tabla 13. Características de pandeo y límite de flecha de las barras de los pórticos interiores.
- Tabla 14. Características de pandeo de las barras de la viga perimetral.
- Tabla 15. Características de pandeo de las barras de la cruz de San Andrés.
- Tabla 16. Características de pandeo de las barras de la VCV.
- Tabla 17. Características de pandeo de las barras de la celosía.
- Tabla 18. Características de pandeo y límite de flecha de las barras de los pórticos de fachada.
- Tabla 19. Resistencia al fuego y revestimiento en cada caso.
- Tabla 20. Perfiles, resistencia y temperatura de las barras del Caso 1.
- Tabla 21. Perfiles, resistencia y temperatura de las barras del Caso 2.
- Tabla 22. Placas de anclaje del Caso 1.
- Tabla 23. Cimentación del Caso 1.
- Tabla 24. Placas de anclaje del Caso 2.
- Tabla 25. Cimentación del Caso 2.
- Tabla 26. Los diferentes modelos de incendio existentes y sus características.
- Tabla 27. Tiempo y temperatura de un incendio normalizado.
- Tabla 28. Temperatura de los gases según la curva de incendio normalizado.
- Tabla 29. Temperatura del acero según la curva de incendio normalizado para el Caso 1.
- Tabla 30. Temperatura del acero según la curva de incendio normalizado para el Caso 2.
- Tabla 31. Tiempo y temperatura de fuego exterior.
- Tabla 32. Tiempo y temperatura de hidrocarburos.
- Tabla 33. Parámetros característicos del fuego equivalente para el caso 1.
- Tabla 34. Tiempo de exposición equivalente para el Caso 1.
- Tabla 35. Parámetros característicos del fuego equivalente para el Caso 2.
- Tabla 36. Tiempo de exposición equivalente para el Caso 2.
- Tabla 37. Temperatura de los gases de la combustión según su tiempo de exposición equivalente.
- Tabla 38. Comparación entre los tiempos (Caso 1).
- Tabla 39. Comparación entre los tiempos (Caso 2)
- Tabla 40. Temperatura del acero para el método de tiempo de exposición equivalente del Caso 1.
- Tabla 41. Temperatura del acero para el método de curvas T-t paramétricas del Caso 1.
- Tabla 42. Parámetros para el cálculo de la conductancia de la protección (s).

MEMORIA Página 5/98



- Tabla 43. Temperatura del acero para el método de tiempo de exposición equivalente del Caso 2.
- Tabla 44. Temperatura del acero para el método de curvas T-t paramétricas del Caso 2.
- Tabla 45. Geometría de la nave introducida en OZone.
- Tabla 46. Materiales de la solera.
- Tabla 47. Materiales de la cubierta.
- Tabla 48. Aberturas de la cubierta.
- Tabla 49. Materiales de la pared 1.
- Tabla 50. Aberturas de la pared 1.
- Tabla 51. Materiales de la pared 2.
- Tabla 52. Aberturas de la pared 2.
- Tabla 53. Materiales de la pared 3.
- Tabla 54. Aberturas de la pared 3.
- Tabla 55. Materiales de la pared 4.
- Tabla 56. Aberturas de la pared 4.
- Tabla 57. Características del incendio simulado en OZone.
- Tabla 58. Datos del fuego.
- Tabla 59. Medidas antiincendios activas en cada caso.
- Tabla 60. Datos de diseño de fuego.
- Tabla 61. Temperaturas obtenidas en OZone para el Caso 1 sin rociadores.
- Tabla 62. Temperaturas obtenidas en OZone para el Caso 1 con rociadores.
- Tabla 63. Temperaturas obtenidas en OZone para el Caso 2 sin rociadores.
- Tabla 64. Perfiles iniciales del pilar y la jácena respectivamente del Caso 1 sin rociadores.
- Tabla 65. Coeficientes reductores de las características mecánicas para el Caso 1 sin rociadores.
- Tabla 66. Comprobación de resistencia flexión y axil combinados para el Caso 1 sin rociadores.
- Tabla 67. Perfiles iniciales del pilar y la jácena respectivamente del Caso 1 con rociadores.
- Tabla 68. Coeficientes reductores de las características mecánicas para el Caso 1 con rociadores.
- Tabla 69. Comprobación de resistencia flexión y axil combinados para el Caso 1 con rociadores.
- Tabla 70. Perfiles iniciales del pilar y la jácena respectivamente de la nave del Caso 2.
- Tabla 71. Coeficientes reductores de las características mecánicas para la nave del Caso 2.
- Tabla 72. Comprobación de resistencia flexión y axil combinados para la nave del Caso 2.
- Tabla 73. Redimensionamiento de los perfiles del Caso 1 sin rociadores.
- Tabla 74. Redimensionamiento de los perfiles del Caso 1 con rociadores.
- Tabla 75. Redimensionamiento de los perfiles del Caso 2.
- Tabla 76. Comparación de resultados de los métodos simplificados para el Caso 1.
- Tabla 77. Comparación de resultados de los métodos simplificados para el Caso 2.
- Tabla 78. Comparación de la ™ máxima del acero según CYPE y OZone para el Caso 1.
- Tabla 79. Comparación de la ™ máxima del acero según CYPE y OZone para el Caso 2.
- Tabla 80. Comparación de resultados para los diferentes perfiles estudiados.
- Tabla 81. Criterios de diseño para RL, RO y REP.
- Tabla 82. Valores de S, s y d<sub>diseño</sub>.
- Tabla 83. Número de rociadores mínimo y caudal de los mismos.
- Tabla 84. Valores de D y L y número real de rociadores.
- Tabla 85. Selección de rociadores según su riesgo y d<sub>diseño</sub>.
- Tabla 86. Caudal mínimo según la presión mínima.
- Tabla 87. Caudal mínimo para cada rociador.
- Tabla 88. Diámetros aconsejados para diferente número de rociadores.

MEMORIA Página 6/98



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

- Tabla 89. Valores de C para diferentes tipos de materiales.
- Tabla 90. Longitudes equivalentes de los accesorios según su diámetro.
- Tabla 91. Longitudes equivalentes de los accesorios considerados.
- Tabla 92. Longitudes totales para cada diámetro.
- Tabla 93. Comparación económica de cada caso.

MEMORIA Página 7/98



MEMORIA Página 8/98



# Índice de imágenes

- Imagen 1: Localización de la nave.
- Imagen 2. Diagrama de proceso de fabricación de pallets.
- Imagen 3. Distribución de la nave.
- Imagen 4. Situaciones de dimensionado para una nave industrial.
- Imagen 5. Pórtico tipo definido con correas introducidas.
- Imagen 6. Esquema de una viga tipo Pratt.
- Imagen 7. Esquema de una viga tipo Warren con montantes intercalados.
- Imagen 8. Esquema de la división de pilares hastiales en dos tramos.
- Imagen 9. Comparación del pórtico interior del Caso 1 (arriba) y el Caso 2 (abajo).
- Imagen 10. Comparación del pórtico de fachada del Caso 1 (arriba) y el Caso 2 (abajo).
- Imagen 11. Agrupación de las placas de anclaje y zapatas.
- Imagen 12. Placas de anclaje (de derecha a izquierda: Tipo 1, Tipo 2 y Tipo 3) del Caso 1.
- Imagen 13. Placas de anclaje (de derecha a izquierda: Tipo 1, Tipo 2 y Tipo 3) del Caso 2.
- Imagen 14. Curva de incendio normalizado.
- Imagen 15. Curva de fuego exterior.
- Imagen 16. Curva de hidrocarburos.
- Imagen 17. Curva de incendio real.
- Imagen 18. Curva paramétrica de tiempo-temperatura (Caso 1).
- Imagen 19. Curva paramétrica de tiempo-temperatura (Caso 2).
- Imagen 20. Gráfica para el cálculo de la temperatura del acero según la conductancia de la protección y el tiempo de exposición (Tiempo equivalente de exposición).
- Imagen 21. Gráfica para el cálculo de la temperatura del acero según la conductancia de la protección y el tiempo de exposición (Curva T-t paramétrica).
- Imagen 22. Dimensiones y nomenclatura en OZone.
- Imagen 23. Introducción de las capas de material en OZone.
- Imagen 24. Introducción de aberturas laterales (izquierda) y en la cubierta (derecha).
- Imagen 25. Gráfico de temperaturas obtenido en OZone para el Caso 1 sin rociadores para el pilar.
- Imagen 26. Gráfico de temperaturas obtenido en OZone para el Caso 1 sin rociadores para la jácena.
- Imagen 27. Gráfico de temperaturas obtenido en OZone para el Caso 1 con rociadores para el pilar.
- Imagen 28. Gráfico de temperaturas obtenido en OZone para el Caso 1 con rociadores para la jácena.
- Imagen 29. Gráfico de temperaturas obtenido en OZone para el Caso 2 sin rociadores para el pilar.
- Imagen 30. Gráfico de temperaturas obtenido en OZone para el Caso 2 sin rociadores para la jácena.
- Imagen 31. Ilustración gráfica del redimensionamiento de los perfiles del Caso 1 sin rociadores.
- Imagen 32. Ilustración gráfica del redimensionamiento de los perfiles del Caso 1 con rociadores.
- Imagen 33. Ilustración gráfica del redimensionamiento de los perfiles del Caso 2.
- Imagen 34. Gráfico de comparación entre la T<sup>a</sup> máxima del acero según CYPE y OZone para el Caso 1.
- Imagen 35. Gráfico de comparación entre la T<sup>a</sup> máxima del acero según CYPE y OZone para el Caso 2.

MEMORIA Página 9/98



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

- Imagen 36. Ubicación de los rociadores.
- Imagen 37. ID de los nodos del sistema en Epanet.
- Imagen 38. ID de las tuberías y las bombas en Epanet.
- Imagen 39. Longitud de las tuberías introducida en Epanet.
- Imagen 40. Demanda base de los nodos introducida en Epanet.
- Imagen 41. Curva característica de la bomba seleccionada.
- Imagen 42. Introducción de la curva característica en Epanet.
- Imagen 43. Presión en los nodos en Epanet [m.c.a.].
- Imagen 44. Caudal en las tuberías en Epanet [lps].

MEMORIA Página 10/98



# 1. Objeto y justificación

El presente proyecto tiene como objeto el dimensionado de una nave industrial a dos aguas y un estudio de los diferentes métodos de cálculo para la resistencia al fuego de la misma.

En primer lugar se realizará el modelado y cálculo de la estructura metálica mediante el software de cálculo CYPE 2020. A continuación, se realizarán una serie de cálculos para el correcto dimensionado de la instalación frente a la situación accidental de incendio.

Se trata de un proceso de investigación que tiene el fin de averiguar las similitudes y diferencias entre los resultados obtenidos con los métodos más simples y comunes a los que se obtienen con modelos más realistas y complejos.

# 2. Alcance y antecedentes

El alcance del presente proyecto abarca el diseño y cálculo de la estructura metálica, su dimensionado respecto a la situación accidental de incendio, el estudio de los diferentes modelos de incendio y el diseño y dimensionado de una instalación de rociadores.

Además, se incluirá en el proyecto un presupuesto de las diferentes opciones de nave industrial presentadas y una comparativa entre las mismas.

El proyecto surge debido a que en la actualidad la utilización de métodos avanzados y precisos en el cálculo de las estructuras metálicas ante la acción accidental de incendio es poco habitual. En estos casos, lo más común es aplicar las curvas normalizadas que especifica la normativa y dimensionar o proteger la estructura acorde a ello.

Este estudio pretende hallar las diferencias y posibles ventajas que puede suponer un estudio más detallado de la acción del fuego, tratando de proponer un método alternativo que reduzca costes y proporcione una mayor precisión al proceso.

MEMORIA Página 11/98



# 3. Normas y referencias aplicables

# 3.1 Normativa de aplicación

| Código técnico de la edificación (CTE). Documento básico: Seguridad     |
|-------------------------------------------------------------------------|
| Estructural. Acciones en la edificación (SE-AE)                         |
| Código técnico de la edificación (CTE). Documento básico: Seguridad en  |
| caso de incendio. (SI)                                                  |
| Reglamento de instalaciones térmicas en los edificios (RITE).           |
| Guía técnica de aplicación: Reglamento de seguridad contra incendios en |
| los establecimientos industriales (RSCIEI). Real Decreto 2267/2004.     |
| UNE EN 1991-1-2:2004. Eurocódigo 1: Acciones en estructuras. Parte 1-2: |
| Acciones generales - Acciones en estructuras expuestas al fuego. AENOR, |
| 2004.                                                                   |
| Reglamento de seguridad contra incendios en los establecimientos        |
| industriales.                                                           |
| UNE-EN 12845: Sistemas de rociadores automáticos. Octubre 2016.         |
| Instrucción de Hormigón Estructural EHE-08 (RD 1247/2008)               |

## 3.2 Herramientas y programas de cálculo

| CYPE 2020.                  |
|-----------------------------|
| AutoCAD 2021.               |
| OZone.                      |
| EPANET.                     |
| Arquímedes.                 |
| Generador de precios.       |
| Documentos de Google.       |
| Microsoft Word.             |
| Hojas de cálculo de Google. |
| Microsoft Excel.            |
| Lucidehart                  |

MEMORIA Página 12/98



# 4. Bibliografía

| PGOU 2020: Mapas y fichas de zona.                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apuntes de la asignatura SJA009 - Construcción y arquitectura industrial.                                                                                                                                                  |
| Development of design rules for steel structures subjected to natural fires in large compartments by JB. Schleich & co.                                                                                                    |
| Resistencia al Fuego de Estructuras - Normativa y Modelos de Incendio (UPV).                                                                                                                                               |
| SJA009 - Guión de prácticas: diseño y cálculo de una nave industrial.                                                                                                                                                      |
| Guía de diseño Edificios de acero de una sola planta - Parte 2: Diseño conceptual.                                                                                                                                         |
| ORTIZ HERRERA J., 2009. Cálculo de las estructuras de acero frente al incendio. Publicaciones APTA.                                                                                                                        |
| DIFISEK. Ejemplo según UNE-EN 1991 Parte 1-2: Fuego totalmente desarrollado.                                                                                                                                               |
| PURKISS, J.A. Fire Safety Engineering. Design of Structures, Ed. Elsevier, Second                                                                                                                                          |
| edition 2007, ISBN-13: 978-0-7506-6443-1.                                                                                                                                                                                  |
| Instalaciones de protección contra incendios. Instituto tecnológico del agua (UPV).                                                                                                                                        |
| BAÑÓN QUINTANA, MªP. Diseño y Cálculo de las instalaciones de PCI en un establecimiento industrial destinado al almacenamiento de líquidos inflamables y su distribución logística., Universidad Politécnica de Cartagena. |
| Computer Applications in Hydraulic Engineering, $5^{\text{th}}$ Edition, Haestad Methods.                                                                                                                                  |
| GARCÍA-SERRA GARCÍA, J. Instalaciones de protección contra incendios: Rociadores (ROC)., Instituto tecnológico del agua (UPV).                                                                                             |
| http://prontuarios.info/perfiles/IPE                                                                                                                                                                                       |
| STEEL BUILDINGS IN EUROPE: Edificios de acero de una sola planta. Parte 2:                                                                                                                                                 |
| Diseño conceptual                                                                                                                                                                                                          |
| MASIMON CLAVERA, L. Estabilidad al fuego. Protección estructural.                                                                                                                                                          |
| Pliego de Condiciones técnicas particulares. Colegio Oficial de Arquitectos                                                                                                                                                |
| Vasconavarro.                                                                                                                                                                                                              |

MEMORIA Página 13/98



# 5. Términos y definiciones

|   | PGOU: Plan general de ordenación urbanística.                                              |
|---|--------------------------------------------------------------------------------------------|
|   | <b>RSCIEI</b> : Reglamento de seguridad contra incendios en los establecimientos           |
|   | industriales.                                                                              |
|   | RITE: Reglamento de instalaciones térmicas en los edificios.                               |
|   | CTE: Código técnico de la edificación. Posee una serie de documentos que                   |
|   | configuran su marco regulatorio así como documentos de apoyo y guías.                      |
|   | ☐ <b>DB SE-AE</b> : Documento básico de seguridad estructural: Acciones en la edificación. |
|   | <ul> <li>DB SE-A: Documento básico de seguridad estructural: Acero.</li> </ul>             |
|   | ☐ <b>DB SI</b> : Documento básico de seguridad en caso de incendio.                        |
|   | EHE 08: Instrucción española del hormigón estructural.                                     |
|   | •                                                                                          |
|   | R(t): tiempo que se cumple la estabilidad al fuego o capacidad portante.                   |
|   | Específico para elementos que solo ejercen la función portante: vigas y                    |
| _ | pilares.                                                                                   |
|   | RHR (HRR en inglés): Es el ratio al cual se genera calor a partir de un fuego.             |
|   | Este depende principalmente del tipo de combustible y de la cantidad del                   |
| _ | mismo. Normalmente se mide en kilovatios o megavatios.                                     |
|   | Mortero de vermiculita: Mortero seco de grano fino fabricado sobre una                     |
|   | base de perlita aligerado con vermiculita y aditivos. Es frecuente su                      |
|   | aplicación mecánica (mediante proyección) en protección contra el fuego                    |
|   | de estructuras. Presenta un aspecto final rugoso.                                          |
|   | VCV: Viga a contraviento.                                                                  |
|   | Límite elástico o límite de elasticidad: Tensión máxima que un material                    |
|   | elástico es capaz de soportar sin sufrir deformaciones permanentes.                        |
|   | Módulo de elasticidad o módulo de Young: Parámetro característico de los                   |
|   | materiales que especifica la relación entre los incrementos de tensión                     |
|   | aplicados en un ensayo de tracción respecto a los incrementos de                           |
|   | deformación longitudinal unitaria sufridos.                                                |
|   | Esbeltez reducida: Relación entre la resistencia plástica de la sección de                 |
|   | cálculo y la compresión crítica por pandeo de una pieza.                                   |

MEMORIA Página 14/98



## 6. Datos de partida

El objetivo del presente apartado es establecer los datos y condiciones de partida para el proyecto actual. Dichos valores se tendrán en cuenta durante todo el proyecto.

#### 6.1 Localización de la nave

La nave de estudio se situará en un polígono industrial perteneciente al área metropolitana de Castellón de la Plana.

La ubicación en la que se va a situar la estructura es la parcela catastral 4600201YK5340S localizada en la C/ Sot de Ferrer 6; 12003 Castellón como se muestra en la *Imagen 1*.



Imagen 1: Localización de la nave.

MEMORIA Página 15/98



Las características de dicha zona según las fichas de zona del *Plan General Estructural (PGE)* de Castelló de la Plana (Marzo 2019) son las indicadas en la siguiente tabla:

Tabla 1: Características de la zona donde se sitúa la parcela según el PGE (2019).

| Código de zona de ordenación        | ZUR-NH                                 |  |  |
|-------------------------------------|----------------------------------------|--|--|
| Usos dominantes                     | Residencial                            |  |  |
| Usos permitidos                     | Terciario, Industrial                  |  |  |
| Índice de edificabilidad bruta      | 2,67 m <sup>2</sup> t/m <sup>2</sup> s |  |  |
| Índice de edificabilidad industrial | Uso permitido sin un índice asignado.  |  |  |

Según el PGOU de Castellón, dentro de los usos industriales (Apartado 10) se trata de un edificio en una situación **tercera** (Edificio en zonas industriales) y tipo X (En edificio situado en zona industrial no aislado por espacios libres).

De este modo, según el apartado 10.3.- Condiciones, se puede observar que no hay límites para <u>la superficie máxima de la actividad</u> (S [m²]), <u>la anchura mínima de la zona de rodadura del vial de acceso</u> (A [m]) ni en la <u>separación mínima a vecinos</u> (D [m]):

Tabla 2. Condiciones establecidas por el PGOU de Castellón.

| Categoría | Situación<br>Primera |                      |                      | ación<br>unda      | Situació                      | Situación<br>Cuarta           |                                |
|-----------|----------------------|----------------------|----------------------|--------------------|-------------------------------|-------------------------------|--------------------------------|
|           | X                    | Y                    | X                    | Y                  | х                             | Y                             |                                |
| А         | 100<br>A 10<br>D 0   | S 200<br>A 10<br>D 0 | S 200<br>A 12<br>D 0 | S 250<br>A 12<br>D | S Sin Lim<br>A Sin Lim<br>D 0 |                               | NO                             |
| В         | NO                   | NO                   | NO                   | NO                 | S Sin Lim<br>A Sin Lim<br>D 0 |                               | NO                             |
| С         | NO                   | NO                   | NO                   | NO                 | NO                            | S Sin Lim<br>A Sin Lim<br>D 3 | S Sin Lim<br>A Sin Lim<br>D 3  |
| D         | NO                   | NO                   | NO                   | NO                 | NO                            | NO                            | S Sin Lim<br>A Sin Lim<br>D 15 |

MEMORIA Página 16/98



Al ser la parcela rectangular, es posible caracterizarla por medio de su ancho y largo y el área total de la misma:

Tabla 3: Características de la parcela seleccionada.

| Superficie gráfica [m²] | 4,320 |
|-------------------------|-------|
| Ancho [m]               | 40    |
| Largo [m]               | 108   |

La nave se situará en el interior de la parcela según lo que se muestra en el *Plano* L002.

Según el Reglamento de Seguridad contra Incendios en los Establecimientos Industriales (RD 2267/2004) al ocupar la totalidad del edificio y encontrarse a una distancia de tres metros de otros edificios (en este caso, la nave industrial de la parcela catastral 4600209YK5340S) se caracteriza como **Tipo B**.

MEMORIA Página 17/98



#### 6.2 Utilización de la nave

Para la utilización de la nave se decide seleccionar una actividad que comporte un riesgo medio. Esto es debido a que, con el fin de estudiar las diferentes acciones de incendio, es de interés analizar diferentes métodos de diseño y protección contra incendios. Estos casos se exponen en el siguiente apartado.

El RSCIEI (RD 2267/2004) establece que el nivel de riesgo intrínseco para una aplicación dada se puede clasificar en tres niveles dependiendo de su densidad de carga de fuego ponderada y corregida. Se puede observar dicha clasificación en la Tabla 4.

| Nivel de i | -   | Densidad de carga de fuego ponderada y corregida          |                                                              |  |
|------------|-----|-----------------------------------------------------------|--------------------------------------------------------------|--|
| intrins    | eco | Mcal/m <sup>2</sup> MJ/m <sup>2</sup>                     |                                                              |  |
| BAJO       | 1   | $Q_{S}\leq 100$                                           | Q <sub>S</sub> ≤ 425                                         |  |
| BAJU       | 2   | $100 < Q_S \leq 200$                                      | 425< Q <sub>S</sub> ≤ 850                                    |  |
|            | 3   | $200 < Q_{\text{S}} \leq 300$                             | 850 < Q <sub>S</sub> ≤ 1275                                  |  |
| MEDIO      | 4   | 300 < Q <sub>S</sub> ≤ 400                                | $1275 < Q_S \le 1700$                                        |  |
|            | 6   | 400 < Q <sub>S</sub> ≤ 800<br>800 < Q <sub>S</sub> ≤ 1600 | 1700 < Q <sub>S</sub> ≤ 3400<br>3400 < Q <sub>S</sub> ≤ 6800 |  |
| ALTO       | 7   | 1600 < Q <sub>S</sub> ≤ 3200                              | 6800 < Q <sub>S</sub> ≤ 13600                                |  |
|            | 8   | 3200 < Qs                                                 | 13600 < Qs                                                   |  |

Tabla 4. Nivel de riesgo intrínseco según la densidad de carga de fuego.

En el Anexo I de este mismo documento se enumeran una serie de actividades industriales y se establecen sus valores de densidad de carga de fuego media. Debido a lo comentado anteriormente, se decide que la utilización de la nave será la fabricación y venta de paletas de madera. Esta actividad conlleva un **riesgo intrínseco medio (3)**. Se pueden observar sus características en la Tabla 5.

Tabla 5. Densidad de carga de fuego de Paletas de madera extraída de la Tabla 1.2 del Anexo I del RD 2267/2004.

|                   |       | Fabricación y venta |     |  |
|-------------------|-------|---------------------|-----|--|
| Actividad         | $q_s$ |                     | Ra  |  |
|                   | MJ/m² | Mcal/m²             | -   |  |
| Paletas de madera | 1.000 | 240                 | 2,0 |  |

MEMORIA Página 18/98



## 6.3 Justificación de seguridad contra incendios

En el presente proyecto se van a estudiar dos casos diferentes: un caso al que aplicará R15 y otro que aplicará R30. A continuación se especifican las razones normativas que justifican cada diseño:

Según el RSCIEI (RD 2267/2004), para estructuras principales de cubiertas ligeras sobre rasantes es de aplicación la Tabla 2.3 del Anexo II:

Tabla 6. Tabla 2.3 del Anexo II del RSCIEI.

Tabla 2.3

| NIVEL DE RIESGO | Tipo B        | Tipo C        |
|-----------------|---------------|---------------|
| INTRÍNSECO      | Sobre rasante | Sobre rasante |
| Riesgo bajo     | R 15 (EF-15)  | NO SE EXIGE   |
| Riesgo medio    | R 30 (EF-30)  | R 15 (EF-15)  |
| Riego alto      | R 60 (EF-60)  | R 30 (EF-30)  |

Al encontrarnos en una situación de riesgo medio tipo B como se ha expuesto anteriormente, será de aplicación un R30. Este será el **Caso 2**.

En el mismo documento, se especifica que en edificios de una sola planta con cubierta ligera, cuando la superficie total del sector de incendios esté protegida por una instalación de rociadores automáticos de agua y un sistema de evacuación de humos, los valores a adoptar serán los de la Tabla 2.4 de ese mismo anexo.

Tabla 7. Tabla 2.4 del Anexo II del RSCIEI.

Tabla 2.4

| Nivel de riesgo | Edificio de una sola planta |              |              |  |
|-----------------|-----------------------------|--------------|--------------|--|
| intrinseco      | Tipo A                      | Tipo B       | Tipo C       |  |
| Riesgo bajo     | R 60 (EF-60)                | NO SE EXIGE  | NO SE EXIGE  |  |
| Riesgo medio    | R 90 (EF-90)                | R 15 (EF-15) | NO SE EXIGE  |  |
| Riesgo alto     | NO ADMITIDO                 | R 30 (EF-30) | R 15 (EF-15) |  |

Por tanto, en este caso (riesgo medio, tipo B) estaríamos en una situación donde se exige una resistencia R15. Este será el **Caso 1**.

MEMORIA Página 19/98



## 6.4 Tipología estructural

El modelo estructural utilizado será un nave industrial metálica de pórticos rígidos a dos aguas con una cercha americana. La geometría del edificio de análisis será la mostrada en la *Tabla 8*:

Tabla 8: Dimensiones de la nave industrial de estudio.

| Luz                                | 26 m   |
|------------------------------------|--------|
| Altura de alero                    | 8 m    |
| Altura de cumbrera                 | 10,5 m |
| Separación entre pórticos (crujía) | 5 m    |
| Número de vanos                    | 7      |

A partir de la localización de la nave se pueden extraer los parámetros correspondientes según el CTE DB SE-AE para el emplazamiento geográfico de la edificación:

Tabla 9: Parámetros geográficos de la nave de estudio.

| Zona eólica                    | А      |
|--------------------------------|--------|
| Velocidad básica del viento    | 26 m/s |
| Grado de aspereza              | IV     |
| Zona del emplazamiento (Nieve) | 5      |
| Altitud topográfica            | 30 m   |
| Exposición al viento           | Normal |

A continuación se especifica para cada parte del diseño de la nave industrial las decisiones tomadas para su diseño:

#### Periodo de servicio

El periodo de servicio considerado para la nave industrial será el estipulado en el Código Técnico, es decir, 50 años.

MEMORIA Página 20/98



#### **Materiales**

Los materiales utilizados en el dimensionado de la estructura son los que se muestran en la *Tabla 10*.

Tabla 10. Materiales utilizados en el dimensionado de la nave.

| Acero laminado    | \$275 |  |  |
|-------------------|-------|--|--|
| Hormigón          | HA-25 |  |  |
| Acero para barras | B500S |  |  |

#### Pilares y jácenas

El dimensionado de los pilares y las jácenas de la estructura se realizará con perfiles IPE de acero laminado.

#### Viga contraviento

Para la viga contraviento se utilizarán perfiles cuadrados armados de chapas de acero laminado para los montantes y perfiles redondos macizos para las diagonales.

#### Viga perimetral

Del mismo modo que con los montantes de la viga contraviento, la viga perimetral estará dimensionada mediante perfiles armados de chapas de acero laminado.

#### Cercha

Las barras que constituyen la cercha serán todas perfiles cuadrados armados de chapas de acero laminado al igual que los montantes de la VCV y la viga perimetral.

#### Cerramientos

Los cerramientos constarán de un panel tipo sándwich en la cubierta (0,15 kN/m²) y losas de hormigón para los cerramientos laterales.

La categoría de uso de la cubierta se especifica como G1: Cubiertas accesibles únicamente para mantenimiento. No concomitante con el resto de acciones variables. Se estima una sobrecarga de uso de 0,40 kN/m².

#### Correas

Para las correas tanto de cubierta como laterales se utilizarán perfiles de acero conformado en forma de C.

MEMORIA Página 21/98



#### Criterio de dimensionado

Para el diseño de la estructura se tendrá en cuenta que los perfiles cumplan con las restricciones mecánicas más desfavorables tanto para situación accidental de incendio como para la combinación más desfavorable.

Se tendrá en cuenta que, en caso de que un perfil se halle muy cercano o en un coeficiente de aprovechamiento del 100%, el perfil seleccionado será el inmediatamente superior.

Se tratará de seleccionar los perfiles más esbeltos para cada una de las barras de la estructura con el fin de realizar un dimensionado lo más preciso y económico posible.

MEMORIA Página 22/98



### 6.5 Distribución en planta

Con el objeto de dar una mayor claridad al proyecto y una visión más enfocada a un caso práctico se realiza un layout de la fábrica, donde se especificará la localización de las diferentes zonas: recepción, almacenes, procesos y muelles de carga.

Más adelante en el proceso será necesario conocer el área que ocupa la zona de almacenamiento y los huecos que posee la nave para realizar los cálculos de incendio pertinentes.

Para poder hacer un layout de la fábrica es necesario conocer los diferentes procesos que se llevan a cabo en la fabricación de pallets. Los procesos se pueden clasificar según el orden en el que se ejecutan. Son los siguientes:

- 1. Recepción del material base (en este caso, tablas de madera).
- 2. Aserrado para conseguir las medidas pertinentes.
- 3. Lijado de las tablas.
- 4. Clasificación de las tablas e inspección.
- 5. Montaje del pallet.
- 6. Almacenaje del producto final.
- 7. Recogida del producto final.

A continuación se realiza un diagrama de procesos para tener una visión más clara de la secuenciación de actividades y poder realizar un layout adecuado.

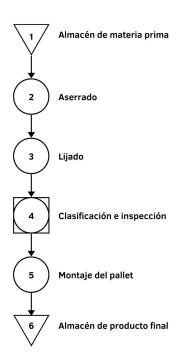



Imagen 2. Diagrama de proceso de fabricación de pallets.

MEMORIA Página 23/98



En la distribución en planta de la nave no se incluyen las oficinas ya que solo se tendrá en cuenta el proceso productivo para el layout.

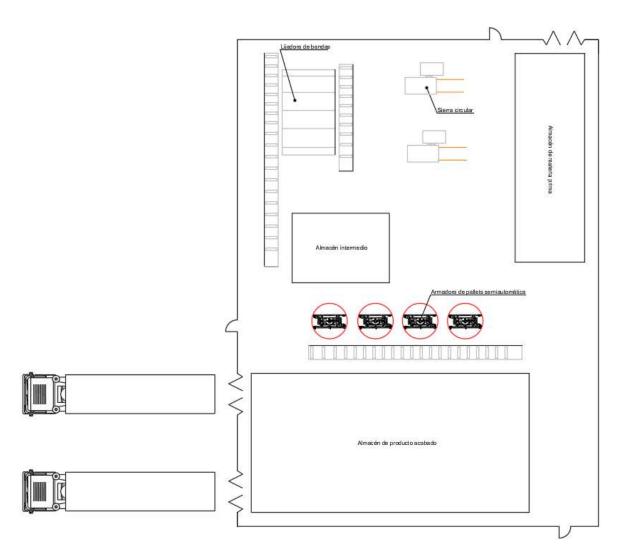



Imagen 3. Distribución de la nave.

En la Imagen 3 se puede observar el layout de la nave. Se sitúan los almacenes en los extremos opuestos de la nave: el almacén de materia prima se accede desde la C/Sot de Ferrer mediante una entrada para camiones mientras que el almacén de producto acabado posee dos entradas y una superficie mayor. Se incluye adicionalmente un almacén de producto intermedio en el que el producto aserrado y lijado se mantiene hasta su posterior montaje.

Entre ambos almacenes se sitúan los procesos productivos descritos con anterioridad conectados entre sí por cintas transportadoras para agilizar la producción y que el movimiento de material sea mucho más seguro y constante.

En el Plano L003 se detallan las medidas más características del mismo.

MEMORIA Página 24/98



# 7. Estructura portante

En el presente apartado se va a describir el proceso seguido para el diseño y dimensionado de la estructura portante.

#### 7.1 Bases de cálculo

Antes de proceder con el cálculo y dimensionado de la estructura se exponen las bases de cálculo para dicho proceso. Según el CTE DB SE las exigencias básicas de seguridad estructural son:

SE 1: Resistencia y estabilidadSE 2: Aptitud al servicio

Para verificar dichas exigencias de la estructura se utilizará el método de los estados límites: de servicio y último. Se verificarán los siguientes:

☐ Estado límite último de resistencia de las secciones (ELU): El esfuerzo axil de cálculo será menor que la resistencia de las secciones a tracción.

☐ Estado límite último de resistencia de las barras. Pandeo (ELU): El esfuerzo axil de cálculo será menor que la resistencia de cálculo a pandeo.

☐ Estado límite de servicio de deformación (ELS):

☐ Integridad de los elementos constructivos.

Apariencia de la obra.

La capacidad portante de la estructura se verifica mediante las comprobaciones que se establecen a continuación.

Se considera que hay suficiente estabilidad (SE 1) en la estructura de cálculo si para todas las situaciones de dimensionado se cumple:

$$E_{d,dst} \leq E_{d,stb}$$

donde:

 $\mathsf{E}_{\scriptscriptstyle \mathsf{d,dst}}$  es el valor de cálculo del efecto de las acciones que desestabilizan la estructura .

E<sub>d. std</sub> es el valor de cálculo del efecto de las acciones que estabilizan la estructura.

Se considera que hay suficiente resistencia (SE 1) de la estructura si para las situaciones de dimensionado se cumple:

$$E_d \leq R_d$$

donde:

E<sub>d</sub> es el valor de cálculo de las acciones de la estructura.

R<sub>d</sub> es el valor de cálculo de la resistencia de la estructura.

MEMORIA Página 25/98



Para el correcto diseño de la nave se comprobarán las situaciones de dimensionado que se muestran en la *Imagen 4*.

| SIT                                           | SITUACIONES PERSISTENTES O TRANSITORIAS                                                                                                                                       |          |                   |                       |                      |     |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------------|----------------------|-----|--|
| $\sum_{j\geq 1} \gamma_{G,j} \cdot G_{k,j}$   | $\sum_{j \geq 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{P} \cdot P + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$                     |          |                   |                       |                      |     |  |
|                                               | G                                                                                                                                                                             | Q-G1(1)  | N(3)              | V <sub>e,j</sub> (10) | V <sub>i,j</sub> (2) |     |  |
|                                               | 1,35                                                                                                                                                                          |          |                   |                       |                      | 1   |  |
| GRAV.                                         | 1,35                                                                                                                                                                          | 1,5      |                   |                       |                      | 1   |  |
|                                               | 1,35                                                                                                                                                                          |          | 1,5<br>1,5<br>1,5 |                       |                      | 3   |  |
|                                               | 1,35                                                                                                                                                                          |          | 1,5               | 0,6.1,5               |                      | 30  |  |
|                                               | 1,35                                                                                                                                                                          |          | 1,5               | 0,6.1,5               | 0,6.1,5              | 60  |  |
| VIENTO                                        | 1,35                                                                                                                                                                          |          |                   | 1,5                   |                      | 10  |  |
| VIENTO                                        | 1,35                                                                                                                                                                          |          |                   | 1,5<br>1,5            | 1,5                  | 20  |  |
|                                               | 1,35                                                                                                                                                                          |          | 0,5.1,5           | 1,5                   |                      | 30  |  |
|                                               | 1,35                                                                                                                                                                          |          | 0,5.1,5           | 1,5                   | 1,5                  | 60  |  |
| SUCCIÓN                                       | 0,8                                                                                                                                                                           |          |                   | 1,5                   |                      | 10  |  |
|                                               | 0,8                                                                                                                                                                           |          |                   | 1,5                   | 1,5                  | 20  |  |
|                                               |                                                                                                                                                                               |          |                   |                       |                      | 245 |  |
|                                               | SITU                                                                                                                                                                          | JACIONES | EXTRAOF           | RDINARIA              | \S                   |     |  |
| $\sum_{j\geq 1} \gamma_{G,j} \cdot G_{k,j} +$ | $\sum_{j \ge 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_P \cdot P + A_d + \gamma_{Q,1} \cdot \psi_{1,1} \cdot Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \cdot \psi_{2,i} \cdot Q_{k,i}$ |          |                   |                       |                      |     |  |
| $A_d$                                         |                                                                                                                                                                               |          |                   |                       |                      |     |  |
|                                               | G                                                                                                                                                                             | Q-G1(1)  | N(3)              | V <sub>e,j</sub> (10) | V <sub>i,j</sub> (2) |     |  |
| VIENTO                                        | 1,0                                                                                                                                                                           | 1000     | dr 200            | 1,0                   | 1,0                  | 20  |  |
|                                               | 1,0                                                                                                                                                                           |          | 0,2               | 1,0                   | 1,0                  | 60  |  |
| ·                                             |                                                                                                                                                                               | ·        |                   |                       |                      | 80  |  |

Imagen 4. Situaciones de dimensionado para una nave industrial.

Por su parte, el criterio de aptitud al servicio (SE 2) se considerará adecuado cuando, para las situaciones de dimensionado adecuadas, el efecto de las acciones no alcanza el valor límite establecido para ese efecto.

Para el **criterio de integridad** se considera que la estructura es lo suficientemente rígida si para cualquier combinación de acciones característica su **flecha relativa** es menor que 1/300. Para este mismo criterio, teniendo en cuenta los **desplazamientos horizontales** se considerará que la estructura posee la suficiente riaidez lateral si:

- a) el desplome total < 1/500 de la altura total de la estructura;
- b) el desplome local < 1/250 de la altura total de la estructura.

Para el **criterio de apariencia** se considera que es suficientemente rígida si ante cualquier combinación de acciones casi permanente la **flecha relativa** es menor que 1/300 y el **desplome relativo** es menor que 1/250.

MEMORIA Página 26/98



En la Tabla 11 se incluye un resumen de los criterios de aptitud al servicio de la estructura:

Tabla 11. Criterios de aptitud al servicio.

| Criterio   | Combinación                                                                                   | Valor límite                                                                       |
|------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Integridad | Característica $\sum_{j \geq 1} G_{k,j} + P + Q_{k,1} + \sum_{i \geq 1} \psi_{0,i} + Q_{k,i}$ | Flecha relativa activa < 1/300<br>Desplome total < 1/500<br>Desplome local < 1/250 |
| Apariencia | Casi permanente $\sum_{j\geq 1}G_{k,j}+P+\sum_{i\geq 1}\psi_{2,i}+Q_{k,i}$                    | Flecha relativa < 1/300<br>Desplome relativo < 1/250                               |

En el caso de las placas de anclaje de la estructura las combinaciones de cálculo de los distintos ELU serán las que se especifican en el CTE DB SE que coinciden con las del EHE en el caso de situaciones persistentes o transitorias (Imagen 4).

Los estados límites últimos que se van a comprobar para las placas de anclaje son:

- ☐ ELU de agotamiento del apoyo.
- ☐ ELU de agotamiento de la placa a flexión.
- ☐ ELU de agotamiento de los pernos.
- ☐ ELU de anclaje de los pernos en el hormigón.

A partir de estos será posible dimensionar las todas las partes de las diferentes placas de anclaje.

Todas las comprobaciones establecidas en este apartado se realizarán mediante el software CYPE 3D.

MEMORIA Página 27/98



## 7.2 Pórtico tipo

Inicialmente se define el pórtico tipo interior de la nave industrial que se va a diseñar. Se diseña un pórtico rígido a dos aguas y se define su geometría según lo establecido en la *Tabla 8*.

Se tratará de un pórtico rígido a dos aguas con cercha americana. La nave tendrá 7 vanos y la separación entre los mismos será de 5 m. La nave contará tanto con cerramientos laterales como con cerramientos de cubierta. El peso y sobrecarga que se considera para cada uno de dichos elementos se incluye en la siguiente tabla:

Tabla 12. Peso y sobrecarga de los cerramientos

| Cerramiento             | Peso [kN/m²] | Sobrecarga [kN/m²] |
|-------------------------|--------------|--------------------|
| Cerramiento de cubierta | 0,15         | 0,40               |
| Cerramientos laterales  | 0,15         | -                  |

Para el dimensionado del pórtico será necesario la definición de la acción de viento y nieve. Los parámetros característicos para la definición de ambas se muestran en la *Tabla* 9. La cubierta se considera sin resaltos para la acción de nieve.

Las correas (cubierta y laterales) serán perfiles de acero conformado en forma de C como se ha descrito en el apartado anterior. El límite de flecha se establece en L/300 y se dimensiona la separación mediante un proceso iterativo obteniendo los siguientes perfiles, separación y carga superficial:

|  | Correas de c | ubierta: CF-1 | 180 x 2,0 d | cada 1,40 m. | Carga su | perficial: 0,04 | kN/m² |
|--|--------------|---------------|-------------|--------------|----------|-----------------|-------|
|--|--------------|---------------|-------------|--------------|----------|-----------------|-------|

☐ Correas laterales: CF-180 x 2,0 cada 1,40 m. Carga superficial: 0,05 kN/m².

MEMORIA Página 28/98



Así, el pórtico interior tipo quedaría definido completamente:

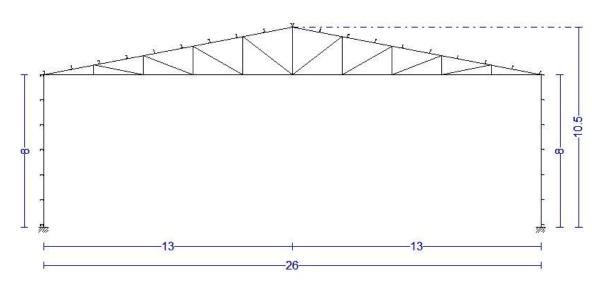



Imagen 5. Pórtico tipo definido con correas introducidas.

Una vez establecido, el siguiente apartado será el diseño de toda la estructura y su cimentación.

MEMORIA Página 29/98



# 7.3 Definición de la estructura

En el presente apartado, la normativa de aplicación es el Código Técnico de la Edificación y la Instrucción de Hormigón Estructural EHE-08. Los materiales que se van a utilizar, tanto para el acero como para el hormigón, se han especificado anteriormente en la Tabla 10.

A continuación se especifican los coeficientes de pandeo y límites de flecha establecidos para los diferentes elementos de la estructura. Se recogen en las siguientes tablas y se aplican a los elementos correspondientes durante el diseño.

## Pórticos interiores

Los pórticos interiores se parametriza introduciendo sus valores de pandeo para cada plano así como los límites de flecha para cada elemento. El tipo de barras que se va a utilizar tanto para los pilares como para las jácenas son perfiles IPE.

Tabla 13. Características de pandeo y límite de flecha de las barras de los pórticos interiores.

| Pandeo           |                                                                       |  |  |  |  |
|------------------|-----------------------------------------------------------------------|--|--|--|--|
|                  | Plano del pórtico (Plano xz) Plano perpendicular al pórtico (Plano xy |  |  |  |  |
| Pilares          | $\beta = 1.4$ $\beta = 0.7$                                           |  |  |  |  |
| Jácenas          | β = 1 (L <sub>k,y</sub> = 26 m) Pandeo impedido por correas           |  |  |  |  |
| Límite de flecha |                                                                       |  |  |  |  |
| Pilares          | Pilares L/250                                                         |  |  |  |  |
| Jácenas          | L/300                                                                 |  |  |  |  |

#### Viga perimetral

Para las barras que forman la viga perimetral (la barra que une las cabezas de todos los pilares en el lateral de la nave) se utilizarán perfiles cuadrados huecos (#).

Al tratarse de elementos secundarios de arriostramiento, se articulan sus extremos para asegurar que trabajan a tracción.

Tabla 14. Características de pandeo de las barras de la viga perimetral.

| Pandeo                                 |  |                  |  |  |
|----------------------------------------|--|------------------|--|--|
| Plano xz Plano xy                      |  |                  |  |  |
| Viga perimetral $\beta = 0$ (tirantes) |  | β = 0 (tirantes) |  |  |

MEMORIA Página 30/98



#### Cruces de San Andrés

Las cruces de San Andrés laterales se dimensionan como perfiles redondos macizos de la serie R. El perfil se define como tirante ya que trabaja únicamente a tracción.

Tabla 15. Características de pandeo de las barras de la cruz de San Andrés.

| Pandeo             |                  |                  |  |  |
|--------------------|------------------|------------------|--|--|
| Plano xz Plano xy  |                  |                  |  |  |
| Cruz de San Andrés | β = 0 (tirantes) | β = 0 (tirantes) |  |  |

## Viga contraviento (VCV)

La viga a contraviento se dimensiona como una VCV tipo Pratt como la que se muestra a continuación:

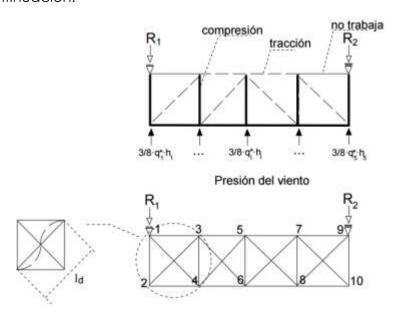



Imagen 6. Esquema de una viga tipo Pratt.

Los montantes de la estructura serán perfiles cuadrados huecos (#) mientras que las diagonales se definirán como tirantes y serán perfiles redondos macizos (R).

Tabla 16. Características de pandeo de las barras de la VCV.

| Pandeo                                |  |                  |  |  |
|---------------------------------------|--|------------------|--|--|
| Plano xz Plano xy                     |  |                  |  |  |
| Montantes VCV β = 1                   |  | β = 1            |  |  |
| Diagonales VCV $\beta = 0$ (tirantes) |  | β = 0 (tirantes) |  |  |

MEMORIA Página 31/98



#### Celosía

La celosía se define como una tipo Warren la forma en que se ha definido en el pórtico tipo.

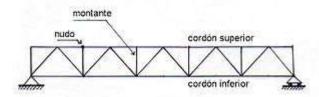



Imagen 7. Esquema de una viga tipo Warren con montantes intercalados.

Debido a que el ángulo entre algunas barras es muy bajo con esta distribución, se decide modificar la celosía: se baja el cordón inferior de la misma un metro de modo que no coincide con el nudo del pilar y se añaden más montantes.

Se obtiene una celosía Warren con montantes intercalados con un cordón inferior situado a 7 m respecto del nivel del suelo y con cuatro montantes a cada lado separados 5,20 m entre sí. De este modo se obtiene un ángulo mínimo de 30° entre las barras, lo que permite un cálculo adecuado de las uniones y mejora el funcionamiento de las barras.

El cordón inferior será un perfil IPE mientras que los montantes y diagonales de la celosía serán perfiles cuadrados huecos (#).

| Pandeo                  |       |       |  |  |
|-------------------------|-------|-------|--|--|
| Plano xz Plano xy       |       |       |  |  |
| Montantes celosía β = 1 |       | β = 1 |  |  |
| Diagonales celosía      | β = 1 | β = 1 |  |  |

Tabla 17. Características de pandeo de las barras de la celosía.

La celosía se introduce en todos los pórticos interiores pero no en los pórticos de fachada.

## Unión entre celosías

Al introducir el cordón inferior de la celosía, su longitud de pandeo pasa a ser de 26 m, lo que hace necesario un perfil muy elevado y resulta contraproducente: se quiere obtener un perfil más reducido en la jácena mediante la celosía pero se introduce un perfil muy grande en la misma.

Por ello, se decide introducir una serie de arriostramientos en cruz entre las celosías de los pórticos interiores cada dos montantes para reducir el tamaño de dicha barra. Además se incluyen dos montantes que conectan las celosías en el mismo

MEMORIA Página 32/98



plano que los arriostramientos. Los montantes y arriostramientos serán de la misma tipología que los especificados en los montantes y diagonales de la celosía.

## Pórticos de fachada

Los pilares, tanto extremos como interiores, y jácenas de los pórticos de fachada se definirán, al igual que los interiores, mediante perfiles IPE. Debido a que los perfiles necesarios para cumplir la esbeltez máxima de los pilares interiores son muy elevados, se decide reducir la altura de los mismos dividiendo el pilar por el plano del pórtico.

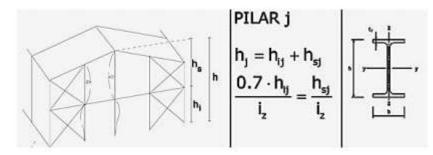



Imagen 8. Esquema de la división de pilares hastiales en dos tramos.

Se sitúa una viga intermedia para la que se elige también un perfil IPE. Además se definen los arriostramientos como cruces de San Andrés para evitar la traslacionalidad de los pilares en el plano del pórtico. Estos arriostramientos se hacen mediante perfiles redondos macizos que solo trabajan a tracción.

A continuación se muestran las características de las barras que componen el pórtico de fachada:

Tabla 18. Características de pandeo y límite de flecha de las barras de los pórticos de fachada.

| Pandeo                                  |                                      |                                              |  |  |  |
|-----------------------------------------|--------------------------------------|----------------------------------------------|--|--|--|
|                                         | Plano del pórtico<br>(Plano xz)      | Plano perpendicular al pórtico (Plano<br>xy) |  |  |  |
| Pilares (inferior)                      | β = 0,7                              | β = 0,7                                      |  |  |  |
| Pilares (superior)                      | β = 1                                | $(L_{k,y} = 0.7 \cdot h_p)$                  |  |  |  |
| Jácena                                  | $\beta = 1 (L_{k,y} = 26 \text{ m})$ | Pandeo impedido por correas                  |  |  |  |
| Arriostramientos $\beta = 0$ (tirantes) |                                      | β = 0 (tirantes)                             |  |  |  |
| Viga horizontal                         | β = 1                                | β = 1                                        |  |  |  |
| Límite de flecha                        |                                      |                                              |  |  |  |
| Pilares                                 | res L/300                            |                                              |  |  |  |
| Jácenas                                 | L/300                                |                                              |  |  |  |

MEMORIA Página 33/98



# 7.4 Resistencia al fuego

Antes de proceder con el cálculo y dimensionado de la estructura, de acuerdo a como se ha especificado en el apartado *Justificación de seguridad contra incendios*, se deben tener en cuenta ambos casos.

Se definen las dos situaciones siguientes:

Tabla 19. Resistencia al fuego y revestimiento en cada caso.

|        | Resistencia | Revestimiento                                            |  |
|--------|-------------|----------------------------------------------------------|--|
| Caso 1 | R 15        | Sin revestimiento ignífugo                               |  |
| Caso 2 | R 30        | Mortero de vermiculita-perlita con cemento (baja densida |  |

A partir de este punto los resultados obtenidos serán específicos de cada caso y dependerá del tipo de resistencia al fuego y protección ante el mismo.

MEMORIA Página 34/98



# 7.5 Cálculo de la estructura y resultados

Una vez introducidos todos los parámetros en la estructura se procede al cálculo de la misma. El dimensionado se realiza teniendo en cuenta la capacidad portante de la nave así como su resistencia al fuego seleccionada. El listado de la información, comprobaciones y cálculos realizados para las barras más características del sistema se incluyen en el Anexo 2.

Se muestran a continuación los perfiles seleccionados que cumplen todas las comprobaciones para las barras más características. Nótese que el coeficiente de aprovechamiento indicado en las dos tablas anteriores se corresponde al de la barra más crítica. También se indica la temperatura de las barras según el cálculo realizado por CYPE 3D y se incluye una vista 3D de la estructura.

Caso 1

Tabla 20. Perfiles, resistencia y temperatura de las barras del Caso 1.

| Elemento                           | Perfil<br>seleccionado | Coeficiente de aprovechamiento [%] | Temperatura<br>incendio [°C] |
|------------------------------------|------------------------|------------------------------------|------------------------------|
| Pilar pórtico interior             | IPE 300                | 46,12                              | 687,5                        |
| Jácena pórtico interior            | IPE 240                | 46,13                              | 699,5                        |
| Viga perimetral                    | #80x5                  | 22,15                              | 678,0                        |
| Cruz de San Andrés                 | R24,5                  | 65,95                              | 629,0                        |
| Montantes VCV                      | #80x5                  | 42,17                              | 678,0                        |
| Diagonales VCV                     | R16                    | 48,83                              | 697,5                        |
| Montantes celosía                  | #70x5                  | 46,29                              | 679,0                        |
| Diagonales celosía                 | #70x5                  | 32,29                              | 679,0                        |
| Cordón inferior celosía            | IPE 270                | 45,24                              | 694,5                        |
| Montantes de unión                 | #80x5                  | 18,97                              | 678,0                        |
| Diagonales de unión                | R16                    | 3,90                               | 697,5                        |
| Pilar extremo pórtico de fachada   | IPE 360                | 53,94                              | 667,0                        |
| Pilar interior pórtico de fachada  | IPE 270                | 51,66                              | 694,5                        |
| Jácena pórtico de fachada          | IPE 360                | 9,88                               | 667,0                        |
| Viga intermedia pórtico de fachada | IPE 270                | 9,17                               | 694,5                        |
| Arriostramientos frontales         | R23,6                  | 54,16                              | 637,5                        |

MEMORIA Página 35/98



# Caso 2

Tabla 21. Perfiles, resistencia y temperatura de las barras del Caso 2.

| Elemento                           | Perfil<br>seleccionado | Coeficiente de aprovechamiento [%] | Temperatura incendio [°C] |
|------------------------------------|------------------------|------------------------------------|---------------------------|
| Pilar pórtico interior             | IPE 270                | 65,58                              | 476,0                     |
| Jácena pórtico interior            | IPE 160                | 67,18                              | 556,0                     |
| Viga perimetral                    | #80x3                  | 30,66                              | 568,0                     |
| Cruz de San Andrés                 | R22                    | 77,18                              | 401,5                     |
| Montantes VCV                      | #80x3                  | 60,03                              | 568,0                     |
| Diagonales VCV                     | R12                    | 84,28                              | 559,5                     |
| Montantes celosía                  | #70x3                  | 82,60                              | 569,5                     |
| Diagonales celosía                 | #70x3                  | 44,73                              | 569,5                     |
| Cordón inferior celosía            | IPE 270                | 59,35                              | 476,0                     |
| Montantes de unión                 | #80x3                  | 40,01                              | 568,0                     |
| Diagonales de unión                | R10                    | 7,54                               | 605,0                     |
| Pilar extremo pórtico de fachada   | IPE 360                | 56,31                              | 423,0                     |
| Pilar interior pórtico de fachada  | IPE 240                | 67,68                              | 489,5                     |
| Jácena pórtico de fachada          | IPE 360                | 11,47                              | 423,0                     |
| Viga intermedia pórtico de fachada | IPE 270                | 5,33                               | 476,0                     |
| Arriostramientos frontales         | R17                    | 81,69                              | 468,5                     |

MEMORIA Página 36/98



# Comparación

Con el fin de mostrar más gráficamente los resultados se incluyen a continuación una serie de comparaciones entre los pórticos interiores y de fachada de ambos casos:

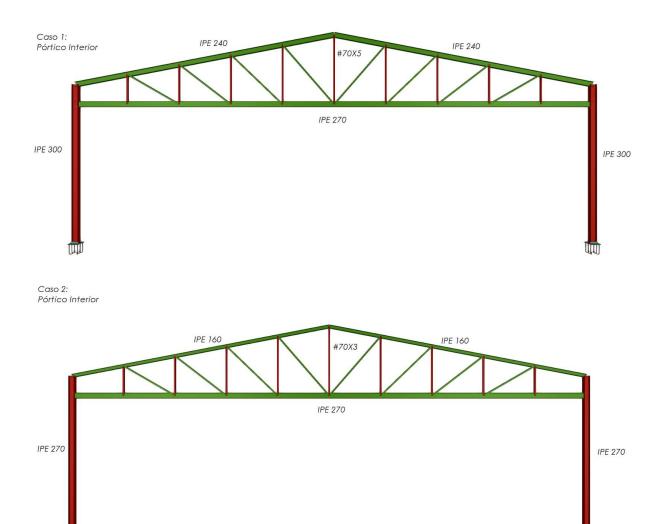



Imagen 9. Comparación del pórtico interior del Caso 1 (arriba) y el Caso 2 (abajo).

MEMORIA Página 37/98



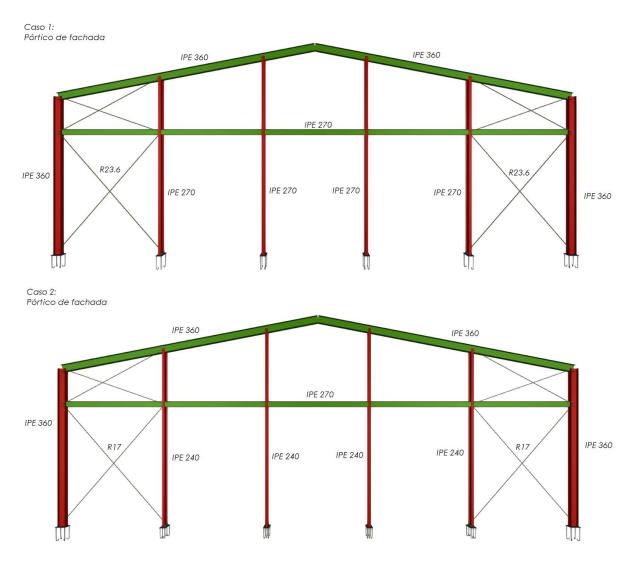



Imagen 10. Comparación del pórtico de fachada del Caso 1 (arriba) y el Caso 2 (abajo).

MEMORIA Página 38/98



# 7.6 Placas de anclaje y cimentación

Las placas de anclaje se han dividido en diferentes grupos para su dimensionado:

- ☐ Tipo 1: Placas de anclaje de los pilares extremos de los pórticos de fachada.
- ☐ Tipo 2: Placas de anclaje de los pilares de los pórticos interiores,
- ☐ Tipo 3: Placas de anclaje de los pilares interiores de los pórticos de fachada.

Las zapatas también se han diseñado siguiendo este mismo criterio. Se muestra en la *Imagen 11* la agrupación de dichos elementos:

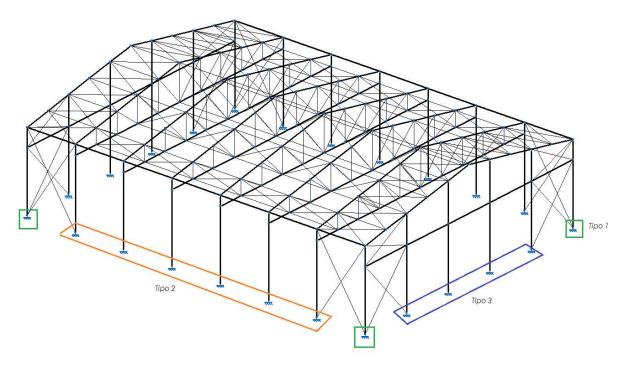



Imagen 11. Agrupación de las placas de anclaje y zapatas.

El dimensionado realizado para las placas de anclaje y la cimentación de la estructura se incluyen a continuación desglosados para cada caso.

#### Caso 1

Tabla 22. Placas de anclaje del Caso 1.

| Grupo  | Cantidad | Dimensiones<br>[mm] | Rigidizadores<br>[mm]   | Pernos          |
|--------|----------|---------------------|-------------------------|-----------------|
| Tipo 1 | 4        | 300x500x18          | -                       | 4Ø16 mm L=50 cm |
| Tipo 2 | 12       | 350x500x18          | En Y: 2*(100 x 1 x 5.0) | 6Ø20 mm L=35 cm |
| Tipo 3 | 8        | 300x450x18          | En Y: 2*(100 x 1 x 5.0) | 4Ø16 mm L=55 cm |

MEMORIA Página 39/98



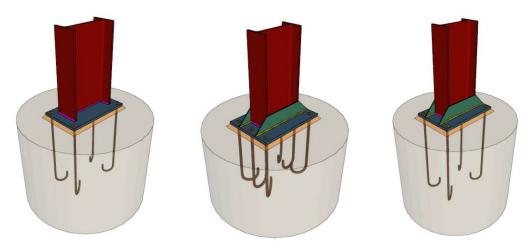



Imagen 12. Placas de anclaje (de derecha a izquierda: Tipo 1, Tipo 2 y Tipo 3) del Caso 1.

Tabla 23. Cimentación del Caso 1.

| Elemento                                                      | Dimensiones [mm] |  |
|---------------------------------------------------------------|------------------|--|
| Vigas de atado C.1                                            | 40 x 40          |  |
| Zapata Tlpo 1<br>(pilares extremos del pórtico de fachada)    | 220 x 220 x 65   |  |
| Zapatas Tipo 2<br>(pilares del pórtico interior)              | 260 x 145 x 105  |  |
| Zapatas Tipo 3<br>(pilares interiores del pórtico de fachada) | 250 x 250 x 60   |  |

# Caso 2

Tabla 24. Placas de anclaje del Caso 2.

| Grupo  | Cantidad | Dimensiones<br>[mm] | Rigidizadores<br>[mm]    | Pernos          |
|--------|----------|---------------------|--------------------------|-----------------|
| Tipo 1 | 4        | 300x500x18          | -                        | 4Ø16 mm L=55 cm |
| Tipo 2 | 12       | 350x500x18          | En Y: 2*(150 x 40 x 7.0) | 6Ø20 mm L=35 cm |
| Tipo 3 | 8        | 300x450x18          | En Y: 2*(100 x 1 x 6.0)  | 4Ø16 mm L=40 cm |

MEMORIA Página 40/98



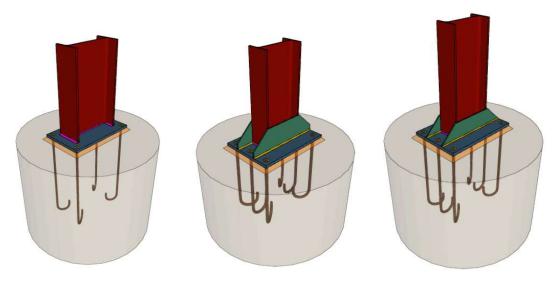



Imagen 13. Placas de anclaje (de derecha a izquierda: Tipo 1, Tipo 2 y Tipo 3) del Caso 2.

Tabla 25. Cimentación del Caso 2.

| Elemento                                                      | Dimensiones [mm] |
|---------------------------------------------------------------|------------------|
| Vigas de atado C.1                                            | 40 x 40          |
| Zapata Tlpo 1<br>(pilares extremos del pórtico de fachada)    | 220 x 220 x 65   |
| Zapatas Tipo 2<br>(pilares del pórtico interior)              | 285 x 145 x 120  |
| Zapatas Tipo 3<br>(pilares interiores del pórtico de fachada) | 250 x 250 x 60   |

Todos los datos incluidos en este apartado sobre el diseño de las estructuras se muestran en el Anexo 2: Listados junto con los cálculos justificativos de los mismos. En los Planos de la Estructura podemos observar las secciones más relevantes del diseño para cada uno de los casos.

MEMORIA Página 41/98



# 8. Cálculos de fuego

En el presente apartado se va a exponer el análisis de los diferentes modelos de incendio que se pueden adoptar a la hora de estudiar dicha situación accidental. Se explicarán brevemente las bases teóricas de cada modelo y, a continuación, se expondrán los resultados obtenidos con cada uno. Finalmente se realizará una comparativa entre los mismos y se comentarán las conclusiones obtenidas.

En la tabla que se muestra a continuación se puede observar un resumen con los aspectos más relevantes de los diferentes modelos existentes. Se marcan en color verde los que se estudiarán en el siguiente proyecto:

Tabla 26. Los diferentes modelos de incendio existentes y sus características.

|                                     |                                  | Fuego en recintos                                                                                         |                     |                                                | Modelos d                                   |                                                   | CFD/Mod                                                                              |
|-------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|
| Modelo de<br>incendio               | Curvas<br>nominales              | Tiempo<br>equivalente                                                                                     | Paramétrico         | Localizado                                     | Una<br>Zona                                 | Dos<br>Zonas                                      | elos de<br>campo                                                                     |
| Complejidad                         | Simple                           | Intermedio                                                                                                |                     |                                                | Avanzado                                    | )                                                 |                                                                                      |
| Fase del<br>incendio                | Post-flashove                    | r                                                                                                         |                     | Pre-flashov<br>er                              | Post-flas<br>hover                          | Pre-flash<br>over                                 | Cualquier<br>a                                                                       |
| Distribución<br>de T <sup>o</sup>   | Uniforme en                      | uniforme en el recinto lo larg                                                                            |                     | No<br>uniforme a<br>lo largo de<br>la llama    | Uniforme                                    | Uniform<br>e en<br>cada<br>capa                   | Función<br>de la<br>posición<br>y del<br>tiempo                                      |
| Datos y<br>parámetros<br>del modelo | Fuego tipo.<br>Sin<br>parámetros | -Carga de fuego.<br>- Ventilación.<br>- Propiedades térmicas del<br>cerramiento.<br>- Tamaño del recinto. |                     | - Carga de<br>fuego.<br>- Altura del<br>techo. | térmicas<br>cerramier<br>- Tamo<br>recinto. | ón.  ppiedades del ato. año del para el de masa y | - Datos detallado s relativos a la geometrí a del recinto, materiale s, ventilació n |
|                                     | UNE EN 1991-1-1:2004             |                                                                                                           |                     |                                                |                                             |                                                   |                                                                                      |
| Procedimient os de diseño           | UNE EN<br>1363: 2000             | CTE DB SI<br>Anejo B                                                                                      | UNE EN 1991-1-2     | UNE EN 1991-1-2                                | COMPF2<br>SFIRE-4<br>OZone                  | CCFM<br>CFAST<br>OZone                            | FDS<br>SMARTFIR<br>E<br>SOFIE                                                        |
|                                     | 1 1                              |                                                                                                           | Cálculos<br>simples | Modelo<br>dinámica                             | informá<br>de fluidos.                      | tico de                                           |                                                                                      |

MEMORIA Página 42/98



Las estructuras de análisis serán las obtenidas en el apartado anterior. Concretamente se analizará la estructura sin protección por revestimiento pero con rociadores y la estructura con una protección de mortero de vermiculita.

# 8.1 Curvas temperatura-tiempo nominales

# 8.1.1 Curva de incendio normalizado

Se basa en la utilización de curvas convencionales en las que la temperatura de los gases varía con el tiempo según la siguiente expresión (UNE-EN 1991-1-2: 2004):

$$\theta_g(t) = \theta_0 + 345 \cdot log_{10}(8t+1)$$

#### donde:

t es el tiempo transcurrido en minutos desde que se genera el incendio.

 $\theta_g(t)$  es la temperatura del aire en las inmediaciones de la superficie de un elemento en el instante t [°C]

 $\theta_0$  es la temperatura en el instante inicial [°C]. Puede tomarse como 20 °C.

Numérica y gráficamente se define como se muestra en la *Imagen 14* y la *Tabla 27* respectivamente. Dichos valores están establecidos en el CTE.

Tabla 27. Tiempo y temperatura de un incendio normalizado.

| t [min] | θ <sub>g</sub> (t) [°C] |
|---------|-------------------------|
| 5       | 556                     |
| 10      | 659                     |
| 15      | 718                     |
| 30      | 821                     |
| 60      | 925                     |
| 90      | 986                     |
| 120     | 1029                    |
| 180     | 1090                    |
| 240     | 1133                    |
| 300     | 1166                    |
| 360     | 1193                    |

MEMORIA Página 43/98

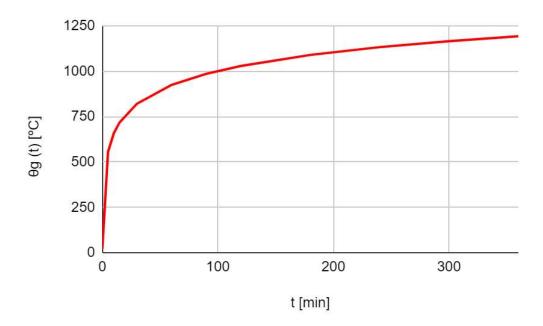



Imagen 14. Curva de incendio normalizado.

Este modelo es en el que se basa el cálculo de resistencia al fuego de CYPE. De este modo, las temperaturas obtenidas para los gases en las situaciones de incendio para cada uno de los modelos de estructura son:

Tabla 28. Temperatura de los gases según la curva de incendio normalizado.

|                           | R15 | R30 |
|---------------------------|-----|-----|
| Temperatura del aire [°C] | 718 | 821 |

MEMORIA Página 44/98



# 8.1.2 Temperatura del acero

A continuación se procede a calcular la temperatura del acero mediante la curva ISO expuesta en el apartado anterior. Dicha comprobación se realiza con el software de análisis de fuego OZone.

#### Caso 1

En el primer caso se estudian los perfiles de la jácena y del pilar expuestos en tres lados y sin protección. Los resultados obtenidos se muestran en la *Tabla 29*:

Tabla 29. Temperatura del acero según la curva de incendio normalizado para el Caso 1.

| Caso 1   |         |                     |  |  |
|----------|---------|---------------------|--|--|
| Elemento | Perfil  | θ <sub>α</sub> [°C] |  |  |
| Pilar    | IPE 300 | 617,44              |  |  |
| Jácena   | IPE 240 | 635,34              |  |  |

#### Caso 2

En el caso 2 se estudian los mismos elementos que en el caso anterior. Estos se encuentran protegidos por un revestimiento de proyección de mortero de vermiculita.

Tabla 30. Temperatura del acero según la curva de incendio normalizado para el Caso 2.

| Caso     |         |                     |  |
|----------|---------|---------------------|--|
| Elemento | Perfil  | θ <sub>α</sub> [°C] |  |
| Pilar    | IPE 270 | 437,5               |  |
| Jácena   | IPE 160 | 517,7               |  |

MEMORIA Página 45/98



# 8.1.3 Otras curvas temperatura-tiempo nominales

Existen otras curvas de las que se puede obtener también el valor de la temperatura del aire en las proximidades de la superficie de un elemento. A diferencia de la anterior, estas están construidas a partir de modelos de fuego y parámetros físicos específicos.

# Curva de fuego exterior

Es de aplicación para elementos que se sitúan en el exterior del recinto de incendio, los cuales se ven afectados a través de los huecos de la estructura.

$$\theta_g(t) = 660 \cdot (1 - 0,687 \cdot e^{-0.32 \cdot t} - 0,313 \cdot e^{-3.8 \cdot t}) + 20$$

donde:

t es el tiempo transcurrido desde que se genera el incendio [min].

 $\theta_g(t)$  es la temperatura del aire en las inmediaciones de la superficie de un elemento en el instante t [°C].

En este caso la temperatura del aire alcanzaría los valores que se muestran a continuación:

Tabla 31. Tiempo y temperatura de fuego exterior.

| ,       |                         |  |
|---------|-------------------------|--|
| t [min] | θ <sub>g</sub> (†) [°C] |  |
| 0       | 20                      |  |
| 5       | 588,5                   |  |
| 10      | 661,5                   |  |
| 15      | 676,3                   |  |
| 30      | 680                     |  |
|         |                         |  |
| 300     | 680                     |  |

MEMORIA Página 46/98

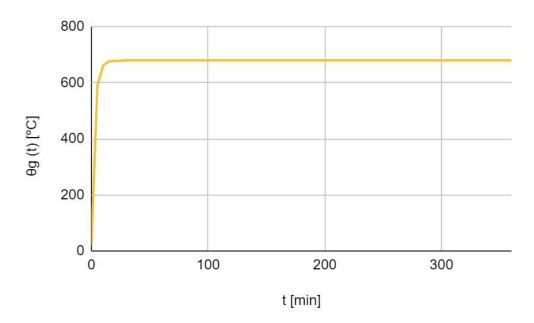



Imagen 15. Curva de fuego exterior.

## Curva de hidrocarburos

La curva t-T de hidrocarburos se define como:

$$\theta_g(t) = 1080 \cdot (1 - 0, 325 \cdot e^{-0.167 \cdot t} - 0, 675 \cdot e^{-2.5 \cdot t}) + 20$$

## donde:

t es el tiempo transcurrido desde que se genera el incendio [min].

 $\theta_g(t)$  es la temperatura del aire en las inmediaciones de la superficie de un elemento en el instante t [°C].

En este caso, las temperaturas obtenidas son:

Tabla 32. Tiempo y temperatura de hidrocarburos.

| t [min] | θ <sub>g</sub> (†) [°C] |
|---------|-------------------------|
| 0       | 20                      |
| 5       | 947,7                   |
| 10      | 1033,9                  |
| 15      | 1071,3                  |
| 30      | 1097,7                  |
| 60      | 1100                    |
|         |                         |
| 360     | 1100                    |

MEMORIA Página 47/98



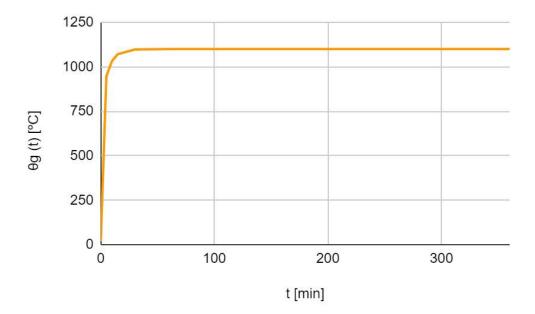



Imagen 16. Curva de hidrocarburos.

MEMORIA Página 48/98



# 8.2 Modelos basados en incendios reales

En el presente apartado se analizará la acción de incendio en la estructura por medio de modelos basados en incendios reales o naturales. Estos analizan la variación de la temperatura del ambiente dependiendo del tiempo utilizando datos concretos del local de análisis.

Normalmente, una curva de incendio real se divide en tres fases:

- ☐ Una **fase inicial** en la que las temperaturas se mantienen bajas y no se producen cambios notables en la capacidad de los materiales estructurales afectados.
- Sigue una **fase de combustión** que se caracteriza por una ignición de los materiales combustibles debida a la entrada de aire desde el exterior a causa de la rotura de los cristales de las aberturas. La temperatura se eleva rápidamente y se propaga el incendio a toda el área susceptible de ello.
- ☐ Finalmente hallamos la **fase de extinción** donde la temperatura disminuye a causa de la desaparición del combustible o del aire.

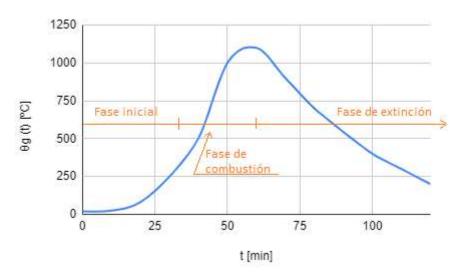



Imagen 17. Curva de incendio real.

En este tipo de modelos será necesario establecer las características del recinto de estudio así como su utilización y/o materiales susceptibles de combustión que se hallen en su interior. Se trata de una forma más compleja de cálculo pero que tiene en cuenta más variables en el cálculo de estructuras bajo la acción de incendio.

Dependiendo de su complejidad, es posible dividir dichos modelos de cálculo en modelos simplificados (curvas paramétricas, fuegos localizados...) y en modelos avanzados (una o dos zonas).

MEMORIA Página 49/98



# 8.2.1 Modelos simplificados

En este tipo de modelos se consideran parámetros específicos referidos a las dimensiones y características del recinto así como a los materiales combustibles del mismo. En los siguientes apartados se expone el método de cálculo de cada modelo así como los resultados obtenidos mediante los cálculos del *Anexo 1*.

# 8.2.1.1 Tiempo de exposición equivalente al fuego normalizado

Se define el tiempo equivalente de exposición al fuego normalizado como el intervalo de tiempo que necesita el acero, bajo la acción de incendio normalizado, para alcanzar la misma temperatura máxima que bajo la acción del incendio real o natural.

Este método es el más recomendable en la mayoría de los casos prácticos.

Por definición, el tiempo equivalente depende de las siguientes variables:

$$t_{e,d} = q_{f,d} \cdot w_f \cdot k_b \cdot k_c [min]$$

donde:

q<sub>fd</sub> es la densidad de carga de fuego de cálculo [MJ/m<sup>2</sup>].

w, es el coeficiente de ventilación [-].

k<sub>b</sub> es el factor de conversión dependiente de las propiedades térmicas del recinto.

k, es el factor de corrección en función del material de construcción calculado.

Para el caso de la nave sin protección por revestimiento, se obtienen los siguientes resultados:

Tabla 33. Parámetros característicos del fuego equivalente para el caso 1.

| Símbolo          | Valor | Unidades  |
|------------------|-------|-----------|
| Q <sub>f,d</sub> | 912   | MJ/m²     |
| $k_b$            | 0,040 | min·m²/MJ |
| $W_{f}$          | 0,416 | -         |
| k <sub>c</sub>   | 0,690 | -         |

Así, el tiempo equivalente obtenido para este caso es:

Tabla 34. Tiempo de exposición equivalente para el Caso 1.

| Símbolo          | Valor | Unidades |
|------------------|-------|----------|
| † <sub>e,d</sub> | 10,46 | min      |

MEMORIA Página 50/98



De igual forma, se obtienen los parámetros para el cálculo del tiempo equivalente de la nave que posee un revestimiento de protección antiincendios.

Tabla 35. Parámetros característicos del fuego equivalente para el Caso 2.

| Símbolo          | Valor | Unidades  |
|------------------|-------|-----------|
| Q <sub>f,d</sub> | 1255  | MJ/m²     |
| k <sub>b</sub>   | 0,040 | min·m²/MJ |
| W <sub>f</sub>   | 0,416 | -         |
| k <sub>c</sub>   | 1,000 | -         |

Obteniendo así, el tiempo equivalente para el segundo caso:

Tabla 36. Tiempo de exposición equivalente para el Caso 2.

| Símbolo          | Valor | Unidades |
|------------------|-------|----------|
| † <sub>e,d</sub> | 20,87 | min      |

Los resultados obtenidos muestran que los incendios reales calculados por este método equivalen a incendios normalizados de 10,46 minutos en el Caso 1 y de 20,87 minutos en el Caso 2. Así, es posible calcular la temperatura de los gases de la combustión mediante la curva normalizada y el tiempo equivalente:

Tabla 37. Temperatura de los gases de la combustión según su tiempo de exposición equivalente.

|        | θ <sub>g</sub> [°C] |
|--------|---------------------|
| Caso 1 | 692,54              |
| Caso 2 | 788,62              |

Se observa que la temperatura obtenida mediante este método es inferior a la obtenida con la curva normalizada.

MEMORIA Página 51/98



# 8.2.1.2 Fuegos de sector: curvas temperatura-tiempo paramétricas

En los fuegos de sector se considera que la temperatura se distribuye de forma uniforme en todo el recinto de incendio, ya que se supone que se produce la combustión total de los materiales.

Para el presente modelo, se utilizará la densidad de carga de fuego de cálculo  $(q_{fd})$  obtenida en el apartado anterior, para cada uno de los casos.

Cabe matizar que el análisis por medio de curvas temperatura-tiempo paramétricas tiene ciertas limitaciones. Se consideran válidos para sectores de incendio con una superficie menor de 500 m², sin aberturas en la cubierta y con una altura máxima de 4 metros. Esto se debe a que la bibliografía y casuística que apoya este método es, fundamentalmente, incendios en oficinas o residencias.

Aunque no se cumplan dichos requisitos, se realiza el cálculo para discernir si mediante el análisis se obtienen resultados coherentes respecto a lo esperado.

#### Caso 1

Inicialmente es preciso saber si se trata de un fuego controlado por la ventilación o por el combustible. Por ello se calcula un tiempo de comparación ( $t_{comparación}$ ) y se compara con el valor límite ( $t_{límite}$ ) de la velocidad de desarrollo del fuego. El tiempo límite corresponde a una velocidad de desarrollo de fuego media.

Los valores obtenidos se muestran en la Tabla 38. Los cálculos justificativos se pueden consultar en el Anexo 2. Cálculos justificativos.

Tabla 38. Comparación entre los tiempos (Caso 1).

| † <sub>comparación</sub> [h] | > | t <sub>límite</sub> [h] |
|------------------------------|---|-------------------------|
| 1,24                         |   | 0,25                    |

Debido a que el tiempo de comparación es superior al tiempo límite, es posible establecer que el fuego se encuentra controlado por la ventilación.

A continuación se calcula el tiempo necesario para que los gases de incendio alcancen su máxima temperatura. Este tiempo será el máximo entre los dos tiempos comparados anteriormente, es decir:

$$t_{max} = 1,52 \text{ h}.$$

El modelado se dividirá en dos fases: fase de calentamiento y fase de enfriamiento.

MEMORIA Página 52/98



## Fase de calentamiento

Se define la curva de calentamiento de los gases de incendio como:

$$\theta_g = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot t^*} - 0.204 \cdot e^{-1.7 \cdot t^*} - 0.472 \cdot e^{-19 \cdot t^*})$$

donde:

 $\theta_{\rm g}$  es la temperatura de los gases en el recinto del incendio [°C].

t\* es el tiempo ficticio [h] → t\* = t\* $\Gamma$ .

t es el tiempo de incendio transcurrido.

Γ es el factor gamma para incendios controlados por ventilación.

Mediante esta fórmula y el tiempo máximo calculado anteriormente es posible establecer la temperatura máxima de los gases de combustión:

$$\Theta_{m\acute{a}x} = 735,13 \,{}^{\circ}\text{C}$$

#### Fase de enfriamiento

Dependiendo del tiempo máximo obtenido, la curva de enfriamiento vendrá dada por una expresión diferente:

$$\theta_g = \theta_{max} \cdot -625 \cdot (t^* - t^*_{max} \cdot x) \qquad \text{para } t^*_{max} \le 0, 5$$
 
$$\theta_g = \theta_{max} \cdot -250 \cdot (3 - t^*_{max} \cdot x) \cdot (t^* - t^*_{max} \cdot x) \qquad \text{para } 5 < t^*_{max} < 2$$
 
$$\theta_g = \theta_{max} \cdot -250 \cdot (t^* - t^*_{max} \cdot x) \qquad \text{para } t^*_{max} \ge 2$$

En el caso del proyecto actual, será la segunda expresión la que se debería utilizar. De esta forma, se pueden definir las diferentes temperaturas de los gases respecto del tiempo obteniendo la curva paramétrica de la *Imagen 18*. (En el *Anexo 1* se muestran los valores obtenidos para dicha gráfica).

MEMORIA Página 53/98

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

Curva paramétrica de evolución de las temperaturas de los gases

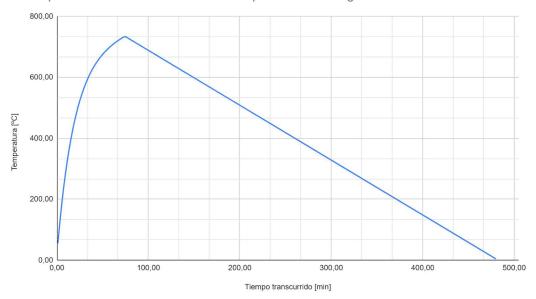



Imagen 18. Curva paramétrica de tiempo-temperatura (Caso 1).

El tiempo ficticio en el que se alcanza la temperatura de 735,13 °C es 12,84 minutos.

MEMORIA Página 54/98



#### Caso 2

Para el Caso 2 se realiza el mismo procedimiento que para el Caso 1 haciendo uso de la densidad de carga de fuego correspondiente para este caso. Las bases teóricas son exactamente las mismas.

Tabla 39. Comparación entre los tiempos (Caso 2)

| t <sub>comparación</sub> [h] | > | t <sub>límite</sub> [h] |
|------------------------------|---|-------------------------|
| 1,70                         | , | 0,33                    |

Por tanto, el tiempo máximo en este caso será:

$$t_{max} = 1,70 \text{ h}$$

A partir de este valor y la expresión que define la curva en la fase de calentamiento se obtiene la temperatura máxima de los gases:

$$\Theta_{max} = 774,07 \, ^{\circ}\text{C}$$

La curva obtenida para el Caso 2 es la siguiente:

Curva paramétrica de evolución de las temperaturas de los gases

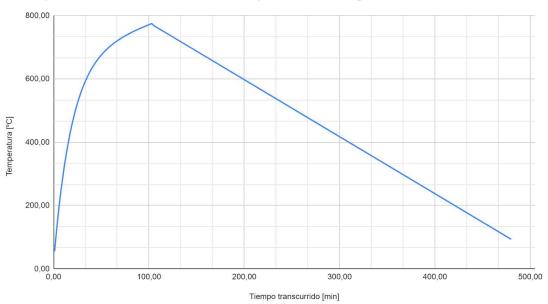



Imagen 19. Curva paramétrica de tiempo-temperatura (Caso 2).

El tiempo ficticio para el que se llega a una temperatura de 774,07 °C es de 17,67 minutos.

MEMORIA Página 55/98



# 8.2.1.3 Temperatura del acero

Antes de proceder con el análisis de fuego avanzado, en el presente apartado, se realizará el cálculo de la temperatura a la que están las piezas de acero sometidas al incendio. El procedimiento de cálculo difiere según se trate de piezas metálicas protegidas o no protegidas (Ortíz Herrera, 2009).

## Piezas no protegidas

Para este caso se utiliza una fórmula simplificada que es posible utilizar en ciertos intervalos de las variables de cálculo.

$$\theta_a = 1,85 \cdot t \cdot (A_M/V)^{0.6} + 50$$
 [°C]

donde:

 $\theta_{a}$  es la temperatura del acero [°C].

t es el tiempo equivalente de exposición al fuego [min].

 $A_{M}/V = S_{M}$  es el factor de forma o de sección según el CTE  $[m^{-1}]$ .

La norma establece una serie de <u>condiciones</u> necesarias para la aplicación de la fórmula:

- 8. 10 < t < 80 minutos
- 9.  $400 < \theta_{a} < 600 \,^{\circ}$ C
- 10.  $10 < A_{M}/V < 300 \text{ m}^{-1}$

De este modo, se realiza el cálculo para los tiempos obtenidos en los métodos de tiempo equivalente y curvas T-t para el Caso 1, debido a que es el que no posee ningún tipo de revestimiento de protección. Se obtienen los siguientes resultados:

Tabla 40. Temperatura del acero para el método de tiempo de exposición equivalente del Caso 1.

| Tiempo de exposición equivalente |         |                                   |                     |
|----------------------------------|---------|-----------------------------------|---------------------|
| t <sub>e,d</sub> 10,46 min       |         |                                   |                     |
| Pieza                            | Perfil  | S <sub>M</sub> [m <sup>-1</sup> ] | θ <sub>a</sub> [°C] |
| Pilar                            | IPE 300 | 188                               | 498,1               |
| Jácena                           | IPE 240 | 205                               | 521,9               |

MEMORIA Página 56/98



| Curvas T-t paramétricas    |         |                                   |                     |
|----------------------------|---------|-----------------------------------|---------------------|
| t <sub>e,d</sub> 12,84 min |         |                                   |                     |
| Pieza                      | Perfil  | S <sub>M</sub> [m <sup>-1</sup> ] | θ <sub>α</sub> [°C] |
| Pilar                      | IPE 300 | 188                               | 599,96              |
| Jácena                     | IPE 240 | 205                               | 629,28              |

Tabla 41. Temperatura del acero para el método de curvas T-t paramétricas del Caso 1.

Nótese que la temperatura del acero en la jácena calculados mediante el tiempo obtenido en el método de curva paramétrica no cumple las condiciones establecidas para la aplicación de la fórmula:  $\theta_{\rm a,jácena} > 600\,^{\circ}{\rm C}$ . Aún así, como se ha especificado anteriormente la aplicación de dicho método se realizaba para estudiar si los resultados obtenidos eran coherentes. Es por ello y debido a que la temperatura resulta coherente con los otros resultados que no se descarta dicho valor.

# Piezas protegidas

En el caso de piezas de acero revestimientos protectores contra el fuego es posible hacer uso de la siguiente fórmula:

$$\theta_a = 0,025 \cdot t \cdot s^{0,77} + 140$$
 [°C]

donde:

 $\theta_a$  es la temperatura del acero [°C].

t es el tiempo equivalente de exposición al fuego [min].

 $s=S_p/r_{p,ef,d}$  es la conductancia relativa de la protección [-].

 $S_p = A_p/V$  es el factor de sección de la pieza protegida  $[m^{-1}]$ .

 $r_{p,ef,d} = r_{p,ef,k}/\gamma_P$  es el valor de cálculo de la resistividad térmica efectiva del revestimiento [m²·K/W].

 $r_{p, ef, k}$  es el valor característico de la resistividad térmica en piezas moderadamente protegidas [m²·K/W].

 $\gamma_P$  es el coeficiente parcial de seguridad aplicado a la resistividad de las protecciones.

Las <u>condiciones</u> que se deben cumplir para la aplicación de la misma son:

- a) 30 < t < 240 minutos.
- b)  $400 < \theta_{a} < 600 \,^{\circ}$ C.
- c)  $10 < A_{M}/V < 300 \text{ m}^{-1}$ .
- d)  $0.1 < r_{p, ef, d} < 0.3 \text{ m}^2 \cdot \text{K/W}.$

Se observa que, tanto en el caso del tiempo equivalente de exposición († = 20,87 min) como en el de curvas T-t paramétricas († = 17,67 min) no se cumple con la condición necesaria (a) para la validez de la fórmula.

MEMORIA Página 57/98



Por ello, se hace uso de una serie de gráficas que tabulan la temperatura del acero en piezas moderadamente según su conductancia relativa (s) y su tiempo de exposición al fuego (t) (Imagen 20 y Imagen 21).

Las <u>condiciones</u> que deben cumplirse para que los resultados obtenidos de dichas gráficas sean válidos son:

- a)  $0 \le \theta_{a} \le 1200 \,^{\circ}$ C.
- b)  $0 \le t \le 240 \text{ min.}$

En este caso si se cumplen las condiciones por lo que se procede a calcular la conductancia de la protección.

El factor de sección para perfiles con el perímetro protegido con revestimiento de espesor uniforme y expuesto al fuego en tres lados es:

$$S_p = A_p/V = \frac{Perimetro\ del\ acero\ -b}{\text{Årea}\ de\ la\ sección\ transversal\ del\ acero}}\ [\text{m}^{-1}]$$

Para la obtención de la resistividad térmica en piezas moderadamente protegidas se hace uso de la siguiente fórmula:

$$r_{p,ef,k} = d_P/\lambda_{pk} \text{ [m}^2 \cdot \text{K/W]}$$

#### donde:

 $d_p$  es el espesor de la capa de protección [m]. En el presente caso se considera un espesor de 10 mm = 0,010 m.

 $\lambda_{pk}$  es el valor característico de la conductividad térmica efectiva [W/m·K]. Para el mortero proyectado de vermiculita  $\lambda_{pk}$  = 0,12 W/m·K.

Finalmente, el valor de  $\gamma_P$  dependerá del procedimiento aplicado para la homologación de las características del material utilizado para la protección, en este caso, el mortero proyectado. Suponemos que los valores experimentales aportados por el fabricante se determinan según las normas *UNE-ENV 13381-1, UNE-ENV 13381-2* o *UNE-ENV 13381-4*, estableciendo el coeficiente en la unidad:

$$\gamma_P = 1$$

Los resultados para dichos cálculos para los dos perfiles de estudio (pilar y jácena, respectivamente) se muestran en la siguiente tabla:

Tabla 42. Parámetros para el cálculo de la conductancia de la protección (s).

| Elemento | Perfiles | S <sub>P</sub> [m <sup>-1</sup> ] | d <sub>P</sub> [m] | r <sub>p, ef, d</sub> | s [-]  |
|----------|----------|-----------------------------------|--------------------|-----------------------|--------|
| Pilar    | IPE 270  | 197,39                            | 0,010              | 0,083                 | 2368,6 |
| Jácena   | IPE 160  | 269,54                            | 0,010              | 0,083                 | 3229,9 |

MEMORIA Página 58/98

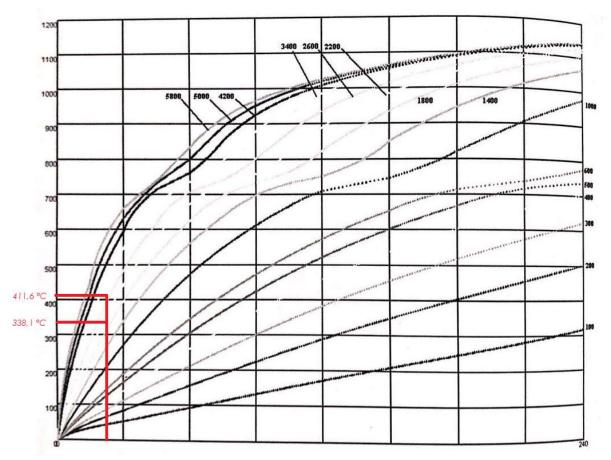



Imagen 20. Gráfica para el cálculo de la temperatura del acero según la conductancia de la protección y el tiempo de exposición (Tiempo equivalente de exposición).

MEMORIA Página 59/98

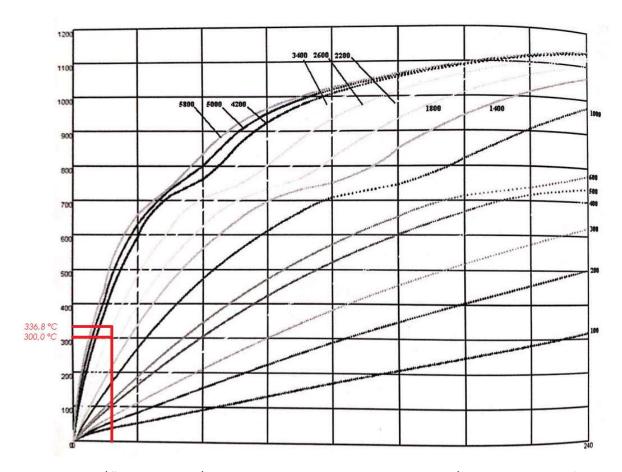



Imagen 21. Gráfica para el cálculo de la temperatura del acero según la conductancia de la protección y el tiempo de exposición (Curva T-t paramétrica).

MEMORIA Página 60/98



Los resultados obtenidos por medio de dichas gráficas son los siguientes:

Tabla 43. Temperatura del acero para el método de tiempo de exposición equivalente del Caso 2.

| 3430 2.                          |         |        |                     |
|----------------------------------|---------|--------|---------------------|
| Tiempo de exposición equivalente |         |        |                     |
| t <sub>e,d</sub> 20,87 min       |         |        |                     |
| Pieza                            | Perfil  | s [-]  | θ <sub>α</sub> [°C] |
| Pilar                            | IPE 270 | 2368,6 | 338,1               |
| Jácena                           | IPE 160 | 3229,9 | 411,6               |

Tabla 44. Temperatura del acero para el método de curvas T-t paramétricas del Caso 2.

| Curvas T-t paramétricas    |         |        |                     |
|----------------------------|---------|--------|---------------------|
| t <sub>e,d</sub> 17,67 min |         |        |                     |
| Pieza                      | Perfil  | s [-]  | θ <sub>°</sub> [°C] |
| Pilar                      | IPE 270 | 2368,6 | 300,0               |
| Jácena                     | IPE 160 | 3229,9 | 336,8               |

Se observa que, como era esperable, a menor sección del perfil mayor temperatura posee el acero. Además, comparando los resultados con los obtenidos para el caso sin proteger se observa que la proyección de mortero realiza un gran trabajo de aislamiento del material, disminuyendo significativamente la temperatura de este.

MEMORIA Página 61/98



# 8.2.2 Modelos avanzados

## 8.2.2.1 Modelos de dos zonas

Los modelos de dos zonas dividen el sector de incendio en dos capas: una superior (U) y una inferior (L). Las propiedades del gas tales como su temperatura, densidad y energía se consideran uniformes en cada capa y varían con el tiempo. La presión se asume como uniforme en todo el sector.

La capa superior se considera como opaca y la transferencia de calor a los cerramientos es por convección y radiación. En la capa inferior se considera que la transferencia se realiza por convección únicamente.

El plano que separa ambas capas se considera adiabático.

El fuego se define por medio de su ratio de pérdida de masa, el área que abarca y su tasa de liberación de calor (RHR).

## 8.2.2.2 Modelos de una zona

El modelo de una zona recoge la energía y la masa de las dos capas diferenciadas del modelo en dos zonas.

OZone emplea cuatro condiciones para pasar del modelo de dos zonas al de una, pasando de uno al otro cuando se cumple una de ellas:

- I. Si  $T_U > 500$  °C  $\rightarrow$  Se considera un flashover (ignición por radiación) debido a la temperatura de la capa superior,
- II. Si la altura de la capa superior > 0,8H,
- III. Si el área consumida de la carga de fuego es > 25%,
- IV. Si la temperatura de ignición de la carga  $T_{\rm L}$  > 300 °C (ignición por convección).

## 8.2.2.3 Parámetros en OZone

En el presente apartado se expone cuáles son los diferentes parámetros necesarios y cómo se introducen en el programa para realizar el cálculo.

La geometría de la nave se introduce en la pestaña Compartment del programa. Se selecciona un techo rectangular plano, debido a que es la única forma en la que el programa permite introducir aberturas en la parte superior. La altura de la cubierta se considera la media entre la altura de cumbrera y la altura de los pilares.

La geometría de la nave y como OZone considera las dimensiones y nombra a los diferentes cerramientos de la geometría introducida se observa en la *Imagen 22*.

MEMORIA Página 62/98



Longitud

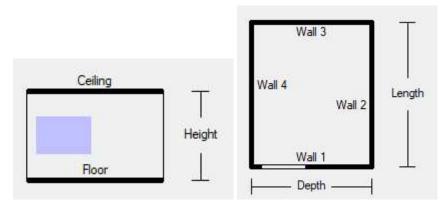



Imagen 22. Dimensiones y nomenclatura en OZone.

Así, los datos de la geometría son los que se muestran a continuación:

 Dimensión
 Valor [m]

 Altura
 9,25

 Profundidad
 26

35

Tabla 45. Geometría de la nave introducida en OZone.

En la misma pestaña se definen los materiales de los cerramientos y las aberturas de los mismos. La composición de cada cerramiento se introduce en OZone por orden de capas, desde la más interna hasta la más externa.

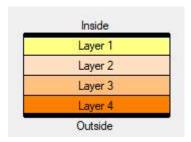



Imagen 23. Introducción de las capas de material en OZone.

Las aberturas en los cerramientos laterales se introducen mediante tres parámetros: la altura desde el suelo al inicio de la abertura, la altura desde el suelo hasta la parte superior de la abertura y el ancho de la misma. Por su parte, las aberturas de la cubierta se introducen como grupos de aberturas con el mismo diámetro.

MEMORIA Página 63/98



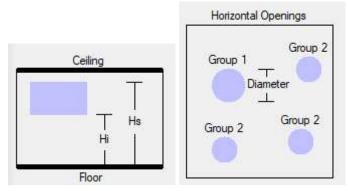



Imagen 24. Introducción de aberturas laterales (izquierda) y en la cubierta (derecha).

En las siguientes tablas se muestra la **definición de materiales y aberturas** para todos los cerramientos de la nave de estudio:

#### Solera

Tabla 46. Materiales de la solera.

|        | Material               | Espesor [cm] |
|--------|------------------------|--------------|
| Capa 1 | Hormigón (EN 1994-1-2] | 60           |

## **Cubierta**

Tabla 47. Materiales de la cubierta.

|        | Material            | Espesor [cm] |
|--------|---------------------|--------------|
| Capa 1 | Acero (EN 1994-1-2] | 0,5          |
| Capa 2 | Lana de roca        | 15           |
| Capa 3 | Acero (EN 1994-1-2] | 0,5          |

Para la cubierta se consideran una serie de aberturas en forma de ventanas superiores. Debido a que el programa no permite la introducción de este tipo de aberturas, se calcula el área de las mismas y se introduce su equivalente como aberturas circulares:

Se consideran ocho ventanales de 1,25x0,5 m en la cubierta de la estructura.

$$A_{real} = 1,25 \cdot 0,5 \cdot 8 = 5 \text{ m}^2$$
  
 $A_{OZone} = 0,674^2/4 \cdot \pi \cdot 14 = 5 \text{ m}^2$ 

MEMORIA Página 64/98



Tabla 48. Aberturas de la cubierta.

|         | Diámetro [m] | Número de aberturas | Variación |
|---------|--------------|---------------------|-----------|
| Grupo 1 | 0,674        | 14                  | Constante |

#### Pared 1

Tabla 49. Materiales de la pared 1.

|        | Material               | Espesor [cm] |
|--------|------------------------|--------------|
| Capa 1 | Hormigón (EN 1994-1-2] | 15           |

En la pared 1 se sitúa una puerta de entrada para el personal (Op. 1) así como una entrada para vehículos de descarga de material, debido a que en esa zona se encuentra el almacén de materia prima de la nave según el layout de la nave.

Tabla 50. Aberturas de la pared 1.

|       | H <sub>i</sub> [m] | H <sub>s</sub> [m] | Ancho [m] | Variación | Adiabática |
|-------|--------------------|--------------------|-----------|-----------|------------|
| Op. 1 | 0                  | 2,01               | 0,84      | Constante | No         |
| Op. 2 | 0                  | 5                  | 3         | Constante | No         |

#### Pared 2

Tabla 51. Materiales de la pared 2.

|        | Material               | Espesor [cm] |
|--------|------------------------|--------------|
| Capa 1 | Hormigón (EN 1994-1-2] | 15           |

La pared 2, debido a que se orienta hacia otro edificio y no hacia ninguna vía de entrada, solo posee un conjunto de ventanales superiores que se indican como una abertura constante de 21 metros.

Se trata de 7 ventanales de 1x3 m:

$$A_{real} = 1 \cdot 3 \cdot 7 = 21 \text{ m}^2$$
  
 $A_{OZone} = 1 \cdot 21 = 21 \text{ m}^2$ 

Tabla 52. Aberturas de la pared 2.

|       | H <sub>i</sub> [m] | H <sub>s</sub> [m] | Ancho [m] | Variación | Adiabática |
|-------|--------------------|--------------------|-----------|-----------|------------|
| Op. 2 | 6                  | 7                  | 21        | Constante | No         |

MEMORIA Página 65/98



#### Pared 3

Tabla 53. Materiales de la pared 3.

|        | Material               | Espesor [cm] |
|--------|------------------------|--------------|
| Capa 1 | Hormigón (EN 1994-1-2) | 15           |

La pared 3 solo posee una entrada para el personal como se indica en la siguiente tabla:

Tabla 54. Aberturas de la pared 3.

|       | H <sub>i</sub> [m] | H <sub>s</sub> [m] | Ancho [m] | Variación | Adiabática |
|-------|--------------------|--------------------|-----------|-----------|------------|
| Op. 1 | 0                  | 2,01               | 0,84      | Constante | No         |

#### Pared 4

Tabla 55. Materiales de la pared 4.

| Material |                        | Espesor [cm] |  |
|----------|------------------------|--------------|--|
| Capa 1   | Hormigón (EN 1994-1-2] | 15           |  |

Por último, la pared 4 es la que posee más oberturas. Se encuentra en la parte de acceso al recinto. Posee dos entradas para el acceso de camiones, coincidiendo con el almacén de producto acabado, así como una entrada para los empleados. Además, también tiene el conjunto de ventanales establecidos de forma simétrica a la pared 2.

Tabla 56. Aberturas de la pared 4.

|       | H <sub>i</sub> [m] | H <sub>s</sub> [m] | Ancho [m] | Variación | Adiabática |
|-------|--------------------|--------------------|-----------|-----------|------------|
| Op. 1 | 0                  | 5                  | 3         | Constante | No         |
| Op. 2 | 6                  | 7                  | 21        | Constante | No         |
| Op. 3 | 0                  | 5                  | 3         | Constante | No         |
| Op. 4 | 0                  | 2,01               | 0,84      | Constante | No         |

MEMORIA Página 66/98



Por otro lado, se introducen los **datos característicos del incendio** en la pestaña *Fire*. Se estudiarán dos casos diferenciados, uno en el que se incluirán rociadores como medida de protección contra incendios y un segundo en el que no. Los datos introducidos son los que se muestran a continuación:

Tabla 57. Características del incendio simulado en OZone.

| Ratio de crecimiento del fuego [s] | RHRf<br>[kW/m²] | Carga de fuego q <sub>f,k</sub><br>[80% MJ/m²] | Peligro de activación de incendio |
|------------------------------------|-----------------|------------------------------------------------|-----------------------------------|
| 300                                | 1250            | 900                                            | 1                                 |

Se considera para la simulación que la velocidad de crecimiento del incendio es media (300 s). Respecto al RHRf, se considera de 1250 kW/m² tomando en consideración el estudio Development of design rules for steel structures subjected to natural fires in large compartments by J.-B. Schleich & co. en el que se establece esta potencia de incendio para palets de madera.

La carga de fuego aproximada es de 900 MJ/m² debido a que es un 80% de la carga considerada para la aplicación de la nave y el peligro de activación es el correspondiente a industria según el Eurocódigo 1 Parte 1-2 Anejo E.

Respecto al área de fuego, para el análisis actual, se considera que sólo se produce y se desarrolla el fuego en una zona concreta de la nave. Como se puede ver en el apartado *Distribución en planta*, esta zona corresponde al almacén de pallets, es decir, de producto acabado.

Tabla 58. Datos del fuego.

| Área máxima de fuego | m²] Elevación del f | fuego [m] Altura del combustible [m] | Altura del combustible [m] |  |
|----------------------|---------------------|--------------------------------------|----------------------------|--|
| 200                  | 0                   | 1                                    |                            |  |

Los dos casos comentados anteriormente se diferencian introduciendo diferentes medidas de protección contra incendios. En la *Tabla 59* se muestran las diferencias en dichas medidas. En verde se muestran las que se aplican para cada caso.

MEMORIA Página 67/98



Tabla 59. Medidas antiincendios activas en cada caso.

| Medidas                                 | Caso 1 | Caso 2 |
|-----------------------------------------|--------|--------|
| Sistema automático de extinción de agua | 1      | 0,61   |
| Sistemas de agua independientes         | 1      | 1      |
| Detección automática por calor          | 0,87   | 0,87   |
| Detección automática por humo           | 1      | 1      |
| Alarma con aviso automático a bomberos  | 0,87   | 0,87   |
| Bomberos insitu                         | 1      | 1      |
| Bomberos no insitu                      | 1      | 1      |
| Rutas de acceso seguras                 | 1      | 1      |
| Herramientas anti incendios             | 1      | 1      |
| Sistema de extracción de humos          | 1      | 1      |

De esta forma, los datos que se utilizarán para el cálculo de la temperatura de las zonas serán los siguientes:

Tabla 60. Datos de diseño de fuego.

|                                     |                   | Caso 1 | Caso 2 |
|-------------------------------------|-------------------|--------|--------|
| Medidas activas [-]                 | ∏δ <sub>n,i</sub> | 0,7569 | 0,4617 |
| Carga de fuego de diseño<br>[MJ/m²] | $q_{f,d}$         | 872,30 | 575,10 |

MEMORIA Página 68/98



### 8.2.2.4 Resultados

A continuación se presentan los resultados obtenidos mediante el uso del programa OZone con la configuración especificada en el apartado anterior. Se ejecutará el análisis de una viga y un pilar de un pórtico interior de la nave, analizando tres posibles casos:

- A. Caso 1 sin rociadores.
- B. Caso 1 con rociadores.
- C. Caso 2 con proyección de mortero de vermiculita y sin rociadores.

Para los análisis que se presentan a continuación se ha considerado que el perfil se encuentra expuesto en cuatro lados.

#### Caso 1 sin rociadores

Los resultados obtenidos en la nave dimensionada sin un sistema automático de rociadores son los siguientes:

Tabla 61. Temperaturas obtenidas en OZone para el Caso 1 sin rociadores.

| T <sup>a</sup> máx. de la zona caliente | 446 | °C |
|-----------------------------------------|-----|----|
| T° máx. del acero en el pilar IPE 300   | 407 | °C |
| T° máx. del acero en la jácena IPE 240  | 411 | °C |

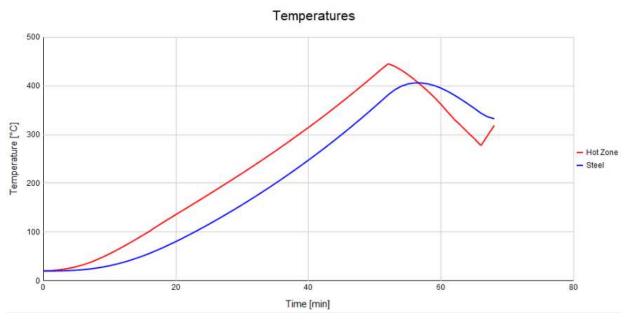



Imagen 25. Gráfico de temperaturas obtenido en OZone para el Caso 1 sin rociadores para el pilar.

MEMORIA Página 69/98



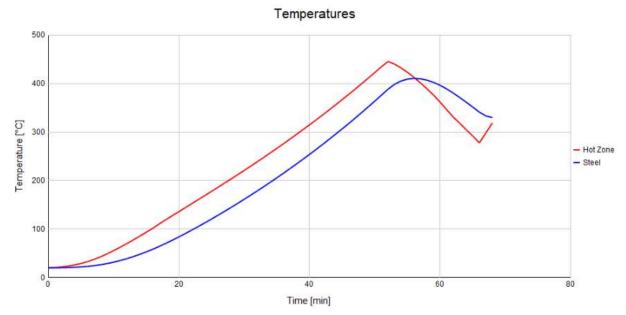



Imagen 26. Gráfico de temperaturas obtenido en OZone para el Caso 1 sin rociadores para la jácena.

MEMORIA Página 70/98



#### Caso 1 con rociadores

Para la misma estructura, se realiza el cálculo de temperaturas máximas con rociadores automáticos.

Tabla 62. Temperaturas obtenidas en OZone para el Caso 1 con rociadores.

| Tº máx. de la zona caliente                        | 356 | °C |
|----------------------------------------------------|-----|----|
| T <sup>a</sup> máx. del acero en el pilar IPE 300  | 315 | °C |
| T <sup>a</sup> máx. del acero en la jácena IPE 240 | 319 | °C |

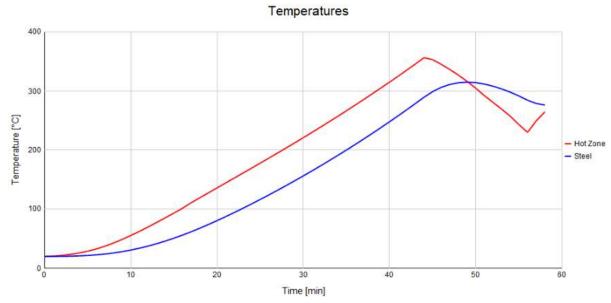



Imagen 27. Gráfico de temperaturas obtenido en OZone para el Caso 1 con rociadores para el pilar.

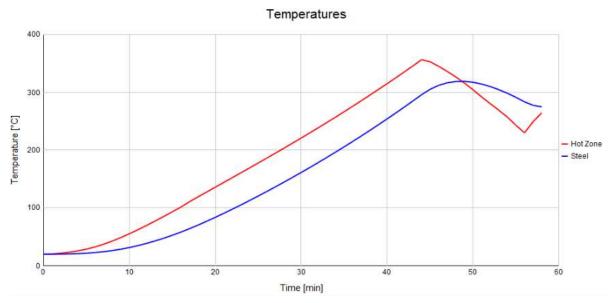



Imagen 28. Gráfico de temperaturas obtenido en OZone para el Caso 1 con rociadores para la jácena.

MEMORIA Página 71/98



## Caso 2 con mortero de vermiculita y sin rociadores

En el presente caso, se analiza la temperatura máxima obtenida en los perfiles de la nave del Caso 2.

Tabla 63. Temperaturas obtenidas en OZone para el Caso 2 sin rociadores.

| T <sup>a</sup> máx. de la zona caliente            | 446 | °C |
|----------------------------------------------------|-----|----|
| T <sup>a</sup> máx. del acero en el pilar IPE 270  | 282 | °C |
| T <sup>a</sup> máx. del acero en la jácena IPE 160 | 310 | °C |

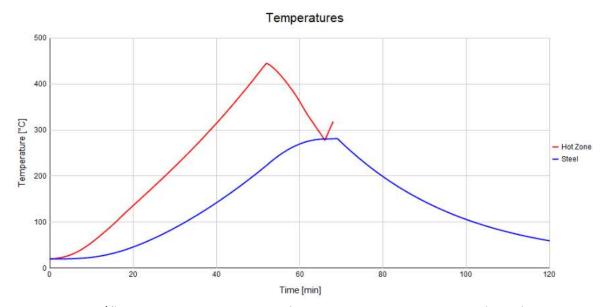



Imagen 29. Gráfico de temperaturas obtenido en OZone para el Caso 2 sin rociadores para el pilar.

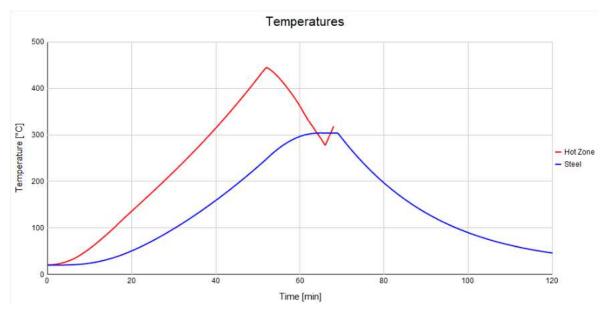



Imagen 30. Gráfico de temperaturas obtenido en OZone para el Caso 2 sin rociadores para la jácena.

MEMORIA Página 72/98



# 8.3 Capacidad portante en situación de incendio

Mediante las temperaturas del acero obtenidas mediante el cálculo con OZone es posible calcular la resistencia del acero en la situación de incendio del mismo modo que hace CYPE. De esta forma, en el presente apartado se procede a exponer el cálculo de dicha resistencia.

La forma en la que se calcula la capacidad portante de una estructura metálica en situación de incendio es idéntica a como se realiza en un estado no accidental pero teniendo en cuenta las modificaciones que induce la temperatura en el acero. Según el CTE DB-SI Apartado D.2.2.1, la capacidad resistente de cálculo se calcula con las solicitaciones obtenidas en la combinación de acciones de incendio y utilizando los valores modificados que se listan a continuación:

- a) El límite elástico se reduce multiplicándolo por el coeficiente  $k_{ve}$ .
- b) Como longitud de pandeo se tomará la mitad de la altura entre plantas intermedias o el 0,7 de la altura de la última planta.
- c) Como curva de pandeo se utilizará la curva c.
- d) La esbeltez reducida se incrementará multiplicándola por el coeficiente  $k_{\lambda}$  e.

Adicionalmente, se decide que se tendrá en cuenta también la influencia en el módulo de elasticidad del material. Esto no se contempla en el CTE pero debido a que se poseen las tablas para aplicar dicho valor de corrección y, que al hacerlo, se está del lado de la seguridad, se decide realizar dicha corrección.

e) El módulo de elasticidad se reduce multiplicándolo por el coeficiente  $k_{E,\theta}$ .

Los coeficientes de reducción se definen como cocientes entre las características efectivas del acero a la temperatura real y dichas características a una temperatura de 20 °C. Así:

| Ш | $k_{y,\theta} \rightarrow Cociente$ entre el limite elastico etectivo y el limite elastico a 20 °C.      |
|---|----------------------------------------------------------------------------------------------------------|
|   | $k_{E,\theta} \rightarrow \text{Cociente}$ entre el módulo de elasticidad en la fase lineal del diagrama |
|   | t-d y el módulo de elasticidad a 20 °C.                                                                  |
|   | $k_{\lambda,\theta} 	o Coeficiente$ entre la esbeltez reducida efectiva y la esbeltez reducida           |
|   | a 20 °C.                                                                                                 |

Los coeficientes de reducción de las características mecánicas de los aceros estructurales que se establecen en el Anexo 1. Cabe matizar que se permite la interpolación lineal en dicha tabla para obtener valores intermedios. En dicho anexo se encuentra el desglose de los cálculos realizados para obtener los resultados que se presentan a continuación:

MEMORIA Página 73/98



#### Caso 1 sin rociadores

Las características más significativas de los perfiles y su temperatura (obtenida mediante OZone) se incluyen en la siguiente tabla:

Tabla 64. Perfiles iniciales del pilar y la jácena respectivamente del Caso 1 sin rociadores.

|                                      | <u> </u> |          |
|--------------------------------------|----------|----------|
|                                      | IPE 300  | IPE 240  |
| A [mm²]                              | 5380     | 3910     |
| W <sub>el,y</sub> [mm³]              | 557100   | 366600   |
| W <sub>el.z</sub> [mm <sup>3</sup> ] | 80500    | 73920    |
| i <sub>y</sub> [mm]                  | 125      | 99,70    |
| i <sub>z</sub> [mm]                  | 33,50    | 26,90    |
| l <sub>y</sub> [mm⁴]                 | 38920000 | 38920000 |
| T [°C]                               | 407      | 411      |

Los coeficientes que se obtienen para las temperaturas de cada perfil son:

Tabla 65. Coeficientes reductores de las características mecánicas para el Caso 1 sin rociadores.

|                        | IPE 300 | IPE 240 |
|------------------------|---------|---------|
| k <sub>y,θ</sub>       | 0,9846  | 0,9758  |
| k <sub>E, \theta</sub> | 0,693   | 0,689   |
| K <sub>A,O</sub>       | 1,187   | 1,185   |

Aplicando dichos coeficientes y realizando los cálculos normalizados (CTE DB SE-A) se obtienen los siguientes resultados:

Tabla 66. Comprobación de resistencia flexión y axil combinados para el Caso 1 sin rociadores.

|                | IPE 300 | IPE 240 |
|----------------|---------|---------|
| η              | 0,20    | 0,18    |
| $\eta_{\rm y}$ | 0,21    | 0,19    |
| $\eta_z$       | 0,49    | 0,17    |

MEMORIA Página 74/98



### Caso 1 con rociadores

Los perfiles utilizados son los mismos que se muestran en el apartado anterior: IPE 300 y IPE 240. El parámetro que varía en este caso será la temperatura de los mismos:

Tabla 67. Perfiles iniciales del pilar y la jácena respectivamente del Caso 1 con rociadores.

|        | IPE 300 | IPE 240 |
|--------|---------|---------|
| T [°C] | 315     | 319     |

Al tener una temperatura menor en los perfiles, las características mecánicas de los perfiles se verán menos afectadas por el efecto de esta.

Tabla 68. Coeficientes reductores de las características mecánicas para el Caso 1 con rociadores.

|                        | IPE 300 | IPE 240 |
|------------------------|---------|---------|
| k <sub>y,θ</sub>       | 1       | 1       |
| k <sub>E, \theta</sub> | 0,785   | 0,781   |
| k <sub>λ,θ</sub>       | 1,129   | 1,125   |

De este modo, se obtienen unos resultados más favorables que en la situación sin rociadores, como se muestra en la *Tabla* 69:

Tabla 69. Comprobación de resistencia flexión y axil combinados para el Caso 1 con rociadores.

|            | IPE 300 | IPE 240 |
|------------|---------|---------|
| η          | 0,20    | 0,18    |
| $\eta_{y}$ | 0,20    | 0,18    |
| $\eta_z$   | 0,43    | 0,17    |

MEMORIA Página 75/98



## Caso 2 con mortero de vermiculita y sin rociadores

Los perfiles utilizados en este caso, debido a que se han protegido con un recubrimiento, son inferiores a los seleccionados en el caso R15. Se muestran a continuación sus características y la temperatura a la que se encuentran según los cálculos realizados con OZone:

Tabla 70. Perfiles iniciales del pilar y la jácena respectivamente de la nave del Caso 2.

|                                      | IPE 270  | IPE 160 |
|--------------------------------------|----------|---------|
| A [mm²]                              | 4590     | 2100    |
| W <sub>el,y</sub> [mm <sup>3</sup> ] | 428900   | 123900  |
| W <sub>el,z</sub> [mm <sup>3</sup> ] | 62200    | 26100   |
| i <sub>y</sub> [mm]                  | 112,30   | 65,80   |
| i <sub>z</sub> [mm]                  | 30,20    | 18,40   |
| l <sub>y</sub> [mm⁴]                 | 57900000 | 8693000 |
| T [°C]                               | 282      | 310     |

Mediante las temperaturas, se obtienen los coeficientes reductores del acero:

Tabla 71. Coeficientes reductores de las características mecánicas para la nave del Caso 2.

|                        | IPE 270 | IPE 160 |
|------------------------|---------|---------|
| k <sub>y,θ</sub>       | 1       | 1       |
| k <sub>E, \theta</sub> | 0,818   | 0,790   |
| $k_{\lambda,\Theta}$   | 1,099   | 1,118   |

De la misma forma que anteriormente, se comprueba la resistencia de los perfiles a flexión y compresión:

Tabla 72. Comprobación de resistencia flexión y axil combinados para la nave del Caso 2.

|                | IPE 270 | IPE 160 |
|----------------|---------|---------|
| η              | 0,26    | 0,51    |
| $\eta_{y}$     | 0,26    | 0,51    |
| η <sub>z</sub> | 0,60    | 0,51    |

MEMORIA Página 76/98



## 8.4 Redimensionado

Como se puede observar, los perfiles cumplen ampliamente con la resistencia a flexión y axil. Es por ello que se decide estudiar si, según los resultados obtenidos en OZone, sería posible reducir los perfiles.

Se estudia en ambos casos la reducción, tanto de la jácena como del pilar. Las temperaturas y, por ende, los coeficientes de reducción del acero variarán. Se añade una tabla resumen de los diferentes perfiles en cada una de las tres situaciones de estudio y del redimensionado realizado, en caso de que sea posible.

El cumplimiento de los perfiles redimensionados se comprueba en CYPE para asegurar su resistencia en acciones no accidentales.

#### Caso 1 sin rociadores

| rabia 73. Redimensionalmiento de los permes del Caso 1 sin rociadores. |                   |      |           | adores.   |
|------------------------------------------------------------------------|-------------------|------|-----------|-----------|
|                                                                        | Pil               | ar   | Jác       | ena       |
|                                                                        | IPE 300 → IPE 270 |      | IPE 240 – | → IPE 200 |
| Temperatura                                                            | 407               | 409  | 411       | 416       |
| η                                                                      | 0,23              | 0,31 | 0,18      | 0,33      |
| $\eta_y$                                                               | 0,24              | 0,33 | 0,19      | 0,34      |
| $\eta_{\rm z}$                                                         | 0,5               | 0,76 | 0,17      | 0,33      |

Tabla 73. Redimensionamiento de los perfiles del Caso 1 sin rociadores.

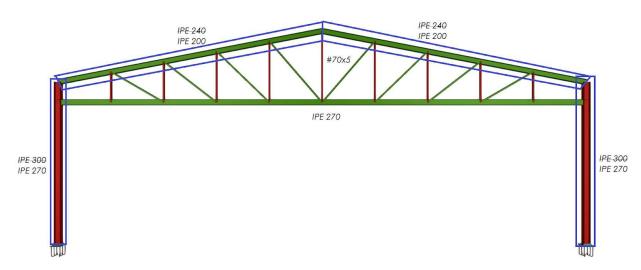



Imagen 31. Ilustración gráfica del redimensionamiento de los perfiles del Caso 1 sin rociadores.

MEMORIA Página 77/98



#### Caso 1 con rociadores

| Tabla 74  | Redimen     | sionamiento    | de los | perfiles del | Caso 1           | con rociadores. |
|-----------|-------------|----------------|--------|--------------|------------------|-----------------|
| 10001011. | 1 C Gillion | 31011011101110 | 40 103 | permes acr   | <b>C G J C J</b> | commediates.    |

|                | Pilar             |      | Jác       | ena       |
|----------------|-------------------|------|-----------|-----------|
|                | IPE 300 → IPE 270 |      | IPE 240 – | → IPE 200 |
| Temperatura    | 315               | 317  | 319       | 325       |
| η              | 0,22              | 0,29 | 0,18      | 0,32      |
| η <sub>y</sub> | 0,23              | 0,31 | 0,18      | 0,32      |
| $\eta_z$       | 0,43              | 0,64 | 0,17      | 0,33      |

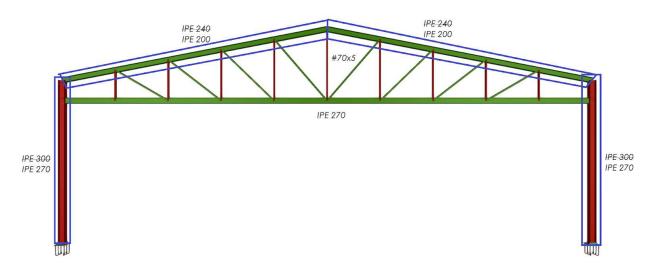



Imagen 32. Ilustración gráfica del redimensionamiento de los perfiles del Caso 1 con rociadores.

Para el pilar, se comprueba que un IPE 240 cumpliría la comprobación de acciones accidentales de incendio pero no con la esbeltez mínima establecida.

En el caso de la jácena, un IPE 180 cumpliría las comprobaciones en caso de incendio. Al comprobarlo en CYPE se obtiene que, en situación no accidental posee un índice de aprovechamiento del 100%. Pese a que CYPE lo marca como correcto, por motivos de seguridad se considera que es preferible un perfil superior.

MEMORIA Página 78/98



#### Caso 2 con mortero de vermiculita

| T - 1 - 7 - 7 - | D = =!: = = : = . |               | -1 - 1       | les del Caso 2. |
|-----------------|-------------------|---------------|--------------|-----------------|
| LOTAL A         | RAMIMANGIAI       | acamana c     | וחב וחב הבחו | 100 0011 000 7  |
| TUDIU / J.      | Neditiersion      | IUITIICITIO ( | JC 103 DC111 | ics aci caso z. |

|             | Pilar             |      | Jác       | ena       |
|-------------|-------------------|------|-----------|-----------|
|             | IPE 270 → IPE 240 |      | IPE 160 – | → IPE 140 |
| Temperatura | 282               | 285  | 310       | 317       |
| η           | 0,29              | 0,35 | 0,50      | 0,70      |
| $\eta_{y}$  | 0,30              | 0,38 | 0,51      | 0,72      |
| $\eta_z$    | 0,61              | 0,84 | 0,51      | 0,73      |

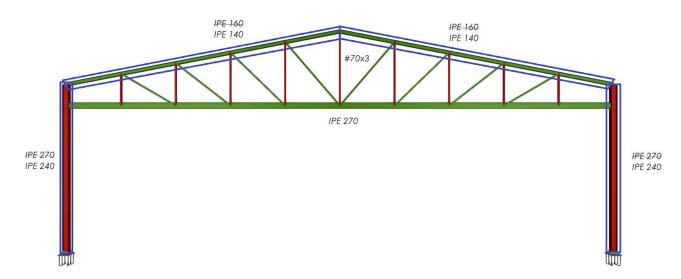



Imagen 33. Ilustración gráfica del redimensionamiento de los perfiles del Caso 2.

En el Caso 2, se observa que también es posible realizar un redimensionado tanto del pilar como de la jácena. Ambos casos se comprueban en CYPE para verificar que cumplen en situación no accidental.

Durante el dimensionado, es posible discernir que, es a ser posible seleccionar perfiles menores que cumplirían las comprobaciones de pandeo en situación de incendio el factor limitante a partir de cierto perfil es la esbeltez de las barras.

Por ello, sería posible redimensionar la estructura pero sólo hasta un cierto límite, en el que ya no sería limitante la acción de incendio sino otras comprobaciones de seguridad.

MEMORIA Página 79/98



# 8.5 Comparación de resultados y conclusiones

Mediante los modelos utilizados se puede observar que existe una variación entre los modelos más simples y los más complejos. Es posible observar que los resultados obtenidos mediante los métodos simplificados son similares:

Tabla 76. Comparación de resultados de los métodos simplificados para el Caso 1.

|                                     |         | θ <sub>g</sub> [°C] | θ <sub>g</sub> [°C] | t [min] |
|-------------------------------------|---------|---------------------|---------------------|---------|
| Incendio normalizado                | IPE 300 | 718,00              | 617,44              | 15,00   |
| incerialo normalizado               | IPE 240 | 710,00              | 627,64              | 15,00   |
| Tiempo de exposición<br>equivalente | IPE 300 | 692,54              | 498,10              | 10,46   |
|                                     | IPE 240 |                     | 521,90              |         |
| Curvas T-t paramétricas             | IPE 300 | 735,13              | 599,96              | 12,84   |
| Corvas 1-1 paramemous               | IPE 240 | 700,10              | 629,28              | 12,04   |

Tabla 77. Comparación de resultados de los métodos simplificados para el Caso 2.

|                                     | -       | θ <sub>g</sub> [°C] | θ <sub>g</sub> [°C] | t [min] |
|-------------------------------------|---------|---------------------|---------------------|---------|
|                                     | IPE 270 | 821,00              | 437,5               | 30,00   |
| Incendio normalizado                | IPE 160 | 821,00              | 517,7               | 30,00   |
| Tiempo de exposición<br>equivalente | IPE 270 | 788,62              | 338,10              | 20,87   |
|                                     | IPE 160 | 700,02              | 411,60              | 20,07   |
| Curvas T-t paramétricas             | IPE 270 | 774,07              | 300,00              | 17,67   |
| Curvas 1-1 parametricas             | IPE 160 | 774,07              | 336,80              | 17,07   |

Cabe destacar que el análisis mediante curvas paramétricas ofrece resultados algo dispares en cada caso (más desfavorable en el Caso 1 y más favorable en el Caso 2). Esto se debe a lo comentado con anterioridad sobre su ámbito de aplicación. El tiempo equivalente es más favorable que el incendio normalizado en ambos casos.

Por su parte, los métodos más concretos y que tienen en cuenta el mayor número de variables ofrecen unos resultados mucho menos críticos y que, como se ha visto en el apartado anterior, pueden admitir un re-dimensionado de la estructura sin perder la resistencia al fuego.

Es posible observar esta ventaja mediante una comparación de la temperatura de acero calculada mediante el CYPE 3D y la temperatura calculada mediante el modelo por zonas con el OZone. En la *Tabla 78* y la *Tabla 79* se muestra dicha comparativa:

MEMORIA Página 80/98



Tabla 78. Comparación de la T<sup>a</sup> máxima del acero según CYPE y OZone para el Caso 1.

| Caso 1                   |         |                            |  |  |
|--------------------------|---------|----------------------------|--|--|
| Modelo Perfil            |         | Temperatura del acero [°C] |  |  |
| CYPE 3D                  | IPE 300 | 687,5                      |  |  |
|                          | IPE 240 | 699,5                      |  |  |
| Modelo por zonas (OZone) | IPE 300 | 315,0                      |  |  |
|                          | IPE 240 | 319,0                      |  |  |

# Comparación de Ta máximas CYPE - Modelos por zonas

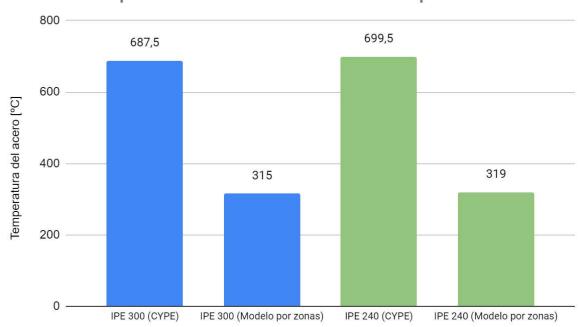



Imagen 34. Gráfico de comparación entre la Tº máxima del acero según CYPE y OZone para el Caso 1.

MEMORIA Página 81/98



Tabla 79. Comparación de la ™ máxima del acero según CYPE y OZone para el Caso 2.

| Caso 2                   |         |                            |  |
|--------------------------|---------|----------------------------|--|
| Modelo                   | Perfil  | Temperatura del acero [°C] |  |
| CYPE 3D                  | IPE 270 | 476,0                      |  |
|                          | IPE 160 | 556,0                      |  |
| Modelo por zonas (OZone) | IPE 270 | 282,0                      |  |
|                          | IPE 160 | 310,0                      |  |

## Comparación de Ta máximas CYPE - Modelos por zonas

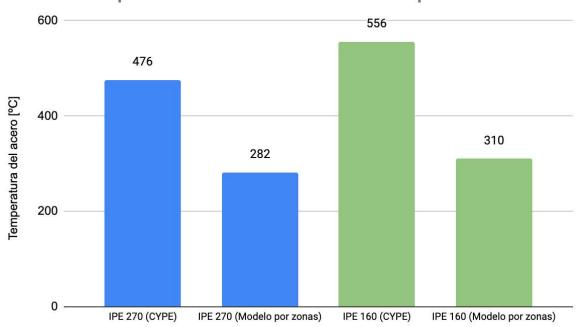



Imagen 35. Gráfico de comparación entre la T<sup>a</sup> máxima del acero según CYPE y OZone para el Caso 2.

Podemos afirmar, una vez contemplados los resultados, que CYPE 3D realiza un sobredimensionado siguiendo lo especificado en la norma. Por contra, mediante un análisis más exhaustivo y concretando los diferentes parámetros del incendio, la situación es mucho menos crítica.

Una ventaja que ofrece el análisis de zonas es que mediante el mismo es posible establecer la temperatura del acero y realizar una comparativa de forma sencilla de los diferentes perfiles con diferentes tipos de protección anti-incendio. Un ejemplo de este tipo de comparaciones aplicado al presente proyecto sería el mostrado en la *Tabla 80*:

MEMORIA Página 82/98



Tabla 80. Comparación de resultados para los diferentes perfiles estudiados.

| Perfil  | Protección             | Temperatura del acero [°C] |
|---------|------------------------|----------------------------|
| IPE 300 | Ninguna                | 407                        |
| IPE 300 | Rociadores             | 315                        |
| IPE 270 | Ninguna                | 409                        |
| IPE 270 | Rociadores             | 317                        |
| IPE 270 | Mortero de vermiculita | 282                        |
| IPE 240 | Ninguna                | 411                        |
| IPE 240 | Rociadores             | 319                        |
| IPE 240 | Mortero de vermiculita | 285                        |
| IPE 200 | Ninguna                | 416                        |
| IPE 200 | Rociadores             | 325                        |

Se observa claramente que el mortero de vermiculita es una gran medida de protección del material, reduciendo la temperatura máxima del mismo significativamente: unos 126-127 °C respecto al material sin proteger. Por su parte, la instalación de rociadores automáticos permite reducir la temperatura sobre unos 91-92 °C, algo menor a la reducción conseguida con la proyección de mortero.

La conclusión que se obtiene del estudio es que, mediante el análisis más exhaustivo y profundo de la acción de incendio es posible obtener una situación más cercana a la realidad y, además, se puede dimensionar las estructuras de forma menos conservadora lo que se traduce en un ahorro significativo de costes en la misma. Además, este tipo de cálculos amplían nuestra información disponible sobre la estructura permitiendo una mejor toma de decisiones que tenga en cuenta todos los parámetros que influyen en el diseño y dimensionado de la misma.

Es por ello que los métodos más avanzados ofrecen **más precisión** y son a**daptables a cada caso**, ofreciendo una **ventaja competitiva** respecto a los análisis más simplistas.

MEMORIA Página 83/98



# 9. Rociadores

Adicionalmente, se decide incluir en el proyecto el diseño y dimensionado de una instalación de rociadores. De esta forma, quedan descritos ambos sistemas de protección utilizados en el Caso 1 (Rociadores) y el Caso 2 (Mortero de vermiculita). Además será posible obtener un presupuesto de los mismos y realizar una comparación entre casos que nos permita extraer las conclusiones pertinentes.

## 9.1 Predimensionado

Inicialmente se realiza un pre-dimensionado del sistema siguiendo las indicaciones de la *UNE-EN 12845*. Primero se determina la clase de riesgo:

- ☐ Riesgo ligero: Usos no industriales.
- ☐ Riesgo medio: Usos comerciales e industriales donde son fabricados o procesados materiales combustibles con carga de fuego y combustibilidad medios. Se divide en cuatro grupos: RO1, RO2, RO3 Y RO4.
- ☐ Riesgo extraordinario: Usos industriales o comerciales donde se manipulan, elaboran o almacenan materiales de alta peligrosidad.

En el caso de la nave de estudio, según la *Tabla A.*2 del *Anexo A* de la *UNE-EN 12845* se trata de un **riesgo medio RO4**. Al tratarse de RO4, el almacenamiento se dimensiona considerando que es Riesgo Extra, Almacenamiento (REA).

Una vez determinado el riesgo, se procede a determinar los valores del área de operación (S) y de la densidad mínima de diseño (d). Se obtienen mediante la tabla que se muestra a continuación:

| Clase de riesgo | Densidad de diseño<br>mm/min | Área de operación<br>m² |                             |  |  |  |
|-----------------|------------------------------|-------------------------|-----------------------------|--|--|--|
|                 |                              | Mojada o acción previa  | Seca o alterna              |  |  |  |
| RL              | 2,25                         | 84                      | No permitida<br>Se usa RO1  |  |  |  |
| RO1             | 5,0                          | 72                      | 90                          |  |  |  |
| RO2             | 5,0                          | 144                     | 180                         |  |  |  |
| RO3             | 5,0                          | 216                     | 270                         |  |  |  |
| RO4             | 5,0                          | 360                     | No permitida<br>Se usa REP1 |  |  |  |
| REP1            | 7,5                          | 260                     | 325                         |  |  |  |
| REP2            | 10,0                         | 260                     | 325                         |  |  |  |
| REP3            | 12,5                         | 260                     | 325                         |  |  |  |
| REP4            |                              | diluvio (véase la NOTA) |                             |  |  |  |

Tabla 81. Criterios de diseño para RL, RO y REP.

MEMORIA Página 84/98



Mediante esta tabla se obtienen los valores de S y  $d_{diseño}$ , además del valor de la superficie máxima cubierta por el rociador. Para RE este valor es de  $9 \text{ m}^2$ .

| Tabla 82. | Valores | de S, | s y | $d_{dise\tilde{n}o}$ . |
|-----------|---------|-------|-----|------------------------|
|-----------|---------|-------|-----|------------------------|

| Símbolo             | Valor | Unidades | Descripción                         |
|---------------------|-------|----------|-------------------------------------|
| S                   | 260   | m²       | Área de operación                   |
| S                   | 9     | m²       | Superficie cubierta por el rociador |
| d <sub>diseño</sub> | 7,5   | lpm/m²   | Densidad de diseño del rociador.    |

Se opera con estos valores con el fín de obtener una aproximación del número de rociadores necesarios y el caudal de los mismos.

$$\begin{split} n_{min} &= S/s \quad \text{[-]} \\ Q_{min, \, d} &= d_{dise\tilde{\mathbf{n}}o} \cdot s \quad \text{[lpm]} \\ Q_{tot, \, n_{min}} &= Q_{min, d} \cdot n_{min} \quad \text{[lpm]} \end{split}$$

Tabla 83. Número de rociadores mínimo y caudal de los mismos.

| Símbolo             | Valor | Unidades | Descripción                                                  |
|---------------------|-------|----------|--------------------------------------------------------------|
| Q <sub>min, d</sub> | 67,5  | lpm      | Caudal mínimo para cada rociador según la densidad de diseño |
| n <sub>min</sub>    | 29    | -        | Número de rociadores mínimo                                  |
| Q <sub>min, n</sub> | 1950  | lpm      | Caudal total mínimo de todos los rociadores                  |

Establecidos estos valores, se procede a realizar una distribución de los rociadores. Debido a que se trata de un riesgo REA, es obligatorio el uso de una Distribución normal:

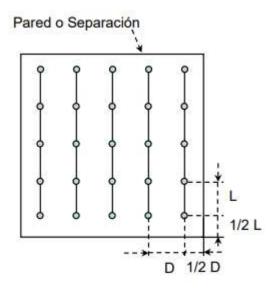



Imagen 36. Ubicación de los rociadores.

MEMORIA Página 85/98



En este caso, la norma establece que los valores de L y D no deben ser superiores a 3,7 m. Por ello, se eligen los valores incluidos en la *Tabla 84* y se obtienen un total de 100 rociadores repartidos en 10 filas y 10 columnas.

Tabla 84. Valores de D y L y número real de rociadores.

| Símbolo | Valor  | Unidades | Descripción                         |  |  |  |
|---------|--------|----------|-------------------------------------|--|--|--|
| S       | 9      | m2       | Superficie cubierta por el rociador |  |  |  |
| L       | 3,50   | m        | Largo entre rociadores              |  |  |  |
| D       | 2,6    | m        | Ancho entre rociadores              |  |  |  |
| n       | 100,00 | -        | Número real de rociadores           |  |  |  |

A continuación, se establece que la **presión mínima** sea de **0,5 bar** exceptuando los rociadores intermedios. Mediante esta presión y la densidad de diseño del rociador, seleccionaremos los rociadores a instalar:

Tabla 85. Selección de rociadores según su riesgo y d<sub>diseño</sub>.

| Tipo de<br>Riesgo  | d <sub>diseño</sub><br>(Ipm/m²) | Tamaño<br>rociador<br>K – D en<br>pulgadas |
|--------------------|---------------------------------|--------------------------------------------|
| RL                 | 2.25                            | 57 - 3/8"                                  |
| RO                 | 5                               | 80 - 1/2"                                  |
| REP y REA<br>Techo | ≤ 10                            | 80 - 1/2"<br>115 - 3/4"                    |
|                    | > 10                            | 115 - 3/4"                                 |
| REA<br>Intermedios |                                 | 80 - 1/2"<br>115 - 3/4"                    |

Los rociadores seleccionados serán **rociadores de ½" con una K de 80**. Con esto se puede calcular el caudal mínimo condicionado por la exigencia de presión mínima mediante la siguiente fórmula:

$$Q = K \cdot \sqrt{p}$$
 [lpm]

Tabla 86. Caudal mínimo según la presión mínima.

|   | Símbolo             | Valor | Unidades | Descripción                                              |
|---|---------------------|-------|----------|----------------------------------------------------------|
| Ī | $Q_{\text{min, p}}$ | 57    | lpm      | Caudal mínimo para cada rociador según la presión mínima |

MEMORIA Página 86/98



El caudal mínimo requerido será el máximo de entre el obtenido con el d<sub>diseño</sub> y el obtenido según la presión mínima.

Tabla 87. Caudal mínimo para cada rociador.

| Símbolo          | Valor | Unidades | Descripción                                |
|------------------|-------|----------|--------------------------------------------|
| Q <sub>min</sub> | 67,5  | lpm      | Caudal mínimo necesario para cada rociador |

Por tanto, el caudal que deberá proveer el equipo de bombeo será el de la suma de todos los rociadores, es decir, **405 m³/h**.

En el *Plano X* se puede observar la distribución de los rociadores y los diámetros seleccionados para cada una de las tuberías. Estos diámetros se obtienen a partir de la siguiente tabla:

Tabla 88. Diámetros aconsejados para diferente número de rociadores.

|             | Nº máximo de rociadores que puede alimentar |                  |               |  |  |  |  |  |
|-------------|---------------------------------------------|------------------|---------------|--|--|--|--|--|
| Diám.(pulg) | Riesgo Ligero                               | Riesgo Ordinario | Riesgo extra  |  |  |  |  |  |
| 1           | 2                                           | 2                | 1             |  |  |  |  |  |
| 1 1/4       | 3                                           | 3                | 2             |  |  |  |  |  |
| 1 1/2       | 5                                           | 5                | 5             |  |  |  |  |  |
| 2           | 10                                          | 10               | 8<br>15<br>27 |  |  |  |  |  |
| 2 1/2       | 30                                          | 20               |               |  |  |  |  |  |
| 3           | 60                                          | 40               |               |  |  |  |  |  |
| 4           | ( < 5000 m2)                                | 100              | 55            |  |  |  |  |  |
| 5           |                                             | 160              | 90            |  |  |  |  |  |
| 6           |                                             | 275              | 150           |  |  |  |  |  |
| 8           |                                             | ( < 5000 m2)     | ( < 2500 m2)  |  |  |  |  |  |

Una vez realizado el predimensionado de la instalación se comprueba mediante el software Epanet la instalación. Para ello será necesario calcular las pérdidas de carga por fricción en las tuberías, que se obtienen a partir de la fórmula de Hazen-Williams:

$$p = \frac{6.05 \cdot 10^5}{C^{1.85} \cdot d^{4.87}} \cdot L \cdot Q^{1.85}$$

#### donde

p es la pérdida de carga en la tubería [bar].

Q es el caudal que circula por la tubería [lpm].

d es el diámetro interior medio de la tubería [mm].

C es una constante que depende del material de la tubería.

L es la longitud equivalente de la tubería y los accesorios [m].

Para simplificar el cálculo, las pérdidas en los accesorios se considerarán como una longitud equivalente de tubería que se añadirá a la longitud real.

MEMORIA Página 87/98



Se decide que las tuberías serán de acero galvanizado, por lo que se obtiene un valor de C de 120.

Tabla 89. Valores de C para diferentes tipos de materiales.

| Tipo de tubería                     | Valor de C |
|-------------------------------------|------------|
| hierro fundido                      | 100        |
| hierro dúctil                       | 110        |
| acero dulce                         | 120        |
| acero galvanizado                   | 120        |
| cemento centrifugado                | 130        |
| hierro fundido revestido de cemento | 130        |
| acero inoxidable                    | 140        |
| cobre                               | 140        |
| fibra de vidrio reforzado           | 140        |

A continuación, se calcular las pérdidas de carga a través de accesorios. Estas pérdidas se traducen, según la *UNE-EN 12845*, en longitudes equivalentes según la *Tabla 90*.

Tabla 90. Longitudes equivalentes de los accesorios según su diámetro.

| Accesorios y válvulas                                |                               | Longitud equivalente de tubería recta de acero (C = 120) <sup>a</sup> (m)  Diámetro nominal (mm) |           |            |              |           |           |           |           |            |           |        |
|------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|-----------|------------|--------------|-----------|-----------|-----------|-----------|------------|-----------|--------|
|                                                      |                               |                                                                                                  |           |            |              |           |           |           |           |            |           |        |
|                                                      |                               | Codo roscado 90º (normalizado)                                                                   |           | 0,76       | 0,77         | 1,0       | 1,2       | 1,5       | 1,9       | 2,4        | 3,0       | 4,3    |
| Codo soldad                                          | o $90^{\circ} (r/d = 1,5)$    | 0,30                                                                                             | 0,36      | 0,49       | 0,56         | 0,69      | 0,88      | 1,1       | 1,4       | 2,0        | 2,6       | 3,4    |
| Codo roscad                                          | o 45º (normalizado)           | 0,34                                                                                             | 0,40      | 0,55       | 0,66         | 0,76      | 1,0       | 1,3       | 1,6       | 2,3        | 3,1       | 3,9    |
| T roscada normal o cruz (flujo a<br>través de ramal) |                               | 1,3                                                                                              | 1,5       | 2,1        | 2,4          | 2,9       | 3,8       | 4,8       | 6,1       | 8,6        | 11,0      | 14,0   |
| Válvula de compuerta - de paso recto                 |                               | =                                                                                                | =         | = 1        | 135          | 0,38      | 0,51      | 0,63      | 0,81      | 1,1        | 1,5       | 2,0    |
| Válvula de a<br>(tipo oscilant                       | larma o de retención<br>te)   | =                                                                                                | =         | <b>=</b> 2 | 177          | 2,4       | 3,2       | 3,9       | 5,1       | 7,2        | 9,4       | 12,0   |
| Válvula de a<br>(tipo seta)                          | larma o de retención          | =                                                                                                | Ξ         | 21         | 12           | 12,0      | 19,0      | 19,7      | 25,0      | 35,0       | 47,0      | 62,0   |
| Válvula de n                                         | Válvula de mariposa           |                                                                                                  | =         | -          | i.e.         | 2,2       | 2,9       | 3,6       | 4,6       | 6,4        | 8,6       | 9,9    |
| Vålvula de esfera                                    |                               |                                                                                                  |           | -          | 42           | 16,0      | 21,0      | 26,0      | 34,0      | 48,0       | 64,0      | 84,0   |
| Estas longitudes                                     | s equivalentes se podrían con | vertir, seg                                                                                      | ún sea ne | cesario, p | ara tuberias | con otros | valores ( | Cmultipli | cando poi | r los sigu | ientes fa | ctores |
| Valor C                                              | 100                           | 11                                                                                               | 0         |            | 120          |           | 13        | 30        |           | 140        |           |        |
| Factor                                               | 0,714                         | 0,8                                                                                              | 5         |            | 1,00         |           | 1,        | 1,16      |           | 1,33       |           |        |

Los accesorios considerados y la longitud equivalente de los mismos son los que se muestran a continuación. Nótese que para casos en los que una te roscada o un codo también tienen una reducción del diámetro, se considera el valor del diámetro menor según se especifica en la norma.

MEMORIA Página 88/98



Tabla 91. Longitudes equivalentes de los accesorios considerados.

| Accesorio          | Diámetro<br>[mm] | Longitud equivalente [m] | Ν  | Total LE [m] |
|--------------------|------------------|--------------------------|----|--------------|
| T roscada          | 100              | 6,1                      | 1  | 6,1          |
| Codo soldado a 90° | 100              | 3                        | 2  | 6            |
| T roscada          | 80               | 4,8                      | 3  | 14,4         |
| T roscada          | 80               | 4,8                      | 8  | 38,4         |
| T roscada          | 65               | 3,8                      | 12 | 45,6         |
| T roscada          | 50               | 2,9                      | 6  | 17,4         |
| T roscada          | 40               | 2,4                      | 6  | 14,4         |
| T roscada          | 32               | 2,1                      | 2  | 4,2          |
| Codo soldado a 90° | 32               | 1                        | 2  | 2            |

De este modo, se obtiene como resultado los datos incluidos en la *Tabla* 92 que muestran las diferentes longitudes de cada tubería:

Tabla 92. Longitudes totales para cada diámetro.

| Diámetro [mm] | Longitud real [m] | Longitud equivalente [m] | Longitud total [m] |
|---------------|-------------------|--------------------------|--------------------|
| 150           | 2                 | 0                        | 2                  |
| 100           | 28,4              | 12,1                     | 40,5               |
| 80            | 34,7              | 52,8                     | 87,5               |
| 65            | 31,2              | 45,6                     | 76,8               |
| 50            | 15,6              | 17,4                     | 33                 |
| 40            | 10,4              | 14,4                     | 24,8               |
| 32            | 5,2               | 6,2                      | 11,4               |
| 25            | 210               | 0                        | 210                |

MEMORIA Página 89/98



# 9.2 Verificación con Epanet

Una vez predimensionado el sistema se hará uso del software de análisis de distribución de agua Epanet.

Inicialmente se define la geometría y nodos del sistema. Se introduce un embalse (E1), dos bombas (B1 y B2) y los diferentes nodos del sistema y tuberías que los conectan. En las dos imágenes que se muestran a continuación se puede observar la distribución de puntos y los identificadores de cada punto y de cada tubería, respectivamente. La numeración se establece de izquierda a derecha, en primer lugar las tuberías principales y después los ramales secundarios.

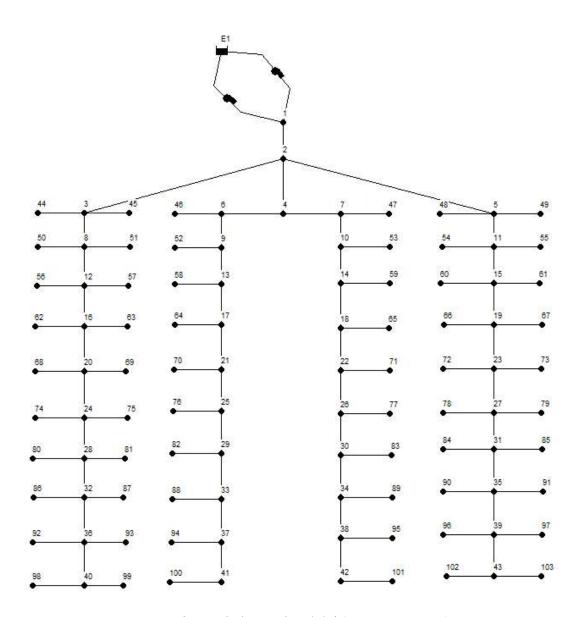



Imagen 37. ID de los nodos del sistema en Epanet.

MEMORIA Página 90/98

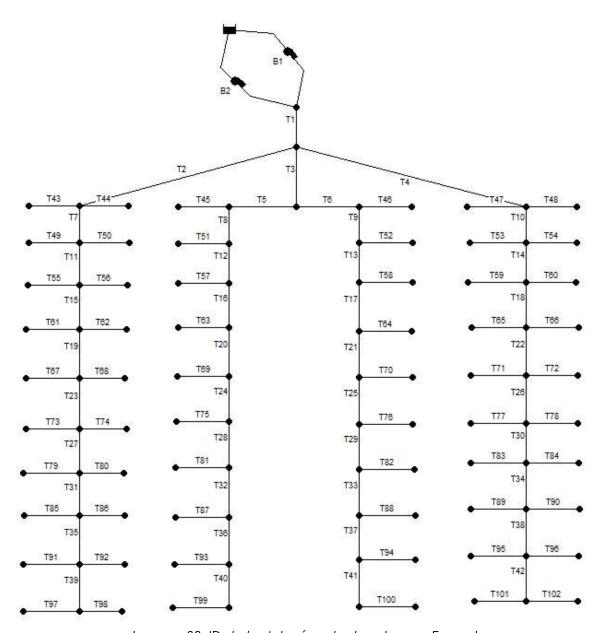



Imagen 38. ID de las tuberías y las bombas en Epanet.

Se introducen en el programa las longitudes obtenidas mediante la suma de las reales y de las equivalentes para cada tramo y los diámetros de cada tramo. Además, se introduce un coeficiente de rugosidad absoluta de 0,15 mm al tratarse de acero galvanizado (Computer Applications in Hydraulic Engineering, 5<sup>th</sup> Edition, Haestad Methods).

En la Imagen 39 se pueden observar las longitudes introducidas para cada tramo.

MEMORIA Página 91/98



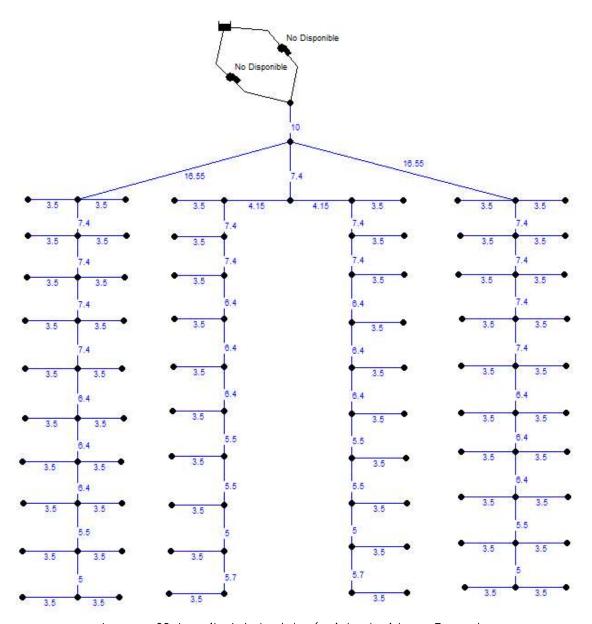



Imagen 39. Longitud de las tuberías introducida en Epanet.

Se establecen las cotas de los nodos a 8 m de altura debido a que esta es la altura del pilar y la cercha, por lo que será donde se realice la instalación de los rociadores. El depósito se diseña para una altura de 0 m.

La demanda base de los nodos se establece en 1,125 lps como se puede observar en la *Imagen 40*.

MEMORIA Página 92/98

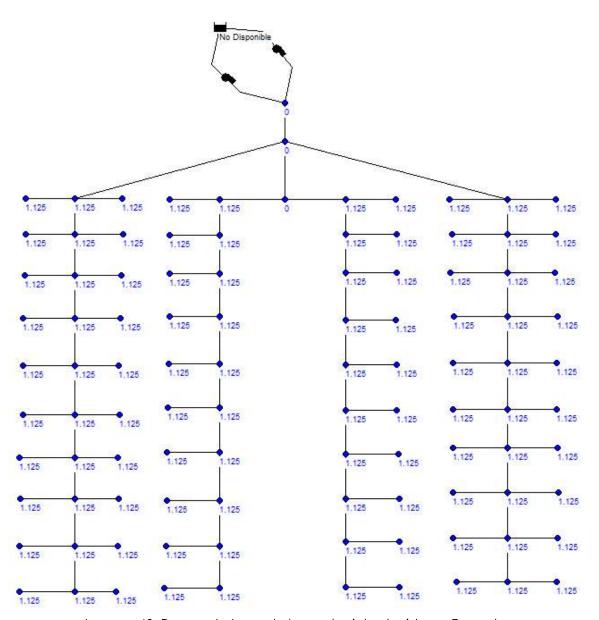



Imagen 40. Demanda base de los nodos introducida en Epanet.

Del apartado anterior se obtiene el caudal necesario para el equipo de bombeo es el calculado en el apartado anterior: 405 m³/h (112,5 lps en las unidades utilizadas en Epanet). Debido a que es un caudal elevado se decide utilizar dos bombas. Estas se obtienen del catálogo de EBARA Grupos contra Incendios Automáticos que se incluye en el *Anexo* 3.

Los grupos seleccionados son dos EBARA AQUAFIRE AFU-EN-ENR 125-200/55 EJ. La curva característica de la bomba es la que se muestra en la *Imagen 41*. Como se observa, con un caudal de 225 m<sup>3</sup>/h se obtiene una altura de 44 m. Estos datos se introducen en Epanet para caracterizar cada una de las bombas.

MEMORIA Página 93/98



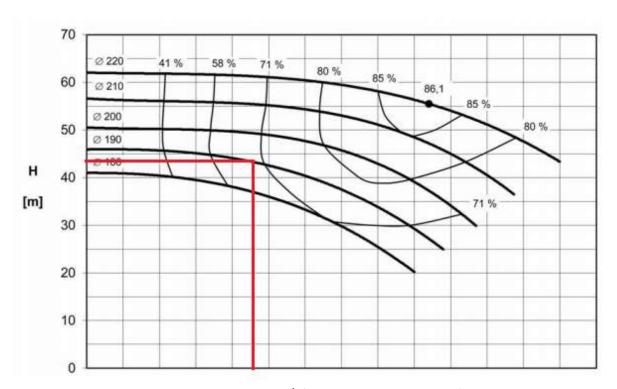



Imagen 41. Curva característica de la bomba seleccionada.

Se introduce la curva característica de la bomba en Epanet mediante tres puntos:

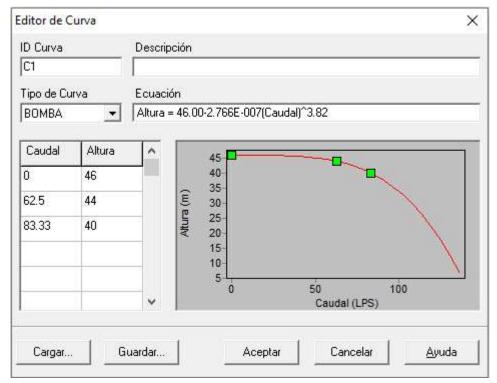



Imagen 42. Introducción de la curva característica en Epanet.

MEMORIA Página 94/98



También se puede observar que las bombas seleccionadas tendrán un recorte de rodete de 30 mm respecto su diámetro nominal.

Una vez introducidos todos los parámetros en el programa se ejecuta y se comprueba que se cumple el requisito de presión mínima en todos los rociadores del sistema. Como se ha expuesto en el apartado anterior, la presión mínima para el rociador más desfavorable debe ser como mínimo de 0,5 bar, es decir, 5,1 m.c.a.

Los resultados obtenidos de presión en cada nodo y de caudal trasegado por cada tubería, respectivamente, son los que se muestran a continuación:

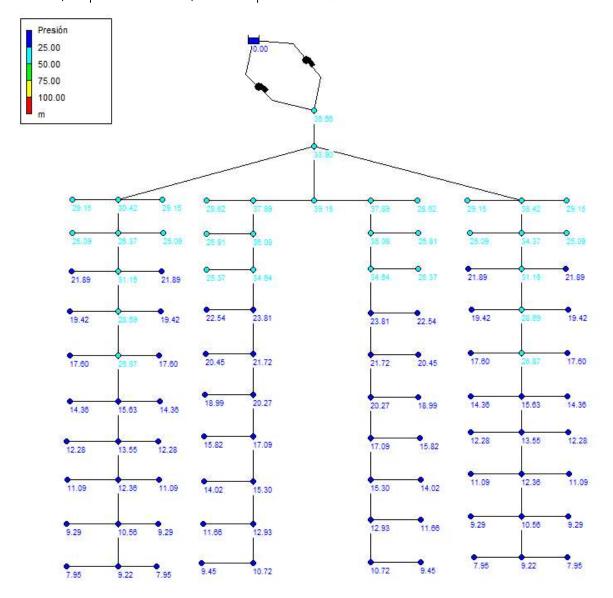



Imagen 43. Presión en los nodos en Epanet [m.c.a.].

MEMORIA Página 95/98

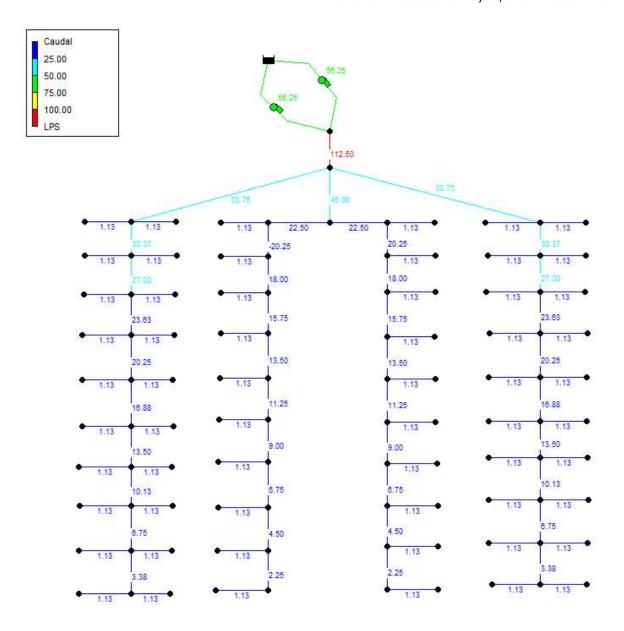



Imagen 44. Caudal en las tuberías en Epanet [lps].

Como se observa, los nodos más desfavorables (98 y 103) cumplen la restricción de presión mínima: 7,95 mca > 5,1 mca. Además se suministra el caudal necesario a cada punto del sistema por lo que se concluye el dimensionado de la instalación.

MEMORIA Página 96/98



# 10. Comparación económica

El presente apartado pretende ser una comparación entre los costes de dimensionado de cada estructura y de su redimensionado. De este modo se podrá observar de forma clara y en términos económicos las diferencias observadas entre cada diseño.

Para la comparación se tendrán en cuenta los precios obtenidos mediante el Arquímedes que se incluyen en el documento PRESUPUESTO Y MEDICIONES.

Tabla 93. Comparación económica de cada caso.

| Presupuesto                                                       | Importe      |  |  |
|-------------------------------------------------------------------|--------------|--|--|
| Presupuesto de ejecución Caso 1                                   | 349,767,95 € |  |  |
| Presupuesto de ejecución Caso 1 (Redimensionado)                  | 344.812,73 € |  |  |
| Presupuesto de ejecución Caso 1 (Redimensionado y sin rociadores) | 229.630,71 € |  |  |
| Presupuesto de ejecución Caso 2                                   | 293.118,12 € |  |  |
| Presupuesto de ejecución Caso 2 (Redimensionado)                  | 290.566,00 € |  |  |

Se puede observar que hay diferencias significativas entre ellos: mediante el redimensionado se obtiene un ahorro de **4.095,22** € en el Caso 1 mientras que en el Caso 2 el ahorro es menor, siendo de unos **2.552,12** €.

Lo más notable es que, si se tiene en cuenta el análisis avanzado, la estructura cumpliría la resistencia al fuego sin necesidad de rociadores en el Caso 1. Esta decisión de diseño podría comportar un ahorro de 66.959,57 €.

Nótese que en el presente proyecto solo se han redimensionado los pilares y jácenas de los pórticos interiores. Este tipo de análisis aplicados a todas las barras de la nave (mediante un programa de cálculo) podría aumentar significativamente el ahorro económico asegurando siempre el cumplimiento de la resistencia de la estructura.

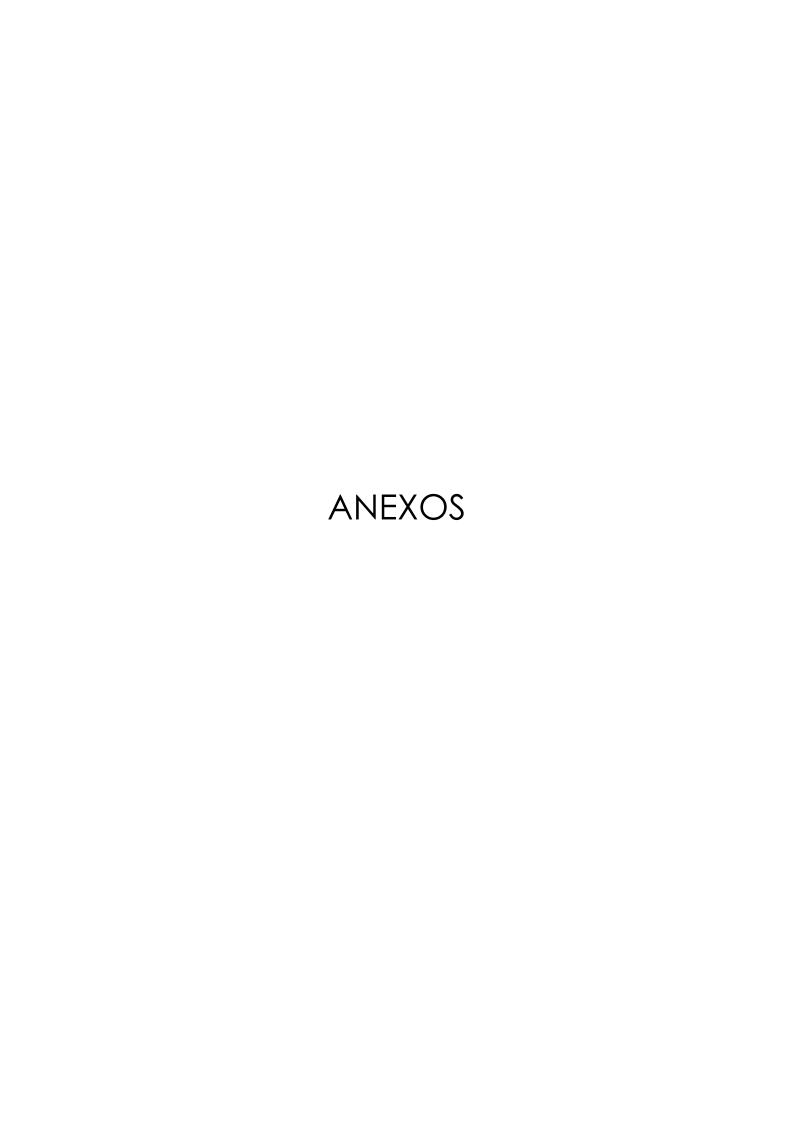
MEMORIA Página 97/98



# 11. Conclusiones y trabajo futuro

Los resultados obtenidos en el proyecto permiten extraer ciertas conclusiones:

Es posible afirmar que el análisis avanzado de fuego ofrece ventajas significativas como su precisión o su capacidad de adaptación a múltiples situaciones de incendio. Además, con este método obtenemos una visión más fiable y concreta de las diferentes variables que afectan a la estructura: temperatura de los gases de la combustión real, temperatura del acero, propiedades del acero a dicha temperatura... Es por ello que, desde una perspectiva científico-técnica, se trata de un análisis mucho más completo.


Desde la perspectiva económica es posible concluir que el análisis avanzado de fuego tiene potencial para generar ahorro sin descuidar la seguridad de la estructura portante y, por lo tanto, es una herramienta de gran utilidad en el diseño de naves industriales. Cabe matizar que sólo es posible redimensionar los perfiles hasta cierto punto debido a que, a partir de un determinado perfil, la situación de incendio ya no es el factor limitante de la estructura y pasan a ser otros como el pandeo o la esbeltez de las barras.

Como posible trabajo futuro quedaría el análisis de todos los perfiles que conforman la estructura mediante, por ejemplo, un programa que agilice los cálculos. Otra opción sería un programa que combinara la definición de incendios avanzada por métodos de zonas de OZone con el cálculo estructural que realiza CYPE 3D. Esto sería una muy buena herramienta de cálculo de estructuras que permitiría ir variando parámetros y ajustando en función de la aplicación y el presupuesto de la estructura.

De esa forma se podría observar más claramente la ventaja económica que supondría este análisis permitiendo disminuir el perfil de todas las barras que fueran susceptibles a un redimensionado.

Además también enriquecería el estudio la inclusión del análisis de las uniones entre las diferentes barras de la estructura mediante software especializado, como por ejemplo IdeaStatica.

MEMORIA Página 98/98

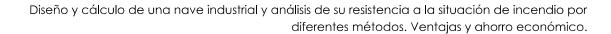




Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



## Índice de los anexos


**ANEXO 1: CÁLCULOS JUSTIFICATIVOS** 

**ANEXO 2: LISTADOS** 

**ANEXO 3: CATÁLOGOS** 



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.








## Índice del Anexo 1

| Índice del Anexo 1                                             |    |  |  |
|----------------------------------------------------------------|----|--|--|
| Índice de tablas del Anexo 1                                   | 5  |  |  |
| Índice de imágenes del Anexo 1                                 | 9  |  |  |
| 1. Objeto                                                      | 11 |  |  |
| 2. Cálculos de fuego                                           | 12 |  |  |
| 2.1 Modelos basados en incendios reales                        | 12 |  |  |
| 2.1.1 Modelos simplificados                                    | 12 |  |  |
| Tiempo de exposición equivalente al fuego normalizado (Caso 1) | 12 |  |  |
| Tiempo de exposición equivalente al fuego normalizado (Caso 2) | 17 |  |  |
| Curvas temperatura-tiempo paramétricas (Caso 1)                | 20 |  |  |
| Curvas temperatura-tiempo paramétricas (Caso 2)                | 24 |  |  |
| 2.1.2 Modelos avanzados                                        | 28 |  |  |
| Capacidad portante en situación de incendio                    | 28 |  |  |
| Caso 1 sin rociadores                                          | 28 |  |  |
| Caso 1 con rociadores                                          | 36 |  |  |
| Caso 2                                                         | 42 |  |  |
| Caso 1 sin rociadores (Redimensionado)                         | 48 |  |  |
| Caso 1 con rociadores (Redimensionado)                         | 54 |  |  |
| Caso 2 (Redimensionado)                                        | 60 |  |  |







## Índice de tablas del Anexo 1

- Tabla 1. Valor del coeficiente m.
- Tabla 2. Tabla E.1 del Eurocódigo 1 Parte 1-2.
- Tabla 3. Parámetros para el cálculo de  $\delta_n$ .
- Tabla 4. Parámetros para el cálculo de q<sub>f.d</sub>.
- Tabla 5. Valor de q<sub>fk</sub>.
- Tabla 6. Valor de q<sub>f.d</sub>.
- Tabla 7. Parámetros para el cálculo de  $k_b$ .
- Tabla 8. Tabla F.2 del Eurocódigo 1 Parte 1-2.
- Tabla 9. Valor de  $k_b$ .
- Tabla 10. Parámetros para el cálculo de w<sub>t</sub>.
- Tabla 11. Valor de b<sub>v</sub>.
- Tabla 12. Valor de w<sub>t</sub>.
- Tabla 13. Tabla F.1 del Eurocódigo 1 Parte 1-2.
- Tabla 14. Aberturas verticales de la nave.
- Tabla 15. Aberturas horizontales de la nave.
- Tabla 16. Parámetros para el cálculo de O.
- Tabla 17. Valor de O.
- Tabla 18. Valor de  $k_c$ .
- Tabla 19. Tiempo equivalente de exposición para el Caso 1.
- Tabla 20. Valor del coeficiente m.
- Tabla 21. Parámetros para el cálculo de  $\delta_n$ .
- Tabla 22. Parámetros para el cálculo de  $q_{t,d}$ .
- Tabla 23. Valor de  $q_{t,k}$ .
- Tabla 24. Valor de q<sub>f,d</sub>.
- Tabla 25. Parámetros para el cálculo de k<sub>b</sub>.
- Tabla 26. Valor de k<sub>b</sub>.
- Tabla 27. Parámetros para el cálculo de w<sub>t</sub>.
- Tabla 28. Valor de  $b_v$ .
- Tabla 29. Valor de w₁.
- Tabla 30. Valor de  $k_c$ .
- Tabla 31. Tiempo equivalente de exposición para el Caso 2.
- Tabla 32. Parámetros para el cálculo de t<sub>comparación</sub>.
- Tabla 33.  $t_{limite}$  vs  $t_{comparación}$ .
- Tabla 34. Factor gamma y tiempo ficticio máximo.
- Tabla 35. Temperatura máxima de los gases de incendio (Caso 1).
- Tabla 36. Historia de temperaturas en función del tiempo transcurrido (Caso 1).
- Tabla 37. Parámetros para el cálculo de t<sub>comparación</sub>.
- Tabla 38. t<sub>límite</sub> vs t<sub>comparación</sub>.
- Tabla 39. Factor gamma y tiempo ficticio máximo.
- Tabla 40. Temperatura máxima de los gases de incendio (Caso 2).
- Tabla 41. Historia de temperaturas en función del tiempo transcurrido (Caso 2).
- Tabla 42. Características del perfil IPE 300.
- Tabla 43. Coeficientes de corrección con la temperatura de las características mecánicas de los aceros estructurales al carbono.
- Tabla 44. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 sin rociadores.
- Tabla 45. Características mecánicas reales.



- Tabla 46. Cálculo de la esbeltez reducida para el Eje y.
- Tabla 47. Cálculo de la esbeltez reducida para el Eje Z.
- Tabla 48. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 sin rociadores.
- Tabla 49. Comprobación de resistencia para el pilar del Caso 1 sin rociadores.
- Tabla 50. Características del perfil IPE 240.
- Tabla 51. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 sin rociadores.
- Tabla 52. Características mecánicas reales.
- Tabla 53. Cálculo de la esbeltez reducida para el Eje y.
- Tabla 54. Cálculo de la esbeltez reducida para el Eje Z.
- Tabla 55. Cálculos previos a la comprobación de resistencia de la jácena para el Caso 1 sin rociadores.
- Tabla 56. Comprobación de resistencia para la jácena del Caso 1 sin rociadores.
- Tabla 57. Características del perfil IPE 300.
- Tabla 58. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 con rociadores.
- Tabla 59. Características mecánicas reales.
- Tabla 60. Cálculo de la esbeltez reducida para el Eje y.
- Tabla 61. Cálculo de la esbeltez reducida para el Eje Z.
- Tabla 62. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 con rociadores.
- Tabla 63. Comprobación de resistencia para el pilar del Caso 1 con rociadores.
- Tabla 64. Características del perfil IPE 240.
- Tabla 65. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 con rociadores.
- Tabla 66. Características mecánicas reales.
- Tabla 67. Cálculo de la esbeltez reducida para el Eje y.
- Tabla 68. Cálculo de la esbeltez reducida para el Eje Z.
- Tabla 69. Cálculos previos a la comprobación de resistencia de la jácena para el Caso 1 con rociadores.
- Tabla 70. Comprobación de resistencia para la jácena del Caso 1 sin rociadores.
- Tabla 71. Características del perfil IPE 270.
- Tabla 72. Coeficientes reductores de las características mecánicas para el pilar del Caso 2.
- Tabla 73. Características mecánicas reales.
- Tabla 74. Cálculo de la esbeltez reducida para el Eje y.
- Tabla 75. Cálculo de la esbeltez reducida para el Eje Z.
- Tabla 76. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 con rociadores.
- Tabla 77. Comprobación de resistencia para el pilar del Caso 1 con rociadores.
- Tabla 78. Características del perfil IPE 160.
- Tabla 79. Coeficientes reductores de las características mecánicas para la jácena del Caso 2.
- Tabla 80. Características mecánicas reales.
- Tabla 81. Cálculo de la esbeltez reducida para el Eje y.
- Tabla 82. Cálculo de la esbeltez reducida para el Eje Z.
- Tabla 83. Cálculos previos a la comprobación de resistencia de la jácena para el Caso 1 con rociadores.
- Tabla 84. Comprobación de resistencia para la jácena del Caso 1 sin rociadores.
- Tabla 85. Características del perfil IPE 270.



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

Tabla 86. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 sin rociadores redimensionado.

Tabla 87. Características mecánicas reales.

Tabla 88. Cálculo de la esbeltez reducida para el Eje y.

Tabla 89. Cálculo de la esbeltez reducida para el Eje Z.

Tabla 90. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 sin rociadores redimensionado.

Tabla 91. Comprobación de resistencia para el pilar del Caso 1 sin rociadores redimensionado.

Tabla 92. Características del perfil IPE 200.

Tabla 93. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 sin rociadores redimensionada.

Tabla 94. Características mecánicas reales.

Tabla 95. Cálculo de la esbeltez reducida para el Eje y.

Tabla 96. Cálculo de la esbeltez reducida para el Eje Z.

Tabla 97. Cálculos previos a la comprobación de resistencia de la jácena del Caso 1 sin rociadores redimensionada.

Tabla 98. Comprobación de resistencia para la jácena del Caso 1 sin rociadores redimensionada.

Tabla 99. Características del perfil.

Tabla 100. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 con rociadores redimensionado.

Tabla 101. Características mecánicas reales.

Tabla 102. Cálculo de la esbeltez reducida para el Eje y.

Tabla 103. Cálculo de la esbeltez reducida para el Eje Z.

Tabla 104. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 con rociadores redimensionado.

Tabla 105. Comprobación de resistencia para el pilar del Caso 1 con rociadores redimensionado.

Tabla 106. Características del perfil IPE 200.

Tabla 107. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 con rociadores redimensionada.

Tabla 108. Características mecánicas reales.

Tabla 108. Características mecánicas reales.

Tabla 110. Cálculo de la esbeltez reducida para el Eje Z.

Tabla 111. Cálculos previos a la comprobación de resistencia de la jácena del Caso 1 con rociadores redimensionada.

Tabla 112. Comprobación de resistencia para la jácena del Caso 1 con rociadores redimensionada.

Tabla 113. Características del perfil IPE 240.

Tabla 114. Coeficientes reductores de las características mecánicas para el pilar del Caso 2 redimensionado.

Tabla 115. Características mecánicas reales.

Tabla 116. Cálculo de la esbeltez reducida para el Eje y.

Tabla 117. Cálculo de la esbeltez reducida para el Eje Z.

Tabla 118. Cálculos previos a la comprobación de resistencia del pilar para el Caso 2 redimensionado.

Tabla 119. Comprobación de resistencia para el pilar del Caso 2 redimensionado.

Tabla 120. Características del perfil IPE 140.

Tabla 121. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 con rociadores redimensionada.



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

Tabla 122. Características mecánicas reales.

Tabla 123. Cálculo de la esbeltez reducida para el Eje y.

Tabla 124. Cálculo de la esbeltez reducida para el Eje Z.

Tabla 125. Cálculos previos a la comprobación de resistencia de la jácena del Caso 1 con rociadores redimensionada.

Tabla 126. Comprobación de resistencia para la jácena del Caso 1 con rociadores redimensionada.



## Índice de imágenes del Anexo 1

Imagen 1. Curva paramétrica de tiempo-temperatura (Caso 1).

Imagen 2. Curva paramétrica de tiempo-temperatura (Caso 2).





## 1. Objeto

El objeto del presente apartado es la justificación de los resultados presentados en la memoria del proyecto por medio de cálculos. Se mostrarán dichos cálculos y de donde se obtienen y las normas y reglamentos que aplican.



## 2. Cálculos de fuego

## 2.1 Modelos basados en incendios reales

## 2.1.1 Modelos simplificados

## Tiempo de exposición equivalente al fuego normalizado (Caso 1)

La fórmula según el Anexo E del Eurocódigo 1 Parte 1-2 para calcular el tiempo equivalente de exposición es:

$$t_{e,d} = q_{f,d} \cdot w_f \cdot k_b \cdot k_c$$
 [min]

donde:

q<sub>f,d</sub> es la densidad de carga de fuego de cálculo. [MJ/m<sup>2</sup>]

w, es el coeficiente de ventilación. [-]

k<sub>b</sub> es el factor de conversión dependiente de las propiedades térmicas del recinto.

k<sub>c</sub> es el factor de corrección en función del material de construcción calculado.

## Cálculo de q<sub>f.d</sub>

$$q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_{n} [MJ/m^{2}]$$

donde:

q<sub>f,d</sub> es la carga característica de fuego de diseño. [MJ/m²]

q<sub>f,k</sub> es la carga característica de fuego. [MJ/m²]

m es el factor de combustión que depende del tipo de material.

 $\delta_{\text{q1}}$  es un coeficiente de riesgo de incendio que depende del tamaño del compartimiento.

 $\delta_{\rm q2}$  es un coeficiente de riesgo de incendio que depende del riesgo de ocupación del local.

 $\delta_n$  es un coeficiente de riesgo de incendio que depende de las diferentes medidas antiincendios.



Se calculan los coeficientes necesarios en la tabla mostrada a continuación:

Tabla 1. Valor del coeficiente m.

| Símbolo | Valor | Unidades | Definición                                           |
|---------|-------|----------|------------------------------------------------------|
| m       | 0,800 | -        | Para materiales celulósicos se considera un m = 0,8. |

Se calcula los coeficientes  $\delta_{\text{q1}}$  y  $\,\delta_{\text{q2}}\,$  según:

Tabla 2. Tabla E.1 del Eurocódigo 1 Parte 1-2.

| Compartment floor area A <sub>f</sub> [m <sup>2</sup> ] | Danger of Fire Activation $\delta_{ m q1}$ | Danger of Fire Activation $\delta_{q2}$ | Examples<br>of<br>Occupancies             |
|---------------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------|
| 25                                                      | 1,10                                       | 0,78                                    | artgallery, museum,<br>swimming pool      |
| 250                                                     | 1,50                                       | 1,00                                    | offices, residence, hotel, paper industry |
| 2 500                                                   | 1,90                                       | 1,22                                    | manufactory for machinery<br>& engines    |
| 5 000                                                   | 2,00                                       | 1,44                                    | chemical laboratory,<br>painting workshop |
| 10 000                                                  | 2,13                                       | 1,66                                    | manufactory of fireworks or paints        |

y  $\delta_n$  mediante la fórmula:

 $\delta_n = \prod_{i=1}^{10} \delta_{ni}$  siendo  $\delta_{ni}$  los coeficientes de la Tabla 3.

Tabla 3. Parámetros para el cálculo de  $\delta_n$ .

| Símbolo         | Valor | Unidades | Definición                                         |
|-----------------|-------|----------|----------------------------------------------------|
| δι              | 0,610 | -        | Sistema de agua para la extinción automático.      |
| $\delta_2$      | 0,87  | -        | Líneas de agua independientes.                     |
| $\delta_3$      | 0,870 | -        | Alarma y detección automática del fuego por calor. |
| $\delta_4$      | 0,730 | -        | Alarma y detección automática del fuego por humo.  |
| $\delta_5$      | 0,870 | -        | Alarma con aviso automático a los bomberos.        |
| δ <sub>6</sub>  | 0,610 | -        | Brigada de bomberos insitu.                        |
| δ <sub>7</sub>  | 0,780 | -        | Brigada de bomberos no insitu.                     |
| δ <sub>8</sub>  | 1     | -        | Rutas de acceso seguras                            |
| δ,              | 1     | -        | Herramientas antiincendios                         |
| δ <sub>10</sub> | 1     | -        | Sistema de extracción de humos.                    |



Tabla 4. Parámetros para el cálculo de  $q_{f,d}$ .

| Símbolo         | Valor | Unidades | Definición                                                                                                             |
|-----------------|-------|----------|------------------------------------------------------------------------------------------------------------------------|
| Af              | 910   | m2       | Área del recinto.                                                                                                      |
| δ <sub>q1</sub> | 1,900 | -        | Coeficiente de riesgo de incendio según el tamaño del recinto.                                                         |
| $\delta_{q2}$   | 1,000 | -        | Coeficiente de riesgo de incendio según la ocupación. Para industria $ ightarrow$ 1.                                   |
| $\delta_{n}$    | 0,462 | -        | Se instala detección y alarma automática, transmisión<br>automática a bomberos y extinción automática<br>(rociadores). |

Según el RSCIEI se puede tomar como valor medio para la aplicación de la nave (almacén de paletas de madera) un valor de 1.300 MJ/m².

Tabla 5. Valor de  $q_{t,k}$ .

| Símbolo          | Valor | Unidades | Definición                                            |
|------------------|-------|----------|-------------------------------------------------------|
| q <sub>f,k</sub> | 1300  | MJ/m²    | Carga de fuego característica para paletas de madera. |

Mediante estos valores se obtiene la carga de diseño de fuego:

Tabla 6. Valor de  $q_{td}$ .

|                  |       |          | 17,0                   |
|------------------|-------|----------|------------------------|
| Símbolo          | Valor | Unidades | Definición             |
| q <sub>f,d</sub> | 912   | MJ/m2    | Valor medio del RSCIEI |

### Cálculo de k

Se obtiene el valor de b sabiendo que:

$$b = \sqrt{\rho \cdot c \cdot \lambda} \left[ J/m^2 \cdot s^{1/2} \cdot K \right]$$

Tabla 7. Parámetros para el cálculo de  $k_b$ .

| Símbolo | Valor | Unidades    | Definición                                                             |
|---------|-------|-------------|------------------------------------------------------------------------|
|         |       | J/(m2·s1/2· | Propiedad térmica b del cerramiento según el Eurocódigo 1<br>Parte 1-2 |
| b       | 3510  | K)          | Anexo A                                                                |
| ρ       | 7850  | kg/m3       | Densidad del acero.                                                    |
| С       | 460   | J/(kg·K)    | Calor específico del acero.                                            |
| λ       | 45    | W/(m·K)     | Conductividad térmica del acero.                                       |

A partir de la propiedad b, se obtiene  $k_b$ :



Tabla 8. Tabla F.2 del Eurocódigo 1 Parte 1-2.

| $b = \sqrt{\rho c \lambda}$ $[J/m^2 s^{1/2} K]$ | k <sub>b</sub><br>[min ⋅ m²/MJ] |
|-------------------------------------------------|---------------------------------|
| b > 2 500                                       | 0,04                            |
| $720 \le b \le 2500$                            | 0,055                           |
| b < 720                                         | 0,07                            |

Tabla 9. Valor de  $k_b$ .

| Símbolo        | Valor | Unidades  | Definición                                                   |
|----------------|-------|-----------|--------------------------------------------------------------|
|                |       |           | Factor de conversión dependiente de las propiedades térmicas |
| k <sub>b</sub> | 0,040 | min·m2/MJ | del recinto. Eurocódigo 1 Parte 1-2 Tabla F.2                |

## Cálculo de w<sub>i</sub>:

El cálculo de w, se realiza como mediante los siguientes parámetros y fórmulas:

Tabla 10. Parámetros para el cálculo de w<sub>t</sub>.

| Símbolo        | Valor  | Unidades | Definición                                                     |
|----------------|--------|----------|----------------------------------------------------------------|
| $A_{\vee}$     | 89,065 | m2       | Área de aberturas verticales                                   |
| A <sub>H</sub> | 70     | m2       | Área de aberturas horizontales                                 |
| A <sub>F</sub> | 910    | m2       | Área del recinto                                               |
| Н              | 9,250  | m        | Altura del recinto                                             |
| $a_{\vee}$     | 0,098  | -        | Área de aberturas verticales en la fachada / Área del recinto  |
| $a_{H}$        | 0,077  | -        | Área de aberturas horizontales en el tejado / Área del recinto |

$$b_v = 12, 5 \cdot (1 + 10\alpha_v - \alpha_v^2) \ge 10$$
 [-]

Tabla 11. Valor de  $b_v$ .

| Símbo          | o Valor | Unidades | Definición              |
|----------------|---------|----------|-------------------------|
| b <sub>v</sub> | 24,614  | -        | Factor b <sub>v</sub> . |

$$w_t = (6/H)^{0.3} \cdot [0, 62 + 90 \cdot (0, 4 - \alpha_v)^4 / (1 + b_v \cdot \alpha_v)]$$
 [-]

A partir de los datos presentados:

Tabla 12. Valor de w<sub>+</sub>.

| Símbolo        | Valor | Unidades | Definición                  |
|----------------|-------|----------|-----------------------------|
| W <sub>t</sub> | 0,416 | -        | Coeficiente de ventilación. |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS Página 15/65



## Cálculo de k<sub>c</sub>:

Dependiendo del tipo de protección (o no) del material constructivo variará el valor de k<sub>c</sub>:

Tabla 13. Tabla F.1 del Eurocódigo 1 Parte 1-2.

| Cross-section material | Correction factor $k_c$ |  |
|------------------------|-------------------------|--|
| Reinforced concrete    | 1,0                     |  |
| Protected steel        | 1,0                     |  |
| Not protected steel    | 13,7 · O                |  |

Al tratarse de acero no protegido, se calcula el factor de abertura O según el Anexo A del Eurocódigo 1 Parte 1-2:

$$O = A_v \cdot \sqrt{h_{eq}} / A_t \text{ [m]}^{1/2}$$

El área de aberturas verticales  $(A_v)$  y horizontales  $(A_H)$  se obtiene a partir de las aberturas diseñadas de la nave:

Tabla 14. Aberturas verticales de la nave.

| Tipo de aberturas           | Número | Alto | Largo          | Área   |
|-----------------------------|--------|------|----------------|--------|
| Puertas de acceso personal  | 3      | 2,01 | 0,84           | 5,0652 |
| Puertas de acceso vehículos | 4      | 5    | 3              | 60     |
| Ventanas laterales          | 8      | 1    | 3              | 24     |
|                             |        |      | A <sub>v</sub> | 89,065 |

Tabla 15. Aberturas horizontales de la nave.

| Tipo de aberturas   | Número | Alto | Largo | Área |
|---------------------|--------|------|-------|------|
| Ventanas superiores | 14     | 5    | 1     | 70   |
|                     |        |      | $A_H$ | 70   |

Tabla 16. Parámetros para el cálculo de O.

| Símbolo         | Valor    | Unidades | Definición                                                |
|-----------------|----------|----------|-----------------------------------------------------------|
| $A_{\vee}$      | 89,065   | m²       | Área de aberturas verticales                              |
| A <sub>T</sub>  | 2665,280 | m²       | Área total (paredes, techo y suelo incluyendo aberturas)  |
| h <sub>eq</sub> | 2,269    | m        | Media ponderada de la altura de las aberturas verticales. |

Tabla 17. Valor de O.

| Símbolo | Valor | Unidades         | Definición         |
|---------|-------|------------------|--------------------|
| 0       | 0,050 | m <sup>1/2</sup> | Factor de abertura |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS Página 16/65



De este modo se obtiene el valor de k<sub>c</sub>:

Tabla 18. Valor de  $k_c$ .

| Sí | mbolo          | Valor | Unidades         | Definición                                                             |
|----|----------------|-------|------------------|------------------------------------------------------------------------|
|    | k <sub>c</sub> | 0,690 | m <sup>1/2</sup> | Factor de corrección en función del material de construcción calculado |

Por tanto, una vez calculados los parámetros necesarios, se calcula el tiempo equivalente de exposición según la fórmula (X):

Tabla 19. Tiempo equivalente de exposición para el Caso 1.

| Símbolo          | Valor | Unidades | Definición                        |
|------------------|-------|----------|-----------------------------------|
| t <sub>e,d</sub> | 10,46 | min      | Tiempo equivalente de exposición. |

## Tiempo de exposición equivalente al fuego normalizado (Caso 2)

Del mismo modo que para el Caso 1, se calcula para el Caso 2 el tiempo de exposición:

## Cálculo de q<sub>fd</sub>

Tabla 20. Valor del coeficiente m.

| Símbolo | Valor | Unidades | Definición                                           |
|---------|-------|----------|------------------------------------------------------|
| m       | 0,800 | -        | Para materiales celulósicos se considera un m = 0,8. |

Tabla 21. Parámetros para el cálculo de  $\delta_n$ .

| Símbolo         | Valor | Unidades | Definición                                         |
|-----------------|-------|----------|----------------------------------------------------|
| δ1              | 0,610 | -        | Sistema de agua para la extinción automático.      |
| $\delta_2$      | 1     | -        | Líneas de agua independientes.                     |
| $\delta_3$      | 0,870 | -        | Alarma y detección automática del fuego por calor. |
| δ <sub>4</sub>  | 0,730 | -        | Alarma y detección automática del fuego por humo.  |
| $\delta_5$      | 0,870 | -        | Alarma con aviso automático a los bomberos.        |
| δ <sub>6</sub>  | 0,610 | -        | Brigada de bomberos insitu.                        |
| δ,              | 0,780 | -        | Brigada de bomberos no insitu.                     |
| δ <sub>8</sub>  | 1     | -        | Rutas de acceso seguras                            |
| δ <sub>9</sub>  | 1     | -        | Herramientas antiincendios                         |
| δ <sub>10</sub> | 1     |          | Sistema de extracción de humos.                    |



Tabla 22. Parámetros para el cálculo de  $q_{f,d}$ .

| Símbolo         | Valor | Unidades | Definición                                                                                                       |
|-----------------|-------|----------|------------------------------------------------------------------------------------------------------------------|
| Af              | 910   | m2       | Área del recinto.                                                                                                |
| δ <sub>q1</sub> | 1,900 | -        | Coeficiente de riesgo de incendio según el tamaño del recinto.                                                   |
| $\delta_{q2}$   | 1,000 | -        | Coeficiente de riesgo de incendio según la ocupación. Para industria $ ightarrow$ 1.                             |
| $\delta_{n}$    | 0,635 | -        | Se instala detección y alarma automática, transmisión automática a bomberos y extinción automática (rociadores). |

Según el RSCIEI se puede tomar como valor medio para la aplicación de la nave (almacén de paletas de madera) un valor de 1.300 MJ/m².

Tabla 23. Valor de  $q_{t,k}$ .

| Símbolo   | Valor | Unidades | Definición                                            |
|-----------|-------|----------|-------------------------------------------------------|
| $Q_{f,k}$ | 1300  | MJ/m²    | Carga de fuego característica para paletas de madera. |

Mediante estos valores se obtiene la carga de diseño de fuego:

Tabla 24. Valor de  $q_{f,d}$ .

| Símbolo                 | Valor | Unidades | Definición             |
|-------------------------|-------|----------|------------------------|
| <b>q</b> <sub>f,d</sub> | 1255  | MJ/m2    | Valor medio del RSCIEI |

## Cálculo de k<sub>b</sub>

Tabla 25. Parámetros para el cálculo de k<sub>b</sub>.

| Símbolo | Valor | Unidades | Definición                                                                     |  |  |  |  |
|---------|-------|----------|--------------------------------------------------------------------------------|--|--|--|--|
| b       | 3510  |          | Propiedad térmica b del cerramiento según el Eurocódigo 1<br>Parte 1-2 Anexo A |  |  |  |  |
| ρ       | 7850  | kg/m3    | Densidad del acero.                                                            |  |  |  |  |
| С       | 460   | J/(kg·K) | Calor específico del acero.                                                    |  |  |  |  |
| λ       | 45    | W/(m·K)  | Conductividad térmica del acero.                                               |  |  |  |  |

Tabla 26. Valor de  $k_b$ .

| Símbolo        | Valor | Unidades  | Definición                                                   |
|----------------|-------|-----------|--------------------------------------------------------------|
|                |       |           | Factor de conversión dependiente de las propiedades térmicas |
| k <sub>b</sub> | 0,040 | min·m2/MJ | del recinto. Eurocódigo 1 Parte 1-2 Tabla F.2                |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS Página 18/65



## Cálculo de w<sub>i</sub>:

Tabla 27. Parámetros para el cálculo de w<sub>+</sub>.

|                | , alera 27.17 al antiente para en cancere de 17.1 |          |                                                                |  |  |
|----------------|---------------------------------------------------|----------|----------------------------------------------------------------|--|--|
| Símbolo        | Valor                                             | Unidades | Definición                                                     |  |  |
| $A_{\vee}$     | 89,065                                            | m2       | Área de aberturas verticales                                   |  |  |
| A <sub>H</sub> | 70                                                | m2       | Área de aberturas horizontales                                 |  |  |
| $A_{F}$        | 910                                               | m2       | Área del recinto                                               |  |  |
| Н              | 9,250                                             | m        | Altura del recinto                                             |  |  |
| $a_{\vee}$     | 0,098                                             | -        | Área de aberturas verticales en la fachada / Área del recinto  |  |  |
| $a_{H}$        | 0,077                                             | -        | Área de aberturas horizontales en el tejado / Área del recinto |  |  |

#### Tabla 28. Valor de b<sub>v</sub>.

| Símbolo        | Valor  | Unidades | Definición              |
|----------------|--------|----------|-------------------------|
| b <sub>√</sub> | 24,614 | -        | Factor b <sub>v</sub> . |

### Tabla 29. Valor de w<sub>t</sub>.

|   | Símbolo        | Valor | Unidades | Definición                  |
|---|----------------|-------|----------|-----------------------------|
| Ī | W <sub>t</sub> | 0,416 | -        | Coeficiente de ventilación. |

## Cálculo de k<sub>c</sub>:

En este caso no es necesario utilizar el factor de aberturas debido a que el acero está protegido. Por ello:

Tabla 30. Valor de  $k_c$ .

| Símbolo        | Valor | Unidades         | Definición       |
|----------------|-------|------------------|------------------|
| k <sub>c</sub> | 1     | m <sup>1/2</sup> | Acero protegido. |

El tiempo equivalente de exposición para el Caso 2 será:

Tabla 31. Tiempo equivalente de exposición para el Caso 2.

| Símbolo          | Valor | Unidades | Definición                        |
|------------------|-------|----------|-----------------------------------|
| t <sub>e,d</sub> | 20,87 | min      | Tiempo equivalente de exposición. |



## Curvas temperatura-tiempo paramétricas (Caso 1)

Inicialmente se calcula el tiempo de comparación mediante la fórmula que se muestra a continuación:

$$t_{comparación} = 0, 2 \cdot 10^{-3} \cdot q_{t,d} / O$$
 [h]

donde:

 $q_{t,d}$  es la densidad de carga de fuego referida a la superficie total del contorno del sector siendo:

$$q_{t,d} = q_{f,d} \cdot A_f / A_T \text{ [MJ//m}^2]$$

O es el factor de aberturas.

Tabla 32. Parámetros para el cálculo de t<sub>comparación</sub>.

|   | Símbolo          | Valor   | Unidades         | Definición                                                      |
|---|------------------|---------|------------------|-----------------------------------------------------------------|
| Ī | q <sub>t,d</sub> | 311,497 | MJ/m²            | Densidad de carga de fuego de cálculo referida a A <sub>f</sub> |
| ĺ | 0                | 0,050   | m <sup>1/2</sup> | Factor de aberturas                                             |

Por tanto, se obtienen los siguientes tiempos:

Tabla 33. t<sub>límite</sub> vs t<sub>comparación</sub>.

| Símbolo                  | Valor | Unidades | Definición                                                       |
|--------------------------|-------|----------|------------------------------------------------------------------|
| † <sub>límite</sub>      | 0,33  |          | Tiempo límite correspondiente a una velocidad de incendio media. |
| † <sub>comparación</sub> | 1,24  | h        | Tiempo de comparación.                                           |

Al ser el tiempo de comparación más elevado que el tiempo límite se considera que el incendio está controlado por la ventilación. El valor máximo de los dos  $(t_{comparación})$  será el utilizado para los cálculos.

A continuación se calcula el factor gamma (Γ) necesario para obtener el tiempo ficticio máximo (t\*) que será el utilizado en las fórmulas correspondientes para calcular la temperatura máxima de los gases en el sector.

$$t^* = t \cdot \Gamma$$
 [h]  
 $\Gamma = (O/b)^2/(0,04/1160)^2$  [-]

donde b tiene el mismo valor que el calculado en el apartado anterior.



Tabla 34. Factor gamma y tiempo ficticio máximo.

| Símbolo           | Valor | Unidades | Definición              |
|-------------------|-------|----------|-------------------------|
| Γ                 | 0,17  | -        | Factor gamma.           |
| †* <sub>mas</sub> | 0,21  | h        | Tiempo ficticio máximo. |

La curva se puede dividir en dos fórmulas que describen su comportamiento: una para la fase de calentamiento y otra para la fase de enfriamiento.

#### Fase de calentamiento

$$\theta_g = 10 + 1325 \cdot (1 - 0, 324e^{-0.2t^*} - 0, 204e^{-1.7t^*} - 0, 472e^{-19t^*})$$
 [°C]

#### Fase de enfriamiento

Dependerá del tiempo ficticio máximo. En este caso:

$$\theta_g = \theta_{max} - 625 \cdot (t^* - t_{max}^* \cdot x)$$
 [°C]

## Temperatura máxima de los gases de incendio

Se obtiene mediante el tiempo ficticio máximo y la fórmula de la fase de calentamiento de los gases:

Tabla 35. Temperatura máxima de los gases de incendio (Caso 1).

| Símbolo          | Valor  | Unidades | Definición                                                      |
|------------------|--------|----------|-----------------------------------------------------------------|
| $\Theta_{max}$   | 735,13 | °C       | Temperatura máxima de los gases de incendio.                    |
| † <sub>max</sub> | 12,84  | min      | Tiempo en el que se alcanza la máxima temperatura de los gases. |

A continuación se incluye una tabla con los valores de tiempo transcurrido, tiempo ficticio y temperatura de los gases de combustión. Mediante esta tabla se construye la gráfica de la *Imagen 1*, es decir, la curva paramétrica temperatura-tiempo del incendio:

Tabla 36. Historia de temperaturas en función del tiempo transcurrido (Caso 1).

| Tiempo ficticio | Tiempo transcurrido |         |       | Temperatura         |
|-----------------|---------------------|---------|-------|---------------------|
| t* [h]          | † [s]               | t [min] | † [h] | θ <sub>g</sub> [°C] |
| 0,003           | 60,00               | 1,00    | 0,02  | 54,90               |
| 0,009           | 180,00              | 3,00    | 0,05  | 119,44              |
| 0,014           | 300,00              | 5,00    | 0,08  | 177,58              |
| 0,020           | 420,00              | 7,00    | 0,12  | 229,98              |
| 0,026           | 540,00              | 9,00    | 0,15  | 277,24              |
| 0,032           | 660,00              | 11,00   | 0,18  | 319,89              |
| 0,037           | 780,00              | 13,00   | 0,22  | 358,40              |



| 0,043 | 900,00  | 15,00 | 0,25 | 393,20 |
|-------|---------|-------|------|--------|
| 0,049 | 1020,00 | 17,00 | 0,28 | 424,67 |
| 0,055 | 1140,00 | 19,00 | 0,32 | 453,16 |
| 0,061 | 1260,00 | 21,00 | 0,35 | 478,97 |
| 0,066 | 1380,00 | 23,00 | 0,38 | 502,38 |
| 0,072 | 1500,00 | 25,00 | 0,42 | 523,64 |
| 0,078 | 1620,00 | 27,00 | 0,45 | 542,96 |
| 0,084 | 1740,00 | 29,00 | 0,48 | 560,55 |
| 0,089 | 1860,00 | 31,00 | 0,52 | 576,57 |
| 0,095 | 1980,00 | 33,00 | 0,55 | 591,21 |
| 0,101 | 2100,00 | 35,00 | 0,58 | 604,58 |
| 0,107 | 2220,00 | 37,00 | 0,62 | 616,83 |
| 0,112 | 2340,00 | 39,00 | 0,65 | 628,07 |
| 0,118 | 2460,00 | 41,00 | 0,68 | 638,39 |
| 0,124 | 2580,00 | 43,00 | 0,72 | 647,90 |
| 0,130 | 2700,00 | 45,00 | 0,75 | 656,68 |
| 0,135 | 2820,00 | 47,00 | 0,78 | 664,79 |
| 0,141 | 2940,00 | 49,00 | 0,82 | 672,32 |
| 0,147 | 3060,00 | 51,00 | 0,85 | 679,30 |
| 0,153 | 3180,00 | 53,00 | 0,88 | 685,81 |
| 0,159 | 3300,00 | 55,00 | 0,92 | 691,88 |
| 0,164 | 3420,00 | 57,00 | 0,95 | 697,57 |
| 0,170 | 3540,00 | 59,00 | 0,98 | 702,90 |
| 0,176 | 3660,00 | 61,00 | 1,02 | 707,92 |
| 0,182 | 3780,00 | 63,00 | 1,05 | 712,65 |
| 0,187 | 3900,00 | 65,00 | 1,08 | 717,12 |
| 0,193 | 4020,00 | 67,00 | 1,12 | 721,36 |
| 0,199 | 4140,00 | 69,00 | 1,15 | 725,39 |
| 0,205 | 4260,00 | 71,00 | 1,18 | 729,23 |
| 0,210 | 4380,00 | 73,00 | 1,22 | 732,89 |
| 0,216 | 4500,00 | 75,00 | 1,25 | 733,80 |
| 0,222 | 4620,00 | 77,00 | 1,28 | 730,20 |
| 0,228 | 4740,00 | 79,00 | 1,32 | 726,60 |
| 0,233 | 4860,00 | 81,00 | 1,35 | 722,99 |
| 0,239 | 4980,00 | 83,00 | 1,38 | 719,39 |
| 0,245 | 5100,00 | 85,00 | 1,42 | 715,79 |
| 0,251 | 5220,00 | 87,00 | 1,45 | 712,19 |



| 0,257 | 5340,00  | 89,00  | 1,48 | 708,58 |
|-------|----------|--------|------|--------|
| 0,262 | 5460,00  | 91,00  | 1,52 | 704,98 |
| 0,268 | 5580,00  | 93,00  | 1,55 | 701,38 |
| 0,274 | 5700,00  | 95,00  | 1,58 | 697,78 |
| 0,280 | 5820,00  | 97,00  | 1,62 | 694,17 |
| 0,285 | 5940,00  | 99,00  | 1,65 | 690,57 |
| 0,291 | 6060,00  | 101,00 | 1,68 | 686,97 |
| 0,297 | 6180,00  | 103,00 | 1,72 | 683,36 |
| 0,303 | 6300,00  | 105,00 | 1,75 | 679,76 |
| 0,308 | 6420,00  | 107,00 | 1,78 | 676,16 |
| 0,314 | 6540,00  | 109,00 | 1,82 | 672,56 |
| 0,320 | 6660,00  | 111,00 | 1,85 | 668,95 |
| 0,326 | 6780,00  | 113,00 | 1,88 | 665,35 |
| 0,346 | 7200,00  | 120,00 | 2,00 | 652,74 |
| 0,519 | 10800,00 | 180,00 | 3,00 | 544,66 |
| 0,692 | 14400,00 | 240,00 | 4,00 | 436,57 |
| 0,865 | 18000,00 | 300,00 | 5,00 | 328,49 |
| 1,038 | 21600,00 | 360,00 | 6,00 | 220,40 |
| 1,211 | 25200,00 | 420,00 | 7,00 | 112,32 |
|       | -        |        |      |        |

Curva paramétrica de evolución de las temperaturas de los gases

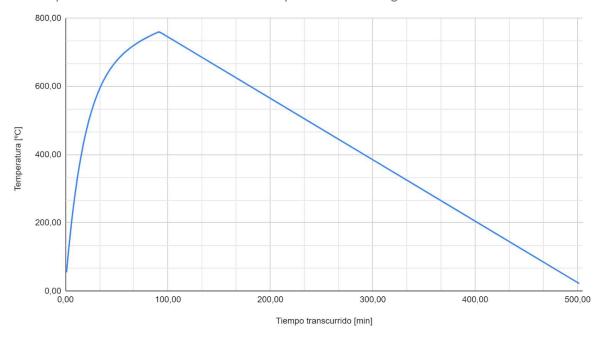



Imagen 1. Curva paramétrica de tiempo-temperatura (Caso 1).



## Curvas temperatura-tiempo paramétricas (Caso 2)

Tabla 37. Parámetros para el cálculo de t<sub>comparación</sub>.

| Sí | mbolo     | Valor   | Unidades         | Definición                                                      |
|----|-----------|---------|------------------|-----------------------------------------------------------------|
|    | $q_{t,d}$ | 428,477 | MJ/m²            | Densidad de carga de fuego de cálculo referida a A <sub>f</sub> |
|    | 0         | 0,050   | m <sup>1/2</sup> | Factor de aberturas                                             |

## Tabla 38. t<sub>límite</sub> vs t<sub>comparación</sub>.

| Símbolo                  | Valor | Unidades | Definición                                                       |
|--------------------------|-------|----------|------------------------------------------------------------------|
| † <sub>límite</sub>      | 0,33  | h        | Tiempo límite correspondiente a una velocidad de incendio media. |
| † <sub>comparación</sub> | 1,70  | h        | Tiempo de comparación.                                           |

### Tabla 39. Factor gamma y tiempo ficticio máximo.

| Símbolo           | Valor | Unidades | Definición              |
|-------------------|-------|----------|-------------------------|
| Γ                 | 0,17  | -        | Factor gamma.           |
| †* <sub>mas</sub> | 0,29  | h        | Tiempo ficticio máximo. |

#### Fase de calentamiento

$$\theta_g = 10 + 1325 \cdot (1 - 0,324e^{-0.2l^*} - 0,204e^{-1.7l^*} - 0,472e^{-19l^*})$$
 [°C]

#### Fase de enfriamiento

$$\theta_g = \theta_{max} - 625 \cdot (t^* - t_{max}^* \cdot x) \quad [^{\circ}C]$$

### Temperatura máxima de los gases de incendio

Tabla 40. Temperatura máxima de los gases de incendio (Caso 2).

| Símbolo               | Valor  | Unidades | Definición                                                      |
|-----------------------|--------|----------|-----------------------------------------------------------------|
| $\Theta_{\text{max}}$ | 774,07 | °C       | Temperatura máxima de los gases de incendio.                    |
| † <sub>max</sub>      | 17,67  | min      | Tiempo en el que se alcanza la máxima temperatura de los gases. |

Tabla 41. Historia de temperaturas en función del tiempo transcurrido (Caso 2).

|                 |                     |         | ·     |                     |
|-----------------|---------------------|---------|-------|---------------------|
| Tiempo ficticio | Tiempo transcurrido |         |       | Temperatura         |
| t* [h]          | † [s]               | t [min] | † [h] | θ <sub>g</sub> [°C] |
| 0,003           | 60,00               | 1,00    | 0,02  | 54,90               |
| 0,009           | 180,00              | 3,00    | 0,05  | 119,44              |
| 0,014           | 300,00              | 5,00    | 0,08  | 177,58              |



| 0,020 | 420,00  | 7,00  | 0,12 | 229,98 |
|-------|---------|-------|------|--------|
| 0,026 | 540,00  | 9,00  | 0,15 | 277,24 |
| 0,032 | 660,00  | 11,00 | 0,18 | 319,89 |
| 0,037 | 780,00  | 13,00 | 0,22 | 358,40 |
| 0,043 | 900,00  | 15,00 | 0,25 | 393,20 |
| 0,049 | 1020,00 | 17,00 | 0,28 | 424,67 |
| 0,055 | 1140,00 | 19,00 | 0,32 | 453,16 |
| 0,061 | 1260,00 | 21,00 | 0,35 | 478,97 |
| 0,066 | 1380,00 | 23,00 | 0,38 | 502,38 |
| 0,072 | 1500,00 | 25,00 | 0,42 | 523,64 |
| 0,078 | 1620,00 | 27,00 | 0,45 | 542,96 |
| 0,084 | 1740,00 | 29,00 | 0,48 | 560,55 |
| 0,089 | 1860,00 | 31,00 | 0,52 | 576,57 |
| 0,095 | 1980,00 | 33,00 | 0,55 | 591,21 |
| 0,101 | 2100,00 | 35,00 | 0,58 | 604,58 |
| 0,107 | 2220,00 | 37,00 | 0,62 | 616,83 |
| 0,112 | 2340,00 | 39,00 | 0,65 | 628,07 |
| 0,118 | 2460,00 | 41,00 | 0,68 | 638,39 |
| 0,124 | 2580,00 | 43,00 | 0,72 | 647,90 |
| 0,130 | 2700,00 | 45,00 | 0,75 | 656,68 |
| 0,135 | 2820,00 | 47,00 | 0,78 | 664,79 |
| 0,141 | 2940,00 | 49,00 | 0,82 | 672,32 |
| 0,147 | 3060,00 | 51,00 | 0,85 | 679,30 |
| 0,153 | 3180,00 | 53,00 | 0,88 | 685,81 |
| 0,159 | 3300,00 | 55,00 | 0,92 | 691,88 |
| 0,164 | 3420,00 | 57,00 | 0,95 | 697,57 |
| 0,170 | 3540,00 | 59,00 | 0,98 | 702,90 |
| 0,176 | 3660,00 | 61,00 | 1,02 | 707,92 |
| 0,182 | 3780,00 | 63,00 | 1,05 | 712,65 |
| 0,187 | 3900,00 | 65,00 | 1,08 | 717,12 |
| 0,193 | 4020,00 | 67,00 | 1,12 | 721,36 |
| 0,199 | 4140,00 | 69,00 | 1,15 | 725,39 |
| 0,205 | 4260,00 | 71,00 | 1,18 | 729,23 |
| 0,210 | 4380,00 | 73,00 | 1,22 | 732,89 |
| 0,216 | 4500,00 | 75,00 | 1,25 | 736,40 |
| 0,222 | 4620,00 | 77,00 | 1,28 | 739,77 |
| 0,228 | 4740,00 | 79,00 | 1,32 | 743,00 |
| ļ     |         |       | 1    |        |



| 0,233 | 4860,00  | 81,00  | 1,35 | 746,12 |
|-------|----------|--------|------|--------|
| 0,239 | 4980,00  | 83,00  | 1,38 | 749,14 |
| 0,245 | 5100,00  | 85,00  | 1,42 | 752,05 |
| 0,251 | 5220,00  | 87,00  | 1,45 | 754,88 |
| 0,257 | 5340,00  | 89,00  | 1,48 | 757,62 |
| 0,262 | 5460,00  | 91,00  | 1,52 | 760,29 |
| 0,268 | 5580,00  | 93,00  | 1,55 | 762,89 |
| 0,274 | 5700,00  | 95,00  | 1,58 | 765,43 |
| 0,280 | 5820,00  | 97,00  | 1,62 | 767,91 |
| 0,285 | 5940,00  | 99,00  | 1,65 | 770,34 |
| 0,291 | 6060,00  | 101,00 | 1,68 | 772,72 |
| 0,297 | 6180,00  | 103,00 | 1,72 | 775,05 |
| 0,303 | 6300,00  | 105,00 | 1,75 | 768,94 |
| 0,308 | 6420,00  | 107,00 | 1,78 | 765,34 |
| 0,314 | 6540,00  | 109,00 | 1,82 | 761,74 |
| 0,320 | 6660,00  | 111,00 | 1,85 | 758,13 |
| 0,326 | 6780,00  | 113,00 | 1,88 | 754,53 |
| 0,346 | 7200,00  | 120,00 | 2,00 | 741,92 |
| 0,519 | 10800,00 | 180,00 | 3,00 | 633,84 |
| 0,692 | 14400,00 | 240,00 | 4,00 | 525,75 |
| 0,865 | 18000,00 | 300,00 | 5,00 | 417,67 |
| 1,038 | 21600,00 | 360,00 | 6,00 | 309,58 |
| 1,211 | 25200,00 | 420,00 | 7,00 | 201,50 |
|       |          |        |      |        |



Curva paramétrica de evolución de las temperaturas de los gases

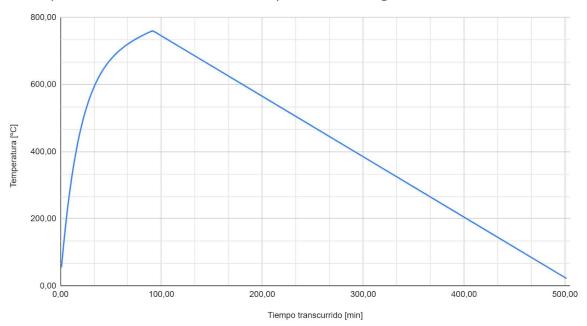



Imagen 2. Curva paramétrica de tiempo-temperatura (Caso 2).



#### 2.1.2 Modelos avanzados

## Capacidad portante en situación de incendio

En el presente apartado se listan los cálculos realizados para la comprobación de resistencia ante la acción de incendio de los diferentes perfiles. Las temperaturas tenidas en cuenta son las obtenidas en el OZone.

Se expondrá el procedimiento seguido en el primer caso y se expondrán los resultados de los demás, siendo el procedimiento de cálculo el mismo para los perfiles, variando sus características geométricas y la temperatura a la que están sometidos.

#### Caso 1 sin rociadores

#### **PILAR**

Las características del perfil son las que se muestran en la Tabla 42.

**IPE 300**  $\,mm^2$ Α 5380,00 557100,00  $mm^3$  $W_{el,v}$  $W_{el,z}$ 80500,00  $mm^3$ Propiedades del perfil 125,00  $i_{v}$ mm 33,50 mm i, 38920000,00  $I_{v}$ mm<sup>4</sup>  $^{\circ}C$ Τ 407 Temperatura del acero obtenida en OZone

Tabla 42. Características del perfil IPE 300.

A partir de los coeficientes de corrección con la temperatura que se muestran a continuación se obtienen los valores de los coeficientes reductores de aplicación para el límite elástico, el módulo de elasticidad y la esbeltez reducida (*Tabla 43*).

Tabla 43. Coeficientes de corrección con la temperatura de las características mecánicas de los aceros estructurales al carbono.

| θ <sub>°</sub> [°C] | k <sub>y,θ</sub> | k <sub>e,θ</sub> | $k_{\lambda,\Theta}$ |
|---------------------|------------------|------------------|----------------------|
| 20                  | 1                | 1                | 1                    |
| 100                 | 1                | 1                | 1                    |
| 200                 | 1                | 0,9              | 1,05                 |
| 300                 | 1                | 0,8              | 1,11                 |
| 400                 | 1                | 0,7              | 1,19                 |
| 500                 | 0,78             | 0,6              | 1,14                 |



| 600  | 0,47 | 0,31   | 1,23 |
|------|------|--------|------|
| 700  | 0,23 | 0,13   | 1,33 |
| 800  | 0,11 | 0,09   | -    |
| 900  | 0,06 | 0,0675 | -    |
| 1000 | 0,04 | 0,045  | -    |
| 1100 | 0,02 | 0,0225 | -    |
| 1200 | 0    | 0      | -    |

Tabla 44. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 sin rociadores.

|                      | IPE 300 |
|----------------------|---------|
| $k_{y,\Theta}$       | 0,9846  |
| k <sub>E,Θ</sub>     | 0,693   |
| $k_{\lambda,\Theta}$ | 1,187   |

De esta forma, se aplican los dos primeros coeficientes a las características mecánicas de la barra obteniendo:

Tabla 45. Características mecánicas reales.

| f_y,0 | 270,765 | Мра |
|-------|---------|-----|
| E_a,0 | 145530  | MPa |

A continuación se obtiene la esbeltez reducida del pilar en cada eje mediante las fórmulas que se introducen a continuación:

$$L_k = h_p \cdot \beta$$
 [mm]

$$\overline{\lambda_y} = \frac{\lambda_y}{\lambda_{lim}} = \frac{L_k/i_y}{\lambda_{lim}}$$
 [-]

donde:

 $L_{\kappa}$  es la longitud de pandeo. [m]

 $h_{\scriptscriptstyle D}$  es la altura del pilar considerada hasta el cordón inferior de amarre. [m] β es el coeficiente de pandeo (0,7 en ambos casos según el CTE DB-SI Apartado D.2.2.1).



Símbolo

 $\lambda_{y}$ 

 $\lambda_{lim}$ 

 $h_P$ 

β

7000,00

0,7

mm

|   | rabia 46. Calculo de la espellez reducida para el Eje y. |          |                          |  |  |  |
|---|----------------------------------------------------------|----------|--------------------------|--|--|--|
| ) | Valor                                                    | Unidades | Definición               |  |  |  |
|   | 0,62                                                     | -        | Esbeltez reducida. Eje Y |  |  |  |
|   | 74,63                                                    | -        | Esbeltez límite.         |  |  |  |

Longitud del pilar

Coeficiente de pandeo

Tabla 46. Cálculo de la esbeltez reducida para el Eje y.

| Tabla 47 | Cálculo | de la | esheltez | reducida | para el Fie 7 | 7 |
|----------|---------|-------|----------|----------|---------------|---|

| Símbolo       | Valor | Unidades | Definición                |
|---------------|-------|----------|---------------------------|
| $\lambda_{z}$ | 2,33  | -        | Esbeltez reducida. Eje Z. |
| β             | 0,7   | -        | Coeficiente de pandeo     |

Se realiza a continuación la comprobación de resistencia a flexión y axil combinados para el pilar. El proceso de cálculo será el que se presenta a continuación. Los resultados se muestran en la *Tabla 48*.

$$\Phi=0,5\!\cdot\![1+\alpha\!\cdot\!(\lambda_{\!\scriptscriptstyle\mathcal{Y}}\!-0,2)+{\lambda_{\!\scriptscriptstyle\mathcal{Y}}}^2]\ [\text{-}]$$

$$\chi_y = \frac{1}{\Phi + \sqrt{\Phi^2 - \lambda_y^2}} \left[ - \right]$$

donde:

x es el coeficiente de reducción por pandeo

a es el coeficiente de imperfección elástica (Curva de pandeo c según el CTE DB-SI Apartado D.2.2.1).

Además será necesario para el cálculo los valores de los coeficientes de interacción (Clase 1 según lo obtenido en CYPE) utilizar el DB SE-A Tabla 6.9:

$$k_y = 1 + (\lambda_y - 0, 2) \cdot \frac{N_{Ed}}{\chi_y \cdot N_{c,Rd}} [-]$$

$$k_z = 1 + (2\lambda_z - 0, 6) \cdot \frac{N_{Ed}}{\chi_z \cdot N_{c,Rd}} [-]$$

donde

 $N_{Ed}$  es el valor de la fuerza axial máxima en valor absoluto de la pieza. [kN]  $N_{c,Rd}$  es la resistencia a compresión de la sección bruta. [kN]



Y de los coeficientes de momento flector uniforme equivalente  $c_{m,y}$  y  $c_{m,z}$ . Iguales a la unidad según lo obtenido en CYPE.

Finalmente, para calcular la resistencia del pilar se utilizarán las siguientes fórmulas. Si se cumple la desigualdad, se cumplirá el criterio de seguridad:

$$\eta = \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \le 1$$

$$\eta_{y} = \frac{N_{c,Ed}}{\chi_{y} \cdot A \cdot f_{y,d}} + k_{y} \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{M_{pl,Rd,y}} + \alpha_{z} \cdot k_{z} \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{M_{pl,Rd,z}} \le 1$$

$$\eta_{y} = \frac{N_{c,Ed}}{\chi_{y} \cdot A \cdot f_{y,d}} + \alpha_{y} \cdot k_{y} \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{M_{pl,Rd,y}} + k_{z} \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{M_{pl,Rd,z}} \le 1$$

donde

A es el área de la sección bruta.  $[mm^2]$   $f_{v,d}$  es la resistencia de cálculo del acero:

$$f_{v,d} = f_v \cdot \gamma_{M,0}$$
 [Mpa]

siendo  $\gamma_{\text{\tiny M,0}}$  el coeficiente parcial de seguridad del material igual a la unidad. [-]

 $M_{y,Ed}$  y  $M_{z,Ed}$  son los momentos flectores solicitantes de cálculo pésimos según los ejes Y y Z respectivamente. [kN·m]

 $M_{\rm pl,\,Rd,\,y}$  y  $M_{\rm pl,\,Rd,\,Z}$  son las resistencias a flexión bruta en condiciones plásticas respecto los ejes Y y Z respectivamente. Siendo:

$$M_{pl, Rd, y} = W_y \cdot f_{y.d} \text{ [kN·m]}$$

$$M_{pl, Rd, z} = W_z \cdot f_{y.d} \text{ [kN·m]}$$

a<sub>y</sub> y a<sub>z</sub> son factores dependientes de la Clase de la sección. En este caso:

$$a_{y} = a_{z} = 0.6$$
 [-]

A continuación se muestran los resultados obtenidos mediante los cálculos anteriormente descritos:



Tabla 48. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 sin rociadores.

| Símbolo              | Valor     | Unidades | Definición                                                                |
|----------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                    | 5380,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub>   | 557100,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub>   | 80500,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| f <sub>y,d</sub>     | 257,87    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| f <sub>y,0</sub>     | 270,765   | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$        | 0,62      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{z}$        | 2,33      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| a <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                   | 0,80      | -        |                                                                           |
| Φ                    | 3,72      | -        |                                                                           |
| X <sub>Y</sub>       | 0,77      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                   | 0,15      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>       | 1,01      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>       | 1,83      | -        | Coeficiente de interacción.                                               |
| N <sub>pl,Rd,y</sub> | 1070,41   | kN       | Resistencia de cálculo a pandeo en una barra comprimida                   |
| $N_{pl,Rd,z}$        | 88,18     | kN       | Resistencia de cálculo a pandeo en una barra comprimida                   |
| $M_{pl,Rd,y}$        | 143,66    | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| $M_{pl,Rd,z}$        | 20,76     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>    | 34,30     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$           | 24,74     | kN·m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$           | 0,01      | kN·m     | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |
| O <sub>z</sub>       | 0,60      | -        | n actores dependientes de la clase de la sección.                         |

Por tanto, se comprueba que:

Tabla 49. Comprobación de resistencia para el pilar del Caso 1 sin rociadores.

| Símbolo    | Valor | Unidades |
|------------|-------|----------|
| η          | 0,20  | -        |
| $\eta_{y}$ | 0,21  | -        |
| $\eta_z$   | 0,49  | -        |



#### **JÁCENA**

Las características del perfil son las que se muestran en la Tabla 50.

Tabla 50. Características del perfil IPE 240.

| rabia 00. Caracteristicas del pertir il 2 240. |             |     |                                         |  |
|------------------------------------------------|-------------|-----|-----------------------------------------|--|
|                                                | IPE 240     |     |                                         |  |
| Α                                              | 3910,00     | mm² |                                         |  |
| W <sub>el,y</sub>                              | 366600,00   | mm³ |                                         |  |
| W <sub>el,z</sub>                              | 73920,00    | mm³ | Propiedades del perfil                  |  |
| i <sub>y</sub>                                 | 99,70       | mm  | Tropiedades del perili                  |  |
| i <sub>z</sub>                                 | 26,90       | mm  |                                         |  |
| l <sub>y</sub>                                 | 38920000,00 | mm⁴ |                                         |  |
| T                                              | 411         | °C  | Temperatura del acero obtenida en OZone |  |

Tabla 51. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 sin rociadores.

|                      | IPE 240 |
|----------------------|---------|
| $k_{y,\Theta}$       | 0,9758  |
| k <sub>E,Θ</sub>     | 0,689   |
| $k_{\lambda,\Theta}$ | 1,185   |

#### Tabla 52. Características mecánicas reales.

| f_y,0 | 268,345 | Мра |
|-------|---------|-----|
| E_a,0 | 144690  | MPa |

### Tabla 53. Cálculo de la esbeltez reducida para el Eje y.

| Símbolo         | Valor | Unidades | Definición                         |
|-----------------|-------|----------|------------------------------------|
| $\lambda_{y}$   | 0,42  | -        | Esbeltez reducida. Eje Y           |
| $\lambda_{lim}$ | 74,75 | -        | Esbeltez límite.                   |
| h <sub>P</sub>  | 2648  | mm       | Longitud del elemento considerado. |
| β               | 1     | -        | Coeficiente de pandeo              |

#### Tabla 54. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                                                 |
|---------------|-------|----------|------------------------------------------------------------|
| $\lambda_{z}$ | 0     | -        | Esbeltez reducida. Eje Z. Pandeo impedido por las correas. |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS Página 33/65



Tabla 55. Cálculos previos a la comprobación de resistencia de la jácena para el Caso 1 sin rociadores.

| Símbolo              | Valor     | Unidades | Definición                                                                |
|----------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                    | 3910,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub>   | 366600,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub>   | 73920,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| $f_{y,d}$            | 255,57    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| f <sub>y,0</sub>     | 268,345   | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$        | 0,42      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{z}$        | 0,00      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| a <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                   | 0,64      | -        |                                                                           |
| Φ                    | 0,45      | -        |                                                                           |
| X <sub>Y</sub>       | 0,89      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                   | 1,00      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>       | 1,01      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>       | 0,98      | -        | Coeficiente de interacción.                                               |
| N <sub>pl,Rd,y</sub> | 885,58    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $N_{pl,Rd,z}$        | 384,93    | kN       | Resistencia de cálculo a pandeo en una barra comprimida                   |
| $M_{pl,Rd,y}$        | 93,69     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| $M_{pl,Rd,z}$        | 18,89     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>    | 33,01     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$           | 13,74     | kN∙m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$           | 0,00      | kN∙m     | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |
| O <sub>z</sub>       | 0,60      | -        |                                                                           |



Tabla 56. Comprobación de resistencia para la jácena del Caso 1 sin rociadores.

| Símbolo  | Valor | Unidades |
|----------|-------|----------|
| η        | 0,18  | -        |
| η,       | 0,19  | -        |
| $\eta_z$ | 0,17  | -        |



Caso 1 con rociadores

## **PILAR**

Tabla 57. Características del perfil IPE 300.

|                   | rabia or. Caracreneras dos permissos. |     |                                         |  |
|-------------------|---------------------------------------|-----|-----------------------------------------|--|
|                   | IPE 300                               |     |                                         |  |
| А                 | 5380,00                               | mm² |                                         |  |
| W <sub>el,y</sub> | 557100,00                             | mm³ |                                         |  |
| W <sub>el,z</sub> | 80500,00                              | mm³ | Propiedades del perfil                  |  |
| i <sub>y</sub>    | 125,00                                | mm  | Tropiedades del periii                  |  |
| i <sub>z</sub>    | 33,50                                 | mm  |                                         |  |
| l <sub>y</sub>    | 38920000,00                           | mm⁴ |                                         |  |
| Т                 | 315                                   | °C  | Temperatura del acero obtenida en OZone |  |

Tabla 58. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 con rociadores.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPE 300 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| K <sub>y,\theta</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |
| k <sub>E, \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tittt{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tittit{\text{\texi}\text{\tex{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\tet{\texi}\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\ti</sub> | 0,785   |
| $k_{\lambda,\Theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,129   |

## Tabla 59. Características mecánicas reales.

| f_y,0 | 275    | Мра |
|-------|--------|-----|
| E_a,0 | 164850 | MPa |

## Tabla 60. Cálculo de la esbeltez reducida para el Eje y.

| Símbolo         | Valor | Unidades | Definición               |
|-----------------|-------|----------|--------------------------|
| $\lambda_{y}$   | 0,56  | -        | Esbeltez reducida. Eje Y |
| $\lambda_{lim}$ | 78,82 | -        | Esbeltez límite.         |
| h <sub>₽</sub>  | 7000  | mm       | Longitud del pilar       |
| β               | 0,7   | -        | Coeficiente de pandeo    |

## Tabla 61. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                |
|---------------|-------|----------|---------------------------|
| $\lambda_{z}$ | 2,09  | -        | Esbeltez reducida. Eje Z. |
| β             | 0,7   | -        | Coeficiente de pandeo     |



Tabla 62. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 con rociadores.

| Símbolo              | Valor     | Unidades | Definición                                                                |  |
|----------------------|-----------|----------|---------------------------------------------------------------------------|--|
| Α                    | 5380,00   | mm²      | Área de la sección bruta                                                  |  |
| W <sub>el, y</sub>   | 557100,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |  |
| W <sub>el, z</sub>   | 80500,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |  |
| f <sub>y,d</sub>     | 261,90    | MPa      | Resistencia de cálculo del acero                                          |  |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |  |
| f <sub>y,0</sub>     | 275       | MPa      | Límite elástico modificado                                                |  |
| $\lambda_{y}$        | 0,56      | -        | Esbeltez reducida. Eje Y                                                  |  |
| $\lambda_{\rm Z}$    | 2,09      | -        | Esbeltez reducida. Eje Z                                                  |  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| ۵ <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| Фү                   | 0,75      | -        |                                                                           |  |
| Φ                    | 3,16      | -        |                                                                           |  |
| X <sub>Y</sub>       | 0,81      | -        | Coeficiente de reducción por pandeo. Eje Y                                |  |
| Xz                   | 0,18      | -        | Coeficiente de reducción por pandeo. Eje Z                                |  |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| k <sub>y</sub>       | 1,01      | -        | Coeficiente de interacción.                                               |  |
| k <sub>z</sub>       | 1,61      | -        | Coeficiente de interacción.                                               |  |
| $N_{pl,Rd,y}$        | 1138,59   | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| $N_{pl,Rd,z}$        | 105,95    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| M <sub>pl,Rd,y</sub> | 145,91    | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |  |
| M <sub>pl.Rd,z</sub> | 21,08     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |  |
| N <sub>c,Ed</sub>    | 34,30     | kN       | Axil de compresión solicitante de cálculo pésimo                          |  |
| $M_{y,Ed}$           | 24,74     | kN ·m    | Momento flectores de cálculo pésimos. Eje Y                               |  |
| $M_{z,Ed}$           | 0,01      | kN ·m    | Momento flectores de cálculo pésimos. Eje Z                               |  |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |  |
| O <sub>z</sub>       | 0,60      | -        | actores dependientes de la clase de la sección.                           |  |



Tabla 63. Comprobación de resistencia para el pilar del Caso 1 con rociadores.

| Símbolo  | Valor | Unidades |
|----------|-------|----------|
| η        | 0,20  | -        |
| η,       | 0,20  | -        |
| $\eta_z$ | 0,43  | -        |



Tabla 64. Características del perfil IPE 240.

| rabia on Caracteristicas del permit 2 2 to. |             |     |                                         |  |
|---------------------------------------------|-------------|-----|-----------------------------------------|--|
|                                             | IPE 240     |     |                                         |  |
| А                                           | 3910,00     | mm² |                                         |  |
| W <sub>el,y</sub>                           | 366600,00   | mm³ |                                         |  |
| W <sub>el,z</sub>                           | 73920,00    | mm³ | Propiedades del perfil                  |  |
| i <sub>y</sub>                              | 99,70       | mm  | Tropleaddes dei periii                  |  |
| i <sub>z</sub>                              | 26,90       | mm  |                                         |  |
| l <sub>y</sub>                              | 38920000,00 | mm⁴ |                                         |  |
| Т                                           | 319         | °C  | Temperatura del acero obtenida en OZone |  |

Tabla 65. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 con rociadores.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPE 240 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| K <sub>y,\theta</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |
| k <sub>E, \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tittt{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\texi}\til\titt{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\texi}\tilint{\text{\texit{\text{\text{\texi}\text{\texit{\text{\t</sub> | 0,781   |
| $k_{\lambda,\Theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,125   |

## Tabla 66. Características mecánicas reales.

| f_y,0 | 275    | Мра |
|-------|--------|-----|
| E_a,0 | 164010 | MPa |

#### Tabla 67. Cálculo de la esbeltez reducida para el Eie v.

| rabia or. Calculo de la esperiez redocida para er zje y. |       |          |                                    |  |
|----------------------------------------------------------|-------|----------|------------------------------------|--|
| Símbolo                                                  | Valor | Unidades | Definición                         |  |
| $\lambda_{y}$                                            | 0,38  | -        | Esbeltez reducida. Eje Y           |  |
| $\lambda_{lim}$                                          | 78,62 | -        | Esbeltez límite.                   |  |
| h <sub>₽</sub>                                           | 2648  | mm       | Longitud del elemento considerado. |  |
| β                                                        | 1     | -        | Coeficiente de pandeo              |  |

## Tabla 68. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                                                 |
|---------------|-------|----------|------------------------------------------------------------|
| $\lambda_{z}$ | 0     | ı        | Esbeltez reducida. Eje Z. Pandeo impedido por las correas. |



Tabla 69. Cálculos previos a la comprobación de resistencia de la jácena para el Caso 1 con rociadores.

| Símbolo              | Valor     | Unidades | Definición                                                                |
|----------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                    | 3910,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub>   | 366600,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub>   | 73920,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| $f_{y,d}$            | 261,90    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| f <sub>y,0</sub>     | 275       | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$        | 0,38      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{z}$        | 0,00      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| a <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                   | 0,62      | =        |                                                                           |
| Φ                    | 0,45      | -        |                                                                           |
| X <sub>Y</sub>       | 0,91      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                   | 1,00      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>       | 1,01      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>       | 0,98      | -        | Coeficiente de interacción.                                               |
| N <sub>pl,Rd,y</sub> | 929,61    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $N_{pl,Rd,z}$        | 384,93    | kN       | Resistencia de cálculo a pandeo en una barra comprimida                   |
| $M_{pl,Rd,y}$        | 96,01     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| $M_{pl,Rd,z}$        | 19,36     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>    | 33,01     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$           | 13,74     | kN⋅m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$           | 0,00      | kN∙m     | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |
| a <sub>z</sub>       | 0,60      | -        |                                                                           |



Tabla 70. Comprobación de resistencia para la jácena del Caso 1 sin rociadores.

| Símbolo        | Valor | Unidades |
|----------------|-------|----------|
| η              | 0,18  | -        |
| η <sub>y</sub> | 0,18  | -        |
| $\eta_z$       | 0,17  | -        |



Caso 2

#### **PILAR**

Tabla 71. Características del perfil IPE 270.

| rabia / 1. Caracterbricas del permi il 2 2/ 0. |             |     |                                         |  |  |  |
|------------------------------------------------|-------------|-----|-----------------------------------------|--|--|--|
|                                                | IPE 270     |     |                                         |  |  |  |
| А                                              | 4590,00     | mm² |                                         |  |  |  |
| W <sub>el,y</sub>                              | 428900,00   | mm³ |                                         |  |  |  |
| W <sub>el,z</sub>                              | 62200,00    | mm³ | Propiedades del perfil                  |  |  |  |
| i <sub>y</sub>                                 | 112,30      | mm  | Tropiedades del perili                  |  |  |  |
| i <sub>z</sub>                                 | 30,20       | mm  |                                         |  |  |  |
| l <sub>y</sub>                                 | 57900000,00 | mm⁴ |                                         |  |  |  |
| Т                                              | 282         | °C  | Temperatura del acero obtenida en OZone |  |  |  |

Tabla 72. Coeficientes reductores de las características mecánicas para el pilar del Caso 2.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPE 300 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $k_{y,\Theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1       |
| k <sub>E, \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tittt{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tittit{\text{\texi}\tittt{\text{\text{\text{\texi}\text{\texit{\texi}\tilit}}\\tittt{\text{\ti}\text{\text{\text{\text{\text{\texi}\text{\texit{\text{\t</sub> | 0,818   |
| $k_{\lambda,\Theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,099   |

## Tabla 73. Características mecánicas reales.

| f_y,0 | 275    | Мра |
|-------|--------|-----|
| E_a,0 | 171780 | MPa |

### Tabla 74. Cálculo de la esbeltez reducida para el Eje y.

|                 | rabia 74. Calcolo de la esperiez readcida para el Eje y. |          |                          |  |  |  |
|-----------------|----------------------------------------------------------|----------|--------------------------|--|--|--|
| Símbolo         | Valor                                                    | Unidades | Definición               |  |  |  |
| $\lambda_{y}$   | 0,60                                                     | -        | Esbeltez reducida. Eje Y |  |  |  |
| $\lambda_{lim}$ | 80,46                                                    | -        | Esbeltez límite.         |  |  |  |
| h <sub>₽</sub>  | 7000                                                     | mm       | Longitud del pilar       |  |  |  |
| β               | 0,7                                                      | -        | Coeficiente de pandeo    |  |  |  |

## Tabla 75. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                |
|---------------|-------|----------|---------------------------|
| $\lambda_{z}$ | 2,22  | -        | Esbeltez reducida. Eje Z. |
| β             | 0,7   | -        | Coeficiente de pandeo     |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS



Tabla 76. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 con rociadores.

| Símbolo              | Valor     | Unidades | Definición                                                                |
|----------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                    | 4590,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub>   | 428900,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub>   | 62200,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| $f_{y,d}$            | 261,90    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| f <sub>y,0</sub>     | 275       | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$        | 0,60      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{z}$        | 2,22      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| α <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                   | 0,77      | -        |                                                                           |
| Φ <sub>ζ</sub>       | 3,45      | -        |                                                                           |
| X <sub>Y</sub>       | 0,79      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                   | 0,16      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>       | 1,01      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>       | 1,94      | -        | Coeficiente de interacción.                                               |
| $N_{pl,Rd,y}$        | 946,91    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $N_{pl,Rd,z}$        | 73,88     | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $M_{pl,Rd,y}$        | 112,33    | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| M <sub>pl,Rd,z</sub> | 16,29     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>    | 34,30     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$           | 24,74     | kN∙m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$           | 0,01      | kN ·m    | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |
| a <sub>z</sub>       | 0,60      | -        |                                                                           |



Tabla 77. Comprobación de resistencia para el pilar del Caso 1 con rociadores.

| Símbolo    | Valor | Unidades |
|------------|-------|----------|
| η          | 0,26  | -        |
| $\eta_{y}$ | 0,26  | -        |
| $\eta_z$   | 0,60  | -        |



Tabla 78. Características del perfil IPE 160.

| rabia 70. Caracrensiicas dei penii ii E 100. |            |     |                                         |  |  |  |  |
|----------------------------------------------|------------|-----|-----------------------------------------|--|--|--|--|
|                                              | IPE 160    |     |                                         |  |  |  |  |
| А                                            | 2100,00    | mm² |                                         |  |  |  |  |
| W <sub>el,y</sub>                            | 123900,00  | mm³ |                                         |  |  |  |  |
| W <sub>el,z</sub>                            | 26100,00   | mm³ | Propiedades del perfil                  |  |  |  |  |
| i <sub>y</sub>                               | 65,80      | mm  | Tropiedades del periil                  |  |  |  |  |
| i <sub>z</sub>                               | 18,40      | mm  |                                         |  |  |  |  |
| l <sub>y</sub>                               | 8693000,00 | mm⁴ |                                         |  |  |  |  |
| Т                                            | 310        | °C  | Temperatura del acero obtenida en OZone |  |  |  |  |

Tabla 79. Coeficientes reductores de las características mecánicas para la jácena del Caso 2.

|                        | IPE 160 |
|------------------------|---------|
| $k_{y,\theta}$         | 1       |
| K <sub>E, \theta</sub> | 0,790   |
| $k_{\lambda,\Theta}$   | 1,118   |

#### Tabla 80. Características mecánicas reales.

| f_y,0 | 275    | Мра |
|-------|--------|-----|
| E_a,0 | 165900 | MPa |

## Tabla 81. Cálculo de la esbeltez reducida para el Eje y.

| Símbolo         | Valor | Unidades | Definición                         |  |
|-----------------|-------|----------|------------------------------------|--|
| $\lambda_{y}$   | 0,57  | -        | Esbeltez reducida. Eje Y           |  |
| $\lambda_{lim}$ | 79,07 | -        | Esbeltez límite.                   |  |
| h <sub>P</sub>  | 2648  | mm       | Longitud del elemento considerado. |  |
| β               | 1     | -        | Coeficiente de pandeo              |  |

# Tabla 82. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                                                 |
|---------------|-------|----------|------------------------------------------------------------|
| $\lambda_{z}$ | 0     | -        | Esbeltez reducida. Eje Z. Pandeo impedido por las correas. |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS Página 45/65



Tabla 83. Cálculos previos a la comprobación de resistencia de la jácena para el Caso 1 con rociadores.

| Símbolo              | Valor     | Unidades | Definición                                                                |  |
|----------------------|-----------|----------|---------------------------------------------------------------------------|--|
| Α                    | 2100,00   | mm²      | Área de la sección bruta                                                  |  |
| W <sub>el, y</sub>   | 123900,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |  |
| W <sub>el, z</sub>   | 26100,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |  |
| f <sub>y,d</sub>     | 261,90    | MPa      | Resistencia de cálculo del acero                                          |  |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |  |
| f <sub>y,0</sub>     | 275       | MPa      | Límite elástico modificado                                                |  |
| $\lambda_{y}$        | 0,57      | -        | Esbeltez reducida. Eje Y                                                  |  |
| $\lambda_{Z}$        | 0,00      | -        | Esbeltez reducida. Eje Z                                                  |  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| ۵ <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| Фү                   | 0,75      | -        |                                                                           |  |
| Φ                    | 0,45      | -        |                                                                           |  |
| X <sub>Y</sub>       | 0,80      | -        | Coeficiente de reducción por pandeo. Eje Y                                |  |
| Xz                   | 1,00      | -        | Coeficiente de reducción por pandeo. Eje Z                                |  |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| k <sub>y</sub>       | 1,03      | -        | Coeficiente de interacción.                                               |  |
| k <sub>z</sub>       | 0,95      | -        | Coeficiente de interacción.                                               |  |
| $N_{pl,Rd,y}$        | 441,97    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| $N_{pl,Rd,z}$        | 130,10    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| $M_{pl,Rd,y}$        | 32,45     | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |  |
| M <sub>pl,Rd,z</sub> | 6,84      | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |  |
| N <sub>c,Ed</sub>    | 33,01     | kN       | Axil de compresión solicitante de cálculo pésimo                          |  |
| $M_{y,Ed}$           | 13,74     | kN ·m    | Momento flectores de cálculo pésimos. Eje Y                               |  |
| $M_{z,Ed}$           | 0,00      | kN ·m    | Momento flectores de cálculo pésimos. Eje Z                               |  |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |  |
| O <sub>z</sub>       | 0,60      | -        | n detores dependientes de la clase de la sección.                         |  |



Tabla 84. Comprobación de resistencia para la jácena del Caso 1 sin rociadores.

| Símbolo  | Valor | Unidades |
|----------|-------|----------|
| η        | 0,50  | -        |
| η,       | 0,51  | -        |
| $\eta_z$ | 0,51  | -        |

A continuación se muestran los cálculos anteriores realizados para redimensionar los perfiles y tratar de reducirlos. Las bases teóricas son las mismas por lo que se presentan directamente los resultados de los cálculos anteriormente explicados:



Caso 1 sin rociadores (Redimensionado)

## **PILAR**

Tabla 85. Características del perfil IPE 270.

|                   | IPE 270     |                           |                                         |  |  |
|-------------------|-------------|---------------------------|-----------------------------------------|--|--|
| А                 | 4590,00     | mm²                       |                                         |  |  |
| W <sub>el,y</sub> | 428900,00   | mm³                       |                                         |  |  |
| W <sub>el,z</sub> | 62200,00    | mm³                       | Propiedades del perfil                  |  |  |
| i <sub>y</sub>    | 112,30      | Propiedades del perfil mm |                                         |  |  |
| i <sub>z</sub>    | 30,20       | mm                        |                                         |  |  |
| l <sub>y</sub>    | 57900000,00 | mm⁴                       |                                         |  |  |
| Т                 | 409         | °C                        | Temperatura del acero obtenida en OZone |  |  |

Tabla 86. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 sin rociadores redimensionado.

|                       | IPE 300 |
|-----------------------|---------|
| $k_{y,\Theta}$        | 0,9802  |
| k <sub>E,\theta</sub> | 0,691   |
| $k_{\lambda,\Theta}$  | 1,186   |

#### Tabla 87. Características mecánicas reales.

| f_y,0 | 269,555 | Мра |
|-------|---------|-----|
| E_a,0 | 145110  | MPa |

## Tabla 88. Cálculo de la esbeltez reducida para el Eje y.

|                 | rabia do. Calcolo de la espellez readelad para el Eje y. |          |                          |  |  |  |
|-----------------|----------------------------------------------------------|----------|--------------------------|--|--|--|
| Símbolo         | Valor                                                    | Unidades | Definición               |  |  |  |
| $\lambda_{y}$   | 0,69                                                     | -        | Esbeltez reducida. Eje Y |  |  |  |
| $\lambda_{lim}$ | 74,69                                                    | -        | Esbeltez límite.         |  |  |  |
| h <sub>P</sub>  | 7000                                                     | mm       | Longitud del pilar.      |  |  |  |
| β               | 0,7                                                      | -        | Coeficiente de pandeo    |  |  |  |

# Tabla 89. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                |
|---------------|-------|----------|---------------------------|
| $\lambda_{z}$ | 2,58  | -        | Esbeltez reducida. Eje Z. |
| β             | 0,7   | -        | Coeficiente de pandeo     |



Tabla 90. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 sin rociadores redimensionado.

| Símbolo              | Valor     | Unidades | Definición                                                                |  |
|----------------------|-----------|----------|---------------------------------------------------------------------------|--|
| Α                    | 4590,00   | mm²      | Área de la sección bruta                                                  |  |
| W <sub>el, y</sub>   | 428900,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |  |
| W <sub>el, z</sub>   | 62200,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |  |
| $f_{y,d}$            | 256,72    | MPa      | Resistencia de cálculo del acero                                          |  |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |  |
| f <sub>y,0</sub>     | 269,555   | MPa      | Límite elástico modificado                                                |  |
| $\lambda_{y}$        | 0,69      | -        | Esbeltez reducida. Eje Y                                                  |  |
| $\lambda_{z}$        | 2,58      | -        | Esbeltez reducida. Eje Z                                                  |  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| az                   | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| Фү                   | 0,86      | -        |                                                                           |  |
| Φ                    | 4,40      | -        |                                                                           |  |
| X <sub>Y</sub>       | 0,73      | -        | Coeficiente de reducción por pandeo. Eje Y                                |  |
| Xz                   | 0,13      | -        | Coeficiente de reducción por pandeo. Eje Z                                |  |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| k <sub>y</sub>       | 1,02      | -        | Coeficiente de interacción.                                               |  |
| k <sub>z</sub>       | 2,44      | -        | Coeficiente de interacción.                                               |  |
| $N_{pl,Rd,y}$        | 859,36    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| $N_{pl,Rd,z}$        | 56,55     | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| M <sub>pl.Rd,y</sub> | 110,11    | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |  |
| M <sub>pl,Rd,z</sub> | 15,97     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |  |
| N <sub>c,Ed</sub>    | 34,30     | kN       | Axil de compresión solicitante de cálculo pésimo                          |  |
| $M_{y,Ed}$           | 24,74     | kN·m     | Momento flectores de cálculo pésimos. Eje Y                               |  |
| $M_{z,Ed}$           | 0,01      | kN·m     | Momento flectores de cálculo pésimos. Eje Z                               |  |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |  |
| a <sub>z</sub>       | 0,60      | -        | actores dependientes de la clase de la sección.                           |  |



Tabla 91. Comprobación de resistencia para el pilar del Caso 1 sin rociadores redimensionado.

| Símbolo  | Valor | Unidades |
|----------|-------|----------|
| η        | 0,27  | -        |
| η,       | 0,27  | -        |
| $\eta_z$ | 0,75  | -        |



Tabla 92. Características del perfil IPE 200.

| Table 72. Garderenbreds der permi i 2 200. |             |     |                                         |  |  |
|--------------------------------------------|-------------|-----|-----------------------------------------|--|--|
|                                            | IPE 200     |     |                                         |  |  |
| Α                                          | 2850,00     | mm² |                                         |  |  |
| W <sub>el,y</sub>                          | 194300,00   | mm³ |                                         |  |  |
| W <sub>el,z</sub>                          | 28470,00    | mm³ | Propiedades del perfil                  |  |  |
| i <sub>y</sub>                             | 82,60       | mm  | Tropiedades dei periii                  |  |  |
| i <sub>z</sub>                             | 22,40       | mm  |                                         |  |  |
| l <sub>y</sub>                             | 19430000,00 | mm⁴ |                                         |  |  |
| Т                                          | 416         | °C  | Temperatura del acero obtenida en OZone |  |  |

Tabla 93. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 sin rociadores redimensionada.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPE 200 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $k_{y,\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,9648  |
| k <sub>E, \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tittt{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\titt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tittt{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\tet{\text{\text{\text{\text{\text{\text{\texi}\text{\texit{\t</sub> | 0,684   |
| $k_{\lambda,\Theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,182   |

## Tabla 94. Características mecánicas reales.

| f_y,0 | 265,32 | Мра |  |
|-------|--------|-----|--|
| E_a,0 | 143640 | MPa |  |

## Tabla 95. Cálculo de la esbeltez reducida para el Eje y.

| Símbolo         | Valor | Unidades | Definición                         |
|-----------------|-------|----------|------------------------------------|
| $\lambda_{y}$   | 0,51  | -        | Esbeltez reducida. Eje Y           |
| $\lambda_{lim}$ | 74,90 | -        | Esbeltez límite.                   |
| h <sub>P</sub>  | 2648  | mm       | Longitud del elemento considerado. |
| β               | 1     | -        | Coeficiente de pandeo              |

## Tabla 96. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                                                 |
|---------------|-------|----------|------------------------------------------------------------|
| $\lambda_{z}$ | 0     | ı        | Esbeltez reducida. Eje Z. Pandeo impedido por las correas. |



Tabla 97. Cálculos previos a la comprobación de resistencia de la jácena del Caso 1 sin rociadores redimensionada.

| Símbolo              | Valor     | Unidades | Definición                                                                |
|----------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                    | 2850,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub>   | 194300,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub>   | 28470,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| $f_{y,d}$            | 252,69    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| $f_{y,0}$            | 265,32    | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$        | 0,51      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{z}$        | 0,00      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| ۵ <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                   | 0,70      | -        |                                                                           |
| Φ                    | 0,45      | -        |                                                                           |
| X <sub>Y</sub>       | 0,84      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                   | 1,00      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>       | 1,02      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>       | 0,97      | -        | Coeficiente de interacción.                                               |
| $N_{pl,Rd,y}$        | 604,71    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $N_{pl,Rd,z}$        | 204,02    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $M_{pl,Rd,y}$        | 49,10     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| M <sub>pl.Rd,z</sub> | 7,19      | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>    | 33,01     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$           | 13,74     | kN∙m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$           | 0,00      | kN ·m    | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>       | 0,60      | _        | Factores dependientes de la clase de la sección.                          |
| O <sub>z</sub>       | 0,60      | -        | actores dependientes de la clase de la sección.                           |



Tabla 98. Comprobación de resistencia para la jácena del Caso 1 sin rociadores redimensionada.

| Símbolo        | Valor | Unidades |
|----------------|-------|----------|
| η              | 0,33  | -        |
| η <sub>y</sub> | 0,34  | -        |
| $\eta_z$       | 0,33  | -        |



Caso 1 con rociadores (Redimensionado)

## **PILAR**

Tabla 99. Características del perfil.

| Table 77. Caracteristicas del permi. |                      |     |                                         |  |  |
|--------------------------------------|----------------------|-----|-----------------------------------------|--|--|
|                                      | IPE 270              |     |                                         |  |  |
| А                                    | 4590,00              | mm² |                                         |  |  |
| W <sub>el,y</sub>                    | 428900,00            | mm³ |                                         |  |  |
| W <sub>el,z</sub>                    | 62200,00             | mm³ | Propiedades del perfil                  |  |  |
| i <sub>y</sub>                       | 112,30               | mm  | Tropiedades del perili                  |  |  |
| i <sub>z</sub>                       | i <sub>z</sub> 30,20 |     |                                         |  |  |
| l <sub>y</sub>                       | 57900000,00          | mm⁴ |                                         |  |  |
| Т                                    | 317                  | °C  | Temperatura del acero obtenida en OZone |  |  |

Tabla 100. Coeficientes reductores de las características mecánicas para el pilar del Caso 1 con rociadores redimensionado.

|                      | IPE 300 |
|----------------------|---------|
| $k_{y,\Theta}$       | 1       |
| k <sub>E,θ</sub>     | 0,783   |
| $k_{\lambda,\Theta}$ | 1,124   |

Tabla 101. Características mecánicas reales.

| f_y,0 | 275    | Мра |  |
|-------|--------|-----|--|
| E_a,0 | 164430 | MPa |  |

#### Tabla 102. Cálculo de la esbeltez reducida para el Eie v.

|                 | Table 102. Calcula de la concenta para en 150 y. |          |                          |
|-----------------|--------------------------------------------------|----------|--------------------------|
| Símbolo         | Valor                                            | Unidades | Definición               |
| $\lambda_{y}$   | 0,62                                             | -        | Esbeltez reducida. Eje Y |
| $\lambda_{lim}$ | 78,72                                            | -        | Esbeltez límite.         |
| h <sub>P</sub>  | 7000                                             | mm       | Longitud del pilar.      |
| β               | 0,7                                              | -        | Coeficiente de pandeo    |

#### Tabla 103. Cálculo de la esbeltez reducida para el Eje Z.

|               |       |          | · - · - · - · - · · - · - · · · · · · · · · · · · · · · · · · · · |
|---------------|-------|----------|-------------------------------------------------------------------|
| Símbolo       | Valor | Unidades | Definición                                                        |
| $\lambda_{z}$ | 2,32  | -        | Esbeltez reducida. Eje Z.                                         |
| β             | 0,7   | -        | Coeficiente de pandeo                                             |

ANEXO 1: CÁLCULOS JUSTIFICATIVOS



Tabla 104. Cálculos previos a la comprobación de resistencia del pilar para el Caso 1 con rociadores redimensionado.

| Símbolo            | Valor     | Unidades | Definición Definición                                                     |
|--------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                  | 4590,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub> | 428900,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub> | 62200,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| $f_{y,d}$          | 261,90    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>   | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| $f_{y,0}$          | 275       | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$      | 0,62      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{\rm Z}$  | 2,32      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>     | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| a <sub>z</sub>     | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                 | 0,80      | -        |                                                                           |
| Φ                  | 3,70      | -        |                                                                           |
| X <sub>Y</sub>     | 0,77      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                 | 0,15      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>   | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>   | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>     | 1,02      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>     | 2,06      | -        | Coeficiente de interacción.                                               |
| $N_{pl,Rd,y}$      | 927,79    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $N_{pl,Rd,z}$      | 68,38     | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $M_{pl,Rd,y}$      | 112,33    | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| $M_{pl,Rd,z}$      | 16,29     | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>  | 34,30     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$         | 24,74     | kN·m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$         | 0,01      | kN·m     | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>     | 0,60      | -        | Egetoros dependientes de la elece de la sección                           |
| a <sub>z</sub>     | 0,60      | -        | Factores dependientes de la clase de la sección.                          |



# Tabla 105. Comprobación de resistencia para el pilar del Caso 1 con rociadores redimensionado.

| Símbolo        | Valor | Unidades |
|----------------|-------|----------|
| η              | 0,26  | -        |
| η <sub>y</sub> | 0,26  | -        |
| η <sub>z</sub> | 0,64  | -        |



Tabla 106. Características del perfil IPE 200.

|                   | i sales y con con control con con point in 2 200. |     |                                         |  |  |  |
|-------------------|---------------------------------------------------|-----|-----------------------------------------|--|--|--|
|                   | IPE 200                                           |     |                                         |  |  |  |
| Α                 | 2850,00                                           | mm² |                                         |  |  |  |
| W <sub>el,y</sub> | 194300,00                                         | mm³ |                                         |  |  |  |
| W <sub>el,z</sub> | 28470,00                                          | mm³ | Propiedades del perfil                  |  |  |  |
| i <sub>y</sub>    | 82,60                                             | mm  | Propiedades del perfil                  |  |  |  |
| i <sub>z</sub>    | 22,40                                             | mm  |                                         |  |  |  |
| l <sub>y</sub>    | 19430000,00                                       | mm⁴ |                                         |  |  |  |
| Т                 | 325                                               | °C  | Temperatura del acero obtenida en OZone |  |  |  |

Tabla 107. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 con rociadores redimensionada.

|                      | IPE 200 |
|----------------------|---------|
| k <sub>y,θ</sub>     | 1       |
| k <sub>E,Θ</sub>     | 0,775   |
| $k_{\lambda,\Theta}$ | 1,130   |

# Tabla 108. Características mecánicas reales.

| f_y,0 | 275    | Мра |
|-------|--------|-----|
| E_a,0 | 162750 | MPa |

## Tabla 109. Cálculo de la esbeltez reducida para el Eje y.

| Símbolo         | Valor | Unidades | Definición                         |
|-----------------|-------|----------|------------------------------------|
| $\lambda_{y}$   | 0,46  | -        | Esbeltez reducida. Eje Y           |
| $\lambda_{lim}$ | 78,31 | -        | Esbeltez límite.                   |
| h <sub>P</sub>  | 2648  | mm       | Longitud del elemento considerado. |
| β               | 1     | -        | Coeficiente de pandeo              |

## Tabla 110. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                                                 |
|---------------|-------|----------|------------------------------------------------------------|
| $\lambda_{z}$ | 0     | ı        | Esbeltez reducida. Eje Z. Pandeo impedido por las correas. |



Tabla 111. Cálculos previos a la comprobación de resistencia de la jácena del Caso 1 con rociadores redimensionada.

| Símbolo              | Valor     | Unidades | Definición                                                                |
|----------------------|-----------|----------|---------------------------------------------------------------------------|
| Α                    | 2850,00   | mm²      | Área de la sección bruta                                                  |
| W <sub>el, y</sub>   | 194300,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |
| W <sub>el, z</sub>   | 28470,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |
| $f_{y,d}$            | 261,90    | MPa      | Resistencia de cálculo del acero                                          |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |
| f <sub>y,0</sub>     | 275       | MPa      | Límite elástico modificado                                                |
| $\lambda_{y}$        | 0,46      | -        | Esbeltez reducida. Eje Y                                                  |
| $\lambda_{z}$        | 0,00      | -        | Esbeltez reducida. Eje Z                                                  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| a <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |
| Фү                   | 0,67      | -        |                                                                           |
| Φ                    | 0,45      | -        |                                                                           |
| X <sub>Y</sub>       | 0,86      | -        | Coeficiente de reducción por pandeo. Eje Y                                |
| Xz                   | 1,00      | -        | Coeficiente de reducción por pandeo. Eje Z                                |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |
| k <sub>y</sub>       | 1,01      | -        | Coeficiente de interacción.                                               |
| k <sub>z</sub>       | 0,97      | -        | Coeficiente de interacción.                                               |
| $N_{pl,Rd,y}$        | 644,68    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $N_{pl,Rd,z}$        | 204,02    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |
| $M_{pl,Rd,y}$        | 50,89     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |
| M <sub>pl,Rd,z</sub> | 7,46      | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |
| N <sub>c,Ed</sub>    | 33,01     | kN       | Axil de compresión solicitante de cálculo pésimo                          |
| $M_{y,Ed}$           | 13,74     | kN∙m     | Momento flectores de cálculo pésimos. Eje Y                               |
| $M_{z,Ed}$           | 0,00      | kN ·m    | Momento flectores de cálculo pésimos. Eje Z                               |
| a <sub>y</sub>       | 0,60      | _        | Factores dependientes de la clase de la sección.                          |
| O <sub>z</sub>       | 0,60      | -        | actores dependientes de la clase de la sección.                           |



Tabla 112. Comprobación de resistencia para la jácena del Caso 1 con rociadores redimensionada.

| Símbolo        | Valor | Unidades |
|----------------|-------|----------|
| η              | 0,32  | -        |
| η,             | 0,32  | -        |
| η <sub>z</sub> | 0,33  | -        |



# Caso 2 (Redimensionado)

## **PILAR**

Tabla 113. Características del perfil IPE 240.

| rabia 176. Carderensheds der perim 1 2 246. |             |     |                                         |  |  |  |
|---------------------------------------------|-------------|-----|-----------------------------------------|--|--|--|
|                                             | IPE 240     |     |                                         |  |  |  |
| Α                                           | 3910,00     | mm² |                                         |  |  |  |
| W <sub>el,y</sub>                           | 366600,00   | mm³ | Propiedados del perfil                  |  |  |  |
| W <sub>el,z</sub>                           | 73920,00    | mm³ |                                         |  |  |  |
| i <sub>y</sub>                              | 99,70       | mm  | - Propiedades del perfil                |  |  |  |
| i <sub>z</sub>                              | 26,90       | mm  |                                         |  |  |  |
| l <sub>y</sub>                              | 38920000,00 | mm⁴ |                                         |  |  |  |
| T                                           | 285         | °C  | Temperatura del acero obtenida en OZone |  |  |  |

Tabla 114. Coeficientes reductores de las características mecánicas para el pilar del Caso 2 redimensionado.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPE 300 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| K <sub>y,θ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1       |
| k <sub>E, \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\tittt{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tittit{\text{\texi}\tittt{\text{\text{\text{\texi}\text{\texit{\texi}\tilitt{\text{\texit{\tet{\text{\texi}\text{\text{\text{\texi}\text{\texit{\text{\t</sub> | 0,815   |
| $k_{\lambda,\Theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,101   |

## Tabla 115. Características mecánicas reales.

| f_y,0 | 275             | Мра |
|-------|-----------------|-----|
| E_a,0 | 1 <i>7</i> 1150 | MPa |

## Tabla 116. Cálculo de la esbeltez reducida para el Eje y.

|                 | The second second second part of the second |          |                          |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|--|--|--|
| Símbolo         | Valor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unidades | Definición               |  |  |  |
| $\lambda_{y}$   | 0,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -        | Esbeltez reducida. Eje Y |  |  |  |
| $\lambda_{lim}$ | 80,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | Esbeltez límite.         |  |  |  |
| h <sub>₽</sub>  | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm       | Longitud del pilar.      |  |  |  |
| β               | 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -        | Coeficiente de pandeo    |  |  |  |

## Tabla 117. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                |  |
|---------------|-------|----------|---------------------------|--|
| $\lambda_{z}$ | 2,50  | -        | Esbeltez reducida. Eje Z. |  |
| β             | 0,7   | -        | Coeficiente de pandeo     |  |



Tabla 118. Cálculos previos a la comprobación de resistencia del pilar para el Caso 2 redimensionado.

| Símbolo              | Valor     | Unidades | Definición                                                                |  |
|----------------------|-----------|----------|---------------------------------------------------------------------------|--|
| Α                    | 3910,00   | mm²      | Área de la sección bruta                                                  |  |
| W <sub>el. y</sub>   | 366600,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |  |
| W <sub>el, z</sub>   | 73920,00  | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |  |
| $f_{y,d}$            | 261,90    | MPa      | Resistencia de cálculo del acero                                          |  |
| Y <sub>M,0</sub>     | 1,05      | -        | Coeficiente parcial de seguridad del material                             |  |
| f <sub>y,0</sub>     | 275       | MPa      | Límite elástico modificado                                                |  |
| $\lambda_{y}$        | 0,67      | -        | Esbeltez reducida. Eje Y                                                  |  |
| $\lambda_{z}$        | 2,50      | -        | Esbeltez reducida. Eje Z                                                  |  |
| a <sub>Y</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| a <sub>z</sub>       | 0,49      | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |
| Фү                   | 0,84      | -        |                                                                           |  |
| Φ                    | 4,18      | -        |                                                                           |  |
| X <sub>Y</sub>       | 0,74      | -        | Coeficiente de reducción por pandeo. Eje Y                                |  |
| Xz                   | 0,13      | -        | Coeficiente de reducción por pandeo. Eje Z                                |  |
| C <sub>m,y</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| C <sub>m,z</sub>     | 1,00      | -        | Coeficiente de momento flector uniforme equivalente                       |  |
| k <sub>y</sub>       | 1,02      | -        | Coeficiente de interacción.                                               |  |
| k <sub>z</sub>       | 2,54      | -        | Coeficiente de interacción.                                               |  |
| $N_{pl,Rd,y}$        | 758,66    | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| $N_{pl,Rd,z}$        | 51,09     | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |
| $M_{pl,Rd,y}$        | 96,01     | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |  |
| M <sub>pl,Rd,z</sub> | 19,36     | kN∙m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |  |
| N <sub>c,Ed</sub>    | 34,30     | kN       | Axil de compresión solicitante de cálculo pésimo                          |  |
| $M_{y,Ed}$           | 24,74     | kN·m     | Momento flectores de cálculo pésimos. Eje Y                               |  |
| $M_{z,Ed}$           | 0,01      | kN∙m     | Momento flectores de cálculo pésimos. Eje Z                               |  |
| a <sub>y</sub>       | 0,60      | -        | Factores dependientes de la clase de la sección.                          |  |
| a <sub>z</sub>       | 0,60      | -        | actores dependientes de la clase de la sección.                           |  |



Tabla 119. Comprobación de resistencia para el pilar del Caso 2 redimensionado.

| Símbolo    | Valor | Unidades |
|------------|-------|----------|
| η          | 0,30  | -        |
| $\eta_{y}$ | 0,31  | -        |
| $\eta_z$   | 0,83  | -        |



Tabla 120. Características del perfil IPE 140.

| radia 120. Caracronencas del permi 2 110. |            |     |                                         |  |  |  |  |
|-------------------------------------------|------------|-----|-----------------------------------------|--|--|--|--|
|                                           | IPE 140    |     |                                         |  |  |  |  |
| А                                         | 1640,00    | mm² |                                         |  |  |  |  |
| W <sub>el,y</sub>                         | 88340,00   | mm³ |                                         |  |  |  |  |
| W <sub>el,z</sub>                         | 19250,00   | mm³ | Propiedades del perfil                  |  |  |  |  |
| i <sub>y</sub>                            | 57,40      | mm  | - Fropiedades dei periii                |  |  |  |  |
| i <sub>z</sub>                            | 16,50      | mm  |                                         |  |  |  |  |
| l <sub>y</sub>                            | 5412000,00 | mm⁴ |                                         |  |  |  |  |
| Т                                         | 317        | °C  | Temperatura del acero obtenida en OZone |  |  |  |  |

Tabla 121. Coeficientes reductores de las características mecánicas para la jácena del Caso 1 con rociadores redimensionada.

|                      | IPE 200 |
|----------------------|---------|
| k <sub>y,θ</sub>     | 1       |
| k <sub>E,Θ</sub>     | 0,783   |
| $k_{\lambda,\Theta}$ | 1,1236  |

## Tabla 122. Características mecánicas reales.

| f_y,0 | 275    | Мра |  |
|-------|--------|-----|--|
| E_a,0 | 164430 | MPa |  |

#### Tabla 123. Cálculo de la esbeltez reducida para el Eje y.

|                 | Take 120. Calculate as in successful para of 250 /. |          |                                    |  |  |  |  |
|-----------------|-----------------------------------------------------|----------|------------------------------------|--|--|--|--|
| Símbolo         | Valor                                               | Unidades | Definición                         |  |  |  |  |
| $\lambda_{y}$   | 0,66                                                | -        | Esbeltez reducida. Eje Y           |  |  |  |  |
| $\lambda_{lim}$ | 78,72                                               | -        | Esbeltez límite.                   |  |  |  |  |
| h <sub>P</sub>  | 2648                                                | mm       | Longitud del elemento considerado. |  |  |  |  |
| β               | 1                                                   | -        | Coeficiente de pandeo              |  |  |  |  |

# Tabla 124. Cálculo de la esbeltez reducida para el Eje Z.

| Símbolo       | Valor | Unidades | Definición                                                 |  |
|---------------|-------|----------|------------------------------------------------------------|--|
| $\lambda_{z}$ | 0     | -        | Esbeltez reducida. Eje Z. Pandeo impedido por las correas. |  |



Tabla 125. Cálculos previos a la comprobación de resistencia de la jácena del Caso 1 con rociadores redimensionada.

| Símbolo              | Valor    | Unidades | Definición                                                                |  |  |
|----------------------|----------|----------|---------------------------------------------------------------------------|--|--|
| Α                    | 1640,00  | mm²      | Área de la sección bruta                                                  |  |  |
| W <sub>el, y</sub>   | 88340,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Y                    |  |  |
| W <sub>el, z</sub>   | 19250,00 | mm³      | Módulo resistente solicitante de cálculo pésimo. Eje Z                    |  |  |
| $f_{y,d}$            | 261,90   | MPa      | Resistencia de cálculo del acero                                          |  |  |
| Y <sub>M,0</sub>     | 1,05     | -        | Coeficiente parcial de seguridad del material                             |  |  |
| $f_{y,0}$            | 275      | MPa      | Límite elástico modificado                                                |  |  |
| $\lambda_{y}$        | 0,66     | -        | Esbeltez reducida. Eje Y                                                  |  |  |
| $\lambda_{z}$        | 0,00     | -        | Esbeltez reducida. Eje Z                                                  |  |  |
| a <sub>Y</sub>       | 0,49     | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |  |
| a <sub>z</sub>       | 0,49     | -        | Coeficiente de imperfección elástica: Curva de pandeo c                   |  |  |
| Фү                   | 0,83     | -        |                                                                           |  |  |
| Φ                    | 0,45     | -        |                                                                           |  |  |
| X <sub>Y</sub>       | 0,75     | -        | Coeficiente de reducción por pandeo. Eje Y                                |  |  |
| Xz                   | 1,00     | -        | Coeficiente de reducción por pandeo. Eje Z                                |  |  |
| C <sub>m,y</sub>     | 1,00     | -        | Coeficiente de momento flector uniforme equivalente                       |  |  |
| C <sub>m,z</sub>     | 1,00     | -        | Coeficiente de momento flector uniforme equivalente                       |  |  |
| k <sub>y</sub>       | 1,05     | -        | Coeficiente de interacción.                                               |  |  |
| k <sub>z</sub>       | 0,93     | -        | Coeficiente de interacción.                                               |  |  |
| N <sub>pl,Rd,y</sub> | 322,23   | kN       | Resistencia de cálculo a pandeo en una barra<br>comprimida                |  |  |
| N <sub>pl,Rd,z</sub> | 92,76    | kN       | Resistencia de cálculo a pandeo en una barra comprimida                   |  |  |
| $M_{pl,Rd,y}$        | 23,14    | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Y |  |  |
| $M_{pl,Rd,z}$        | 5,04     | kN·m     | Resistencia a flexión de la sección bruta en condiciones plásticas. Eje Z |  |  |
| N <sub>c,Ed</sub>    | 33,01    | kN       | Axil de compresión solicitante de cálculo pésimo                          |  |  |
| $M_{y,Ed}$           | 13,74    | kN∙m     | Momento flectores de cálculo pésimos. Eje Y                               |  |  |
| $M_{z,Ed}$           | 0,00     | kN •m    | Momento flectores de cálculo pésimos. Eje Z                               |  |  |
| a <sub>y</sub>       | 0,60     | -        | Factores dependientes de la clase de la sección.                          |  |  |
| a <sub>z</sub>       | 0,60     | -        | raciores dependientes de la clase de la sección.                          |  |  |



Tabla 126. Comprobación de resistencia para la jácena del Caso 1 con rociadores redimensionada.

| Símbolo        | Valor | Unidades |
|----------------|-------|----------|
| η              | 0,70  | -        |
| n <sub>y</sub> | 0,72  | -        |
| η <sub>z</sub> | 0,73  | -        |

ANEXO 2:

LISTADOS

ANEXO 2: LISTADOS Página 2/68



# Índice del anexo 2

| Índice del anexo 2 | 3  |
|--------------------|----|
| 1. Objeto          | 5  |
| Listados Caso 1    | 7  |
| Listados Caso 2    | 37 |

**ANEXO 2: LISTADOS** 

ANEXO 2: LISTADOS Página 4/68



# 1. Objeto

El presente apartado pretende agrupar los listados de cálculo de las dos estructuras dimensionadas. Se incluye para justificar los cálculos realizados en el diseño de la estructura portante. Dichos listados se han obtenido mediante el programa de cálculo de estructuras CYPE 3D.

ANEXO 2: LISTADOS Página 5/68

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

ANEXO 2: LISTADOS Página 6/68



# Listados Caso 1

ANEXO 2: LISTADOS Página 7/68

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

ANEXO 2: LISTADOS Página 8/68

## ÍNDICE

| 1 | GEOMETRÍ A                              | 2    |
|---|-----------------------------------------|------|
|   | 1.1 Barras                              | . 2  |
|   | 1.1.1 Materiales utilizados             | . 2  |
| 2 | RESULTADOS                              | . 2  |
|   | 2.1 Nudos                               | 2    |
|   | 2.1.1 Desplazamientos                   | .2   |
|   | 2.2 Barras                              | . 3  |
|   | 2.2.1 Esfuerzos                         | . 3  |
|   | 2.2.2 Flechas                           |      |
|   | 2.2.3 Comprobaciones E.L.U. (Resumido)  | . 13 |
| 3 | UNI ONES                                | . 15 |
|   | 3.1 Comprobaciones en placas de anclaje | . 15 |
|   | 3.2 Memoria de cálculo                  |      |
|   | 3.2.1 Tipo 1                            | 17   |
|   | 3.2.2 Tipo 2                            |      |
|   |                                         |      |

TFM\_nave\_industrial\_R15\_sin\_revestimiento

### 1.- GEOMETRÍA

#### 1.1.- Barras

#### 1.1.1.- Materiales utilizados

| Materiales utilizados |             |           |       |          |                |                 |         |  |  |  |
|-----------------------|-------------|-----------|-------|----------|----------------|-----------------|---------|--|--|--|
| Mater                 | ial         | E         |       | G        | f <sub>y</sub> | α. <sub>t</sub> | γ       |  |  |  |
| Tipo                  | Designación | (MPa)     | V     | (MPa)    | (MPa)          | (m/m°C)         | (kN/m³) |  |  |  |
| Acero laminado        | S275        | 210000.00 | 0.300 | 81000.00 | 275.00         | 0.000012        | 77.01   |  |  |  |

#### Notación:

- E: Módulo de elasticidad n: Módulo de Poisson
- G: Módulo de cortadura
- f<sub>y</sub>: Límite elástico
- a.t: Coeficiente de dilatación
- g: Peso específico

| Nudo       | )S              |                                                              |                   |                 |                 |              |              |           |
|------------|-----------------|--------------------------------------------------------------|-------------------|-----------------|-----------------|--------------|--------------|-----------|
| 1 Desp     | lazamientos     |                                                              |                   |                 |                 |              |              |           |
| Referencia |                 |                                                              |                   |                 |                 |              |              |           |
|            |                 | ntos de los nudos en ejes gl                                 | ohalos            |                 |                 |              |              |           |
|            |                 | nudos en ejes globales.                                      | obaics.           |                 |                 |              |              |           |
| ,          |                 | idaes en ejes giebaies.                                      |                   |                 |                 |              |              |           |
| 2.1.1.1 1  | Envolventes     |                                                              |                   |                 |                 |              |              |           |
|            |                 | Envolvente de los despla                                     | zamiento          | s en nud        | os              |              |              |           |
|            |                 | Combinación                                                  |                   | Desplaz         | amientos        | en ejes g    | lobales      |           |
| Referen    | Tipo            | Descripción                                                  | Dx<br>(mm)        | Dy<br>(mm)      | Dz<br>(mm)      | Gx<br>(mRad) | Gy<br>(mRad) | G:<br>(mR |
| N21        | Desplazamientos | Valor mínimo de la envolvente                                | 0.000             | 0.000           | 0.000           | 0.000        | 0.000        | 0.0       |
|            |                 | Valor máximo de la envolvente                                | 0.000             | 0.000           | 0.000           | 0.000        | 0.000        | 0.0       |
| N22        | Desplazamientos | Valor mínimo de la envolvente                                | -2.970            | -20.686         | -0.470          | -            | -            | -         |
|            |                 | Valor máximo de la envolvente                                | 2.956             | 19.489          | -0.025          | -            | -            | -         |
| N25        | Desplazamientos | Valor mínimo de la envolvente                                | -10.334           | -19.646         | -15.539         | -            | -            | -         |
|            |                 | Valor máximo de la envolvente                                | 10.214            | 19.646          | -0.256          | -            | -            | -         |
| N36        | Desplazamientos | Valor mínimo de la envolvente                                | 0.000             | 0.000           | 0.000           | 0.000        | 0.000        | 0.0       |
|            |                 | Valor máximo de la envolvente                                | 0.000             | 0.000           | 0.000           | 0.000        | 0.000        | 0.0       |
| N37        | Desplazamientos | Valor mínimo de la envolvente                                | -3.032            | -1.987          | -0.146          | -            | -            | -         |
|            |                 | Valor máximo de la envolvente                                | 2.948             | 1.850           | 0.059           | -            | -            | -         |
| N40        | Desplazamientos | Valor mínimo de la envolvente                                | -10.750           | -1.942          | -0.810          | -            | -            | -         |
|            |                 | Valor máximo de la envolvente                                | 10.098            | 1.942           | 0.290           | -            | -            | -         |
| N71        | Desplazamientos | Valor mínimo de la envolvente                                | -10.178           | -19.788         | -15.930         | -            | -            | -         |
|            |                 | Valor máximo de la envolvente                                | 10.197            | 19.788          | -0.264          | -            | -            | -         |
| N128       | Desplazamientos | Valor mínimo de la envolvente                                | -10.682           | -2.012          | -0.242          | -            | -            | -         |
| NACO       |                 | Valor máximo de la envolvente                                | 9.833             | 1.909           | -0.004          | -            | -            | -         |
| N180       | Desplazamientos | Valor mínimo de la envolvente                                | 0.000             | 0.000           | 0.000           | 0.000        | 0.000        | 0.00      |
| N100       | Desplazamientos | Valor máximo de la envolvente                                | 0.000             | 0.000           | 0.000           | 0.000        | 0.000        | 0.00      |
| N192       | Despiazamientos | Valor mínimo de la envolvente                                | -11.958<br>16.763 | -1.586<br>1.518 | -0.133<br>0.042 | -            | -            | -         |
| N194       | Desplazamientos | Valor máximo de la envolvente Valor mínimo de la envolvente  | -11.958           | -1.518          | -0.133          | -            | -            | -         |
| 10194      | Despiazamientos | Valor minimo de la envolvente  Valor máximo de la envolvente | 16.763            | 1.586           | 0.042           | -            | _            | _         |
| 1          | 1               | valor maximo de la envolvente                                | 10.703            | 1.500           | 0.042           | _            | _            | 1 -       |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### 2.2.- Barras

#### 2.2.1.- Esfuerzos

#### Referencias:

N: Esfuerzo axil (kN)

Vy: Esfuerzo cortante según el eje local Y de la barra. (kN)

Vz: Esfuerzo cortante según el eje local Z de la barra. (kN)

Mt: Momento torsor (kN·m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). (kN·m)

Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). (kN·m)

#### 2.2.1.1.- Envolventes

|          | Envolventes de los esfuerzos en barras |                   |         |            |           |           |            |         |         |         |         |  |
|----------|----------------------------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|--|
|          |                                        | 1                 | FUVOIV  | entes de i | os estuer | zos en ba | rras       |         |         |         |         |  |
| Barra    | Tipo de combinación                    | Esfuerzo          |         |            |           | Posici    | ones en la | barra   |         |         |         |  |
| Dalla    | Tipo de combinación                    | Estuerzo          | 0.000 m | 0.732 m    | 1.465 m   | 2.197 m   | 2.930 m    | 3.662 m | 4.395 m | 5.127 m | 5.860 m |  |
| N42/N192 | Acero laminado                         | N <sub>min</sub>  | -46.801 | -45.310    | -43.819   | -42.328   | -40.837    | -39.346 | -37.855 | -36.364 | -34.874 |  |
|          |                                        | N <sub>máx</sub>  | 20.828  | 21.712     | 22.595    | 23.479    | 24.362     | 25.246  | 26.129  | 27.013  | 27.896  |  |
|          |                                        | Vy <sub>min</sub> | -10.113 | -8.564     | -7.015    | -5.466    | -3.917     | -2.367  | -0.818  | -1.301  | -3.899  |  |
|          |                                        | Vy <sub>máx</sub> | 16.891  | 14.293     | 11.695    | 9.096     | 6.498      | 3.900   | 1.301   | 0.733   | 2.283   |  |
|          |                                        | Vz <sub>min</sub> | -11.144 | -8.636     | -6.128    | -3.620    | -2.082     | -1.363  | -1.078  | -2.597  | -4.116  |  |
|          |                                        | Vz <sub>máx</sub> | 8.368   | 6.850      | 5.331     | 3.812     | 2.293      | 1.431   | 3.939   | 6.447   | 8.955   |  |
|          |                                        | Mt <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |  |
|          |                                        | Mt <sub>máx</sub> | 0.01    | 0.01       | 0.01      | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |  |
|          |                                        | My <sub>min</sub> | -11.25  | -7.04      | -4.21     | -1.90     | -2.36      | -3.26   | -3.11   | -2.01   | -4.87   |  |
|          |                                        | My <sub>máx</sub> | 13.64   | 8.07       | 3.62      | 4.99      | 6.71       | 6.60    | 4.66    | 2.11    | 1.79    |  |
|          |                                        | Mz <sub>min</sub> | -14.88  | -8.04      | -2.33     | -4.17     | -9.89      | -13.70  | -15.60  | -15.60  | -13.70  |  |
|          |                                        | Mz <sub>máx</sub> | 24.39   | 12.96      | 3.45      | 2.24      | 5.68       | 7.98    | 9.14    | 9.18    | 8.07    |  |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Borro    | Tipo de combinación | Esfuerzo          |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Estuerzo          | 0.135 m | 0.321 m    | 0.507 m   | 0.692 m   | 0.878 m    | 1.064 m | 1.250 m | 1.435 m | 1.621 m |
| N192/N37 | Acero laminado      | N <sub>min</sub>  | -26.904 | -26.526    | -26.148   | -25.770   | -25.392    | -25.014 | -24.636 | -24.258 | -23.880 |
|          |                     | N <sub>máx</sub>  | 28.029  | 28.253     | 28.477    | 28.701    | 28.925     | 29.149  | 29.373  | 29.597  | 29.821  |
|          |                     | $Vy_{min}$        | -4.667  | -5.326     | -5.985    | -6.644    | -7.303     | -7.962  | -8.620  | -9.279  | -9.938  |
|          |                     | Vy <sub>máx</sub> | 2.744   | 3.137      | 3.529     | 3.922     | 4.315      | 4.708   | 5.101   | 5.494   | 5.887   |
|          |                     | $Vz_{min}$        | -6.208  | -6.026     | -5.843    | -5.661    | -5.479     | -5.296  | -5.114  | -4.932  | -4.750  |
|          |                     | Vz <sub>máx</sub> | 5.762   | 5.377      | 4.992     | 4.607     | 4.221      | 3.836   | 3.451   | 3.066   | 3.650   |
|          |                     | Mt <sub>min</sub> | -0.11   | -0.11      | -0.11     | -0.11     | -0.11      | -0.11   | -0.11   | -0.11   | -0.11   |
|          |                     | Mt <sub>máx</sub> | 0.07    | 0.07       | 0.07      | 0.07      | 0.07       | 0.07    | 0.07    | 0.07    | 0.07    |
|          |                     | My <sub>min</sub> | -5.05   | -4.58      | -4.30     | -4.33     | -4.48      | -4.74   | -5.13   | -5.63   | -6.25   |
|          |                     | My <sub>máx</sub> | 1.55    | 1.01       | 0.67      | 1.73      | 2.75       | 3.76    | 4.72    | 5.66    | 6.55    |
|          |                     | $Mz_{min}$        | -12.57  | -11.64     | -10.59    | -9.42     | -8.12      | -6.70   | -5.16   | -3.50   | -1.72   |
|          |                     | Mz <sub>máx</sub> | 7.41    | 6.86       | 6.24      | 5.55      | 4.79       | 3.95    | 3.04    | 2.05    | 1.00    |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Danna    | Time de combinación | Fafa.vaa          |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.184 m | 0.595 m    | 0.800 m   | 1.005 m   | 1.416 m    | 1.826 m | 2.032 m | 2.442 m | 2.648 m |
| N37/N122 | Acero laminado      | N <sub>min</sub>  | -14.901 | -14.754    | -14.681   | -14.608   | -14.463    | -14.318 | -14.246 | -14.103 | -14.031 |
|          |                     | N <sub>máx</sub>  | 6.038   | 6.107      | 6.141     | 6.175     | 6.243      | 6.310   | 6.344   | 6.411   | 6.444   |
|          |                     | $Vy_{min}$        | -0.255  | -0.188     | -0.156    | -0.126    | -0.160     | -0.274  | -0.326  | -0.421  | -0.464  |
|          |                     | Vy <sub>máx</sub> | 0.260   | 0.188      | 0.239     | 0.293     | 0.503      | 0.691   | 0.776   | 0.931   | 1.000   |
|          |                     | $Vz_{min}$        | -7.303  | -6.094     | -5.491    | -4.890    | -3.689     | -2.492  | -1.895  | -1.384  | -1.177  |
|          |                     | Vz <sub>máx</sub> | 6.442   | 5.429      | 4.922     | 4.413     | 3.396      | 2.375   | 1.865   | 0.841   | 0.885   |
|          |                     | Mt <sub>min</sub> | -0.12   | -0.12      | -0.12     | -0.12     | -0.12      | -0.12   | -0.12   | -0.12   | -0.12   |
|          |                     | Mt <sub>máx</sub> | 0.17    | 0.17       | 0.17      | 0.17      | 0.17       | 0.17    | 0.17    | 0.17    | 0.17    |
|          |                     | $My_{min}$        | -6.63   | -5.11      | -4.43     | -3.82     | -3.16      | -2.65   | -2.48   | -2.46   | -2.58   |
|          |                     | My <sub>máx</sub> | 5.77    | 3.34       | 2.85      | 3.12      | 3.98       | 4.55    | 4.70    | 4.72    | 4.59    |
|          |                     | $Mz_{min}$        | -0.10   | -0.11      | -0.15     | -0.21     | -0.34      | -0.56   | -0.71   | -1.06   | -1.26   |
|          |                     | Mz <sub>máx</sub> | 0.04    | 0.10       | 0.13      | 0.16      | 0.20       | 0.22    | 0.22    | 0.30    | 0.39    |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|           |                     |                   | Envolve | Envolventes de los esfuerzos en barras |         |         |            |         |         |         |         |
|-----------|---------------------|-------------------|---------|----------------------------------------|---------|---------|------------|---------|---------|---------|---------|
| Dame      | Time de combinación | F-6               |         |                                        |         | Posici  | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.378 m                                | 0.756 m | 0.946 m | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N122/N124 | Acero laminado      | N <sub>min</sub>  | -14.857 | -14.726                                | -14.595 | -14.530 | -14.401    | -14.272 | -14.164 | -14.114 | -14.015 |
|           |                     | N <sub>máx</sub>  | 7.679   | 7.740                                  | 7.801   | 7.831   | 7.891      | 7.951   | 8.010   | 8.039   | 8.098   |
|           |                     | Vy <sub>min</sub> | -1.502  | -1.393                                 | -1.302  | -1.263  | -1.198     | -1.152  | -1.128  | -1.120  | -1.114  |
|           |                     | Vy <sub>máx</sub> | 1.002   | 0.932                                  | 0.873   | 0.847   | 0.804      | 0.772   | 0.750   | 0.743   | 0.738   |
|           |                     | $Vz_{min}$        | -0.960  | -0.918                                 | -1.373  | -1.848  | -2.799     | -3.751  | -4.706  | -5.184  | -6.142  |
|           |                     | Vz <sub>máx</sub> | 1.089   | 1.900                                  | 2.706   | 3.109   | 4.048      | 5.128   | 6.206   | 6.743   | 7.816   |
|           |                     | Mt <sub>min</sub> | -0.05   | -0.05                                  | -0.05   | -0.05   | -0.05      | -0.05   | -0.05   | -0.05   | -0.05   |
|           |                     | Mt <sub>máx</sub> | 0.05    | 0.05                                   | 0.05    | 0.05    | 0.05       | 0.05    | 0.05    | 0.05    | 0.05    |
|           |                     | My <sub>min</sub> | -2.62   | -2.64                                  | -2.30   | -1.99   | -1.12      | -0.62   | -2.76   | -3.99   | -6.74   |
|           |                     | My <sub>máx</sub> | 4.66    | 4.10                                   | 3.23    | 2.68    | 1.36       | 0.64    | 1.72    | 2.66    | 4.80    |
|           |                     | $Mz_{min}$        | -1.40   | -0.85                                  | -0.34   | -0.13   | -0.42      | -0.71   | -1.00   | -1.14   | -1.42   |
|           |                     | Mz <sub>máx</sub> | 0.77    | 0.40                                   | 0.07    | 0.13    | 0.38       | 0.82    | 1.24    | 1.45    | 1.88    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Бана      | Tipo de combinación | Estuerzo          | 0.000 m | 0.378 m     | 0.567 m    | 0.946 m   | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N124/N126 | Acero laminado      | N <sub>min</sub>  | -14.898 | -14.762     | -14.695    | -14.560   | -14.426    | -14.298 | -14.193 | -14.141 | -14.038 |
|           |                     | N <sub>máx</sub>  | 16.986  | 17.050      | 17.082     | 17.145    | 17.207     | 17.270  | 17.331  | 17.362  | 17.424  |
|           |                     | Vy <sub>min</sub> | -0.220  | -0.366      | -0.435     | -0.564    | -0.683     | -0.791  | -0.888  | -0.933  | -1.014  |
|           |                     | Vy <sub>máx</sub> | 0.962   | 1.127       | 1.205      | 1.352     | 1.486      | 1.608   | 1.718   | 1.768   | 1.860   |
|           |                     | $Vz_{min}$        | -7.713  | -6.598      | -6.042     | -4.931    | -3.825     | -2.721  | -1.621  | -1.072  | -0.594  |
|           |                     | Vz <sub>máx</sub> | 5.390   | 4.535       | 4.112      | 3.266     | 2.418      | 1.568   | 1.241   | 1.106   | 0.874   |
|           |                     | Mt <sub>min</sub> | -0.06   | -0.06       | -0.06      | -0.06     | -0.06      | -0.06   | -0.06   | -0.06   | -0.06   |
|           |                     | Mt <sub>máx</sub> | 0.06    | 0.06        | 0.06       | 0.06      | 0.06       | 0.06    | 0.06    | 0.06    | 0.06    |
|           |                     | My <sub>min</sub> | -6.84   | -4.13       | -2.94      | -0.86     | -0.57      | -1.19   | -1.71   | -1.93   | -2.30   |
|           |                     | My <sub>máx</sub> | 4.95    | 3.08        | 2.26       | 0.86      | 0.80       | 2.03    | 2.85    | 3.11    | 3.31    |
|           |                     | $Mz_{min}$        | -0.95   | -0.84       | -0.77      | -0.58     | -0.34      | -0.47   | -1.09   | -1.42   | -2.10   |
|           |                     | Mz <sub>máx</sub> | 1.82    | 1.43        | 1.21       | 0.72      | 0.31       | 0.30    | 0.29    | 0.46    | 0.83    |

|           |                     |                   | Envolve | entes de la | os esfuerz | zos en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|------------|------------|---------|---------|---------|---------|
| Barra     | Tino do combinación | Fofuerzo          |         |             |            | Posici     | ones en la | barra   |         |         |         |
| Dalla     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.378 m     | 0.756 m    | 0.946 m    | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N126/N128 | Acero laminado      | N <sub>min</sub>  | -20.927 | -20.866     | -20.806    | -20.776    | -20.716    | -20.656 | -20.597 | -20.567 | -20.508 |
|           |                     | N <sub>máx</sub>  | 23.330  | 23.419      | 23.508     | 23.552     | 23.641     | 23.728  | 23.816  | 23.860  | 23.987  |
|           |                     | Vy <sub>min</sub> | -1.607  | -1.527      | -1.460     | -1.431     | -1.382     | -1.346  | -1.321  | -1.314  | -1.307  |
|           |                     | Vy <sub>máx</sub> | 1.056   | 0.986       | 0.927      | 0.901      | 0.858      | 0.826   | 0.804   | 0.797   | 0.792   |
|           |                     | $Vz_{min}$        | -0.406  | -1.263      | -2.122     | -2.552     | -3.414     | -4.277  | -5.143  | -5.576  | -6.444  |
|           |                     | Vz <sub>máx</sub> | 1.127   | 1.504       | 2.593      | 3.136      | 4.220      | 5.301   | 6.378   | 6.915   | 7.988   |
|           |                     | Mt <sub>min</sub> | -0.07   | -0.07       | -0.07      | -0.07      | -0.07      | -0.07   | -0.07   | -0.07   | -0.07   |
|           |                     | Mt <sub>máx</sub> | 0.06    | 0.06        | 0.06       | 0.06       | 0.06       | 0.06    | 0.06    | 0.06    | 0.06    |
|           |                     | My <sub>min</sub> | -2.30   | -2.62       | -2.83      | -2.90      | -3.02      | -3.42   | -4.00   | -5.01   | -7.83   |
|           |                     | My <sub>máx</sub> | 3.33    | 2.97        | 2.19       | 1.65       | 1.25       | 2.53    | 4.31    | 5.33    | 7.60    |
|           |                     | Mz <sub>min</sub> | -2.11   | -1.51       | -0.95      | -0.68      | -0.27      | -0.59   | -0.89   | -1.05   | -1.35   |
|           |                     | Mz <sub>máx</sub> | 0.98    | 0.60        | 0.24       | 0.20       | 0.27       | 0.51    | 1.01    | 1.25    | 1.74    |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Danna    | Time de combinación | Fafa.vaa          |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.000 m | 0.378 m    | 0.756 m   | 0.946 m   | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N128/N40 | Acero laminado      | N <sub>min</sub>  | -17.727 | -17.664    | -17.601   | -17.570   | -17.509    | -17.448 | -17.388 | -17.358 | -17.299 |
|          |                     | N <sub>máx</sub>  | 26.687  | 26.822     | 26.956    | 27.022    | 27.155     | 27.285  | 27.415  | 27.479  | 27.607  |
|          |                     | $Vy_{min}$        | -0.056  | -0.130     | -0.249    | -0.300    | -0.387     | -0.451  | -0.494  | -0.508  | -0.519  |
|          |                     | Vy <sub>máx</sub> | 0.098   | 0.257      | 0.391     | 0.449     | 0.547      | 0.620   | 0.669   | 0.684   | 0.697   |
|          |                     | $Vz_{min}$        | -9.055  | -7.942     | -6.835    | -6.284    | -6.022     | -5.931  | -5.846  | -5.806  | -5.755  |
|          |                     | Vz <sub>máx</sub> | 9.208   | 8.364      | 7.515     | 7.090     | 6.236      | 5.378   | 4.517   | 4.085   | 3.217   |
|          |                     | Mt <sub>min</sub> | -0.03   | -0.03      | -0.03     | -0.03     | -0.03      | -0.03   | -0.03   | -0.03   | -0.03   |
|          |                     | Mt <sub>máx</sub> | 0.03    | 0.03       | 0.03      | 0.03      | 0.03       | 0.03    | 0.03    | 0.03    | 0.03    |
|          |                     | $My_{min}$        | -7.92   | -4.70      | -1.91     | -0.67     | -2.40      | -4.60   | -6.47   | -7.29   | -8.67   |
|          |                     | My <sub>máx</sub> | 7.82    | 4.50       | 1.50      | 0.87      | 2.94       | 5.20    | 7.43    | 8.53    | 10.71   |
|          |                     | $Mz_{min}$        | -1.03   | -1.01      | -0.94     | -0.89     | -0.76      | -0.60   | -0.42   | -0.33   | -0.14   |
|          |                     | Mz <sub>máx</sub> | 1.47    | 1.40       | 1.27      | 1.19      | 1.01       | 0.78    | 0.54    | 0.42    | 0.18    |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|         |                     |                   | Envolv  | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |           | Posici     | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.000 m | 0.858 m  | 1.716 m   | 2.574 m    | 3.433 m    | 4.291 m | 5.149 m | 6.007 m | 6.865 m |
| N21/N47 | Acero laminado      | N <sub>min</sub>  | -89.895 | -88.339  | -86.782   | -85.226    | -83.670    | -82.113 | -80.557 | -79.000 | -77.444 |
|         |                     | $N_{\text{máx}}$  | 13.058  | 13.981   | 14.903    | 15.825     | 16.748     | 17.670  | 18.593  | 19.515  | 20.437  |
|         |                     | $Vy_{min}$        | -0.077  | -0.077   | -0.077    | -0.077     | -0.077     | -0.077  | -0.077  | -0.077  | -0.077  |
|         |                     | $Vy_{max}$        | 0.077   | 0.077    | 0.077     | 0.077      | 0.077      | 0.077   | 0.077   | 0.077   | 0.077   |
|         |                     | $Vz_{min}$        | -24.632 | -22.948  | -21.264   | -19.579    | -17.895    | -16.211 | -14.526 | -12.842 | -11.158 |
|         |                     | $Vz_{max}$        | 30.238  | 26.680   | 23.121    | 19.562     | 16.004     | 12.445  | 8.887   | 11.589  | 15.541  |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -70.36  | -49.95   | -30.98    | -13.46     | -7.18      | -18.16  | -26.84  | -32.94  | -35.98  |
|         |                     | $My_{\text{máx}}$ | 73.88   | 49.46    | 28.09     | 9.78       | 10.28      | 17.26   | 30.45   | 42.19   | 52.49   |
|         |                     | $Mz_{min}$        | -0.38   | -0.31    | -0.25     | -0.18      | -0.12      | -0.05   | -0.02   | -0.09   | -0.15   |
|         |                     | $Mz_{max}$        | 0.38    | 0.31     | 0.25      | 0.18       | 0.11       | 0.05    | 0.02    | 0.08    | 0.15    |

|         |                     | Envolv            | entes de | los esfuer | zos en ba | arras      |         |         |         |
|---------|---------------------|-------------------|----------|------------|-----------|------------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |          |            | Posici    | ones en la | barra   |         |         |
| Dalla   | ripo de combinación | ESIUEIZO          | 0.135 m  | 0.136 m    | 0.321 m   | 0.506 m    | 0.692 m | 0.876 m | 0.877 m |
| N47/N22 | Acero laminado      | $N_{min}$         | -45.631  | -45.629    | -45.294   | -44.958    | -44.622 | -44.287 | -44.285 |
|         |                     | N <sub>máx</sub>  | 11.820   | 11.821     | 12.019    | 12.218     | 12.418  | 12.616  | 12.617  |
|         |                     | $Vy_{min}$        | -0.156   | -0.156     | -0.156    | -0.156     | -0.156  | -0.156  | -0.156  |
|         |                     | Vy <sub>máx</sub> | 0.153    | 0.153      | 0.153     | 0.153      | 0.153   | 0.153   | 0.153   |
|         |                     | $Vz_{min}$        | -79.727  | -79.727    | -79.727   | -79.727    | -79.727 | -79.727 | -79.727 |
|         |                     | $Vz_{max}$        | 37.085   | 37.087     | 37.449    | 37.813     | 38.177  | 38.539  | 38.541  |
|         |                     | Mt <sub>min</sub> | -0.01    | -0.01      | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   |
|         |                     | Mt <sub>máx</sub> | 0.01     | 0.01       | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    |
|         |                     | $My_{min}$        | -40.24   | -40.17     | -27.18    | -14.22     | -12.37  | -12.20  | -12.20  |
|         |                     | $My_{max}$        | 26.55    | 26.51      | 19.88     | 16.85      | 18.40   | 30.34   | 30.42   |
|         |                     | $Mz_{min}$        | -0.14    | -0.14      | -0.11     | -0.08      | -0.05   | -0.02   | -0.02   |
|         |                     | Mz <sub>máx</sub> | 0.14     | 0.13       | 0.11      | 0.08       | 0.05    | 0.02    | 0.02    |

|         |                     |                   | Envolv  | entes de | los esfuer | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Danna   | Tino do combinación | Fafrianza         |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Esfuerzo          | 0.153 m | 0.560 m  | 0.763 m    | 0.967 m   | 1.373 m    | 1.780 m | 1.983 m | 2.390 m | 2.594 m |
| N22/N91 | Acero laminado      | N <sub>min</sub>  | -86.340 | -85.982  | -85.803    | -85.624   | -85.266    | -84.908 | -84.729 | -84.371 | -84.192 |
|         |                     | $N_{\text{máx}}$  | 40.668  | 40.743   | 40.781     | 40.819    | 40.895     | 40.970  | 41.008  | 41.084  | 41.121  |
|         |                     | $Vy_{min}$        | -0.123  | -0.123   | -0.123     | -0.123    | -0.123     | -0.123  | -0.123  | -0.123  | -0.123  |
|         |                     | $Vy_{max}$        | 0.123   | 0.123    | 0.123      | 0.123     | 0.123      | 0.123   | 0.123   | 0.123   | 0.123   |
|         |                     | $Vz_{min}$        | -26.789 | -24.927  | -23.996    | -23.065   | -21.204    | -19.342 | -18.411 | -16.549 | -15.618 |
|         |                     | $Vz_{max}$        | 10.771  | 8.906    | 7.974      | 7.041     | 5.588      | 4.713   | 4.275   | 3.401   | 2.963   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -36.07  | -25.55   | -20.58     | -15.79    | -6.79      | -1.15   | -1.73   | -2.74   | -3.38   |
|         |                     | $My_{max}$        | 10.31   | 7.09     | 5.64       | 4.28      | 1.83       | 1.46    | 5.30    | 12.41   | 15.68   |
|         |                     | $Mz_{min}$        | -0.03   | -0.08    | -0.10      | -0.13     | -0.18      | -0.23   | -0.25   | -0.30   | -0.33   |
|         |                     | $Mz_{max}$        | 0.03    | 0.08     | 0.10       | 0.13      | 0.18       | 0.23    | 0.25    | 0.30    | 0.33    |

|         |                     |                   | Env      | olventes d | e los esfue | erzos en ba | arras       |          |          |          |          |
|---------|---------------------|-------------------|----------|------------|-------------|-------------|-------------|----------|----------|----------|----------|
| Barra   | Tipo de combinación | Esfuerzo          |          |            |             | Posic       | iones en la | barra    |          |          |          |
| Бана    | Tipo de combinación | ESIUEIZO          | 0.054 m  | 0.266 m    | 0.691 m     | 1.115 m     | 1.327 m     | 1.752 m  | 1.964 m  | 2.388 m  | 2.601 m  |
| N91/N95 | Acero laminado      | N <sub>min</sub>  | -153.910 | -153.723   | -153.349    | -152.976    | -152.789    | -152.415 | -152.229 | -151.855 | -151.668 |
|         |                     | N <sub>máx</sub>  | 43.818   | 43.857     | 43.936      | 44.015      | 44.055      | 44.133   | 44.173   | 44.252   | 44.291   |
|         |                     | Vy <sub>min</sub> | -0.096   | -0.096     | -0.096      | -0.096      | -0.096      | -0.096   | -0.096   | -0.096   | -0.096   |
|         |                     | Vy <sub>máx</sub> | 0.097    | 0.097      | 0.097       | 0.097       | 0.097       | 0.097    | 0.097    | 0.097    | 0.097    |
|         |                     | $Vz_{min}$        | -0.724   | -0.210     | -0.139      | -1.052      | -1.508      | -2.421   | -2.878   | -3.791   | -4.247   |
|         |                     | VZ <sub>máx</sub> | 1.976    | 2.103      | 3.389       | 5.331       | 6.303       | 8.245    | 9.217    | 11.159   | 12.131   |
|         |                     | Mt <sub>min</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | My <sub>min</sub> | -2.69    | -2.91      | -3.04       | -2.79       | -2.52       | -1.68    | -1.12    | -0.17    | -2.51    |
|         |                     | My <sub>máx</sub> | 13.54    | 13.33      | 12.31       | 10.46       | 9.22        | 6.13     | 4.28     | 0.34     | 1.15     |
|         |                     | Mz <sub>min</sub> | -0.19    | -0.17      | -0.13       | -0.09       | -0.07       | -0.03    | -0.02    | -0.04    | -0.06    |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|       |                     |                   | Env                                                                                     | olventes d             | e los esfue | erzos en ba | arras |      |      |      |         |  |
|-------|---------------------|-------------------|-----------------------------------------------------------------------------------------|------------------------|-------------|-------------|-------|------|------|------|---------|--|
| D     | Tino do combinación | F-6               |                                                                                         | Posiciones en la barra |             |             |       |      |      |      |         |  |
| Barra | Tipo de combinación | Estuerzo          | 0.054 m   0.266 m   0.691 m   1.115 m   1.327 m   1.752 m   1.964 m   2.388 m   2.601 m |                        |             |             |       |      |      |      | 2.601 m |  |
|       |                     | Mz <sub>máx</sub> | 0.19                                                                                    | 0.17                   | 0.13        | 0.09        | 0.07  | 0.03 | 0.02 | 0.03 | 0.05    |  |

|         |                     |                   | Env      | olventes d | e los esfue | erzos en ba | arras       |          |          |          |          |
|---------|---------------------|-------------------|----------|------------|-------------|-------------|-------------|----------|----------|----------|----------|
| Dorro   | Tina de combinación | Cofuerzo          |          |            |             | Posic       | iones en la | barra    |          |          |          |
| Barra   | Tipo de combinación | Esfuerzo          | 0.047 m  | 0.473 m    | 0.686 m     | 1.113 m     | 1.326 m     | 1.752 m  | 1.965 m  | 2.392 m  | 2.605 m  |
| N95/N99 | Acero laminado      | N <sub>min</sub>  | -162.434 | -162.059   | -161.871    | -161.496    | -161.308    | -160.933 | -160.745 | -160.370 | -160.182 |
|         |                     | N <sub>máx</sub>  | 41.490   | 41.569     | 41.609      | 41.688      | 41.727      | 41.807   | 41.846   | 41.926   | 41.965   |
|         |                     | Vy <sub>min</sub> | -0.095   | -0.095     | -0.095      | -0.095      | -0.095      | -0.095   | -0.095   | -0.095   | -0.095   |
|         |                     | Vy <sub>máx</sub> | 0.095    | 0.095      | 0.095       | 0.095       | 0.095       | 0.095    | 0.095    | 0.095    | 0.095    |
|         |                     | $Vz_{min}$        | -6.632   | -4.681     | -3.705      | -1.754      | -0.778      | -0.720   | -1.178   | -2.093   | -2.551   |
|         |                     | Vz <sub>máx</sub> | 2.961    | 2.044      | 1.586       | 0.669       | 0.210       | 1.173    | 2.148    | 4.099    | 5.075    |
|         |                     | Mt <sub>min</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | My <sub>min</sub> | -2.65    | -0.24      | -0.32       | -0.71       | -0.78       | -0.67    | -0.49    | 0.08     | -0.66    |
|         |                     | My <sub>máx</sub> | 1.28     | 0.22       | 0.66        | 1.82        | 2.09        | 2.01     | 1.65     | 0.41     | 0.76     |
|         |                     | $Mz_{min}$        | -0.04    | -0.08      | -0.10       | -0.15       | -0.17       | -0.21    | -0.23    | -0.27    | -0.29    |
|         |                     | Mz <sub>máx</sub> | 0.04     | 0.08       | 0.10        | 0.14        | 0.16        | 0.20     | 0.22     | 0.26     | 0.28     |

|          |                     |                   | Envo     | lventes de | e los esfue | rzos en ba | rras        |          |          |          |          |
|----------|---------------------|-------------------|----------|------------|-------------|------------|-------------|----------|----------|----------|----------|
| Dorro    | Tina de combinación | Cofuerzo          |          |            |             | Posic      | iones en la | barra    |          |          |          |
| Barra    | Tipo de combinación | Esfuerzo          | 0.043 m  | 0.257 m    | 0.684 m     | 1.111 m    | 1.325 m     | 1.752 m  | 1.966 m  | 2.393 m  | 2.607 m  |
| N99/N103 | Acero laminado      | $N_{min}$         | -155.468 | -155.280   | -154.904    | -154.528   | -154.340    | -153.964 | -153.775 | -153.399 | -153.211 |
|          |                     | $N_{\text{máx}}$  | 41.472   | 41.512     | 41.591      | 41.671     | 41.710      | 41.790   | 41.829   | 41.909   | 41.949   |
|          |                     | $Vy_{min}$        | -0.034   | -0.034     | -0.034      | -0.034     | -0.034      | -0.034   | -0.034   | -0.034   | -0.034   |
|          |                     | $Vy_{\text{máx}}$ | 0.030    | 0.030      | 0.030       | 0.030      | 0.030       | 0.030    | 0.030    | 0.030    | 0.030    |
|          |                     | $Vz_{min}$        | -6.101   | -5.123     | -3.167      | -1.211     | -0.319      | -0.793   | -1.252   | -2.171   | -2.631   |
|          |                     | $Vz_{\text{máx}}$ | 2.885    | 2.426      | 1.508       | 0.590      | 0.202       | 1.722    | 2.700    | 4.656    | 5.634    |
|          |                     | $Mt_{min}$        | 0.00     | 0.00       | 0.00        | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | $Mt_{\text{máx}}$ | 0.00     | 0.00       | 0.00        | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | $My_{min}$        | -0.59    | 0.09       | -0.59       | -1.04      | -1.11       | -0.97    | -0.75    | -0.24    | -0.82    |
|          |                     | $My_{max}$        | 0.87     | 0.64       | 2.41        | 3.35       | 3.50        | 3.18     | 2.71     | 1.20     | 1.08     |
|          |                     | $Mz_{min}$        | -0.06    | -0.06      | -0.05       | -0.04      | -0.03       | -0.03    | -0.04    | -0.05    | -0.06    |
|          |                     | Mz <sub>máx</sub> | 0.07     | 0.07       | 0.05        | 0.04       | 0.04        | 0.03     | 0.04     | 0.05     | 0.06     |

|          |                     |                   | Envo     | lventes de | los esfue | rzos en ba | rras        |          |          |          |          |
|----------|---------------------|-------------------|----------|------------|-----------|------------|-------------|----------|----------|----------|----------|
| Dorro    | Tino do combinación | Cofuerzo          |          |            |           | Posic      | iones en la | barra    |          |          |          |
| Barra    | Tipo de combinación | Esfuerzo          | 0.041 m  | 0.255 m    | 0.682 m   | 0.896 m    | 1.324 m     | 1.751 m  | 1.965 m  | 2.393 m  | 2.607 m  |
| N103/N25 | Acero laminado      | N <sub>min</sub>  | -141.827 | -141.639   | -141.262  | -141.074   | -140.698    | -140.321 | -140.133 | -139.757 | -139.569 |
|          |                     | $N_{\text{máx}}$  | 39.006   | 39.046     | 39.125    | 39.165     | 39.245      | 39.324   | 39.364   | 39.443   | 39.483   |
|          |                     | $Vy_{min}$        | -0.034   | -0.034     | -0.034    | -0.034     | -0.034      | -0.034   | -0.034   | -0.034   | -0.034   |
|          |                     | $Vy_{max}$        | 0.028    | 0.028      | 0.028     | 0.028      | 0.028       | 0.028    | 0.028    | 0.028    | 0.028    |
|          |                     | $Vz_{min}$        | -3.685   | -2.732     | -1.244    | -0.727     | -0.560      | -1.443   | -1.903   | -2.822   | -3.282   |
|          |                     | $Vz_{\text{máx}}$ | 2.236    | 1.776      | 1.023     | 1.151      | 2.186       | 4.143    | 5.122    | 7.079    | 8.058    |
|          |                     | $Mt_{min}$        | 0.00     | 0.00       | 0.00      | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00      | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | $My_{min}$        | -0.67    | -0.13      | -0.45     | -0.58      | -0.56       | -0.80    | -1.23    | -3.76    | -5.38    |
|          |                     | $My_{max}$        | 1.17     | 1.02       | 1.65      | 1.71       | 1.19        | 0.57     | 0.33     | 1.23     | 1.88     |
|          |                     | $Mz_{min}$        | -0.05    | -0.06      | -0.07     | -0.07      | -0.09       | -0.10    | -0.11    | -0.12    | -0.13    |
|          |                     | $Mz_{max}$        | 0.05     | 0.06       | 0.07      | 0.08       | 0.09        | 0.11     | 0.11     | 0.13     | 0.14     |

|         |                     |                   | Envolv  | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |           | Posici     | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.000 m | 0.625 m  | 1.250 m   | 1.875 m    | 2.500 m    | 3.125 m | 3.750 m | 4.375 m | 5.000 m |
| N22/N27 | Acero laminado      | $N_{min}$         | -2.104  | -2.104   | -2.104    | -2.104     | -2.104     | -2.104  | -2.104  | -2.104  | -2.104  |
|         |                     | N <sub>máx</sub>  | 9.850   | 9.850    | 9.850     | 9.850      | 9.850      | 9.850   | 9.850   | 9.850   | 9.850   |
|         |                     | $Vy_{min}$        | -0.079  | -0.079   | -0.079    | -0.079     | -0.079     | -0.079  | -0.079  | -0.079  | -0.079  |
|         |                     | $Vy_{max}$        | 0.079   | 0.079    | 0.079     | 0.079      | 0.079      | 0.079   | 0.079   | 0.079   | 0.079   |
|         |                     | $Vz_{min}$        | -0.371  | -0.279   | -0.188    | -0.096     | -0.005     | 0.051   | 0.105   | 0.160   | 0.214   |
|         |                     | $Vz_{max}$        | -0.220  | -0.166   | -0.111    | -0.057     | -0.003     | 0.086   | 0.178   | 0.269   | 0.361   |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.31   | -0.11    | 0.02      | 0.08       | 0.10       | 0.08    | 0.03    | -0.09   | -0.29   |
|         |                     | $My_{max}$        | -0.18   | -0.06    | 0.04      | 0.13       | 0.16       | 0.14    | 0.06    | -0.05   | -0.16   |
|         |                     | $Mz_{min}$        | -0.02   | -0.03    | -0.07     | -0.12      | -0.17      | -0.22   | -0.27   | -0.32   | -0.37   |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|       |                     |                   | Envolv                                                                                  | entes de               | los esfue | zos en ba | arras |      |      |         |      |  |
|-------|---------------------|-------------------|-----------------------------------------------------------------------------------------|------------------------|-----------|-----------|-------|------|------|---------|------|--|
| Barra | Tipo de combinación | Ecfuerzo          |                                                                                         | Posiciones en la barra |           |           |       |      |      |         |      |  |
| Dalla | Tipo de combinación | Estuerzo          | 0.000 m   0.625 m   1.250 m   1.875 m   2.500 m   3.125 m   3.750 m   4.375 m   5.000 m |                        |           |           |       |      |      | 5.000 m |      |  |
|       |                     | Mz <sub>máx</sub> | 0.02                                                                                    | 0.03                   | 0.07      | 0.12      | 0.17  | 0.22 | 0.27 | 0.32    | 0.37 |  |

|         |                     |                   | Envolv  | entes de | los esfue | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |           | Posici    | ones en la | barra   |         |         |         |
| Dalla   | ripo de combinación | Estuerzo          | 0.000 m | 0.625 m  | 1.250 m   | 1.875 m   | 2.500 m    | 3.125 m | 3.750 m | 4.375 m | 5.000 m |
| N32/N37 | Acero laminado      | $N_{min}$         | -14.439 | -14.439  | -14.439   | -14.439   | -14.439    | -14.439 | -14.439 | -14.439 | -14.439 |
|         |                     | N <sub>máx</sub>  | 6.394   | 6.394    | 6.394     | 6.394     | 6.394      | 6.394   | 6.394   | 6.394   | 6.394   |
|         |                     | $Vy_{min}$        | -0.078  | -0.078   | -0.078    | -0.078    | -0.078     | -0.078  | -0.078  | -0.078  | -0.078  |
|         |                     | $Vy_{max}$        | 0.078   | 0.078    | 0.078     | 0.078     | 0.078      | 0.078   | 0.078   | 0.078   | 0.078   |
|         |                     | $Vz_{min}$        | -0.445  | -0.353   | -0.262    | -0.170    | -0.079     | 0.006   | 0.061   | 0.115   | 0.169   |
|         |                     | $Vz_{max}$        | -0.262  | -0.208   | -0.154    | -0.100    | -0.045     | 0.015   | 0.106   | 0.198   | 0.289   |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $Mt_{\text{máx}}$ | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.39   | -0.15    | 0.02      | 0.10      | 0.15       | 0.16    | 0.14    | 0.09    | 0.00    |
|         |                     | $My_{max}$        | -0.22   | -0.08    | 0.06      | 0.19      | 0.27       | 0.28    | 0.25    | 0.15    | 0.00    |
|         |                     | $Mz_{min}$        | -0.39   | -0.34    | -0.29     | -0.24     | -0.19      | -0.15   | -0.10   | -0.05   | 0.00    |
|         |                     | Mz <sub>máx</sub> | 0.40    | 0.35     | 0.30      | 0.25      | 0.20       | 0.15    | 0.10    | 0.05    | 0.00    |

|         |                     |                   | Envolv  | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Dorro   | Tino do combinación | Fefuerzo.         |         |          |           | Posici     | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Esfuerzo          | 0.000 m | 1.158 m  | 2.316 m   | 3.474 m    | 4.632 m    | 5.791 m | 6.949 m | 8.107 m | 9.265 m |
| N42/N32 | Acero laminado      | N <sub>min</sub>  | -23.991 | -23.943  | -23.895   | -23.848    | -23.800    | -23.752 | -23.704 | -23.657 | -23.609 |
|         |                     | $N_{\text{máx}}$  | 24.611  | 24.640   | 24.668    | 24.696     | 24.724     | 24.753  | 24.781  | 24.809  | 24.838  |
|         |                     | $Vy_{min}$        | 0.000   | 0.000    | 0.000     | 0.000      | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vy_{max}$        | 0.000   | 0.000    | 0.000     | 0.000      | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vz_{min}$        | -0.123  | -0.092   | -0.061    | -0.031     | 0.000      | 0.018   | 0.036   | 0.054   | 0.073   |
|         |                     | $Vz_{\text{máx}}$ | -0.073  | -0.054   | -0.036    | -0.018     | 0.000      | 0.031   | 0.061   | 0.092   | 0.123   |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | 0.00    | 0.07     | 0.13      | 0.16       | 0.17       | 0.16    | 0.13    | 0.07    | 0.00    |
|         |                     | $My_{max}$        | 0.00    | 0.12     | 0.21      | 0.27       | 0.28       | 0.27    | 0.21    | 0.12    | 0.00    |
|         |                     | $Mz_{min}$        | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $Mz_{max}$        | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

|         |                     |                   | Envolv  | entes de | los esfuei | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.150 m | 0.552 m  | 0.753 m    | 1.154 m   | 1.355 m    | 1.757 m | 1.958 m | 2.359 m | 2.560 m |
| N47/N55 | Acero laminado      | $N_{min}$         | -42.493 | -42.493  | -42.493    | -42.493   | -42.493    | -42.493 | -42.493 | -42.493 | -42.493 |
|         |                     | $N_{\text{máx}}$  | 76.412  | 76.412   | 76.412     | 76.412    | 76.412     | 76.412  | 76.412  | 76.412  | 76.412  |
|         |                     | $Vy_{min}$        | -0.233  | -0.233   | -0.233     | -0.233    | -0.233     | -0.233  | -0.233  | -0.233  | -0.233  |
|         |                     | $Vy_{max}$        | 0.230   | 0.230    | 0.230      | 0.230     | 0.230      | 0.230   | 0.230   | 0.230   | 0.230   |
|         |                     | $Vz_{min}$        | -31.251 | -31.060  | -30.964    | -30.772   | -30.676    | -30.485 | -30.389 | -30.197 | -30.101 |
|         |                     | $Vz_{max}$        | 10.815  | 10.929   | 10.986     | 11.099    | 11.156     | 11.270  | 11.326  | 11.440  | 11.497  |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -49.28  | -36.77   | -30.54     | -18.14    | -11.97     | -2.94   | -2.32   | -5.15   | -7.45   |
|         |                     | $My_{\text{máx}}$ | 19.44   | 15.07    | 12.87      | 8.43      | 6.20       | 2.75    | 6.42    | 18.59   | 24.65   |
|         |                     | $Mz_{min}$        | -0.02   | -0.11    | -0.16      | -0.25     | -0.30      | -0.39   | -0.44   | -0.53   | -0.58   |
|         |                     | $Mz_{max}$        | 0.02    | 0.12     | 0.16       | 0.26      | 0.30       | 0.40    | 0.44    | 0.54    | 0.58    |

|         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Envolv  | entes de | los esfuei | zos en ba | arras      |         |         |         |         |
|---------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Danna   | Tino do combinación | Esfuerzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Estuerzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.040 m | 0.455 m  | 0.662 m    | 1.077 m   | 1.284 m    | 1.699 m | 1.907 m | 2.322 m | 2.529 m |
| N55/N59 | Acero laminado      | $N_{min}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -42.830 | -42.830  | -42.830    | -42.830   | -42.830    | -42.830 | -42.830 | -42.830 | -42.830 |
|         |                     | N <sub>máx</sub>   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79.820   79. |         |          |            |           |            |         |         | 79.820  |         |
|         |                     | $Vy_{min}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.072  | -0.072   | -0.072     | -0.072    | -0.072     | -0.072  | -0.072  | -0.072  | -0.072  |
|         |                     | $Vy_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.072   | 0.072    | 0.072      | 0.072     | 0.072      | 0.072   | 0.072   | 0.072   | 0.072   |
|         |                     | $Vz_{min}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.313  | -3.196   | -3.138     | -3.020    | -2.962     | -2.844  | -2.786  | -2.668  | -2.610  |
|         |                     | $Vz_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.604   | 8.802    | 8.901      | 9.099     | 9.198      | 9.396   | 9.495   | 9.693   | 9.792   |
|         |                     | Mt <sub>min</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|       |                     |                   | Envolv  | entes de | los esfuei | zos en ba | arras                                                                                                                                                                                                                                                   |         |         |       |       |
|-------|---------------------|-------------------|---------|----------|------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|-------|
| Barra | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la                                                                                                                                                                                                                                              | barra   |         |       |       |
| Dalla | Tipo de combinación | Estuerzo          | 0.040 m | 0.455 m  | 0.662 m    | 1.077 m   | 0.00         0.00         0.00         0.00           3.78         -3.16         -2.00         -1.47         -0.           3.75         11.85         8.00         6.04         2.           0.05         -0.05         -0.03         -0.03         -0. | 2.322 m | 2.529 m |       |       |
|       |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00                                                                                                                                                                                                                                                    | 0.00    | 0.00    | 0.00  | 0.00  |
|       | My <sub>min</sub>   |                   | -7.06   | -5.71    | -5.06      | -3.78     | -3.16                                                                                                                                                                                                                                                   | -2.00   | -1.47   | -0.87 | -0.97 |
|       |                     | $My_{max}$        | 22.93   | 19.32    | 17.48      | 13.75     | 11.85                                                                                                                                                                                                                                                   | 8.00    | 6.04    | 2.06  | 0.67  |
|       |                     | $Mz_{min}$        | -0.13   | -0.10    | -0.08      | -0.05     | -0.05                                                                                                                                                                                                                                                   | -0.03   | -0.03   | -0.04 | -0.05 |
|       |                     | $Mz_{\text{max}}$ | 0.13    | 0.10     | 0.08       | 0.05      | 0.04                                                                                                                                                                                                                                                    | 0.03    | 0.02    | 0.04  | 0.05  |

|         |                     |                   | Envolv  | entes de | los esfuei | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|------------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |            | Posici     | ones en la | barra   |         |         |         |
| Dalla   | ripo de combinación | Estuerzo          | 0.071 m | 0.277 m  | 0.689 m    | 0.895 m    | 1.306 m    | 1.718 m | 1.924 m | 2.336 m | 2.542 m |
| N59/N63 | Acero laminado      | $N_{min}$         | -45.069 | -45.069  | -45.069    | -45.069    | -45.069    | -45.069 | -45.069 | -45.069 | -45.069 |
|         |                     | N <sub>máx</sub>  | 147.891 | 147.891  | 147.891    | 147.891    | 147.891    | 147.891 | 147.891 | 147.891 | 147.891 |
|         |                     | $Vy_{min}$        | -0.098  | -0.098   | -0.098     | -0.098     | -0.098     | -0.098  | -0.098  | -0.098  | -0.098  |
|         |                     | $Vy_{max}$        | 0.097   | 0.097    | 0.097      | 0.097      | 0.097      | 0.097   | 0.097   | 0.097   | 0.097   |
|         |                     | $Vz_{min}$        | -2.174  | -2.075   | -1.879     | -1.780     | -1.584     | -1.387  | -1.289  | -1.093  | -0.994  |
|         |                     | $Vz_{max}$        | 0.167   | 0.225    | 0.341      | 0.400      | 0.516      | 0.633   | 0.691   | 0.807   | 0.865   |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -1.53   | -1.18    | -0.68      | -0.62      | -0.58      | -0.59   | -0.61   | -0.72   | -0.87   |
|         |                     | $My_{max}$        | 0.51    | 0.59     | 0.87       | 1.04       | 1.52       | 2.13    | 2.41    | 2.90    | 3.11    |
|         |                     | $Mz_{min}$        | -0.10   | -0.12    | -0.16      | -0.18      | -0.22      | -0.26   | -0.28   | -0.32   | -0.34   |
|         |                     | Mz <sub>máx</sub> | 0.10    | 0.12     | 0.16       | 0.18       | 0.22       | 0.26    | 0.28    | 0.32    | 0.34    |

|         |                     |                   | Envolv  | entes de | los esfuei | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.058 m | 0.266 m  | 0.681 m    | 1.096 m   | 1.304 m    | 1.719 m | 1.926 m | 2.341 m | 2.549 m |
| N63/N67 | Acero laminado      | N <sub>min</sub>  | -40.652 | -40.652  | -40.652    | -40.652   | -40.652    | -40.652 | -40.652 | -40.652 | -40.652 |
|         |                     | N <sub>máx</sub>  | 154.976 | 154.976  | 154.976    | 154.976   | 154.976    | 154.976 | 154.976 | 154.976 | 154.976 |
|         |                     | $Vy_{min}$        | -0.030  | -0.030   | -0.030     | -0.030    | -0.030     | -0.030  | -0.030  | -0.030  | -0.030  |
|         |                     | $Vy_{max}$        | 0.029   | 0.029    | 0.029      | 0.029     | 0.029      | 0.029   | 0.029   | 0.029   | 0.029   |
|         |                     | $Vz_{min}$        | -0.648  | -0.549   | -0.351     | -0.170    | -0.111     | 0.006   | 0.065   | 0.183   | 0.241   |
|         |                     | $Vz_{max}$        | -0.114  | -0.055   | 0.062      | 0.196     | 0.295      | 0.493   | 0.592   | 0.791   | 0.890   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.93   | -0.84    | -0.71      | -0.62     | -0.59      | -0.58   | -0.60   | -0.67   | -0.73   |
|         |                     | $My_{\text{máx}}$ | 3.06    | 3.11     | 3.16       | 3.11      | 3.06       | 2.90    | 2.79    | 2.50    | 2.33    |
|         |                     | $Mz_{min}$        | -0.08   | -0.07    | -0.06      | -0.05     | -0.06      | -0.07   | -0.07   | -0.08   | -0.09   |
|         |                     | Mz <sub>máx</sub> | 0.08    | 0.07     | 0.06       | 0.05      | 0.05       | 0.06    | 0.07    | 0.08    | 0.09    |

|         |                     |                   | Envolv  | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Porro   | Tipo de combinación | Esfuerzo          |         |          |           | Posici     | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Estuerzo          | 0.051 m | 0.259 m  | 0.676 m   | 0.885 m    | 1.302 m    | 1.719 m | 1.927 m | 2.344 m | 2.553 m |
| N67/N71 | Acero laminado      | $N_{min}$         | -34.978 | -34.978  | -34.978   | -34.978    | -34.978    | -34.978 | -34.978 | -34.978 | -34.978 |
|         |                     | $N_{\text{máx}}$  | 148.135 | 148.135  | 148.135   | 148.135    | 148.135    | 148.135 | 148.135 | 148.135 | 148.135 |
|         |                     | $Vy_{min}$        | -0.033  | -0.033   | -0.033    | -0.033     | -0.033     | -0.033  | -0.033  | -0.033  | -0.033  |
|         |                     | $Vy_{max}$        | 0.032   | 0.032    | 0.032     | 0.032      | 0.032      | 0.032   | 0.032   | 0.032   | 0.032   |
|         |                     | $Vz_{min}$        | -0.745  | -0.686   | -0.568    | -0.509     | -0.391     | -0.273  | -0.215  | -0.097  | -0.038  |
|         |                     | $Vz_{max}$        | 0.856   | 0.956    | 1.155     | 1.254      | 1.453      | 1.652   | 1.752   | 1.950   | 2.050   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.83   | -0.68    | -0.42     | -0.31      | -0.12      | -0.03   | -0.18   | -0.95   | -1.37   |
|         |                     | $My_{max}$        | 2.26    | 2.07     | 1.63      | 1.38       | 0.82       | 0.23    | 0.10    | 0.13    | 0.15    |
|         |                     | $Mz_{min}$        | -0.10   | -0.11    | -0.12     | -0.13      | -0.14      | -0.15   | -0.16   | -0.17   | -0.18   |
|         |                     | Mz <sub>max</sub> | 0.10    | 0.11     | 0.12      | 0.13       | 0.14       | 0.16    | 0.16    | 0.18    | 0.18    |

|         |                     |                  | Envolv                                                                                                                                         | entes de | los esfuer | zos en ba | arras      |         |                     |         |        |
|---------|---------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|------------|---------|---------------------|---------|--------|
| Danna   | Tino do combinación | Fafrianza        |                                                                                                                                                |          |            | Posici    | ones en la | barra   |                     |         |        |
| Barra   | Tipo de combinación | Estuerzo         | 0.135 m                                                                                                                                        | 0.136 m  | 0.342 m    | 0.549 m   | 0.756 m    | 0.963 m | 7 -37.811 -37.785 - | 1.377 m |        |
| N55/N91 | Acero laminado      | N <sub>min</sub> | 0.135 m 0.136 m 0.342 m 0.549 m 0.756 m 0.963 m 1.170 m 1.376 m 1.377 m 37.941 -37.940 -37.915 -37.889 -37.863 -37.837 -37.811 -37.785 -37.785 |          |            |           |            |         |                     |         |        |
|         |                     | $N_{\text{máx}}$ | 14.932                                                                                                                                         | 14.932   | 14.947     | 14.963    | 14.978     | 14.993  | 15.009              | 15.024  | 15.024 |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|       |                     |                   | Envolv  | entes de | los esfuei | zos en ba | arras      |         |         |         |         |
|-------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Borro | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Barra | Tipo de combinación | Estuerzo          | 0.135 m | 0.136 m  | 0.342 m    | 0.549 m   | 0.756 m    | 0.963 m | 1.170 m | 1.376 m | 1.377 m |
|       |                     | $Vy_{min}$        | -0.022  | -0.022   | -0.022     | -0.022    | -0.022     | -0.022  | -0.022  | -0.022  | -0.022  |
|       |                     | $Vy_{max}$        | 0.032   | 0.032    | 0.032      | 0.032     | 0.032      | 0.032   | 0.032   | 0.032   | 0.032   |
|       |                     | $Vz_{min}$        | -3.409  | -3.409   | -3.409     | -3.409    | -3.409     | -3.409  | -3.409  | -3.409  | -3.409  |
|       |                     | $Vz_{max}$        | 1.004   | 1.004    | 1.004      | 1.004     | 1.004      | 1.004   | 1.004   | 1.004   | 1.004   |
|       |                     | $Mt_{min}$        | -0.01   | -0.01    | -0.01      | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|       |                     | Mt <sub>máx</sub> | 0.01    | 0.01     | 0.01       | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |
|       |                     | $My_{min}$        | -2.12   | -2.11    | -1.41      | -0.70     | -0.02      | -0.20   | -0.41   | -0.61   | -0.62   |
|       |                     | $My_{max}$        | 0.63    | 0.63     | 0.42       | 0.22      | 0.03       | 0.71    | 1.41    | 2.11    | 2.12    |
|       |                     | $Mz_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | -0.01      | -0.01   | -0.02   | -0.03   | -0.03   |
|       |                     | $Mz_{max}$        | 0.02    | 0.02     | 0.01       | 0.01      | 0.01       | 0.02    | 0.02    | 0.02    | 0.02    |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Danna    | Time de combinación | F-6               |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.179 m | 0.635 m    | 1.092 m   | 1.548 m   | 2.005 m    | 2.461 m | 2.918 m | 3.374 m | 3.831 m |
| N71/N103 | Acero laminado      | N <sub>min</sub>  | -23.370 | -23.327    | -23.284   | -23.241   | -23.197    | -23.154 | -23.111 | -23.067 | -23.024 |
|          |                     | N <sub>máx</sub>  | 9.381   | 9.407      | 9.433     | 9.458     | 9.484      | 9.510   | 9.535   | 9.561   | 9.587   |
|          |                     | $Vy_{min}$        | -0.002  | -0.002     | -0.002    | -0.002    | -0.002     | -0.002  | -0.002  | -0.002  | -0.002  |
|          |                     | Vy <sub>máx</sub> | 0.004   | 0.004      | 0.004     | 0.004     | 0.004      | 0.004   | 0.004   | 0.004   | 0.004   |
|          |                     | $Vz_{min}$        | -0.155  | -0.117     | -0.080    | -0.042    | -0.009     | 0.014   | 0.036   | 0.058   | 0.080   |
|          |                     | Vz <sub>máx</sub> | -0.071  | -0.049     | -0.027    | -0.005    | 0.022      | 0.059   | 0.097   | 0.134   | 0.172   |
|          |                     | Mt <sub>min</sub> | -0.01   | -0.01      | -0.01     | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|          |                     | Mt <sub>máx</sub> | 0.01    | 0.01       | 0.01      | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |
|          |                     | $My_{min}$        | -0.10   | -0.04      | 0.00      | 0.02      | 0.02       | 0.01    | -0.01   | -0.06   | -0.13   |
|          |                     | My <sub>máx</sub> | -0.02   | 0.01       | 0.03      | 0.05      | 0.05       | 0.04    | 0.02    | -0.01   | -0.04   |
|          |                     | $Mz_{min}$        | -0.01   | -0.01      | -0.01     | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|          |                     | Mz <sub>máx</sub> | 0.02    | 0.02       | 0.02      | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.00    |

|          |                     |                   | Envolve | entes de l | os esfuer. | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|------------|-----------|------------|---------|---------|---------|---------|
| Danna    | Time de combinación | Cof               |         |            |            | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.000 m | 0.696 m    | 1.392 m    | 2.089 m   | 2.785 m    | 3.481 m | 4.177 m | 4.874 m | 5.570 m |
| N32/N122 | Acero laminado      | $N_{min}$         | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $N_{\text{max}}$  | 22.763  | 22.763     | 22.763     | 22.763    | 22.763     | 22.763  | 22.763  | 22.763  | 22.763  |
|          |                     | $Vy_{min}$        | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vy_{max}$        | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{min}$        | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{\text{max}}$ | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Mt_{min}$        | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mt <sub>máx</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $My_{min}$        | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $My_{\text{max}}$ | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $Mz_{min}$        | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $Mz_{\text{max}}$ | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

|           |                     |                   | Envolve | entes de la | os esfuerz | zos en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|------------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici     | ones en la | barra   |         |         |         |
| Бана      | Tipo de combinación | Estuerzo          | 0.000 m | 0.757 m     | 1.515 m    | 2.273 m    | 3.030 m    | 3.787 m | 4.545 m | 5.302 m | 6.060 m |
| N180/N200 | Acero laminado      | N <sub>min</sub>  | -38.075 | -36.725     | -35.376    | -34.026    | -32.676    | -31.326 | -29.977 | -28.627 | -27.277 |
|           |                     | N <sub>máx</sub>  | 3.762   | 4.562       | 5.362      | 6.162      | 6.962      | 7.761   | 8.561   | 9.361   | 10.161  |
|           |                     | Vy <sub>min</sub> | -0.106  | -0.106      | -0.106     | -0.106     | -0.106     | -0.106  | -0.106  | -0.106  | -0.106  |
|           |                     | Vy <sub>máx</sub> | 0.107   | 0.107       | 0.107      | 0.107      | 0.107      | 0.107   | 0.107   | 0.107   | 0.107   |
|           |                     | $Vz_{min}$        | -29.615 | -25.988     | -22.361    | -18.733    | -15.106    | -11.478 | -7.851  | -4.224  | -0.826  |
|           |                     | Vz <sub>máx</sub> | 26.622  | 23.418      | 20.213     | 17.009     | 13.805     | 10.601  | 7.397   | 4.193   | 0.988   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -58.52  | -37.46      | -19.14     | -5.45      | -4.56      | -13.81  | -20.62  | -25.01  | -26.97  |
|           |                     | My <sub>máx</sub> | 56.69   | 37.73       | 21.21      | 7.11       | 9.25       | 19.31   | 26.63   | 31.20   | 33.03   |
|           |                     | Mz <sub>min</sub> | -0.32   | -0.24       | -0.16      | -0.08      | 0.00       | -0.08   | -0.16   | -0.24   | -0.32   |
|           |                     | Mz <sub>máx</sub> | 0.33    | 0.25        | 0.16       | 0.08       | 0.00       | 0.08    | 0.16    | 0.24    | 0.32    |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Dame      | Time de combinación | F-6               |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.135 m | 0.522 m     | 0.910 m    | 1.491 m   | 1.878 m    | 2.265 m | 2.846 m | 3.234 m | 3.621 m |
| N200/N128 | Acero laminado      | N <sub>min</sub>  | -24.308 | -23.618     | -22.928    | -21.893   | -21.202    | -20.512 | -19.478 | -18.847 | -18.314 |
|           |                     | N <sub>máx</sub>  | 11.881  | 12.290      | 12.699     | 13.312    | 13.721     | 14.130  | 14.743  | 15.117  | 15.433  |
|           |                     | Vy <sub>min</sub> | -0.185  | -0.185      | -0.185     | -0.185    | -0.185     | -0.185  | -0.185  | -0.185  | -0.185  |
|           |                     | Vy <sub>máx</sub> | 0.146   | 0.146       | 0.146      | 0.146     | 0.146      | 0.146   | 0.146   | 0.146   | 0.146   |
|           |                     | $Vz_{min}$        | -0.384  | -1.692      | -3.331     | -5.789    | -7.427     | -9.065  | -11.521 | -12.967 | -14.096 |
|           |                     | Vz <sub>máx</sub> | 0.630   | 2.485       | 4.340      | 7.122     | 8.977      | 10.831  | 13.612  | 15.248  | 16.526  |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -27.11  | -26.79      | -25.85     | -23.24    | -20.71     | -17.54  | -11.60  | -6.87   | -1.65   |
|           |                     | My <sub>máx</sub> | 33.03   | 32.48       | 31.21      | 27.95     | 24.88      | 21.10   | 14.07   | 8.52    | 2.40    |
|           |                     | $Mz_{min}$        | -0.30   | -0.23       | -0.16      | -0.05     | -0.04      | -0.07   | -0.15   | -0.20   | -0.26   |
|           |                     | Mz <sub>máx</sub> | 0.25    | 0.19        | 0.14       | 0.05      | 0.06       | 0.11    | 0.20    | 0.27    | 0.34    |

|         |                     |                   | Envolv  | entes de | los esfuer | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.035 m | 0.651 m  | 1.267 m    | 1.884 m   | 2.500 m    | 3.116 m | 3.732 m | 4.349 m | 4.965 m |
| N91/N92 | Acero laminado      | N <sub>min</sub>  | -2.951  | -2.951   | -2.951     | -2.951    | -2.951     | -2.951  | -2.951  | -2.951  | -2.951  |
|         |                     | $N_{\text{máx}}$  | 8.693   | 8.693    | 8.693      | 8.693     | 8.693      | 8.693   | 8.693   | 8.693   | 8.693   |
|         |                     | $Vy_{min}$        | -0.119  | -0.119   | -0.119     | -0.119    | -0.119     | -0.119  | -0.119  | -0.119  | -0.119  |
|         |                     | $Vy_{max}$        | 0.119   | 0.119    | 0.119      | 0.119     | 0.119      | 0.119   | 0.119   | 0.119   | 0.119   |
|         |                     | $Vz_{min}$        | -0.368  | -0.278   | -0.188     | -0.098    | -0.006     | 0.047   | 0.100   | 0.154   | 0.207   |
|         |                     | $Vz_{max}$        | -0.203  | -0.150   | -0.096     | -0.043    | 0.011      | 0.100   | 0.190   | 0.281   | 0.371   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.31   | -0.11    | 0.02       | 0.07      | 0.08       | 0.06    | 0.00    | -0.13   | -0.33   |
|         |                     | $My_{max}$        | -0.16   | -0.05    | 0.05       | 0.13      | 0.15       | 0.13    | 0.05    | -0.04   | -0.16   |
|         |                     | $Mz_{min}$        | -0.29   | -0.22    | -0.15      | -0.07     | -0.04      | -0.07   | -0.15   | -0.22   | -0.29   |
|         |                     | Mz <sub>máx</sub> | 0.29    | 0.22     | 0.15       | 0.07      | 0.04       | 0.07    | 0.14    | 0.22    | 0.29    |

|         |                     |                   | Envolv  | entes de | los esfuer | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.140 m | 0.758 m  | 1.375 m    | 1.993 m   | 2.610 m    | 3.228 m | 3.845 m | 4.463 m | 5.080 m |
| N55/N92 | Acero laminado      | $N_{min}$         | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | N <sub>máx</sub>  | 0.808   | 0.808    | 0.808      | 0.808     | 0.808      | 0.808   | 0.808   | 0.808   | 0.808   |
|         |                     | $Vy_{min}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vy_{max}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vz_{min}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vz_{max}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{max}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $Mz_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mz <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

|          |                     |                   | Envolve | entes de l | os esfuer. | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|------------|-----------|------------|---------|---------|---------|---------|
| Danna    | Tino do combinación | Fof               |         |            |            | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.412 m | 1.004 m    | 1.595 m    | 2.187 m   | 2.778 m    | 3.370 m | 3.961 m | 4.553 m | 5.144 m |
| N196/N37 | Acero laminado      | N <sub>min</sub>  | -7.879  | -7.873     | -7.868     | -7.863    | -7.858     | -7.853  | -7.847  | -7.842  | -7.837  |
|          |                     | N <sub>máx</sub>  | 9.779   | 9.787      | 9.796      | 9.805     | 9.814      | 9.823   | 9.831   | 9.840   | 9.849   |
|          |                     | $Vy_{min}$        | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | Vy <sub>máx</sub> | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{min}$        | -0.102  | -0.076     | -0.051     | -0.025    | 0.000      | 0.015   | 0.030   | 0.045   | 0.060   |
|          |                     | Vz <sub>máx</sub> | -0.060  | -0.045     | -0.030     | -0.015    | 0.000      | 0.025   | 0.051   | 0.076   | 0.102   |
|          |                     | Mt <sub>min</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mt <sub>máx</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $My_{min}$        | 0.00    | 0.03       | 0.05       | 0.07      | 0.07       | 0.07    | 0.05    | 0.03    | 0.00    |
|          |                     | My <sub>máx</sub> | 0.00    | 0.05       | 0.09       | 0.11      | 0.12       | 0.11    | 0.09    | 0.05    | 0.00    |
|          |                     | $Mz_{min}$        | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mz <sub>máx</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Dame      | Time de combinación | F-6               |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.180 m | 0.808 m     | 1.435 m    | 2.063 m   | 2.690 m    | 3.318 m | 3.945 m | 4.572 m | 5.200 m |
| N192/N196 | Acero laminado      | N <sub>min</sub>  | -5.321  | -5.321      | -5.321     | -5.321    | -5.321     | -5.321  | -5.321  | -5.321  | -5.321  |
|           |                     | N <sub>máx</sub>  | 10.858  | 10.858      | 10.858     | 10.858    | 10.858     | 10.858  | 10.858  | 10.858  | 10.858  |
|           |                     | $Vy_{min}$        | -0.110  | -0.110      | -0.110     | -0.110    | -0.110     | -0.110  | -0.110  | -0.110  | -0.110  |
|           |                     | Vy <sub>máx</sub> | 0.190   | 0.190       | 0.190      | 0.190     | 0.190      | 0.190   | 0.190   | 0.190   | 0.190   |
|           |                     | $Vz_{min}$        | -1.891  | -1.591      | -1.292     | -0.992    | -0.693     | -0.498  | -0.320  | -0.143  | 0.035   |
|           |                     | Vz <sub>máx</sub> | -0.212  | -0.034      | 0.143      | 0.320     | 0.498      | 0.780   | 1.079   | 1.379   | 1.678   |
|           |                     | Mt <sub>min</sub> | -0.01   | -0.01       | -0.01      | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|           |                     | Mt <sub>máx</sub> | 0.02    | 0.02        | 0.02       | 0.02      | 0.02       | 0.02    | 0.02    | 0.02    | 0.02    |
|           |                     | My <sub>min</sub> | -3.63   | -2.54       | -1.65      | -1.06     | -0.58      | -0.21   | 0.01    | -0.60   | -1.56   |
|           |                     | My <sub>máx</sub> | 1.32    | 1.39        | 1.38       | 1.37      | 1.17       | 0.79    | 0.22    | 0.19    | 0.22    |
|           |                     | $Mz_{min}$        | -0.05   | -0.06       | -0.15      | -0.27     | -0.39      | -0.51   | -0.63   | -0.74   | -0.86   |
|           |                     | Mz <sub>máx</sub> | 0.09    | 0.01        | 0.08       | 0.15      | 0.22       | 0.29    | 0.36    | 0.43    | 0.50    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Бана      | Tipo de combinación | Estuerzo          | 0.000 m | 0.650 m     | 1.300 m    | 1.950 m   | 2.600 m    | 3.250 m | 3.900 m | 4.550 m | 5.200 m |
| N196/N200 | Acero laminado      | N <sub>min</sub>  | -1.635  | -1.635      | -1.635     | -1.635    | -1.635     | -1.635  | -1.635  | -1.635  | -1.635  |
|           |                     | N <sub>máx</sub>  | 12.448  | 12.448      | 12.448     | 12.448    | 12.448     | 12.448  | 12.448  | 12.448  | 12.448  |
|           |                     | Vy <sub>min</sub> | -0.232  | -0.232      | -0.232     | -0.232    | -0.232     | -0.232  | -0.232  | -0.232  | -0.232  |
|           |                     | Vy <sub>máx</sub> | 0.169   | 0.169       | 0.169      | 0.169     | 0.169      | 0.169   | 0.169   | 0.169   | 0.169   |
|           |                     | $Vz_{min}$        | -1.346  | -1.035      | -0.725     | -0.415    | -0.106     | 0.078   | 0.262   | 0.445   | 0.629   |
|           |                     | Vz <sub>máx</sub> | -0.613  | -0.430      | -0.246     | -0.062    | 0.123      | 0.433   | 0.743   | 1.053   | 1.364   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -1.33   | -0.57       | -0.11      | 0.09      | 0.18       | 0.14    | -0.12   | -0.64   | -1.42   |
|           |                     | My <sub>máx</sub> | -0.36   | -0.02       | 0.27       | 0.50      | 0.66       | 0.62    | 0.39    | 0.09    | -0.26   |
|           |                     | $Mz_{min}$        | -0.86   | -0.71       | -0.55      | -0.40     | -0.25      | -0.10   | -0.17   | -0.27   | -0.39   |
|           |                     | Mz <sub>máx</sub> | 0.50    | 0.39        | 0.28       | 0.17      | 0.06       | 0.11    | 0.25    | 0.39    | 0.53    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tino do combinación | Fofuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Dalla     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.650 m     | 1.300 m    | 1.950 m   | 2.600 m    | 3.250 m | 3.900 m | 4.550 m | 5.200 m |
| N200/N202 | Acero laminado      | N <sub>min</sub>  | -1.605  | -1.605      | -1.605     | -1.605    | -1.605     | -1.605  | -1.605  | -1.605  | -1.605  |
|           |                     | N <sub>máx</sub>  | 12.587  | 12.587      | 12.587     | 12.587    | 12.587     | 12.587  | 12.587  | 12.587  | 12.587  |
|           |                     | Vy <sub>min</sub> | -0.035  | -0.035      | -0.035     | -0.035    | -0.035     | -0.035  | -0.035  | -0.035  | -0.035  |
|           |                     | Vy <sub>máx</sub> | 0.035   | 0.035       | 0.035      | 0.035     | 0.035      | 0.035   | 0.035   | 0.035   | 0.035   |
|           |                     | $Vz_{min}$        | -1.342  | -1.032      | -0.722     | -0.412    | -0.102     | 0.082   | 0.266   | 0.450   | 0.634   |
|           |                     | Vz <sub>máx</sub> | -0.634  | -0.450      | -0.266     | -0.082    | 0.102      | 0.412   | 0.722   | 1.032   | 1.342   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -1.35   | -0.58       | -0.06      | 0.18      | 0.30       | 0.18    | -0.06   | -0.58   | -1.35   |
|           |                     | My <sub>máx</sub> | -0.38   | -0.03       | 0.25       | 0.51      | 0.61       | 0.51    | 0.25    | -0.03   | -0.38   |
|           |                     | $Mz_{min}$        | -0.38   | -0.38       | -0.38      | -0.38     | -0.38      | -0.38   | -0.38   | -0.38   | -0.38   |
|           |                     | Mz <sub>máx</sub> | 0.53    | 0.51        | 0.48       | 0.46      | 0.44       | 0.46    | 0.48    | 0.51    | 0.53    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Borro     | Tino do combinación | Fofuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.650 m     | 1.300 m    | 1.950 m   | 2.600 m    | 3.250 m | 3.900 m | 4.550 m | 5.200 m |
| N202/N198 | Acero laminado      | N <sub>min</sub>  | -1.635  | -1.635      | -1.635     | -1.635    | -1.635     | -1.635  | -1.635  | -1.635  | -1.635  |
|           |                     | N <sub>máx</sub>  | 12.448  | 12.448      | 12.448     | 12.448    | 12.448     | 12.448  | 12.448  | 12.448  | 12.448  |
|           |                     | Vy <sub>min</sub> | -0.169  | -0.169      | -0.169     | -0.169    | -0.169     | -0.169  | -0.169  | -0.169  | -0.169  |
|           |                     | Vy <sub>máx</sub> | 0.232   | 0.232       | 0.232      | 0.232     | 0.232      | 0.232   | 0.232   | 0.232   | 0.232   |
|           |                     | Vz <sub>min</sub> | -1.364  | -1.053      | -0.743     | -0.433    | -0.123     | 0.062   | 0.246   | 0.430   | 0.613   |
|           |                     | Vz <sub>máx</sub> | -0.629  | -0.445      | -0.262     | -0.078    | 0.106      | 0.415   | 0.725   | 1.035   | 1.346   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -1.42   | -0.64       | -0.12      | 0.14      | 0.18       | 0.09    | -0.11   | -0.57   | -1.33   |
|           |                     | My <sub>máx</sub> | -0.26   | 0.09        | 0.39       | 0.62      | 0.66       | 0.50    | 0.27    | -0.02   | -0.36   |
|           |                     | Mz <sub>min</sub> | -0.39   | -0.27       | -0.17      | -0.10     | -0.25      | -0.40   | -0.55   | -0.71   | -0.86   |
|           |                     | Mz <sub>máx</sub> | 0.53    | 0.39        | 0.25       | 0.11      | 0.06       | 0.17    | 0.28    | 0.39    | 0.50    |



#### TFM\_nave\_industrial\_R15\_sin\_revestimiento

Envolventes de los esfuerzos en barras Posiciones en la barra Barra Tipo de combinación Esfuerzo 0.000 m | 0.627 m | 1.255 m | 1.882 m | 2.510 m | 3.137 m | 3.765 m 4.393 m 5.020 m N198/N194 Acero laminado  $N_{min}$ -5.321 -5.321 -5.321 -5.321 -5.321 -5.321 -5.321 -5.321 -5.321 10.858 10.858 10.858 10.858 10.858 10.858 10.858 10.858 10.858 -0.190 -0.190 -0.190 -0.190 -0.190 -0.190 -0.190 -0.190  $Vy_{\mathsf{min}}$ -0.190  $Vy_{\mathsf{max}}$ 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 -1.678  $Vz_{\mathsf{min}}$ -1.379 -1.079-0.780-0.498-0.320 -0.143 0.034 0.212 Vzmáx -0.035 0.143 0.320 0.498 0.693 0.992 1.292 1.591 1.891 -0.02 -0.02 Mtmin -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  $Mt_{max}$  $My_{\mathsf{min}}$ -1.56 -0.60 0.01 -0.21 -0.58 -1.06 -1.65 -2.54 -3.63  $My_{\text{max}}$ 0.22 0.19 0.22 0.79 1.17 1.37 1.38 1.39 1.32  $Mz_{min}$ -0.86 -0.74 -0.63 -0.51 -0.39 -0.27 -0.15 -0.06 -0.05 0.50 0.43 0.36 0.29 0.22 0.08 0.01 0.09 Mz<sub>máx</sub> 0.15

|          |                     |                   | Envolve | entes de l | os esfuer: | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra    | Tipo de combinación | Esfuerzo          |         |            |            | Posici    | ones en la | barra   |         |         |         |
| Dalla    | ripo de combinación | Estuerzo          | 0.275 m | 1.210 m    | 2.145 m    | 3.081 m   | 4.016 m    | 4.951 m | 5.886 m | 6.822 m | 7.757 m |
| N42/N196 | Acero laminado      | N <sub>min</sub>  | -18.286 | -18.254    | -18.222    | -18.190   | -18.157    | -18.125 | -18.093 | -18.061 | -18.029 |
|          |                     | N <sub>máx</sub>  | 16.145  | 16.164     | 16.183     | 16.202    | 16.221     | 16.240  | 16.259  | 16.279  | 16.298  |
|          |                     | Vy <sub>min</sub> | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | Vy <sub>máx</sub> | 0.000   | 0.000      | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{min}$        | -0.111  | -0.084     | -0.056     | -0.028    | 0.000      | 0.017   | 0.033   | 0.050   | 0.066   |
|          |                     | Vz <sub>máx</sub> | -0.066  | -0.050     | -0.033     | -0.017    | 0.000      | 0.028   | 0.056   | 0.084   | 0.111   |
|          |                     | Mt <sub>min</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mt <sub>máx</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $My_{min}$        | 0.00    | 0.05       | 0.09       | 0.12      | 0.12       | 0.12    | 0.09    | 0.05    | 0.00    |
|          |                     | My <sub>máx</sub> | 0.00    | 0.09       | 0.16       | 0.20      | 0.21       | 0.20    | 0.16    | 0.09    | 0.00    |
|          |                     | Mz <sub>min</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mz <sub>máx</sub> | 0.00    | 0.00       | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

#### 2.2.- Flechas

#### Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

|              |             |                                   |             | Flechas                            |             |                                   |             |                                   |
|--------------|-------------|-----------------------------------|-------------|------------------------------------|-------------|-----------------------------------|-------------|-----------------------------------|
| Grupo        |             | ma absoluta xy<br>ima relativa xy |             | ima absoluta xz<br>ima relativa xz |             | va absoluta xy<br>iva relativa xy |             | va absoluta xz<br>iva relativa xz |
| Grupo        | Pos.<br>(m) | Flecha<br>(mm)                    | Pos.<br>(m) | Flecha<br>(mm)                     | Pos.<br>(m) | Flecha<br>(mm)                    | Pos.<br>(m) | Flecha<br>(mm)                    |
| NIO ( /NIO 7 | 4.595       | 21.77                             | 3.496       | 0.50                               | 4.595       | 34.33                             | 3.862       | 0.71                              |
| N36/N37      | 4.595       | L/352.8                           | 3.496       | L/(>1000)                          | 4.595       | L/353.3                           | 3.496       | L/(>1000)                         |
| N127 /N140   | 5.490       | 2.00                              | 9.839       | 0.50                               | 5.868       | 3.81                              | 9.839       | 0.76                              |
| N37/N40      | 5.490       | L/(>1000)                         | 10.407      | L/(>1000)                          | 5.300       | L/(>1000)                         | 10.407      | L/(>1000)                         |
| NIO1 /NIOO   | 2.574       | 0.41                              | 5.578       | 4.47                               | 2.574       | 0.81                              | 5.578       | 7.59                              |
| N21/N22 2    | 2.574       | L/(>1000)                         | 5.578       | L/(>1000)                          | 2.574       | L/(>1000)                         | 5.578       | L/(>1000)                         |
| N22/N25      | 6.847       | 1.73                              | 3.980       | 6.88                               | 6.847       | 3.45                              | 3.980       | 6.82                              |
| 11/22/11/25  | 6.847       | L/(>1000)                         | 3.980       | L/(>1000)                          | 6.847       | L/(>1000)                         | 3.980       | L/(>1000)                         |
| N2/N37       | 21.563      | 18.88                             | 32.813      | 1.91                               | 21.563      | 36.70                             | 29.063      | 0.62                              |
| 11/2/11/3/   | 21.563      | L/(>1000)                         | 2.188       | L/(>1000)                          | 21.563      | L/(>1000)                         | 2.188       | L/(>1000)                         |
| N42/N32      | 6.370       | 0.00                              | 4.632       | 506.12                             | 6.370       | 0.00                              | 0.000       | 0.00                              |
| 1142/1132    | -           | L/(>1000)                         | 4.632       | L/18.3                             | -           | L/(>1000)                         | -           | L/(>1000)                         |
| N47/N51      | 12.752      | 7.45                              | 14.518      | 15.40                              | 12.752      | 14.87                             | 14.518      | 15.20                             |
| N47/N31      | 12.752      | L/(>1000)                         | 14.518      | L/(>1000)                          | 12.752      | L/(>1000)                         | 14.518      | L/(>1000)                         |
| N55/N91      | 0.621       | 0.01                              | 0.207       | 0.27                               | 0.828       | 0.02                              | 0.207       | 0.29                              |
| 1000/1091    | 0.621       | L/(>1000)                         | 0.207       | L/(>1000)                          | 0.828       | L/(>1000)                         | 1.035       | L/(>1000)                         |
| N71/N103     | 1.598       | 0.08                              | 1.369       | 0.20                               | 1.598       | 0.15                              | 0.913       | 0.08                              |
| 14/1/14103   | 1.598       | L/(>1000)                         | 1.369       | L/(>1000)                          | 1.598       | L/(>1000)                         | 3.424       | L/(>1000)                         |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

|             |             |                                   |             | Flechas                            |             |                                   |             |                                   |
|-------------|-------------|-----------------------------------|-------------|------------------------------------|-------------|-----------------------------------|-------------|-----------------------------------|
| Crupo       |             | ma absoluta xy<br>ima relativa xy |             | ima absoluta xz<br>ima relativa xz |             | va absoluta xy<br>iva relativa xy |             | va absoluta xz<br>iva relativa xz |
| Grupo       | Pos.<br>(m) | Flecha<br>(mm)                    | Pos.<br>(m) | Flecha<br>(mm)                     | Pos.<br>(m) | Flecha<br>(mm)                    | Pos.<br>(m) | Flecha<br>(mm)                    |
| N32/N122    | 4.874       | 0.00                              | 4.525       | 0.00                               | 4.874       | 0.00                              | 3.481       | 0.00                              |
| 1032/10122  | -           | L/(>1000)                         | -           | L/(>1000)                          | -           | L/(>1000)                         | -           | L/(>1000)                         |
| N180/N128   | 5.302       | 0.44                              | 5.681       | 12.93                              | 5.302       | 0.83                              | 5.681       | 22.52                             |
| 100/10126   | 5.302       | L/(>1000)                         | 5.681       | L/748.8                            | 5.302       | L/(>1000)                         | 5.681       | L/759.1                           |
| N91/N92     | 1.541       | 0.34                              | 2.465       | 0.68                               | 1.541       | 0.67                              | 3.389       | 0.12                              |
| 119171192   | 0.924       | L/(>1000)                         | 2.465       | L/(>1000)                          | 0.924       | L/(>1000)                         | 4.929       | L/(>1000)                         |
| N55/N92     | 4.631       | 0.00                              | 3.705       | 0.00                               | 4.323       | 0.00                              | 3.705       | 0.00                              |
| 1055/1092   | -           | L/(>1000)                         | -           | L/(>1000)                          | -           | L/(>1000)                         | -           | L/(>1000)                         |
| N196/N37    | 4.437       | 0.00                              | 2.366       | 65.00                              | 1.775       | 0.00                              | 4.731       | 0.00                              |
| 10190/1037  | -           | L/(>1000)                         | 2.366       | L/72.8                             | -           | L/(>1000)                         | -           | L/(>1000)                         |
| N192/N194   | 12.820      | 5.52                              | 2.510       | 0.24                               | 12.820      | 9.40                              | 23.444      | 0.38                              |
| 11192/11194 | 20.934      | L/(>1000)                         | 24.071      | L/(>1000)                          | 20.934      | L/(>1000)                         | 24.071      | L/(>1000)                         |
| N42/N196    | 7.481       | 0.00                              | 3.741       | 281.67                             | 7.481       | 0.00                              | 7.482       | 0.00                              |
| 1142/11196  | -           | L/(>1000)                         | 3.741       | L/26.6                             | -           | L/(>1000)                         | -           | L/(>1000)                         |

# 2.3.- Comprobaciones E.L.U. (Resumido)

| 2.3             |                                      | .p. 00                                          |                       | J                      | J. (110                      |                        |                       | DB SE-A) - TE         | MDEDATII                      | DA AMRIE                      | NTF                            |                   |                                                            |                               |                               |                    |
|-----------------|--------------------------------------|-------------------------------------------------|-----------------------|------------------------|------------------------------|------------------------|-----------------------|-----------------------|-------------------------------|-------------------------------|--------------------------------|-------------------|------------------------------------------------------------|-------------------------------|-------------------------------|--------------------|
| arras           | λ                                    | λ <sub>w</sub>                                  | N <sub>t</sub>        | N <sub>c</sub>         | M <sub>Y</sub>               | M <sub>z</sub>         | V <sub>z</sub>        | V <sub>Y</sub>        | M <sub>Y</sub> V <sub>z</sub> | M <sub>z</sub> V <sub>y</sub> | NM <sub>Y</sub> M <sub>Z</sub> | $NM_YM_ZV_YV_Z$   | Mt                                                         | M <sub>t</sub> V <sub>z</sub> | M <sub>t</sub> V <sub>Y</sub> | Estado             |
| <b>№</b> 2/N192 | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 5.859 m<br>η = 1.5 | x: 0 m<br>η = 5.6      | x: 0 m<br>η = 5.1            | x: 0 m<br>η = 48.7     | x: 0 m<br>η = 2.1     | x: 0 m<br>η = 2.4     | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 54.2             | η < 0.1           | η = 0.3                                                    | x: 0 m<br>η = 2.1             | x: 0 m<br>η = 2.4             | CUMPLE<br>h = 54.2 |
| 92/N37          | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 1.62 m<br>η = 1.6  | x: 0.135 m<br>η = 1.6  | x: 1.621 m<br>η = 2.5        | x: 0.135 m<br>η = 25.1 | x: 0.135 m<br>η = 1.2 | x: 1.621 m<br>η = 1.4 | η < 0.1                       | η < 0.1                       | x: 0.321 m<br>η = 37.0         | η < 0.1           | η = 2.5                                                    | x: 0.135 m<br>η = 1.2         | x: 1.621 m<br>η = 1.4         | CUMPLE<br>h = 37.0 |
| N37/N122        | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 0.3 | x: 0.184 m<br>η = 3.5  | x: 0.184 m<br>η = 2.5        | x: 2.648 m<br>η = 2.5  | x: 0.184 m<br>η = 1.4 | x: 2.648 m<br>η = 0.1 | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 6.5          | η < 0.1           | η = 3.9                                                    | x: 0.184 m<br>η = 1.4         | x: 2.648 m<br>η = 0.1         | CUMPLE<br>h = 6.5  |
| M22/N124        | $\bar{\lambda}$ < 2.0 Cumple         | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 0.4 | x: 0 m<br>η = 3.5      | x: 2.648 m<br>η = 2.5        | x: 2.648 m<br>η = 3.8  | x: 2.648 m<br>η = 1.5 | x: 0 m<br>η = 0.2     | η < 0.1                       | η < 0.1                       | x: 2.459 m<br>η = 8.1          | η < 0.1           | η = 1.2                                                    | x: 2.648 m<br>η = 1.5         | x: 0 m<br>η = 0.2             | CUMPLE<br>h = 8.1  |
| ND24/N126       | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 0.9 | x: 0 m<br>η = 3.5      | x: 0 m<br>η = 2.6            | x: 2.648 m<br>η = 4.2  | x: 0 m<br>η = 1.5     | x: 2.648 m<br>n = 0.3 | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 8.2          | η < 0.1           | η = 1.4                                                    | x: 0 m<br>n = 1.5             | x: 2.648 m<br>n = 0.3         | CUMPLE<br>h = 8.2  |
| N126/N128       | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 1.3 | x: 0 m<br>η = 4.9      | x: 2.648 m<br>η = 2.9        | x: 0 m<br>η = 4.2      | x: 2.648 m<br>η = 1.5 | x: 0 m<br>η = 0.2     | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 9.4          | η < 0.1           | η = 1.7                                                    | x: 2.648 m<br>η = 1.5         | x: 0 m<br>η = 0.2             | CUMPLE<br>h = 9.4  |
| N128/N40        | $\bar{\lambda}$ < 2.0 Cumple         | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 1.4 | x: 0 m<br>η = 4.2      | x: 2.648 m<br>η = 4.0        | x: 0 m<br>η = 2.9      | x: 0 m<br>η = 1.7     | x: 2.648 m<br>η = 0.1 | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 8.5              | η < 0.1           | η = 0.8                                                    | x: 0 m<br>η = 1.7             | x: 2.648 m<br>η = 0.1         | CUMPLE<br>h = 8.5  |
| N21/N47         | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 6.864 m<br>n = 1.5 | x: 0 m<br>η = 22.6     | x: 0 m<br>η = 44.9           | x: 0 m<br>η = 1.2      | x: 0 m<br>n = 7.8     | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 50.6             | η < 0.1           | η = 0.2                                                    | x: 0 m<br>η = 4.4             | η < 0.1                       | CUMPLE<br>h = 50.6 |
| N47/N22         | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 0.876 m<br>η = 0.9 | x: 0.135 m<br>η = 3.3  | x: 0.135 m<br>η = 24.5       | x: 0.135 m<br>η = 0.4  | η = 20.5              | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 26.8         | η < 0.1           | η = 0.3                                                    | x: 0.135 m<br>η = 10.5        | η < 0.1                       | CUMPLE<br>h = 26.8 |
| N22/N91         | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.593 m<br>n = 4.0 | x: 0.153 m<br>η = 8.6  | x: 0.153 m<br>η = 37.5       | x: 2.594 m<br>η = 1.7  | x: 0.153 m<br>η = 9.3 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.153 m<br>η = 46.5         | η < 0.1           | η = 0.1                                                    | x: 0.153 m<br>η = 3.7         | η < 0.1                       | CUMPLE<br>h = 46.5 |
| 0<br>0<br>1/N95 | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.6 m<br>η = 4.3   | x: 0.054 m<br>η = 15.4 | x: 0.054 m<br>η = 14.1       | x: 0.054 m<br>η = 1.0  | x: 2.601 m<br>η = 4.2 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.054 m<br>η = 29.7         | η < 0.1           | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup>              | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 29.7 |
| <b>N</b> 95/N99 | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.604 m<br>n = 4.1 | x: 0.047 m<br>η = 16.2 | x: 0.047 m<br>η = 2.8        | x: 2.605 m<br>η = 1.5  | x: 0.047 m<br>n = 2.3 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.047 m<br>η = 19.1         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>                     | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 19.1 |
| 9/N103          | $\bar{\lambda}$ < 2.0 Cumple         | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.606 m<br>η = 4.1 | x: 0.043 m<br>η = 15.6 | x: 1.325 m<br>η = 3.6        | x: 0.043 m<br>η = 0.4  | x: 0.043 m<br>η = 2.1 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 1.325 m<br>η = 19.2         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>                     | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 19.2 |
| N103/N25        | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.606 m<br>η = 3.9 | x: 0.041 m<br>η = 14.2 | x: 2.607 m<br>η = 5.6        | x: 2.607 m<br>η = 0.7  | x: 2.607 m<br>η = 2.8 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 2.607 m<br>η = 19.7         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>                     | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 19.7 |
| N22/N27         | λ < 2.0<br>Cumple                    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 2.7               | η = 2.7                | x: 0 m<br>η = 3.1            | x: 5 m<br>η = 3.7      | x: 0 m<br>η = 0.4     | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 5 m<br>η = 9.1              | η < 0.1           | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$                            | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 9.1  |
| N32/N37         | $\overline{\lambda} < 2.0$<br>Cumple | $x: 0 m$ $\lambda_w \le \lambda_{w,max}$ Cumple | η = 1.7               | η = 18.7               | x: 0 m<br>η = 3.9            | x: 0 m<br>η = 3.9      | x: 0 m<br>η = 0.4     | η = 0.1               | x: 0 m<br>η < 0.1             | x: 0 m<br>η < 0.1             | x: 0 m<br>η = 22.1             | x: 0 m<br>η < 0.1 | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup>              | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 22.1 |
| N47/N55         | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \le \lambda_{w,max}$ Cumple          | $\eta = 6.4$          | $\eta = 16.6$          | x: 0.15 m<br>η = 38.9        | x: 2.56 m<br>η = 2.3   | x: 0.15 m<br>η = 9.4  | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 0.15 m<br>η = 45.2          | η < 0.1           | $\eta = 0.1$                                               | x: 0.15 m<br>η = 3.8          | $\eta = 0.1$                  | CUMPLE<br>h = 45.2 |
| N55/N59         | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 6.6               | $\eta = 16.7$          | x: 0.04 m<br>η = 18.1        | x: 0.04 m<br>η = 0.5   | x: 2.529 m<br>η = 2.9 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.04 m<br>η = 24.7          | η < 0.1           | $\begin{array}{c} M_{Ed} = 0.00 \\ N.P.^{(1)} \end{array}$ | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 24.7 |
| N59/N63         | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | $\eta = 12.3$         | $\eta = 17.6$          | x: 2.542  m<br>$\eta = 2.5$  | x: 2.542 m<br>η = 1.3  | x: 0.071 m<br>η = 0.7 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 2.542 m<br>η = 18.3         | η < 0.1           | $\begin{array}{c} M_{Ed} = 0.00 \\ N.P.^{(1)} \end{array}$ | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 18.3 |
| N63/N67         | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | $\eta = 12.9$         | $\eta = 15.9$          | x: 0.681  m<br>$\eta = 2.5$  | x: 2.548 m<br>η = 0.3  | x: 2.549 m<br>η = 0.3 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.058 m<br>η = 16.6         | η < 0.1           | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$                            | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 16.6 |
| N67/N71         | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$ Cumple          | $\eta = 12.3$         | η = 13.6               | x: 0.051  m<br>$\eta = 1.8$  | x: 2.553 m<br>η = 0.7  | x: 2.553 m<br>η = 0.6 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.051 m<br>η = 14.1         | η < 0.1           | $\begin{array}{c} M_{Ed} = 0.00 \\ N.P.^{(1)} \end{array}$ | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 14.1 |
| N55/N91         | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | x: 1.376 m<br>η = 4.7 | x: 0.135 m<br>η = 16.1 | x: 1.377  m<br>$\eta = 28.4$ | x: 1.377 m<br>η = 0.4  | η = 3.8               | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 46.6         | η < 0.1           | $\eta = 0.2$                                               | η = 1.6                       | η < 0.1                       | CUMPLE<br>h = 46.6 |
| N71/N103        | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | x: 3.83 m<br>η = 3.0  | x: 0.179 m<br>η = 30.6 | x: 3.831  m<br>$\eta = 1.7$  | x: 0.179 m<br>η = 0.3  | x: 3.83 m<br>η = 0.2  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 3.831 m<br>η = 32.3         | η < 0.1           | $\eta = 0.2$                                               | x: 3.83 m<br>η = 0.2          | η < 0.1                       | CUMPLE<br>h = 32.3 |
| N180/N200       | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$ Cumple          | x: 6.059 m<br>η = 0.8 | x: 0 m<br>η = 10.8     | x: 0 m<br>η = 46.2           | x: 0 m<br>η = 1.3      | x: 0 m<br>η = 8.9     | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 51.0             | η < 0.1           | $\eta = 0.1$                                               | x: 0 m<br>η = 8.9             | η < 0.1                       | CUMPLE<br>h = 51.0 |
| N200/N128       | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$ Cumple          | x: 3.62 m<br>η = 1.3  | x: 0.135 m<br>η = 5.6  | x: 0.135  m<br>$\eta = 26.1$ | x: 3.621 m<br>η = 1.3  | x: 3.621 m<br>η = 4.9 | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 28.8         | η < 0.1           | $\eta = 0.1$                                               | x: 3.621 m<br>η = 4.9         | η < 0.1                       | CUMPLE<br>h = 28.8 |
| N91/N92         | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | $\eta = 2.4$          | η = 3.8                | x: 4.965  m<br>$\eta = 3.3$  | x: 0.035 m<br>η = 2.9  | x: 4.965 m<br>η = 0.4 | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 0.035 m<br>η = 8.6          | η < 0.1           | η < 0.1                                                    | x: 0.035 m<br>η = 0.3         | η = 0.1                       | CUMPLE<br>h = 8.6  |
| N192/N196       | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | η = 0.9               | η = 2.1                | x: 0.18 m<br>η = 2.9         | x: 5.2 m<br>η = 3.4    | x: 0.18 m<br>η = 0.6  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 5.2 m<br>η = 6.1            | η < 0.1           | $\eta = 0.9$                                               | x: 0.18 m<br>η = 0.6          | η < 0.1                       | CUMPLE<br>h = 6.1  |
| N196/N200       | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | η = 1.0               | η = 0.6                | x: 5.2 m<br>η = 1.1          | x: 0 m<br>η = 3.4      | x: 5.2 m<br>η = 0.4   | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 4.2              | η < 0.1           | $\eta = 0.1$                                               | x: 5.2 m<br>η = 0.4           | η = 0.1                       | CUMPLE<br>h = 4.2  |
| N200/N202       | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | η = 1.0               | η = 0.6                | x: 0 m<br>η = 1.1            | x: 0 m<br>η = 2.1      | x: 0 m<br>η = 0.4     | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 3.3              | η < 0.1           | $\begin{array}{c} M_{Ed} = 0.00 \\ N.P.^{(1)} \end{array}$ | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 3.3  |
| N202/N198       | λ̄ < 2.0<br>Cumple                   | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | η = 1.0               | η = 0.6                | x: 0 m<br>η = 1.1            | x: 5.2 m<br>η = 3.4    | x: 0 m<br>η = 0.4     | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 5.2 m<br>η = 4.2            | η < 0.1           | $\eta = 0.1$                                               | x: 0 m<br>η = 0.4             | η = 0.1                       | CUMPLE<br>h = 4.2  |
| N198/N194       | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \le \lambda_{w,max}$<br>Cumple       | η = 0.9               | η = 2.1                | x: 5.02 m<br>η = 2.9         | x: 0 m<br>η = 3.4      | x: 5.02 m<br>η = 0.6  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 6.1              | η < 0.1           | $\eta = 0.9$                                               | x: 5.02 m<br>η = 0.6          | η < 0.1                       | CUMPLE<br>h = 6.1  |



#### TFM\_nave\_industrial\_R15\_sin\_revestimiento

| Barras   |                                        |                          |                                 |                                        | COMPROBA                                                   | CIONES (CTE                 | DB SE-A) -                  | TEMPERATUR.           | A AMBIE  | NTE                    |                       |                                        |                     |                               | Estado             |
|----------|----------------------------------------|--------------------------|---------------------------------|----------------------------------------|------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------|----------|------------------------|-----------------------|----------------------------------------|---------------------|-------------------------------|--------------------|
| ballas   | $\overline{\lambda}$                   | N <sub>t</sub>           | N <sub>c</sub>                  | M <sub>Y</sub>                         | Mz                                                         | Vz                          | V <sub>Y</sub>              | $M_vV_z$              | $M_zV_y$ | $NM_yM_z$              | $NM_yM_zV_yV_z$       | M,                                     | $M_tV_z$            | $M_tV_{\scriptscriptstyle Y}$ | Estado             |
| N42/N32  | $\overline{\lambda}$ < 2.0 Cumple      | x: 9.265 m $\eta = 20.9$ | x: 0 m<br>η = 20.2              | x: 4.632  m<br>$\eta = 45.9$           | $M_{Ed} = 0.00$<br>$N.P.^{(3)}$                            | x: 0 m<br>η = 0.2           | $V_{Ed} = 0.00$<br>N.P. (4) | x: 0.579 m<br>η < 0.1 | N.P. (5) | x: 4.632 m<br>η = 65.9 | x: 0.579 m<br>η < 0.1 | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup> | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 65.9 |
| N32/N122 | $\overline{\lambda} \le 4.0$<br>Cumple | η = 43.2                 | $N_{Ed} = 0.00$<br>$N.P.^{(6)}$ | $M_{Ed} = 0.00$<br>N.P. (3)            | $M_{Ed} = 0.00$<br>$N.P.^{(3)}$                            | $V_{Ed} = 0.00$<br>N.P. (4) | $V_{Ed} = 0.00$<br>N.P. (4) | N.P. (5)              | N.P. (5) | N.P. (7)               | N.P. <sup>(8)</sup>   | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup> | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 43.2 |
| N55/N92  | $\overline{\lambda} \le 4.0$<br>Cumple | η = 1.5                  | $N_{Ed} = 0.00$<br>$N.P.^{(6)}$ | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | $M_{Ed} = 0.00$<br>$N.P.^{(3)}$                            | $V_{Ed} = 0.00$<br>N.P. (4) | $V_{Ed} = 0.00$<br>N.P. (4) | N.P. (5)              | N.P. (5) | N.P. (7)               | N.P. <sup>(8)</sup>   | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup> | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 1.5  |
| N196/N37 | $\overline{\lambda} < 2.0$<br>Cumple   | x: 5.143 m<br>η = 8.9    | x: 0.412 m<br>η = 7.1           | x: 2.778 m<br>η = 21.8                 | $M_{Ed} = 0.00$<br>$N.P.^{(3)}$                            | x: 0.412 m<br>η = 0.2       | $V_{Ed} = 0.00$<br>N.P. (4) | x: 0.708 m<br>η < 0.1 | N.P. (5) | x: 2.778 m<br>η = 30.6 | x: 0.708 m<br>η < 0.1 | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup> | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 30.6 |
| N42/N196 | $\overline{\lambda}$ < 2.0 Cumple      |                          | x: 0.275 m<br>η = 16.6          | x: 4.016 m<br>η = 37.7                 | $\begin{array}{c} M_{Ed} = 0.00 \\ N.P.^{(3)} \end{array}$ | x: 0.275 m<br>η = 0.2       | $V_{Ed} = 0.00$<br>N.P. (4) | x: 0.743 m<br>η < 0.1 | N.P. (5) | x: 4.016 m<br>η = 54.2 | x: 0.743 m<br>η < 0.1 | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$        | N.P. <sup>(2)</sup> | N.P. (2)                      | CUMPLE<br>h = 54.2 |

#### Notación:

- `I: Limitación de esbeltez
- I w: Abolladura del alma inducida por el ala comprimida
- N<sub>t</sub>: Resistencia a tracción
- N<sub>c</sub>: Resistencia a compresión
- M<sub>Y</sub>: Resistencia a flexión eje Y
- Mz: Resistencia a flexión eje Z
- Vz: Resistencia a corte Z
- V<sub>Y</sub>: Resistencia a corte Y
- M<sub>Y</sub>V<sub>z</sub>: Resistencia a momento flector Y y fuerza cortante Z combinados
- M<sub>z</sub>V<sub>y</sub>: Resistencia a momento flector Z y fuerza cortante Y combinados

NM<sub>v</sub>M<sub>z</sub>: Resistencia a flexión y axil combinados

NM<sub>Y</sub>M<sub>z</sub>V<sub>Y</sub>V<sub>z</sub>: Resistencia a flexión, axil y cortante combinados

M<sub>t</sub>: Resistencia a torsión

 $M_tV_z$ : Resistencia a cortante Z y momento torsor combinados  $M_tV_v$ : Resistencia a cortante Y y momento torsor combinados

x: Distancia al origen de la barra

h: Coeficiente de aprovechamiento (%)

La comprobación no procede, ya que no hay momento torsor.

N.P.: No procede

when the control of the control o No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no

La comprobación no procede, ya que no hay momento flector.

<sup>(4)</sup> La comprobación no procede, ya que no hay esfuerzo cortante

(S) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Da comprobación no procede, ya que no hay axil de compresión.

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede

(8) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

| Barras                   |                                               | 1                                             |                        |                                    |                        |                                    | B SE-A) - SIT         |                     |                                |                         |                                    |                               |                               | Estado             |
|--------------------------|-----------------------------------------------|-----------------------------------------------|------------------------|------------------------------------|------------------------|------------------------------------|-----------------------|---------------------|--------------------------------|-------------------------|------------------------------------|-------------------------------|-------------------------------|--------------------|
| 9                        | N <sub>t</sub>                                | N <sub>c</sub>                                | M <sub>Y</sub>         | Mz                                 | Vz                     | V <sub>Y</sub>                     | $M_YV_Z$              | $M_zV_y$            | NM <sub>Y</sub> M <sub>Z</sub> | $NM_{Y}M_{z}V_{Y}V_{z}$ | M <sub>t</sub>                     | M <sub>t</sub> V <sub>z</sub> | M <sub>t</sub> V <sub>y</sub> | 01111515           |
| 2/N192<br>0<br>1/192/N37 | x: 5.86 m<br>η = 0.5                          | x: 0 m<br>η = 14.7                            | x: 0 m<br>η = 5.1      | x: 0 m<br>η = 50.1                 | x: 0 m<br>η = 2.2      | x: 0 m<br>η = 2.5                  | η < 0.1               | η < 0.1             | x: 0 m<br>η = 63.8             | η < 0.1                 | η = 0.3                            | x: 0 m<br>η = 2.2             | x: 0 m<br>η = 2.5             | CUMPLE<br>h = 63.8 |
| ₹192/N37                 | x: 1.621 m<br>η = 1.1                         | x: 0.135 m<br>η = 2.7                         | x: 1.621 m<br>η = 3.6  | x: 0.135 m<br>η = 25.8             | x: 0.135 m<br>η = 1.7  | x: 1.621 m<br>η = 1.5              | η < 0.1               | $\eta  <  0.1$      | x: 0.135 m<br>η = 41.7         | $\eta < 0.1$            | η = 2.6                            | x: 0.135 m<br>η = 1.7         | x: 1.621 m<br>η = 1.5         | CUMPLE<br>h = 41.7 |
| N37/N122                 | x: 2.648 m<br>η = 0.1                         | x: 0.184 m<br>η = 8.3                         | x: 0.184 m<br>η = 3.6  | x: 2.648 m<br>η = 2.5              | x: 0.184 m<br>η = 1.7  | x: 2.648 m<br>η = 0.1              | η < 0.1               | $\eta < 0.1$        | x: 0.184 m<br>η = 12.1         | $\eta < 0.1$            | η = 3.6                            | x: 0.184 m<br>η = 1.7         | x: 2.648 m<br>η = 0.1         | CUMPLE<br>h = 12.1 |
| N122/N124                | x: 2.648 m<br>η = 0.3                         | x: 0 m<br>η = 7.1                             | x: 2.648 m<br>η = 3.4  | x: 2.648 m<br>η = 3.9              | x: 2.648 m<br>η = 2.0  | x: 0 m<br>η = 0.2                  | η < 0.1               | η < 0.1             | x: 2.648 m<br>η = 11.2         | η < 0.1                 | η = 1.7                            | x: 2.648 m<br>η = 2.0         | x: 0 m<br>η = 0.2             | CUMPLE<br>h = 11.2 |
| N124/N126                | x: 2.648 m<br>n = 0.8                         | x: 0 m<br>n = 7.2                             | x: 0 m<br>η = 3.2      | x: 2.648 m<br>η = 4.1              | x: 0 m<br>η = 1.8      | x: 2.648 m<br>n = 0.3              | η < 0.1               | η < 0.1             | x: 0 m<br>n = 10.3             | η < 0.1                 | η = 2.0                            | x: 0 m<br>η = 1.9             | x: 2.648 m<br>η = 0.3         | CUMPLE<br>h = 10.3 |
| N126/N128                | x: 2.648 m<br>η = 1.3                         | x: 0 m<br>η = 8.5                             | x: 2.648 m<br>η = 3.6  | x: 0 m<br>η = 4.4                  | x: 2.648 m<br>η = 1.9  | x: 0 m<br>η = 0.2                  | η < 0.1               | η < 0.1             | x: 2.648 m<br>η = 12.5         | η < 0.1                 | η = 2.3                            | x: 2.648 m<br>η = 1.9         | x: 0 m<br>η = 0.2             | CUMPLE<br>h = 12.5 |
| N128/N40                 | x: 2.648 m<br>η = 1.5                         | x: 0 m<br>η = 7.6                             | x: 2.648 m<br>η = 5.1  | x: 0 m<br>η = 3.2                  | x: 0 m<br>η = 2.1      | x: 2.648 m<br>η = 0.1              | η < 0.1               | η < 0.1             | x: 0 m<br>η = 11.2             | η < 0.1                 | η = 0.7                            | x: 0 m<br>η = 2.1             | x: 2.648 m<br>η = 0.1         | CUMPLE<br>h = 11.2 |
| N21/N47                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0 m<br>η = 63.6                            | x: 0 m<br>η = 55.2     | x: 0 m<br>η = 1.4                  | x: 0 m<br>η = 8.7      | η < 0.1                            | η < 0.1               | η < 0.1             | x: 0 m<br>η = 93.3             | η < 0.1                 | η = 0.2                            | x: 0 m<br>η = 5.9             | η < 0.1                       | CUMPLE<br>h = 93.3 |
| N47/N22                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.135 m<br>η = 5.0                         | x: 0.135 m<br>η = 39.5 | x: 0.135 m<br>η = 0.5              | x: 0.877 m<br>η = 34.0 | η < 0.1                            | η < 0.1               | η < 0.1             | x: 0.135 m<br>η = 44.2         | η < 0.1                 | η = 0.3                            | x: 0.135 m<br>η = 16.4        | η < 0.1                       | CUMPLE<br>h = 44.2 |
| N22/N91                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.153 m<br>η = 17.3                        | x: 0.153 m<br>η = 59.2 | x: 2.594 m<br>η = 2.3              | x: 0.153 m<br>η = 14.2 | η < 0.1                            | η < 0.1               | η < 0.1             | x: 0.153 m<br>η = 76.0         | η < 0.1                 | η = 0.1                            | x: 0.153 m<br>η = 5.5         | η < 0.1                       | CUMPLE<br>h = 76.0 |
| N91/N95                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.054 m<br>η = 26.7                        | x: 0.054 m<br>η = 23.4 | x: 0.054 m<br>η = 1.4              | x: 2.601 m<br>η = 6.1  | η < 0.1                            | η < 0.1               | η < 0.1             | x: 0.054 m<br>η = 51.4         | η < 0.1                 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. (3)                      | CUMPLE<br>h = 51.4 |
| N95/N99                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.047 m<br>η = 28.2                        | x: 0.047 m<br>η = 3.6  | x: 2.605 m<br>η = 2.0              | x: 0.047 m<br>η = 3.0  | η < 0.1                            | η < 0.1               | η < 0.1             | x: 0.047 m<br>η = 32.0         | η < 0.1                 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. <sup>(3)</sup>           | CUMPLE<br>h = 32.0 |
| N99/N103                 | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.043 m<br>η = 27.0                        | x: 1.325 m<br>η = 5.4  | x: 0.043 m<br>η = 0.5              | x: 0.043 m<br>η = 2.7  | η < 0.1                            | η < 0.1               | η < 0.1             | x: 1.325 m<br>η = 32.6         | η < 0.1                 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. <sup>(3)</sup>           | CUMPLE<br>h = 32.6 |
| N103/N25                 | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.041 m<br>η = 24.7                        | x: 2.607 m<br>η = 8.2  | x: 2.607 m<br>η = 0.9              | x: 2.607 m<br>η = 3.8  | η < 0.1                            | η < 0.1               | η < 0.1             | x: 2.607 m<br>η = 33.0         | η < 0.1                 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. <sup>(3)</sup>           | CUMPLE<br>h = 33.0 |
| N22/N27                  | η = 3.1                                       | η = 3.2                                       | x: 0 m<br>η = 7.6      | x: 5 m<br>η = 4.1                  | x: 0 m<br>η = 0.9      | η = 0.1                            | η < 0.1               | x: 0 m<br>η < 0.1   | x: 5 m<br>η = 14.2             | η < 0.1                 | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. (3)                      | N.P. (3)                      | CUMPLE<br>h = 14.2 |
| N32/N37                  | η = 2.5                                       | η = 26.9                                      | x: 0 m<br>η = 9.6      | x: 0 m<br>η = 4.5                  | x: 0 m<br>η = 1.0      | η = 0.1                            | x: 0 m<br>η < 0.1     | x: 0 m<br>η < 0.1   | x: 0 m<br>η = 38.5             | x: 0 m<br>η < 0.1       | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. (3)                      | CUMPLE<br>h = 38.5 |
| N42/N32                  | x: 9.265 m<br>η = 14.1                        | x: 0 m<br>η = 17.7                            | x: 4.632 m<br>η = 80.8 | M <sub>Ed</sub> = 0.00<br>N.P. (4) | x: 0 m<br>η = 0.3      | V <sub>Ed</sub> = 0.00<br>N.P. (5) | x: 0.579 m<br>η < 0.1 | N.P. <sup>(6)</sup> | x: 4.632 m<br>η = 98.2         | x: 0.579 m<br>η < 0.1   | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. (3)                      | CUMPLE<br>h = 98.2 |
| N47/N55                  | η = 11.2                                      | N <sub>Ed</sub> = 0.00<br>N.P. (7)            | x: 0.15 m<br>η = 61.9  | x: 2.56 m<br>η = 3.0               | x: 0.15 m<br>η = 14.4  | η = 0.1                            | η < 0.1               | η < 0.1             | x: 0.15 m<br>η = 68.8          | η < 0.1                 | η = 0.2                            | x: 0.15 m<br>η = 6.1          | η = 0.1                       | CUMPLE<br>h = 68.8 |
| N55/N59                  | η = 11.5                                      | N <sub>Ed</sub> = 0.00<br>N.P. (7)            | x: 0.04 m<br>η = 27.2  | x: 0.04 m<br>η = 0.7               | x: 2.529 m<br>η = 4.7  | η < 0.1                            | η < 0.1               | η < 0.1             | x: 0.04 m<br>η = 37.3          | η < 0.1                 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>           | N.P. <sup>(3)</sup>           | CUMPLE<br>h = 37.3 |
| N59/N63                  | η = 18.6                                      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 2.542 m<br>η = 3.6  | x: 2.542 m<br>η = 1.8              | x: 0.071 m<br>η = 1.3  | η < 0.1                            | η < 0.1               | η < 0.1             | x: 2.542 m<br>η = 22.2         | η < 0.1                 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)                      | N.P. (3)                      | CUMPLE<br>h = 22.2 |



#### TFM\_nave\_industrial\_R15\_sin\_revestimiento

| D                             |                                                                                      |                                 |                                    |                                    | COMPROBACI                                    | ONES (CTE D                 | B SE-A) - SIT         | UACIÓN D            | E INCENDIO             |                       |                                    |                       |          | Catada             |
|-------------------------------|--------------------------------------------------------------------------------------|---------------------------------|------------------------------------|------------------------------------|-----------------------------------------------|-----------------------------|-----------------------|---------------------|------------------------|-----------------------|------------------------------------|-----------------------|----------|--------------------|
| Barras                        | N <sub>t</sub>                                                                       | N <sub>c</sub>                  | M <sub>Y</sub>                     | Mz                                 | Vz                                            | V <sub>Y</sub>              | $M_YV_Z$              | $M_zV_y$            | $NM_YM_Z$              | $NM_yM_zV_yV_z$       | M <sub>t</sub>                     | $M_tV_z$              | $M_tV_Y$ | Estado             |
| N63/N67                       | η = 19.5                                                                             | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 0.888 m<br>η = 3.9              | x: 2.549 m<br>η = 0.4              | x: 2.549 m<br>η = 0.7                         | η < 0.1                     | η < 0.1               | η < 0.1             | x: 0.888 m<br>η = 23.4 | η < 0.1               | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 23.4 |
| N67/N71                       | η = 18.7                                                                             | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 0.051 m<br>η = 2.4              | x: 2.553 m<br>η = 0.9              | x: 2.553 m<br>η = 1.2                         | η < 0.1                     | η < 0.1               | η < 0.1             | x: 0.051 m<br>η = 21.0 | η < 0.1               | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 21.0 |
| N55/N91                       | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup>                                        | x: 0.135 m<br>η = 24.5          | x: 1.377 m<br>η = 37.4             | x: 1.377 m<br>η = 0.4              | η = 5.0                                       | η < 0.1                     | η < 0.1               | η < 0.1             | x: 0.135 m<br>η = 68.1 | η < 0.1               | η = 0.3                            | η = 2.1               | η < 0.1  | CUMPLE<br>h = 68.1 |
| N71/N103                      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup>                                        | x: 0.179 m<br>η = 73.3          | x: 3.831 m<br>η = 3.9              | x: 0.179 m<br>η = 0.3              | x: 3.831 m<br>η = 0.5                         | η < 0.1                     | η < 0.1               | η < 0.1             | x: 3.831 m<br>η = 77.6 | η < 0.1               | η = 0.2                            | x: 3.831 m<br>η = 0.5 | η < 0.1  | CUMPLE<br>h = 77.6 |
| N32/N122                      | η = 62.2                                                                             | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | $M_{Ed} = 0.00$<br>N.P. (4)        | $M_{Ed} = 0.00$<br>N.P. (4)        | V <sub>Ed</sub> = 0.00<br>N.P. (5)            | $V_{Ed} = 0.00$<br>N.P. (5) | N.P. (6)              | N.P. <sup>(6)</sup> | N.P. (8)               | N.P. <sup>(9)</sup>   | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 62.2 |
| N180/N200                     | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup>                                        | x: 0 m<br>η = 42.9              | x: 0 m<br>η = 60.6                 | x: 0 m<br>η = 1.7                  | x: 0 m<br>η = 11.6                            | η < 0.1                     | η < 0.1               | η < 0.1             | x: 0 m<br>η = 84.8     | η < 0.1               | η = 0.2                            | x: 0 m<br>η = 11.6    | η < 0.1  | CUMPLE<br>h = 84.8 |
| N200/N128                     | x: 3.621 m<br>η < 0.1                                                                | x: 0.135 m<br>η = 18.5          | x: 0.135 m<br>η = 34.4             | x: 3.621 m<br>η = 1.9              | x: 3.621 m<br>η = 6.4                         | $\eta = 0.1$                | η < 0.1               | η < 0.1             | x: 0.135 m<br>η = 43.7 | η < 0.1               | η = 0.1                            | x: 3.621 m<br>η = 6.4 | η < 0.1  | CUMPLE<br>h = 43.7 |
| N91/N92                       | η = 2.7                                                                              | η = 5.9                         | x: 4.965 m<br>η = 7.6              | x: 0.035 m<br>η = 3.3              | x: 0.035 m<br>η = 0.9                         | $\eta = 0.1$                | η < 0.1               | η < 0.1             | x: 0.035 m<br>η = 15.8 | η < 0.1               | η < 0.1                            | x: 0.035 m<br>η = 0.9 | η = 0.1  | CUMPLE<br>h = 15.8 |
| N55/N92                       | η = 2.2                                                                              | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | M <sub>Ed</sub> = 0.00<br>N.P. (4) | M <sub>Ed</sub> = 0.00<br>N.P. (4) | V <sub>Ed</sub> = 0.00<br>N.P. <sup>(5)</sup> | $V_{Ed} = 0.00$<br>N.P. (5) | N.P. <sup>(6)</sup>   | N.P. <sup>(6)</sup> | N.P. <sup>(8)</sup>    | N.P. <sup>(9)</sup>   | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 2.2  |
| N196/N37                      | x: 5.143 m<br>η = 8.0                                                                | x: 0.412 m<br>η = 5.1           | x: 2.778 m<br>η = 40.3             | $M_{Ed} = 0.00$<br>N.P. (4)        | x: 0.412 m<br>η = 0.3                         | $V_{Ed} = 0.00$<br>N.P. (5) | x: 0.708 m<br>η < 0.1 | N.P. <sup>(6)</sup> | x: 2.778 m<br>η = 48.3 | x: 0.708 m<br>η < 0.1 | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 48.3 |
| N192/N196                     | η = 1.5                                                                              | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 0.18 m<br>η = 5.1               | x: 5.2 m<br>η = 4.4                | x: 0.18 m<br>η = 1.3                          | $\eta = 0.1$                | η < 0.1               | η < 0.1             | x: 5.2 m<br>η = 7.4    | η < 0.1               | η = 1.2                            | x: 0.18 m<br>η = 1.3  | η = 0.1  | CUMPLE<br>h = 7.4  |
| N196/N200                     | η = 1.7                                                                              | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 5.2 m<br>η = 2.8                | x: 0 m<br>η = 4.3                  | x: 5.2 m<br>η = 1.1                           | $\eta = 0.1$                | η < 0.1               | η < 0.1             | x: 0 m<br>η = 7.0      | η < 0.1               | η = 0.2                            | x: 5.2 m<br>η = 1.1   | η = 0.1  | CUMPLE<br>h = 7.0  |
| N200/N202                     | η = 1.7                                                                              | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 0 m<br>η = 2.7                  | x: 0 m<br>η = 2.7                  | x: 0 m<br>η = 1.1                             | η < 0.1                     | η < 0.1               | η < 0.1             | x: 0 m<br>η = 6.0      | η < 0.1               | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 6.0  |
| N202/N198                     | η = 1.7                                                                              | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 0 m<br>η = 2.8                  | x: 5.2 m<br>η = 4.3                | x: 0 m<br>η = 1.1                             | $\eta = 0.1$                | η < 0.1               | η < 0.1             | x: 5.2 m<br>η = 7.0    | η < 0.1               | η = 0.2                            | x: 0 m<br>η = 1.1     | η = 0.1  | CUMPLE<br>h = 7.0  |
| N198/N194                     | η = 1.5                                                                              | $N_{Ed} = 0.00$<br>$N.P.^{(7)}$ | x: 5.02 m<br>η = 5.1               | x: 0 m<br>η = 4.4                  | x: 5.02 m<br>η = 1.3                          | $\eta = 0.1$                | η < 0.1               | η < 0.1             | x: 0 m<br>η = 7.4      | η < 0.1               | η = 1.2                            | x: 5.02 m<br>η = 1.3  | η = 0.1  | CUMPLE<br>h = 7.4  |
| (N42/N196                     | x: 7.756 m<br>η = 10.8                                                               | x: 0.275 m<br>η = 15.1          | x: 4.016 m<br>η = 69.9             | M <sub>Ed</sub> = 0.00<br>N.P. (4) | x: 0.275 m<br>η = 0.3                         | $V_{Ed} = 0.00$<br>N.P. (5) | x: 0.743 m<br>η < 0.1 | N.P. (6)            | x: 4.016 m<br>η = 84.8 | x: 0.743 m<br>η < 0.1 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3) | CUMPLE<br>h = 84.8 |
| (1) N <sub>c</sub> : Resister | ncia a tracción<br>ncia a compresión<br>ncia a flexión eje '<br>ncia a flexión eje ' |                                 |                                    |                                    |                                               |                             |                       |                     |                        |                       |                                    |                       |          |                    |

#### - UNIONES

#### 31.- Comprobaciones en placas de anclaje

cada placa de anclaje se realizan las siguientes comprobaciones (asumiendo la hipótesis de placa ridida):

1. Hormigón sobre el que apoya la placa

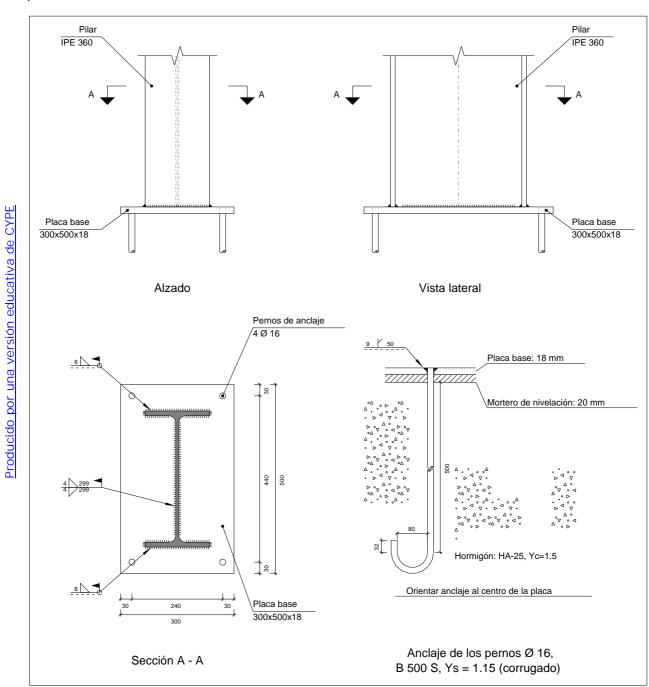
Se comprueba que la tensión de compresión en la interfaz placa de anclaje-hormigón es menor a la tensión admisible del hormigón según la naturaleza de cada combinación.

#### 2. Pernos de anclaje

- a) Resistencia del material de los pernos: Se descomponen los esfuerzos actuantes sobre la placa en axiles y cortantes en los pernos y se comprueba que ambos esfuerzos, por separado y con interacción entre ellos (tensión de Von Mises), producen tensiones menores a la tensión límite del material de los
- b) Anclaje de los pernos: Se comprueba el anclaje de los pernos en el hormigón de tal manera que no se produzca el fallo de deslizamiento por adherencia, arrancamiento del cono de rotura o fractura por esfuerzo cortante (aplastamiento).
- Aplastamiento: Se comprueba que en cada perno no se supera el cortante que produciría el aplastamiento de la placa contra el perno.

sistencia a momento flector Y y fuerza cortante Z combinados sistencia a momento flector Z y fuerza cortante Y combinados Resistencia a flexión y axil combinados V<sub>x</sub>: Resistencia a flexión, axil y cortante combinados ste

TFM\_nave\_industrial\_R15\_sin\_revestimiento


#### 3. Placa de anclaje

- a) Tensiones globales: En placas con vuelo, se analizan cuatro secciones en el perímetro del perfil, y se comprueba en todas ellas que las tensiones de Von Mises sean menores que la tensión límite según la norma.
- b) Flechas globales relativas: Se comprueba que en los vuelos de las placas no aparezcan flechas mayores que 1/250 del vuelo.
- c)
  Tensiones locales: Se comprueban las tensiones de Von Mises en todas las placas locales en las que tanto el perfil como los rigidizadores dividen a la placa de anclaje propiamente dicha. Los esfuerzos en cada una de las subplacas se obtienen a partir de las tensiones de contacto con el hormigón y los axiles de los pernos. El modelo generado se resuelve por diferencias finitas.

### 3.2.- Memoria de cálculo

#### 3.2.1.- Tipo 1

#### a) Detalle



Página 17



TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### b) Descripción de los componentes de la unión

|               | Elementos complementarios |               |               |                 |          |                              |                              |               |      |                         |                         |
|---------------|---------------------------|---------------|---------------|-----------------|----------|------------------------------|------------------------------|---------------|------|-------------------------|-------------------------|
|               | G                         |               | Acero         |                 |          |                              |                              |               |      |                         |                         |
| Pieza         | Esquema                   | Ancho<br>(mm) | Canto<br>(mm) | Espesor<br>(mm) | Cantidad | Diámetro<br>exterior<br>(mm) | Diámetro<br>interior<br>(mm) | Bisel<br>(mm) | Tipo | f <sub>y</sub><br>(MPa) | f <sub>u</sub><br>(MPa) |
| Placa<br>base | 99 b                      | 300           | 500           | 18              | 4        | 34                           | 18                           | 9             | S275 | 275.0                   | 410.0                   |

#### c) Comprobación

1) Pilar IPE 360

### Cordones de soldadura

| Comprobaciones geométricas |           |           |           |           |                    |  |  |  |  |  |
|----------------------------|-----------|-----------|-----------|-----------|--------------------|--|--|--|--|--|
| Ref.                       | Tipo      | a<br>(mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |  |
| Soldadura del ala superior | En ángulo | 6         | 170       | 12.7      | 90.00              |  |  |  |  |  |
| Soldadura del alma         | En ángulo | 4         | 299       | 8.0       | 90.00              |  |  |  |  |  |
| Soldadura del ala inferior | En ángulo | 6         | 170       | 12.7      | 90.00              |  |  |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

| Comprobación de resistencia |                                       |                       |                                |                  |        |                                       |        |                           |             |  |
|-----------------------------|---------------------------------------|-----------------------|--------------------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|--|
| Ref.                        |                                       | Tensió                | n de Von                       | Tensión          | normal | f                                     |        |                           |             |  |
|                             | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²) | $\tau_{  } \\ \text{(N/mm}^2)$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | Γ <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |  |
| Soldadura del ala superior  | 192.5                                 | 192.5                 | 5.3                            | 385.2            | 99.81  | 192.5                                 | 58.70  | 410.0                     | 0.85        |  |
| Soldadura del alma          | 19.1                                  | 19.1                  | 7.1                            | 40.2             | 10.41  | 19.1                                  | 5.83   | 410.0                     | 0.85        |  |
| Soldadura del ala inferior  | 192.5                                 | 192.5                 | 5.3                            | 385.2            | 99.81  | 192.5                                 | 58.70  | 410.0                     | 0.85        |  |



 $TFM\_nave\_industrial\_R15\_sin\_revestimiento$ 

### 2) Placa de anclaje

| Referencia:                                                                               |                                              |        |
|-------------------------------------------------------------------------------------------|----------------------------------------------|--------|
| Comprobación                                                                              | Valores                                      | Estado |
| Separación mínima entre pernos: 3 diámetros                                               | Mínimo: 48 mm<br>Calculado: 241 mm           | Cumple |
| Separación mínima pernos-borde:<br>1.5 diámetros                                          | Mínimo: 24 mm<br>Calculado: 30 mm            | Cumple |
| Longitud mínima del perno:<br>Se calcula la longitud de anclaje necesaria por adherencia. | Mínimo: 17 cm<br>Calculado: 50 cm            | Cumple |
| Anclaje perno en hormigón:                                                                |                                              |        |
| - Tracción:                                                                               | Máximo: 88.9 kN<br>Calculado: 77.66 kN       | Cumple |
| - Cortante:                                                                               | Máximo: 62.23 kN<br>Calculado: 7.2 kN        | Cumple |
| - Tracción + Cortante:                                                                    | Máximo: 88.9 kN<br>Calculado: 87.94 kN       | Cumple |
| Tracción en vástago de pernos:                                                            | Máximo: 80.4 kN<br>Calculado: 73.39 kN       | Cumple |
| Tensión de Von Mises en vástago de pernos:                                                | Máximo: 476.19 MPa<br>Calculado: 370.649 MPa | Cumple |
| Aplastamiento perno en placa:  Límite del cortante en un perno actuando contra la placa   | Máximo: 150.86 kN<br>Calculado: 6.74 kN      | Cumple |
| Tensión de Von Mises en secciones globales:                                               | Máximo: 261.905 MPa                          |        |
| - Derecha:                                                                                | Calculado: 165.208 MPa                       | Cumple |
| - Izquierda:                                                                              | Calculado: 165.208 MPa                       | Cumple |
| - Arriba:                                                                                 | Calculado: 203.056 MPa                       | Cumple |
| - Abajo:                                                                                  | Calculado: 203.056 MPa                       | Cumple |
| Flecha global equivalente:<br>Limitación de la deformabilidad de los vuelos               | Mínimo: 250                                  |        |
| - Derecha:                                                                                | Calculado: 1020.66                           | Cumple |
| - Izquierda:                                                                              | Calculado: 1020.66                           | Cumple |
| - Arriba:                                                                                 | Calculado: 1346.76                           | Cumple |
| - Abajo:                                                                                  | Calculado: 1346.76                           | Cumple |
| Tensión de Von Mises local:  Tensión por tracción de pernos sobre placas en voladizo      | Máximo: 261.905 MPa<br>Calculado: 0 MPa      | Cumple |
| Se cumplen todas las comprobacion                                                         | nes                                          |        |

#### Cordones de soldadura

| Comprobaciones geométricas                |                        |                            |           |           |                    |  |  |  |  |  |
|-------------------------------------------|------------------------|----------------------------|-----------|-----------|--------------------|--|--|--|--|--|
| Ref.                                      | Tipo                   | Preparación de bordes (mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |  |
| Soldadura de los pernos a la placa base   | De penetración parcial | 9                          | 50        | 16.0      | 90.00              |  |  |  |  |  |
| I: Longitud efectiva t: Espesor de piezas |                        |                            |           |           |                    |  |  |  |  |  |

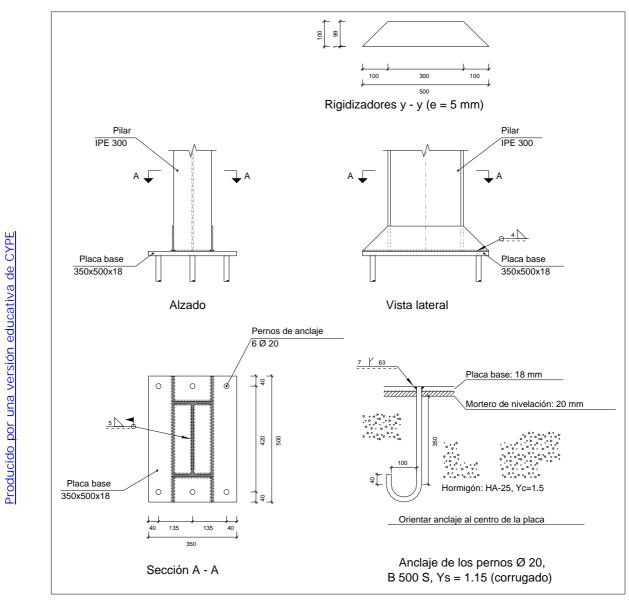
| Comprobación de resistencia             |                                       |                       |                    |                  |        |                                       |        |                           |             |
|-----------------------------------------|---------------------------------------|-----------------------|--------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|
|                                         |                                       | Tensió                | n de Vor           | Tensión          | normal | f                                     |        |                           |             |
| Ref.                                    | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²) | $	au_{  }$ (N/mm²) | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | I <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |
| Soldadura de los pernos a la placa base | 0.0                                   | 0.0                   | 208.6              | 361.3            | 93.62  | 0.0                                   | 0.00   | 410.0                     | 0.85        |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

### d) Medición

|                         |                        | Soldaduras                                      |                          |                           |
|-------------------------|------------------------|-------------------------------------------------|--------------------------|---------------------------|
| f <sub>u</sub><br>(MPa) | Ejecución Tipo         |                                                 | Espesor de garganta (mm) | Longitud de cordones (mm) |
|                         | En taller              | A tope en bisel simple con talón de raíz amplio | 9                        | 201                       |
| 410.0                   | En al lugar de mantais | En ángulo                                       | 4                        | 597                       |
|                         | En el lugar de montaje | En ángulo                                       | 6                        | 643                       |


| Placas de anclaje              |                   |          |                      |              |  |  |  |  |  |  |
|--------------------------------|-------------------|----------|----------------------|--------------|--|--|--|--|--|--|
| Material                       | Elementos         | Cantidad | Dimensiones<br>(mm)  | Peso<br>(kg) |  |  |  |  |  |  |
| S275                           | Placa base        | 1        | 300x500x18           | 21.20        |  |  |  |  |  |  |
| 3275                           |                   |          | Total                | 21.20        |  |  |  |  |  |  |
| DEOOS Vs. 1.15 (corrugado)     | Pernos de anclaje | 4        | Ø 16 - L = 554 + 183 | 4.65         |  |  |  |  |  |  |
| B 500 S, Ys = 1.15 (corrugado) |                   |          | Total                | 4.65         |  |  |  |  |  |  |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### 3.2.2.- Tipo 2

#### a) Detalle





TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### b) Descripción de los componentes de la unión

|             |                |               | Ele           | ementos         | compleme | entarios                     |                              |               |      |                         |                         |  |  |
|-------------|----------------|---------------|---------------|-----------------|----------|------------------------------|------------------------------|---------------|------|-------------------------|-------------------------|--|--|
|             | G              | eometrí       | а             |                 |          | Taladros                     |                              |               |      |                         | Acero                   |  |  |
| Pieza       | Esquema        | Ancho<br>(mm) | Canto<br>(mm) | Espesor<br>(mm) | Cantidad | Diámetro<br>exterior<br>(mm) | Diámetro<br>interior<br>(mm) | Bisel<br>(mm) | Tipo | f <sub>y</sub><br>(MPa) | f <sub>u</sub><br>(MPa) |  |  |
| Placa base  | ⊕ ⊕ ⊕<br>⊕ ⊕ ⊕ | 350           | 500           | 18              | 6        | 34                           | 22                           | 7             | S275 | 275.0                   | 410.0                   |  |  |
| Rigidizador | 500            | 500           | 100           | 5               | -        | -                            | -                            | -             | S275 | 275.0                   | 410.0                   |  |  |

### c) Comprobación

1) Pilar IPE 300

#### Cordones de soldadura

| Comprobaciones geométricas      |           |           |          |           |                    |  |  |  |  |
|---------------------------------|-----------|-----------|----------|-----------|--------------------|--|--|--|--|
| Ref.                            | Tipo      | a<br>(mm) | <br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |
| Soldadura perimetral a la placa | En ángulo | 5         | 1023     | 7.1       | 90.00              |  |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

| Comprobación de resistencia     |                                       |                       |                    |                  |        |                                       |        |         |             |
|---------------------------------|---------------------------------------|-----------------------|--------------------|------------------|--------|---------------------------------------|--------|---------|-------------|
| Ref.                            |                                       | Tensió                | n de Von           | Tensión normal   |        | f                                     |        |         |             |
|                                 | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²) | $	au_{  }$ (N/mm²) | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | (N/mm²) | $\beta_{w}$ |
| Soldadura perimetral a la placa | La comprobación no procede.           |                       |                    |                  |        |                                       |        | 410.0   | 0.85        |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### 2) Placa de anclaje

| Deferencies                                                                               |                                               |        |
|-------------------------------------------------------------------------------------------|-----------------------------------------------|--------|
| Referencia:                                                                               | Valaras                                       | Catada |
| Comprobación                                                                              | Valores                                       | Estado |
| Separación mínima entre pernos: 3 diámetros                                               | Mínimo: 60 mm<br>Calculado: 135 mm            | Cumple |
| Separación mínima pernos-borde: 1.5 diámetros                                             | Mínimo: 30 mm<br>Calculado: 40 mm             | Cumple |
| Esbeltez de rigidizadores: - Paralelos a Y:                                               | Máximo: 50<br>Calculado: 49                   | Cumple |
| Longitud mínima del perno:<br>Se calcula la longitud de anclaje necesaria por adherencia. | Mínimo: 22 cm<br>Calculado: 35 cm             | Cumple |
| Anclaje perno en hormigón:                                                                |                                               |        |
| - Tracción:                                                                               | Máximo: 77.78 kN<br>Calculado: 59.35 kN       | Cumple |
| - Cortante:                                                                               | Máximo: 54.45 kN<br>Calculado: 5.35 kN        | Cumple |
| - Tracción + Cortante:                                                                    | Máximo: 77.78 kN<br>Calculado: 66.99 kN       | Cumple |
| Tracción en vástago de pernos:                                                            | Máximo: 125.6 kN<br>Calculado: 56.71 kN       | Cumple |
| Tensión de Von Mises en vástago de pernos:                                                | Máximo: 476.19 MPa<br>Calculado: 182.996 MPa  | Cumple |
| Aplastamiento perno en placa:  Límite del cortante en un perno actuando contra la placa   | Máximo: 188.57 kN<br>Calculado: 5.04 kN       | Cumple |
| Tensión de Von Mises en secciones globales:                                               | Máximo: 261.905 MPa                           |        |
| - Derecha:                                                                                | Calculado: 63.021 MPa                         | Cumple |
| - Izquierda:                                                                              | Calculado: 63.021 MPa                         | Cumple |
| - Arriba:                                                                                 | Calculado: 261.735 MPa                        | Cumple |
| - Abajo:                                                                                  | Calculado: 261.735 MPa                        | Cumple |
| Flecha global equivalente:<br>Limitación de la deformabilidad de los vuelos               | Mínimo: 250                                   |        |
| - Derecha:                                                                                | Calculado: 2254.56                            | Cumple |
| - Izquierda:                                                                              | Calculado: 2254.56                            | Cumple |
| - Arriba:                                                                                 | Calculado: 3368.17                            | Cumple |
| - Abajo:                                                                                  | Calculado: 3368.17                            | Cumple |
| Tensión de Von Mises local:  Tensión por tracción de pernos sobre placas en voladizo      | Máximo: 261.905 MPa<br>Calculado: 129.139 MPa | Cumple |
| Se cumplen todas las comprobacion                                                         | es                                            |        |

#### Cordones de soldadura

| Comprobaciones geométricas                                 |                        |           |                            |           |           |                    |  |  |  |
|------------------------------------------------------------|------------------------|-----------|----------------------------|-----------|-----------|--------------------|--|--|--|
| Ref.                                                       | Tipo                   | a<br>(mm) | Preparación de bordes (mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |
| Rigidizador y-y $(x = -78)$ :<br>Soldadura a la placa base | En ángulo              | 4         |                            | 500       | 5.0       | 90.00              |  |  |  |
| Rigidizador y-y (x = 78):<br>Soldadura a la placa base     | En ángulo              | 4         |                            | 500       | 5.0       | 90.00              |  |  |  |
| Soldadura de los pernos a la placa base                    | De penetración parcial |           | 7                          | 63        | 18.0      | 90.00              |  |  |  |
| a. Espasar garganta                                        | •                      |           |                            |           |           |                    |  |  |  |

- a: Espesor gargantal: Longitud efectivat: Espesor de piezas



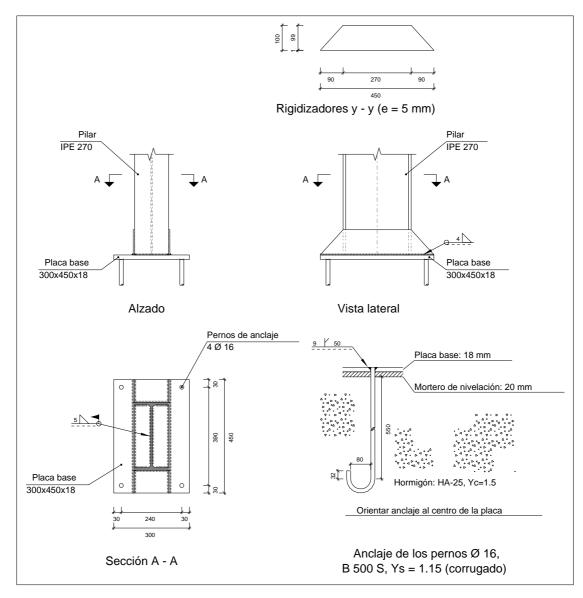
TFM\_nave\_industrial\_R15\_sin\_revestimiento

| Comprobación de resistencia                                |                                       |                                                      |                                |                  |        |                                       |        |                           |             |
|------------------------------------------------------------|---------------------------------------|------------------------------------------------------|--------------------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|
|                                                            |                                       | Tensión de Von Mises Tensión normal                  |                                |                  |        |                                       |        | f                         |             |
| Ref.                                                       | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $\tau_{\scriptscriptstyle \perp} \\ \text{(N/mm}^2)$ | $\tau_{  } \\ \text{(N/mm}^2)$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | f <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |
| Rigidizador y-y (x = $-78$ ):<br>Soldadura a la placa base |                                       | La comprobación no procede.                          |                                |                  |        |                                       |        | 410.0                     | 0.85        |
| Rigidizador y-y $(x = 78)$ :<br>Soldadura a la placa base  |                                       | La comprobación no procede.                          |                                |                  |        |                                       |        | 410.0                     | 0.85        |
| Soldadura de los pernos a la placa base                    | 0.0                                   | 0.0 0.0 180.5 312.7 81.03 0.0 0.00                   |                                |                  |        |                                       | 410.0  | 0.85                      |             |

### d) Medición

|                         | Soldaduras             |                                                 |                          |                           |  |  |  |  |  |  |
|-------------------------|------------------------|-------------------------------------------------|--------------------------|---------------------------|--|--|--|--|--|--|
| f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                                            | Espesor de garganta (mm) | Longitud de cordones (mm) |  |  |  |  |  |  |
|                         |                        | En ángulo                                       | 4                        | 1957                      |  |  |  |  |  |  |
| 410.0                   | En taller              | A tope en bisel simple con talón de raíz amplio | 7                        | 377                       |  |  |  |  |  |  |
|                         | En el lugar de montaje | En ángulo                                       | 5                        | 1023                      |  |  |  |  |  |  |

|                                | Placas de anclaje                   |   |                                |              |  |  |  |  |  |  |
|--------------------------------|-------------------------------------|---|--------------------------------|--------------|--|--|--|--|--|--|
| Material                       | Elementos Cantidad Dimensiones (mm) |   |                                | Peso<br>(kg) |  |  |  |  |  |  |
| S275                           | Placa base                          | 1 | 350x500x18                     | 24.73        |  |  |  |  |  |  |
|                                | Rigidizadores pasantes              | 2 | 500/300x100/1x5                | 3.15         |  |  |  |  |  |  |
|                                |                                     |   | Total                          | 27.88        |  |  |  |  |  |  |
| D 500 C V- 115 (               | Pernos de anclaje                   | 6 | $\emptyset$ 20 - L = 408 + 228 | 9.42         |  |  |  |  |  |  |
| B 500 S, Ys = 1.15 (corrugado) |                                     |   | Total                          | 9.42         |  |  |  |  |  |  |


Producido por una versión educativa de CYPE



TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### 3.2.3.- Tipo 3

#### a) Detalle





TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### b) Descripción de los componentes de la unión

|             |          |               | Ele           | ementos         | compleme | entarios                     |                              |               |       |                         |                         |
|-------------|----------|---------------|---------------|-----------------|----------|------------------------------|------------------------------|---------------|-------|-------------------------|-------------------------|
|             | G        | Geometría     |               |                 |          | Taladı                       | ros                          |               | Acero |                         |                         |
| Pieza       | Esquema  | Ancho<br>(mm) | Canto<br>(mm) | Espesor<br>(mm) | Cantidad | Diámetro<br>exterior<br>(mm) | Diámetro<br>interior<br>(mm) | Bisel<br>(mm) | Tipo  | f <sub>y</sub><br>(MPa) | f <sub>u</sub><br>(MPa) |
| Placa base  | \$ 300 d | 300           | 450           | 18              | 4        | 34                           | 18                           | 9             | S275  | 275.0                   | 410.0                   |
| Rigidizador | 80 450   | 450           | 100           | 5               | -        | -                            | -                            | -             | S275  | 275.0                   | 410.0                   |

### c) Comprobación

1) Pilar IPE 270

#### Cordones de soldadura

| Comprobaciones geométricas      |           |           |           |           |                    |  |  |
|---------------------------------|-----------|-----------|-----------|-----------|--------------------|--|--|
| Ref.                            | Tipo      | a<br>(mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |
| Soldadura perimetral a la placa | En ángulo | 5         | 906       | 6.6       | 90.00              |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

| Comprobación de resistencia     |                                       |                             |                               |                  |                |                                       |        |                           |             |
|---------------------------------|---------------------------------------|-----------------------------|-------------------------------|------------------|----------------|---------------------------------------|--------|---------------------------|-------------|
|                                 | Tensión de Von Mises                  |                             |                               |                  | Tensión normal |                                       | f      |                           |             |
| Ref.                            | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²)       | $\tau_{  } \\ \text{(N/mm²)}$ | Valor<br>(N/mm²) | Aprov.         | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | I <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |
| Soldadura perimetral a la placa |                                       | La comprobación no procede. |                               |                  |                |                                       | 410.0  | 0.85                      |             |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

#### 2) Placa de anclaje

| Referencia:                                                                               |                                              |        |
|-------------------------------------------------------------------------------------------|----------------------------------------------|--------|
| Comprobación                                                                              | Valores                                      | Estado |
| Separación mínima entre pernos: 3 diámetros                                               | Mínimo: 48 mm<br>Calculado: 241 mm           | Cumple |
| Separación mínima pernos-borde: 1.5 diámetros                                             | Mínimo: 24 mm<br>Calculado: 30 mm            | Cumple |
| Esbeltez de rigidizadores: - Paralelos a Y:                                               | Máximo: 50<br>Calculado: 46.6                | Cumple |
| Longitud mínima del perno:<br>Se calcula la longitud de anclaje necesaria por adherencia. | Mínimo: 17 cm<br>Calculado: 55 cm            | Cumple |
| Anclaje perno en hormigón:                                                                |                                              |        |
| - Tracción:                                                                               | Máximo: 97.79 kN<br>Calculado: 79.09 kN      | Cumple |
| - Cortante:                                                                               | Máximo: 68.45 kN<br>Calculado: 8.89 kN       | Cumple |
| - Tracción + Cortante:                                                                    | Máximo: 97.79 kN<br>Calculado: 91.79 kN      | Cumple |
| Tracción en vástago de pernos:                                                            | Máximo: 80.4 kN<br>Calculado: 74.82 kN       | Cumple |
| Tensión de Von Mises en vástago de pernos:                                                | Máximo: 476.19 MPa<br>Calculado: 377.656 MPa | Cumple |
| Aplastamiento perno en placa:<br>Límite del cortante en un perno actuando contra la placa | Máximo: 150.86 kN<br>Calculado: 8.33 kN      | Cumple |
| Tensión de Von Mises en secciones globales:                                               | Máximo: 261.905 MPa                          |        |
| - Derecha:                                                                                | Calculado: 111.463 MPa                       | Cumple |
| - Izquierda:                                                                              | Calculado: 111.463 MPa                       | Cumple |
| - Arriba:                                                                                 | Calculado: 234.005 MPa                       | Cumple |
| - Abajo:                                                                                  | Calculado: 234.005 MPa                       | Cumple |
| Flecha global equivalente:<br>Limitación de la deformabilidad de los vuelos               | Mínimo: 250                                  |        |
| - Derecha:                                                                                | Calculado: 3028.39                           | Cumple |
| - Izquierda:                                                                              | Calculado: 3028.39                           | Cumple |
| - Arriba:                                                                                 | Calculado: 3835.81                           | Cumple |
| - Abajo:                                                                                  | Calculado: 3835.81                           | Cumple |
| Tensión de Von Mises local:<br>Tensión por tracción de pernos sobre placas en voladizo    | Máximo: 261.905 MPa<br>Calculado: 0 MPa      | Cumple |
| Se cumplen todas las comprobacio                                                          | nes                                          |        |

#### Cordones de soldadura

| Comprobaciones geométricas                                 |                        |           |                            |           |           |                    |  |  |  |
|------------------------------------------------------------|------------------------|-----------|----------------------------|-----------|-----------|--------------------|--|--|--|
| Ref.                                                       | Tipo                   | a<br>(mm) | Preparación de bordes (mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |
| Rigidizador y-y $(x = -70)$ :<br>Soldadura a la placa base | En ángulo              | 4         |                            | 450       | 5.0       | 90.00              |  |  |  |
| Rigidizador y-y (x = 70):<br>Soldadura a la placa base     | En ángulo              | 4         |                            | 450       | 5.0       | 90.00              |  |  |  |
| Soldadura de los pernos a la placa base                    | De penetración parcial |           | 9                          | 50        | 16.0      | 90.00              |  |  |  |
| a. Fanasar garganta                                        |                        |           |                            |           |           |                    |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas



TFM\_nave\_industrial\_R15\_sin\_revestimiento

| Comprobación de resistencia                               |                                       |                                                        |                                |                  |        |                                       |        |                           |             |
|-----------------------------------------------------------|---------------------------------------|--------------------------------------------------------|--------------------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|
|                                                           |                                       | Tensión de Von Mises Tensión normal                    |                                |                  |        |                                       |        |                           |             |
| Ref.                                                      | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $\tau_{\!\scriptscriptstyle \perp} \\ \text{(N/mm}^2)$ | $\tau_{  } \\ \text{(N/mm}^2)$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | f <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |
| Rigidizador y-y (x = -70):<br>Soldadura a la placa base   |                                       | La comprobación no procede.                            |                                |                  |        |                                       |        | 410.0                     | 0.85        |
| Rigidizador y-y $(x = 70)$ :<br>Soldadura a la placa base |                                       | La comprobación no procede.                            |                                |                  |        |                                       |        | 410.0                     | 0.85        |
| Soldadura de los pernos a la placa base                   | 0.0                                   | 0.0 0.0 212.6 368.3 95.45 0.0 0.00                     |                                |                  |        |                                       | 410.0  | 0.85                      |             |

#### d) Medición

|                         | Soldaduras             |                                                 |                          |                           |  |  |  |  |  |  |
|-------------------------|------------------------|-------------------------------------------------|--------------------------|---------------------------|--|--|--|--|--|--|
| f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                                            | Espesor de garganta (mm) | Longitud de cordones (mm) |  |  |  |  |  |  |
|                         |                        | En ángulo                                       | 4                        | 1759                      |  |  |  |  |  |  |
| 410.0                   | En taller              | A tope en bisel simple con talón de raíz amplio | 9                        | 201                       |  |  |  |  |  |  |
|                         | En el lugar de montaje | En ángulo                                       | 5                        | 906                       |  |  |  |  |  |  |

|                                | Placas de ancla        | je       |                      |              |
|--------------------------------|------------------------|----------|----------------------|--------------|
| Material                       | Elementos              | Cantidad | Dimensiones<br>(mm)  | Peso<br>(kg) |
|                                | Placa base             | 1        | 300x450x18           | 19.08        |
| S275                           | Rigidizadores pasantes | 2        | 450/270x100/1x5      | 2.83         |
|                                |                        |          | Total                | 21.91        |
| P FOO S Vo. 1 15 (corrugado)   | Pernos de anclaje      | 4        | Ø 16 - L = 604 + 183 | 4.97         |
| B 500 S, Ys = 1.15 (corrugado) |                        |          | Total                | 4.97         |



# Listados Caso 2

ANEXO 2: LISTADOS Página **37**/68

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

ANEXO 2: LISTADOS Página 38/68

## ÍNDICE

| 1   | GEOMETRIA                               |      |
|-----|-----------------------------------------|------|
|     | 1.1 Nudos                               |      |
|     | 1.2 Barras                              | 2    |
|     | 1.2.1 Materiales utilizados             | . 2  |
|     | 1.2.2 Descripción                       | 2    |
|     | 1.2.3 Características mecánicas         | 4    |
| 2   | RESULTADOS                              | 4    |
|     | 2.1 Nudos                               | 4    |
|     | 2.1.1 Desplazamientos                   | .4   |
|     | 2.2 Barras                              | 5    |
|     | 2.2.1 Esfuerzos                         | . 5  |
|     | 2.2.2 Flechas                           | .14  |
|     | 2.2.3 Comprobaciones E.L.U. (Resumido)  | . 16 |
| 3   | UNIONES                                 | 18   |
| 4   | 3.1 Comprobaciones en placas de anclaje | 18   |
|     | 3.2 Memoria de cálculo                  | 19   |
| اِي | 3.2.1 Tipo 1                            | .19  |
| 3   | 3.2.2 Tipo 2                            | .23  |
|     | 3.2.3 Tipo 3                            | .27  |
|     |                                         |      |



TFM\_nave\_industrial\_R30\_mortero

### 1.- GEOMETRÍA

#### 1.1.- Nudos

#### Referencias:

 $\Delta_{x_1}$   $\Delta_{y_1}$   $\Delta_{z}$ : Desplazamientos prescritos en ejes globales.

 $\theta_{x_1}$ ,  $\theta_{y_2}$ ,  $\theta_z$ : Giros prescritos en ejes globales.

Cada grado de libertad se marca con 'X' si está coaccionado y, en caso contrario, con '-'.

|                                                                                   |             |           | N        | lud                  | os           |              |              |              |            |                |                 |  |
|-----------------------------------------------------------------------------------|-------------|-----------|----------|----------------------|--------------|--------------|--------------|--------------|------------|----------------|-----------------|--|
|                                                                                   | Coordenadas |           |          | Vinculación exterior |              |              |              |              |            |                |                 |  |
| Referencia                                                                        | X<br>(m)    | Y<br>(m)  | Z<br>(m) | $\Delta_{x}$         | $\Delta_{y}$ | $\Delta_{z}$ | $\theta_{x}$ | $\theta_{y}$ | $\theta_z$ | /inculació     | n interior      |  |
| N21                                                                               | 20.000      | 0.000     | 0.000    | Χ                    | Х            | Х            | Χ            | Χ            | Х          | Empo           | trado           |  |
| N22                                                                               | 20.000      | 0.000     | 8.000    | -                    | -            | -            | -            | -            | -          | Empotrado      |                 |  |
| N25                                                                               | 20.000      | 13.000    | 10.500   | -                    | -            | -            | -            | -            | -          | Empotrado      |                 |  |
| N36                                                                               | 35.000      | 0.000     | 0.000    | Χ                    | Х            | X            | Χ            | X            | X          | Empotrado      |                 |  |
| N37                                                                               | 35.000      | 0.000     | 8.000    | -                    | -            | -            | -            | -            | -          | Empotrado      |                 |  |
| N40                                                                               | 35.000      | 13.000    | 10.500   | -                    | -            | -            | -            | -            | -          | Empotrado      |                 |  |
| N71                                                                               | 20.000      | 13.000    | 7.000    | -                    | -            | -            | -            | -            | -          | Empotrado      |                 |  |
| N128                                                                              | 35.000      | 10.400    | 10.000   | -                    | -            | -            | -            | -            | -          | Empotrado      |                 |  |
| N180                                                                              | 35.000      | 10.400    | 0.000    | Χ                    | Х            | Х            | Χ            | X            | X          | Empotrado      |                 |  |
| 2 Barras .1 Materiales utilizados  Materiales utilizados                          |             |           |          |                      |              |              |              |              |            |                |                 |  |
| N                                                                                 | Material    |           |          |                      |              |              |              | G            |            | f <sub>y</sub> | α. <sub>t</sub> |  |
| Tipo                                                                              | D           | esignació | n (MF    | (MPa)                |              | ν            |              | (MPa)        |            | (MPa)          | (m/m°C)         |  |
| Acero lamir                                                                       | nado        | S275      | 21000    | 0.0                  | 0 0          | 0.300        | 3 C          | 8100         | 0.00       | 275.00         | 0.000012        |  |
| Notación:  E: Módulo de elasticidad  n: Módulo de Poisson  G: Módulo de cortadura |             |           |          |                      |              |              |              |              |            |                |                 |  |

| Materiales utilizados |             |           |       |          |                |                 |            |  |  |
|-----------------------|-------------|-----------|-------|----------|----------------|-----------------|------------|--|--|
| Mater                 | ial         | E         | v     | G        | f <sub>y</sub> | α. <sub>t</sub> | γ          |  |  |
| Tipo                  | Designación | (MPa)     | V     | (MPa)    | (MPa)          | (m/m°C)         | $(kN/m^3)$ |  |  |
| Acero laminado        | S275        | 210000.00 | 0.300 | 81000.00 | 275.00         | 0.000012        | 77.01      |  |  |

- n: Módulo de Poisson
- G: Módulo de cortadura
- f<sub>v</sub>: Límite elástico
- a.t: Coeficiente de dilatación
- g: Peso específico

## 1.2.2.- Descripción

| Descripción       |             |           |         |                  |                     |            |                      |                    |                    |     |     |
|-------------------|-------------|-----------|---------|------------------|---------------------|------------|----------------------|--------------------|--------------------|-----|-----|
| Material          |             | Barra     | Pieza   | Dorfil/Corio)    |                     | 0          | o                    | Lb <sub>Sup.</sub> | Lb <sub>inf.</sub> |     |     |
| Tipo              | Designación | (Ni/Nf)   | (Ni/Nf) | Perfil(Serie)    | Indeformable origen | Deformable | Indeformable extremo | βху                | β <sub>xz</sub>    | (m) | (m) |
| Acero<br>Iaminado | S275        | N42/N192  | N36/N37 | IPE 360<br>(IPE) | -                   | 5.860      | 0.135                | 0.70               | 0.93               | -   | -   |
|                   |             | N192/N37  | N36/N37 | IPE 360<br>(IPE) | 0.135               | 1.486      | 0.184                | 1.00               | 3.10               | -   | -   |
|                   |             | N37/N122  | N37/N40 | IPE 360<br>(IPE) | 0.184               | 2.464      | =                    | 0.00               | 9.82               | -   | -   |
|                   |             | N122/N124 | N37/N40 | IPE 360<br>(IPE) | -                   | 2.648      | -                    | 0.00               | 9.82               | -   | -   |
|                   |             | N124/N126 | N37/N40 | IPE 360<br>(IPE) | -                   | 2.648      | -                    | 0.00               | 9.82               | -   | -   |
|                   |             | N126/N128 | N37/N40 | IPE 360<br>(IPE) | -                   | 2.648      | -                    | 0.00               | 9.82               | -   | -   |

Página 2



TFM\_nave\_industrial\_R30\_mortero

Descripción Longitud Material (m) Barra Pieza  $Lb_{\scriptscriptstyle \mathsf{Inf}}$ Perfil(Serie)  $\beta_{xy}$  $\beta_{xz}$ (Ni/Nf) (Ni/Nf) (m) Indeformable Indeformable (m) Tipo Designación Deformable origen extremo IPE 360 N128/N40 N37/N40 2.648 0.00 9.82 (IPE) IPE 270 N21/N47 N21/N22 6.865 0.135 0.70 1.40 (IPE) IPE 270 N47/N22 N21/N22 0.135 0.783 0.082 0.701.40 (IPE) IPE 160 N22/N91 N22/N25 0.138 2.456 0.054 0.00 1.00 (IPE) IPF 160 N91/N95 N22/N25 0.054 2.547 0.047 0.00 1.00 (IPE) IPE 160 N95/N99 N22/N25 0.047 2.558 0.043 0.00 1.00 (IPE) IPE 160 N99/N103 N22/N25 0.043 2.564 0.041 0.00 1.00 (IPE) IPE 160 N103/N25 N22/N25 0.041 2.566 0.041 0.00 1.00 (IPE) #80x3 N22/N27 N2/N37 5.000 1.00 1.00 (Huecos cuadrados) #80x3 N32/N37 N2/N37 (Huecos 5.000 1.00 1.00 cuadrados) N42/N32 N42/N32 R 22 (R) 9.265 0.00 0.00 IPF 270 N47/N55 N47/N51 0.040 1.00 0.135 2.425 2.00 (IPE) IPE 270 N55/N59 N47/N51 0.040 2.489 0.071 2.00 1.00 (IPF) IPE 270 N59/N63 N47/N51 0.071 2.471 0.058 2.00 1.00 (IPE) IPE 270 N63/N67 N47/N51 2 491 0.051 0.058 2 00 1 00 (IPE) IPE 270 N67/N71 N47/N51 0.051 2.502 0.047 2.00 1.00 (IPE) #70x3 N55/N91 N55/N91 (Huecos 0.135 1 283 0.082 1.00 1.00 cuadrados) #70x3 N71/N103 N71/N103 0.093 (Huecos 0.1793.698 1.00 1.00 cuadrados) N32/N122 R 12 (R) N32/N122 5 570 0.088 0.000.00IPE 240 N180/N200 N180/N128 6.060 0.135 0.70 1.13 (IPF) IPE 240 N200/N128 N180/N128 0.1353.486 0.1841.00 1.84 (IPE) #80x3 N91/N92 N91/N92 (Huecos 0.035 4.930 0.035 1.00 1.00 cuadrados) N55/N92 N55/N92 R 10 (R) 0.140 4.940 0.140 0.00 0.00 N196/N37 N196/N37 R 17 (R) 0.412 4.732 0.360 0.00 0.00 IPF 270 N192/N196 N192/N194 0.180 5.020 1.00 1.00 (IPF) IPE 270 N196/N200 N192/N194 5.200 1.00 1.00 (IPE) IPE 270 N200/N202 N192/N194 5.200 1.00 1.00 (IPE) IPE 270 N202/N198 N192/N194 5.200 1.00 1.00 (IPE) **IPE 270** N198/N194 N192/N194 5.020 0.180 1.00 1.00 (IPE) 0.00 N42/N196 N42/N196 R 17 (R) 0.275 7.482 0.179 0.00

Producido por una versión educativa de CYPE

Ni: Nudo inicial

Nf: Nudo final

b<sub>xy</sub>: Coeficiente de pandeo en el plano 'XY'

 $b_{\rm xz}$ : Coeficiente de pandeo en el plano 'XZ'  $Lb_{\rm Sup}$ : Separación entre arriostramientos del ala superior  $Lb_{\rm tot}$ : Separación entre arriostramientos del ala inferior

TFM\_nave\_industrial\_R30\_mortero

#### 1.2.3.- Características mecánicas

|      | Tipos de pieza               |
|------|------------------------------|
| Ref. | Piezas                       |
| 1    | N36/N37 y N37/N40            |
| 2    | N21/N22, N47/N51 y N192/N194 |
| 3    | N22/N25                      |
| 4    | N2/N37 y N91/N92             |
| 5    | N42/N32                      |
| 6    | N55/N91 y N71/N103           |
| 7    | N32/N122                     |
| 8    | N180/N128                    |
| 9    | N55/N92                      |
| 10   | N196/N37 y N42/N196          |

|           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Características r           | necánio            | as                 |               |                 |         |        |
|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|--------------------|---------------|-----------------|---------|--------|
| CYPE      | Material               | Ref. Description   Ref.   Description   Desc | Descripción                 | Α                  | Avy                | Avz           | lyy             | Izz     | It     |
| 0         | Tipo Designació        | ón                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B eser iperer               | (cm <sup>2</sup> ) | (cm <sup>2</sup> ) | (cm²)         | (cm4)           | (cm4)   | (cm4)  |
| a de      | Acero<br>Iaminado S275 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IPE 360, (IPE)              | 72.70              | 32.38              | 24.09         | 16270.00        | 1043.00 | 37.30  |
| Ę         |                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IPE 270, (IPE)              | 45.90              | 20.66              | 14.83         | 5790.00         | 420.00  | 15.90  |
| educativa |                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IPE 160, (IPE)              | 20.10              | 9.10               | 6.53          | 869.00          | 68.30   | 3.60   |
| eg        |                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #80x3, (Huecos cuadrados)   | 8.90               | 3.85               | 3.85          | 85.92           | 85.92   | 140.54 |
| ο̈́       |                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R 22, (R)                   | 3.80               | 3.42               | 3.42          | 1.15            | 1.15    | 2.30   |
| versión   |                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #70x3, (Huecos cuadrados)   | 7.70               | 3.35               | 3.35          | 56.04           | 56.04   | 92.76  |
|           |                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R 12, (R)                   | 1.13               | 1.02               | 1.02          | 0.10            | 0.10    | 0.20   |
| na        |                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IPE 240, (IPE)              | 39.10              | 17.64              | 12.30         | 3892.00         | 284.00  | 12.90  |
|           |                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R 10, (R)                   | 0.79               | 0.71               | 0.71          | 0.05            | 0.05    | 0.10   |
|           |                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R 17, (R)                   | 2.27               | 2.04               | 2.04          | 0.41            | 0.41    | 0.82   |
| o por una |                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IPE 240, (IPE)<br>R 10, (R) | 39.10<br>0.79      | 17.64<br>0.71      | 12.30<br>0.71 | 3892.00<br>0.05 | 284.00  | 12     |

Notación: Ref.: Referencia

A: Área de la sección transversal

Avy: Área de cortante de la sección según el eje local 'Y' Avz: Área de cortante de la sección según el eje local 'Z' Iyy: Inercia de la sección alrededor del eje local 'Y'

Izz: Inercia de la sección alrededor del eje local 'Z'

It: Inercia a torsión Las características mecánicas de las piezas corresponden a la sección en el punto medio de las mismas.

## 2.- RESULTADOS

#### 2.1.- Nudos

#### 2.1.1.- Desplazamientos

#### Referencias:

Dx, Dy, Dz: Desplazamientos de los nudos en ejes globales.

Gx, Gy, Gz: Giros de los nudos en ejes globales.

#### 2.1.1.1.- Envolventes

|            |                 | Envolvente de los despla:     | zamiento   | s en nudo                 | os         |              |              |              |
|------------|-----------------|-------------------------------|------------|---------------------------|------------|--------------|--------------|--------------|
|            |                 | Combinación                   | amientos   | amientos en ejes globales |            |              |              |              |
| Referencia | Tipo            | Descripción                   | Dx<br>(mm) | Dy<br>(mm)                | Dz<br>(mm) | Gx<br>(mRad) | Gy<br>(mRad) | Gz<br>(mRad) |
| N21        | Desplazamientos | Valor mínimo de la envolvente | 0.000      | 0.000                     | 0.000      | 0.000        | 0.000        | 0.000        |
|            |                 | Valor máximo de la envolvente | 0.000      | 0.000                     | 0.000      | 0.000        | 0.000        | 0.000        |
| N22        | Desplazamientos | Valor mínimo de la envolvente | -3.642     | -29.031                   | -0.512     | -            | -            | -            |
|            |                 | Valor máximo de la envolvente | 3.617      | 28.073                    | 0.002      | -            | -            | -            |

Página 4



#### TFM\_nave\_industrial\_R30\_mortero

|            |                 | Envolvente de los despla:     | zamiento   | s en nud   | os         |              |              |              |
|------------|-----------------|-------------------------------|------------|------------|------------|--------------|--------------|--------------|
|            |                 | Combinación                   |            | Desplaz    | amientos   | en ejes g    | lobales      |              |
| Referencia | Tipo            | Descripción                   | Dx<br>(mm) | Dy<br>(mm) | Dz<br>(mm) | Gx<br>(mRad) | Gy<br>(mRad) | Gz<br>(mRad) |
| N25        | Desplazamientos | Valor mínimo de la envolvente | -16.255    | -27.994    | -22.898    | -            | -            | -            |
|            |                 | Valor máximo de la envolvente | 16.105     | 27.992     | 1.224      | -            | -            | -            |
| N36        | Desplazamientos | Valor mínimo de la envolvente | 0.000      | 0.000      | 0.000      | 0.000        | 0.000        | 0.000        |
|            |                 | Valor máximo de la envolvente | 0.000      | 0.000      | 0.000      | 0.000        | 0.000        | 0.000        |
| N37        | Desplazamientos | Valor mínimo de la envolvente | -3.735     | -3.262     | -0.142     | -            | -            | -            |
|            |                 | Valor máximo de la envolvente | 3.576      | 3.133      | 0.059      | -            | -            | -            |
| N40        | Desplazamientos | Valor mínimo de la envolvente | -16.819    | -3.225     | -0.821     | -            | -            | -            |
|            |                 | Valor máximo de la envolvente | 15.978     | 3.225      | 0.330      | -            | -            | -            |
| N71        | Desplazamientos | Valor mínimo de la envolvente | -15.945    | -28.237    | -23.522    | -            | -            | -            |
|            |                 | Valor máximo de la envolvente | 15.976     | 28.242     | 1.251      | -            | -            | -            |
| N128       | Desplazamientos | Valor mínimo de la envolvente | -16.797    | -3.285     | -0.271     | -            | -            | -            |
|            |                 | Valor máximo de la envolvente | 15.499     | 3.195      | 0.005      | -            | -            | -            |
| N180       | Desplazamientos | Valor mínimo de la envolvente | 0.000      | 0.000      | 0.000      | 0.000        | 0.000        | 0.000        |
|            |                 | Valor máximo de la envolvente | 0.000      | 0.000      | 0.000      | 0.000        | 0.000        | 0.000        |

## 2.- Barras

#### 2.1.- Esfuerzos

#### Referencias:

N: Esfuerzo axil (kN)

Vy: Esfuerzo cortante según el eje local Y de la barra. (kN)

Vz: Esfuerzo cortante según el eje local Z de la barra. (kN)

Mt: Momento torsor (kN·m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). (kN·m) Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). (kN·m)

#### 2.2.1.1.- Envolventes

|          |                     |                   | Envolve | Envolventes de los esfuerzos en barras |         |         |            |         |         |         |         |  |
|----------|---------------------|-------------------|---------|----------------------------------------|---------|---------|------------|---------|---------|---------|---------|--|
| Barra    | Tino do combinación | Esfuerzo          |         |                                        |         | Posici  | ones en la | barra   |         |         |         |  |
| Dalla    | Tipo de combinación | Estuerzo          | 0.000 m | 0.732 m                                | 1.465 m | 2.197 m | 2.930 m    | 3.662 m | 4.395 m | 5.127 m | 5.860 m |  |
| N42/N192 | Acero laminado      | N <sub>min</sub>  | -45.808 | -44.317                                | -42.826 | -41.335 | -39.844    | -38.354 | -36.863 | -35.372 | -33.881 |  |
|          |                     | N <sub>máx</sub>  | 20.533  | 21.417                                 | 22.300  | 23.184  | 24.067     | 24.951  | 25.834  | 26.718  | 27.601  |  |
|          |                     | $Vy_{min}$        | -10.142 | -8.593                                 | -7.044  | -5.495  | -3.945     | -2.396  | -0.847  | -1.280  | -3.878  |  |
|          |                     | Vy <sub>máx</sub> | 16.915  | 14.316                                 | 11.718  | 9.120   | 6.521      | 3.923   | 1.325   | 0.706   | 2.255   |  |
|          |                     | $Vz_{min}$        | -11.262 | -8.754                                 | -6.246  | -4.274  | -3.555     | -2.837  | -2.118  | -1.399  | -2.827  |  |
|          |                     | Vz <sub>máx</sub> | 9.873   | 8.354                                  | 6.835   | 5.316   | 3.798      | 2.279   | 3.823   | 6.331   | 8.839   |  |
|          |                     | Mt <sub>min</sub> | -0.01   | -0.01                                  | -0.01   | -0.01   | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |  |
|          |                     | Mt <sub>máx</sub> | 0.01    | 0.01                                   | 0.01    | 0.01    | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |  |
|          |                     | $My_{min}$        | -15.88  | -11.43                                 | -7.52   | -4.14   | -1.52      | -3.37   | -4.17   | -4.17   | -4.43   |  |
|          |                     | My <sub>máx</sub> | 19.19   | 12.52                                  | 6.96    | 5.00    | 6.80       | 6.78    | 4.93    | 4.19    | 4.96    |  |
|          |                     | $Mz_{min}$        | -15.02  | -8.16                                  | -2.43   | -4.16   | -9.89      | -13.72  | -15.64  | -15.66  | -13.77  |  |
|          |                     | $Mz_{max}$        | 24.45   | 13.01                                  | 3.48    | 2.16    | 5.62       | 7.94    | 9.13    | 9.18    | 8.10    |  |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Barra    | Tipo de combinación | Esfuerzo          |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Dalla    | Tipo de combinación | Estuerzo          | 0.135 m | 0.321 m    | 0.507 m   | 0.692 m   | 0.878 m    | 1.064 m | 1.250 m | 1.435 m | 1.621 m |
| N192/N37 | Acero laminado      | N <sub>min</sub>  | -26.140 | -25.762    | -25.384   | -25.006   | -24.628    | -24.250 | -23.872 | -23.494 | -23.115 |
|          |                     | N <sub>máx</sub>  | 27.820  | 28.044     | 28.268    | 28.492    | 28.716     | 28.940  | 29.164  | 29.388  | 29.612  |
|          |                     | Vy <sub>min</sub> | -4.696  | -5.355     | -6.014    | -6.673    | -7.331     | -7.990  | -8.649  | -9.308  | -9.967  |
|          |                     | Vy <sub>máx</sub> | 2.753   | 3.146      | 3.539     | 3.932     | 4.325      | 4.718   | 5.110   | 5.503   | 5.896   |
|          |                     | $Vz_{min}$        | -7.228  | -7.046     | -6.864    | -6.682    | -6.499     | -6.317  | -6.135  | -5.952  | -5.770  |
|          |                     | Vz <sub>máx</sub> | 6.095   | 5.709      | 5.324     | 4.939     | 4.554      | 4.169   | 3.784   | 3.667   | 4.303   |
|          |                     | Mt <sub>min</sub> | -0.08   | -0.08      | -0.08     | -0.08     | -0.08      | -0.08   | -0.08   | -0.08   | -0.08   |
|          |                     | Mt <sub>máx</sub> | 0.06    | 0.06       | 0.06      | 0.06      | 0.06       | 0.06    | 0.06    | 0.06    | 0.06    |
|          |                     | $My_{min}$        | -4.79   | -4.18      | -4.02     | -4.17     | -4.44      | -5.13   | -5.87   | -6.54   | -7.14   |
|          |                     | My <sub>máx</sub> | 0.44    | 1.39       | 2.49      | 3.74      | 4.95       | 6.14    | 7.30    | 8.42    | 9.51    |
|          |                     | $Mz_{min}$        | -12.63  | -11.70     | -10.65    | -9.47     | -8.17      | -6.74   | -5.20   | -3.53   | -1.74   |
|          |                     | Mz <sub>máx</sub> | 7.44    | 6.89       | 6.27      | 5.58      | 4.81       | 3.97    | 3.06    | 2.07    | 1.01    |



TFM\_nave\_industrial\_R30\_mortero

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Danna    | Tine de combineción | Fof               |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.184 m | 0.595 m    | 0.800 m   | 1.005 m   | 1.416 m    | 1.826 m | 2.032 m | 2.442 m | 2.648 m |
| N37/N122 | Acero laminado      | N <sub>min</sub>  | -14.644 | -14.497    | -14.424   | -14.351   | -14.206    | -14.061 | -13.989 | -13.846 | -13.774 |
|          |                     | N <sub>máx</sub>  | 6.405   | 6.474      | 6.508     | 6.542     | 6.610      | 6.678   | 6.711   | 6.778   | 6.811   |
|          |                     | Vy <sub>min</sub> | -0.294  | -0.227     | -0.195    | -0.165    | -0.230     | -0.343  | -0.395  | -0.490  | -0.533  |
|          |                     | Vy <sub>máx</sub> | 0.295   | 0.403      | 0.453     | 0.551     | 0.761      | 0.949   | 1.034   | 1.189   | 1.258   |
|          |                     | Vz <sub>min</sub> | -7.277  | -6.069     | -5.466    | -4.864    | -3.663     | -2.763  | -2.535  | -2.081  | -1.876  |
|          |                     | Vz <sub>máx</sub> | 6.604   | 5.591      | 5.083     | 4.575     | 3.557      | 2.537   | 2.026   | 1.354   | 1.618   |
|          |                     | Mt <sub>min</sub> | -0.11   | -0.11      | -0.11     | -0.11     | -0.11      | -0.11   | -0.11   | -0.11   | -0.11   |
|          |                     | Mt <sub>máx</sub> | 0.17    | 0.17       | 0.17      | 0.17      | 0.17       | 0.17    | 0.17    | 0.17    | 0.17    |
|          |                     | My <sub>min</sub> | -9.66   | -7.86      | -7.03     | -6.28     | -5.30      | -4.50   | -4.11   | -3.34   | -3.00   |
|          |                     | My <sub>máx</sub> | 6.57    | 5.17       | 5.32      | 5.44      | 5.98       | 6.24    | 6.23    | 5.95    | 5.67    |
|          |                     | Mz <sub>min</sub> | -0.11   | -0.21      | -0.30     | -0.40     | -0.64      | -0.99   | -1.20   | -1.65   | -1.90   |
|          |                     | Mz <sub>máx</sub> | 0.04    | 0.12       | 0.16      | 0.20      | 0.26       | 0.29    | 0.30    | 0.45    | 0.56    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Dalla     | ripo de combinación | Estuerzo          | 0.000 m | 0.378 m     | 0.756 m    | 0.946 m   | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N122/N124 | Acero laminado      | N <sub>min</sub>  | -15.084 | -14.952     | -14.822    | -14.757   | -14.627    | -14.498 | -14.370 | -14.306 | -14.179 |
|           |                     | N <sub>máx</sub>  | 8.276   | 8.337       | 8.398      | 8.428     | 8.488      | 8.548   | 8.607   | 8.637   | 8.695   |
|           |                     | $Vy_{min}$        | -2.199  | -2.091      | -2.000     | -1.961    | -1.896     | -1.850  | -1.825  | -1.818  | -1.812  |
|           |                     | Vy <sub>máx</sub> | 1.402   | 1.332       | 1.273      | 1.247     | 1.204      | 1.172   | 1.150   | 1.143   | 1.138   |
|           |                     | $Vz_{min}$        | -1.741  | -1.680      | -1.710     | -1.815    | -2.703     | -3.656  | -4.610  | -5.088  | -6.046  |
|           |                     | Vz <sub>máx</sub> | 1.733   | 2.543       | 3.350      | 3.752     | 4.554      | 5.352   | 6.148   | 6.672   | 7.744   |
|           |                     | Mt <sub>min</sub> | -0.08   | -0.08       | -0.08      | -0.08     | -0.08      | -0.08   | -0.08   | -0.08   | -0.08   |
|           |                     | Mt <sub>máx</sub> | 0.05    | 0.05        | 0.05       | 0.05      | 0.05       | 0.05    | 0.05    | 0.05    | 0.05    |
|           |                     | My <sub>min</sub> | -3.02   | -2.56       | -2.25      | -1.97     | -1.12      | -0.61   | -2.73   | -3.94   | -6.67   |
|           |                     | My <sub>máx</sub> | 5.73    | 4.92        | 3.81       | 3.14      | 1.58       | 0.66    | 1.64    | 2.56    | 4.66    |
|           |                     | $Mz_{min}$        | -2.05   | -1.24       | -0.47      | -0.26     | -0.71      | -1.16   | -1.60   | -1.82   | -2.25   |
|           |                     | Mz <sub>máx</sub> | 1.00    | 0.48        | 0.21       | 0.28      | 0.65       | 1.35    | 2.04    | 2.39    | 3.07    |

|           |                     |                   | Fnvolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
|           |                     |                   |         |             |            |           | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.378 m     | 0.567 m    | 0.946 m   | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N124/N126 | Acero laminado      | N <sub>min</sub>  | -16.546 | -16.410     | -16.342    | -16.208   | -16.074    | -15.940 | -15.808 | -15.742 | -15.610 |
|           |                     | N <sub>máx</sub>  | 17.883  | 17.946      | 17.978     | 18.041    | 18.104     | 18.166  | 18.228  | 18.259  | 18.320  |
|           |                     | Vy <sub>min</sub> | -0.683  | -0.829      | -0.897     | -1.027    | -1.146     | -1.254  | -1.351  | -1.395  | -1.476  |
|           |                     | Vy <sub>máx</sub> | 1.890   | 2.055       | 2.132      | 2.279     | 2.413      | 2.535   | 2.645   | 2.696   | 2.787   |
|           |                     | $Vz_{min}$        | -7.720  | -6.605      | -6.049     | -4.939    | -3.832     | -2.728  | -1.628  | -1.079  | -0.643  |
|           |                     | Vz <sub>máx</sub> | 5.340   | 4.485       | 4.062      | 3.216     | 2.368      | 1.593   | 1.325   | 1.191   | 0.954   |
|           |                     | Mt <sub>min</sub> | -0.07   | -0.07       | -0.07      | -0.07     | -0.07      | -0.07   | -0.07   | -0.07   | -0.07   |
|           |                     | Mt <sub>máx</sub> | 0.09    | 0.09        | 0.09       | 0.09      | 0.09       | 0.09    | 0.09    | 0.09    | 0.09    |
|           |                     | My <sub>min</sub> | -6.72   | -4.01       | -2.82      | -1.03     | -0.55      | -1.20   | -1.76   | -1.99   | -2.39   |
|           |                     | My <sub>máx</sub> | 4.80    | 2.94        | 2.14       | 0.76      | 0.92       | 2.16    | 2.98    | 3.24    | 3.44    |
|           |                     | $Mz_{min}$        | -1.76   | -1.47       | -1.31      | -0.94     | -0.53      | -0.85   | -1.80   | -2.29   | -3.31   |
|           |                     | Mz <sub>máx</sub> | 3.05    | 2.30        | 1.90       | 1.07      | 0.50       | 0.46    | 0.45    | 0.70    | 1.24    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tino do combinación | Cofuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Dalla     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.378 m     | 0.756 m    | 0.946 m   | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N126/N128 | Acero laminado      | N <sub>min</sub>  | -22.125 | -22.023     | -21.920    | -21.885   | -21.825    | -21.765 | -21.706 | -21.676 | -21.617 |
|           |                     | N <sub>máx</sub>  | 24.156  | 24.231      | 24.306     | 24.350    | 24.438     | 24.526  | 24.613  | 24.657  | 24.744  |
|           |                     | $Vy_{min}$        | -2.487  | -2.408      | -2.341     | -2.312    | -2.263     | -2.226  | -2.202  | -2.194  | -2.188  |
|           |                     | Vy <sub>máx</sub> | 1.565   | 1.495       | 1.435      | 1.410     | 1.366      | 1.334   | 1.312   | 1.306   | 1.300   |
|           |                     | $Vz_{min}$        | -0.523  | -1.380      | -2.239     | -2.669    | -3.531     | -4.394  | -5.260  | -5.693  | -6.561  |
|           |                     | Vz <sub>máx</sub> | 1.102   | 1.403       | 2.492      | 3.035     | 4.119      | 5.199   | 6.277   | 6.814   | 7.887   |
|           |                     | Mt <sub>min</sub> | -0.11   | -0.11       | -0.11      | -0.11     | -0.11      | -0.11   | -0.11   | -0.11   | -0.11   |
|           |                     | Mt <sub>máx</sub> | 0.07    | 0.07        | 0.07       | 0.07      | 0.07       | 0.07    | 0.07    | 0.07    | 0.07    |
|           |                     | My <sub>min</sub> | -2.40   | -2.72       | -2.94      | -3.01     | -3.12      | -3.42   | -4.00   | -4.64   | -7.43   |
|           |                     | My <sub>máx</sub> | 3.46    | 3.14        | 2.40       | 1.88      | 1.47       | 2.71    | 4.54    | 5.57    | 7.89    |
|           |                     | $Mz_{min}$        | -3.34   | -2.42       | -1.52      | -1.08     | -0.48      | -0.99   | -1.49   | -1.73   | -2.23   |
|           |                     | Mz <sub>máx</sub> | 1.45    | 0.87        | 0.33       | 0.39      | 0.49       | 0.83    | 1.63    | 2.03    | 2.82    |



TFM\_nave\_industrial\_R30\_mortero

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Danna    | Tine de combineción | Fof               |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.000 m | 0.378 m    | 0.756 m   | 0.946 m   | 1.324 m    | 1.702 m | 2.080 m | 2.269 m | 2.648 m |
| N128/N40 | Acero laminado      | N <sub>min</sub>  | -18.980 | -18.873    | -18.808   | -18.777   | -18.715    | -18.655 | -18.595 | -18.565 | -18.506 |
|          |                     | N <sub>máx</sub>  | 27.376  | 27.458     | 27.549    | 27.594    | 27.684     | 27.773  | 27.861  | 27.905  | 27.992  |
|          |                     | $Vy_{min}$        | -0.312  | -0.452     | -0.571    | -0.622    | -0.708     | -0.773  | -0.816  | -0.830  | -0.841  |
|          |                     | Vy <sub>máx</sub> | 0.508   | 0.667      | 0.801     | 0.859     | 0.957      | 1.030   | 1.079   | 1.094   | 1.107   |
|          |                     | $Vz_{min}$        | -8.523  | -7.410     | -6.303    | -6.060    | -5.962     | -5.870  | -5.786  | -5.746  | -5.707  |
|          |                     | Vz <sub>máx</sub> | 9.480   | 8.636      | 7.788     | 7.362     | 6.509      | 5.651   | 4.789   | 4.357   | 3.490   |
|          |                     | Mt <sub>min</sub> | -0.03   | -0.03      | -0.03     | -0.03     | -0.03      | -0.03   | -0.03   | -0.03   | -0.03   |
|          |                     | Mt <sub>máx</sub> | 0.04    | 0.04       | 0.04      | 0.04      | 0.04       | 0.04    | 0.04    | 0.04    | 0.04    |
|          |                     | $My_{min}$        | -7.47   | -4.45      | -1.86     | -0.72     | -2.54      | -4.84   | -6.81   | -7.67   | -9.16   |
|          |                     | My <sub>máx</sub> | 8.05    | 4.63       | 1.52      | 0.95      | 2.98       | 5.22    | 7.42    | 8.51    | 10.67   |
|          |                     | $Mz_{min}$        | -1.92   | -1.77      | -1.58     | -1.46     | -1.21      | -0.93   | -0.63   | -0.48   | -0.18   |
|          |                     | Mz <sub>máx</sub> | 2.58    | 2.36       | 2.08      | 1.92      | 1.58       | 1.20    | 0.80    | 0.61    | 0.22    |

|         |                     |                   | Envolv  | entes de | los esfue | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |           | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.000 m | 0.858 m  | 1.716 m   | 2.574 m   | 3.433 m    | 4.291 m | 5.149 m | 6.007 m | 6.865 m |
| N21/N47 | Acero laminado      | $N_{min}$         | -83.896 | -82.410  | -80.924   | -79.438   | -77.952    | -76.466 | -74.980 | -73.494 | -72.008 |
|         |                     | $N_{\text{máx}}$  | 16.490  | 17.371   | 18.252    | 19.132    | 20.013     | 20.893  | 21.774  | 22.654  | 23.535  |
|         |                     | $Vy_{min}$        | -0.083  | -0.083   | -0.083    | -0.083    | -0.083     | -0.083  | -0.083  | -0.083  | -0.083  |
|         |                     | $Vy_{max}$        | 0.083   | 0.083    | 0.083     | 0.083     | 0.083      | 0.083   | 0.083   | 0.083   | 0.083   |
|         |                     | $Vz_{min}$        | -24.695 | -23.010  | -21.326   | -19.642   | -17.957    | -16.273 | -14.589 | -12.904 | -11.220 |
|         |                     | $Vz_{max}$        | 30.361  | 26.802   | 23.244    | 19.685    | 16.127     | 12.568  | 9.009   | 12.011  | 15.963  |
|         |                     | $Mt_{min}$        | -0.01   | -0.01    | -0.01     | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|         |                     | Mt <sub>máx</sub> | 0.01    | 0.01     | 0.01      | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |
|         |                     | $My_{min}$        | -70.21  | -49.74   | -30.71    | -13.21    | -7.60      | -18.81  | -27.19  | -33.39  | -36.54  |
|         |                     | $My_{max}$        | 74.17   | 49.64    | 28.17     | 9.83      | 9.95       | 17.68   | 30.93   | 42.72   | 53.07   |
|         |                     | $Mz_{min}$        | -0.37   | -0.30    | -0.23     | -0.15     | -0.08      | -0.01   | -0.06   | -0.13   | -0.20   |
|         |                     | Mz <sub>máx</sub> | 0.37    | 0.30     | 0.23      | 0.15      | 0.08       | 0.01    | 0.06    | 0.13    | 0.20    |

|         |                     | Envolv            | entes de | los esfuer | zos en ba | arras      |         |         |         |
|---------|---------------------|-------------------|----------|------------|-----------|------------|---------|---------|---------|
| Dorro   | Tino do combinación | Cofuerzo          |          |            | Posici    | ones en la | barra   |         |         |
| Barra   | Tipo de combinación | Esfuerzo          | 0.135 m  | 0.136 m    | 0.331 m   | 0.526 m    | 0.722 m | 0.917 m | 0.918 m |
| N47/N22 | Acero laminado      | N <sub>mín</sub>  | -31.015  | -31.013    | -30.676   | -30.337    | -29.998 | -29.661 | -29.659 |
|         |                     | N <sub>máx</sub>  | 11.515   | 11.516     | 11.716    | 11.916     | 12.117  | 12.317  | 12.318  |
|         |                     | $Vy_{min}$        | -0.212   | -0.212     | -0.212    | -0.212     | -0.212  | -0.212  | -0.212  |
|         |                     | $Vy_{max}$        | 0.210    | 0.210      | 0.210     | 0.210      | 0.210   | 0.210   | 0.210   |
|         |                     | $Vz_{min}$        | -72.719  | -72.719    | -72.719   | -72.719    | -72.719 | -72.719 | -72.719 |
|         |                     | $Vz_{max}$        | 39.784   | 39.786     | 40.168    | 40.552     | 40.937  | 41.319  | 41.321  |
|         |                     | Mt <sub>min</sub> | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -46.57   | -46.51     | -34.03    | -21.34     | -8.49   | -7.48   | -7.48   |
|         |                     | $My_{max}$        | 30.55    | 30.51      | 22.73     | 14.83      | 7.97    | 12.17   | 12.24   |
|         |                     | $Mz_{min}$        | -0.18    | -0.18      | -0.14     | -0.10      | -0.06   | -0.02   | -0.02   |
|         |                     | Mz <sub>máx</sub> | 0.18     | 0.18       | 0.14      | 0.10       | 0.06    | 0.02    | 0.02    |

|         |                     |                   | Envolv                                                                         | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|--------------------------------------------------------------------------------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |                                                                                |          |           | Posici     | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.138 m                                                                        | 0.343 m  | 0.752 m   | 0.957 m    | 1.366 m    | 1.775 m | 1.980 m | 2.389 m | 2.594 m |
| N22/N91 | Acero laminado      | $N_{min}$         | -76.781                                                                        | -76.608  | -76.263   | -76.091    | -75.746    | -75.401 | -75.229 | -74.884 | -74.711 |
|         |                     | N <sub>máx</sub>  | 43.213                                                                         | 43.247   | 43.314    | 43.347     | 43.414     | 43.482  | 43.515  | 43.582  | 43.616  |
|         |                     | $Vy_{min}$        | -0.080   -0.080   -0.080   -0.080   -0.080   -0.080   -0.080   -0.080   -0.080 |          |           |            |            |         |         |         |         |
|         |                     | $Vy_{max}$        | 0.081                                                                          | 0.081    | 0.081     | 0.081      | 0.081      | 0.081   | 0.081   | 0.081   | 0.081   |
|         |                     | $Vz_{min}$        | -14.191                                                                        | -13.294  | -11.500   | -10.603    | -8.809     | -7.015  | -6.118  | -4.325  | -3.428  |
|         |                     | $Vz_{max}$        | 8.470                                                                          | 7.508    | 5.584     | 4.623      | 2.799      | 1.872   | 1.408   | 0.481   | 0.017   |
|         |                     | $Mt_{min}$        | 0.00                                                                           | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00                                                                           | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -16.21                                                                         | -13.39   | -8.32     | -6.06      | -2.09      | -1.19   | -1.25   | -1.16   | -1.21   |
|         |                     | $My_{\text{máx}}$ | 6.38                                                                           | 4.75     | 2.66      | 1.85       | 0.51       | 1.15    | 2.50    | 4.63    | 5.43    |



TFM\_nave\_industrial\_R30\_mortero

|       |                     |                   | Envolv                                       | entes de               | los esfuei | zos en ba | arras   |         |         |                          |         |  |
|-------|---------------------|-------------------|----------------------------------------------|------------------------|------------|-----------|---------|---------|---------|--------------------------|---------|--|
| Danna | Tino do combinación | Fafrianza         |                                              | Posiciones en la barra |            |           |         |         |         |                          |         |  |
| Barra | Tipo de combinación | Estuerzo          | 0.138 m                                      | 0.343 m                | 0.752 m    | 0.957 m   | 1.366 m | 1.775 m | 1.980 m | 2.389 m<br>-0.19<br>0.19 | 2.594 m |  |
|       |                     | Mz <sub>min</sub> | -0.01                                        | -0.03                  | -0.06      | -0.08     | -0.11   | -0.14   | -0.16   | -0.19                    | -0.21   |  |
|       |                     | Mz <sub>máx</sub> | 0.01 0.03 0.06 0.08 0.11 0.14 0.16 0.19 0.21 |                        |            |           |         |         |         |                          |         |  |

|         |                     |                   | Env      | olventes d | e los esfue | erzos en ba | arras       |          |          |          |          |
|---------|---------------------|-------------------|----------|------------|-------------|-------------|-------------|----------|----------|----------|----------|
| D       | Ti d                | F-6               |          |            |             | Posic       | iones en la | barra    |          |          |          |
| Barra   | Tipo de combinación | Esfuerzo          | 0.054 m  | 0.478 m    | 0.691 m     | 1.115 m     | 1.327 m     | 1.752 m  | 1.964 m  | 2.388 m  | 2.601 m  |
| N91/N95 | Acero laminado      | N <sub>min</sub>  | -142.472 | -142.114   | -141.935    | -141.578    | -141.399    | -141.041 | -140.862 | -140.504 | -140.325 |
|         |                     | N <sub>máx</sub>  | 49.832   | 49.901     | 49.936      | 50.006      | 50.040      | 50.110   | 50.145   | 50.214   | 50.249   |
|         |                     | Vy <sub>min</sub> | -0.067   | -0.067     | -0.067      | -0.067      | -0.067      | -0.067   | -0.067   | -0.067   | -0.067   |
|         |                     | Vy <sub>máx</sub> | 0.067    | 0.067      | 0.067       | 0.067       | 0.067       | 0.067    | 0.067    | 0.067    | 0.067    |
|         |                     | $Vz_{min}$        | -3.379   | -1.519     | -0.624      | -0.179      | -0.630      | -1.592   | -2.073   | -3.034   | -3.515   |
|         |                     | Vz <sub>máx</sub> | 2.267    | 1.306      | 0.849       | 1.272       | 2.202       | 4.062    | 4.992    | 6.853    | 7.783    |
|         |                     | Mt <sub>min</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | My <sub>min</sub> | -0.41    | -1.12      | -1.35       | -1.49       | -1.41       | -0.93    | -0.55    | -0.99    | -2.54    |
|         |                     | My <sub>máx</sub> | 3.07     | 4.11       | 4.33        | 4.19        | 3.82        | 2.49     | 1.53     | 0.54     | 1.23     |
|         |                     | $Mz_{min}$        | -0.14    | -0.11      | -0.10       | -0.07       | -0.06       | -0.03    | -0.02    | -0.01    | -0.03    |
|         |                     | Mz <sub>máx</sub> | 0.14     | 0.12       | 0.10        | 0.07        | 0.06        | 0.03     | 0.02     | 0.01     | 0.03     |

|         |                     |                   | Env      | olventes d | e los esfue | erzos en ba | arras       |          |          |          |          |
|---------|---------------------|-------------------|----------|------------|-------------|-------------|-------------|----------|----------|----------|----------|
| Barra   | Tipo de combinación | Esfuerzo          |          |            |             | Posic       | iones en la | barra    |          |          |          |
| Бана    | ripo de combinación | Estuerzo          | 0.047 m  | 0.260 m    | 0.686 m     | 0.900 m     | 1.326 m     | 1.752 m  | 1.965 m  | 2.392 m  | 2.605 m  |
| N95/N99 | Acero laminado      | N <sub>min</sub>  | -149.988 | -149.808   | -149.449    | -149.269    | -148.910    | -148.551 | -148.371 | -148.012 | -147.832 |
|         |                     | N <sub>máx</sub>  | 47.255   | 47.290     | 47.360      | 47.395      | 47.465      | 47.534   | 47.569   | 47.639   | 47.674   |
|         |                     | Vy <sub>min</sub> | -0.074   | -0.074     | -0.074      | -0.074      | -0.074      | -0.074   | -0.074   | -0.074   | -0.074   |
|         |                     | Vy <sub>máx</sub> | 0.073    | 0.073      | 0.073       | 0.073       | 0.073       | 0.073    | 0.073    | 0.073    | 0.073    |
|         |                     | Vz <sub>min</sub> | -5.924   | -4.989     | -3.121      | -2.187      | -0.318      | -0.858   | -1.341   | -2.305   | -2.787   |
|         |                     | Vz <sub>máx</sub> | 3.010    | 2.527      | 1.561       | 1.078       | 0.113       | 1.550    | 2.484    | 4.353    | 5.287    |
|         |                     | Mt <sub>min</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00        | 0.00        | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|         |                     | My <sub>min</sub> | -2.58    | -1.41      | -0.19       | -0.43       | -0.68       | -0.52    | -0.29    | -0.73    | -1.76    |
|         |                     | My <sub>máx</sub> | 1.32     | 0.73       | 0.32        | 0.88        | 1.42        | 1.15     | 0.72     | 0.49     | 1.04     |
|         |                     | $Mz_{min}$        | -0.01    | -0.01      | -0.04       | -0.06       | -0.09       | -0.12    | -0.14    | -0.17    | -0.18    |
|         |                     | Mz <sub>máx</sub> | 0.00     | 0.01       | 0.04        | 0.06        | 0.09        | 0.12     | 0.14     | 0.17     | 0.18     |

|          |                     |                   | Envo     | lventes de | e los esfue | rzos en ba | rras        |          |          |          |          |
|----------|---------------------|-------------------|----------|------------|-------------|------------|-------------|----------|----------|----------|----------|
| Dorro    | Tino do combinación | Cofuerzo          |          |            |             | Posic      | iones en la | barra    |          |          |          |
| Barra    | Tipo de combinación | Esfuerzo          | 0.043 m  | 0.470 m    | 0.684 m     | 1.111 m    | 1.325 m     | 1.752 m  | 1.966 m  | 2.393 m  | 2.607 m  |
| N99/N103 | Acero laminado      | N <sub>min</sub>  | -143.852 | -143.491   | -143.311    | -142.951   | -142.771    | -142.411 | -142.231 | -141.871 | -141.691 |
|          |                     | $N_{\text{máx}}$  | 47.098   | 47.168     | 47.203      | 47.273     | 47.308      | 47.378   | 47.412   | 47.482   | 47.517   |
|          |                     | $Vy_{min}$        | -0.025   | -0.025     | -0.025      | -0.025     | -0.025      | -0.025   | -0.025   | -0.025   | -0.025   |
|          |                     | $Vy_{max}$        | 0.022    | 0.022      | 0.022       | 0.022      | 0.022       | 0.022    | 0.022    | 0.022    | 0.022    |
|          |                     | $Vz_{min}$        | -5.695   | -3.823     | -2.886      | -1.013     | -0.190      | -0.908   | -1.392   | -2.360   | -2.844   |
|          |                     | $Vz_{max}$        | 2.965    | 1.997      | 1.513       | 0.546      | 0.162       | 1.796    | 2.732    | 4.605    | 5.541    |
|          |                     | $Mt_{min}$        | 0.00     | 0.00       | 0.00        | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00        | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | $My_{min}$        | -1.76    | -0.02      | -0.34       | -0.78      | -0.85       | -0.67    | -0.42    | -0.70    | -1.56    |
|          |                     | $My_{max}$        | 1.10     | 0.27       | 0.99        | 1.82       | 1.94        | 1.57     | 1.09     | 0.46     | 0.94     |
|          |                     | $Mz_{min}$        | -0.04    | -0.03      | -0.02       | -0.01      | -0.01       | -0.01    | -0.01    | -0.02    | -0.02    |
|          |                     | Mz <sub>máx</sub> | 0.04     | 0.03       | 0.02        | 0.01       | 0.01        | 0.01     | 0.01     | 0.02     | 0.02     |

|          |                     |                   | Envo     | lventes de | e los esfue | rzos en ba | rras        |          |          |          |          |
|----------|---------------------|-------------------|----------|------------|-------------|------------|-------------|----------|----------|----------|----------|
| Dorro    | Tino do combinación | Cofuerzo          |          |            |             | Posic      | iones en la | barra    |          |          |          |
| Barra    | Tipo de combinación | Esfuerzo          | 0.041 m  | 0.255 m    | 0.682 m     | 0.896 m    | 1.324 m     | 1.751 m  | 1.965 m  | 2.393 m  | 2.607 m  |
| N103/N25 | Acero laminado      | N <sub>min</sub>  | -130.848 | -130.668   | -130.307    | -130.127   | -129.767    | -129.406 | -129.226 | -128.865 | -128.685 |
|          |                     | $N_{\text{máx}}$  | 44.111   | 44.146     | 44.216      | 44.251     | 44.321      | 44.391   | 44.426   | 44.496   | 44.531   |
|          |                     | $Vy_{min}$        | -0.026   | -0.026     | -0.026      | -0.026     | -0.026      | -0.026   | -0.026   | -0.026   | -0.026   |
|          |                     | $Vy_{max}$        | 0.021    | 0.021      | 0.021       | 0.021      | 0.021       | 0.021    | 0.021    | 0.021    | 0.021    |
|          |                     | $Vz_{min}$        | -4.825   | -3.888     | -2.013      | -1.243     | -0.290      | -1.206   | -1.691   | -2.660   | -3.144   |
|          |                     | $Vz_{max}$        | 2.669    | 2.185      | 1.216       | 0.731      | 0.798       | 2.672    | 3.609    | 5.484    | 6.421    |
|          |                     | $Mt_{min}$        | 0.00     | 0.00       | 0.00        | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | Mt <sub>máx</sub> | 0.00     | 0.00       | 0.00        | 0.00       | 0.00        | 0.00     | 0.00     | 0.00     | 0.00     |
|          |                     | $My_{min}$        | -1.38    | -0.57      | -0.30       | -0.51      | -0.62       | -0.53    | -0.68    | -2.16    | -3.43    |
|          |                     | $My_{max}$        | 0.94     | 0.43       | 0.81        | 1.14       | 1.20        | 0.78     | 0.49     | 0.93     | 1.55     |
|          |                     | $Mz_{min}$        | -0.01    | -0.01      | -0.02       | -0.03      | -0.04       | -0.05    | -0.05    | -0.06    | -0.06    |



TFM\_nave\_industrial\_R30\_mortero

|       |                                                                |          | Envo                                                                                        | lventes de | e los esfue | rzos en ba | rras |  |  |  |         |
|-------|----------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------|------------|-------------|------------|------|--|--|--|---------|
| D     | Tino do combinación                                            | Г-6      | Posiciones en la barra                                                                      |            |             |            |      |  |  |  |         |
| Barra | Tipo de combinación                                            | Estuerzo | 720 0.041 m   0.255 m   0.682 m   0.896 m   1.324 m   1.751 m   1.965 m   2.393 m   2.607 m |            |             |            |      |  |  |  | 2.607 m |
|       | Mz <sub>max</sub> 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.07 |          |                                                                                             |            |             |            |      |  |  |  |         |

|         |                     |                   | Envolv  | entes de | los esfuei | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Estuerzo          | 0.000 m | 0.625 m  | 1.250 m    | 1.875 m   | 2.500 m    | 3.125 m | 3.750 m | 4.375 m | 5.000 m |
| N22/N27 | Acero laminado      | $N_{min}$         | -1.782  | -1.782   | -1.782     | -1.782    | -1.782     | -1.782  | -1.782  | -1.782  | -1.782  |
|         |                     | $N_{\text{máx}}$  | 8.505   | 8.505    | 8.505      | 8.505     | 8.505      | 8.505   | 8.505   | 8.505   | 8.505   |
|         |                     | $Vy_{min}$        | -0.075  | -0.075   | -0.075     | -0.075    | -0.075     | -0.075  | -0.075  | -0.075  | -0.075  |
|         |                     | $Vy_{max}$        | 0.075   | 0.075    | 0.075      | 0.075     | 0.075      | 0.075   | 0.075   | 0.075   | 0.075   |
|         |                     | $Vz_{min}$        | -0.234  | -0.177   | -0.119     | -0.061    | -0.003     | 0.032   | 0.067   | 0.101   | 0.135   |
|         |                     | $Vz_{max}$        | -0.139  | -0.105   | -0.070     | -0.036    | -0.002     | 0.055   | 0.112   | 0.170   | 0.228   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.20   | -0.07    | 0.02       | 0.05      | 0.06       | 0.05    | 0.02    | -0.06   | -0.18   |
|         |                     | $My_{\text{máx}}$ | -0.12   | -0.04    | 0.03       | 0.08      | 0.10       | 0.09    | 0.04    | -0.03   | -0.10   |
|         |                     | $Mz_{min}$        | -0.02   | -0.02    | -0.07      | -0.12     | -0.16      | -0.21   | -0.26   | -0.30   | -0.35   |
|         |                     | $Mz_{max}$        | 0.02    | 0.02     | 0.07       | 0.12      | 0.16       | 0.21    | 0.26    | 0.30    | 0.35    |

|         |                     |                   | Envolv  | entes de | los esfue | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|-----------|------------|---------|---------|---------|---------|
| Dorro   | Tino do combinación | Fefuerzo.         |         |          |           | Posici    | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Esfuerzo          | 0.000 m | 0.625 m  | 1.250 m   | 1.875 m   | 2.500 m    | 3.125 m | 3.750 m | 4.375 m | 5.000 m |
| N32/N37 | Acero laminado      | N <sub>min</sub>  | -14.030 | -14.030  | -14.030   | -14.030   | -14.030    | -14.030 | -14.030 | -14.030 | -14.030 |
|         |                     | $N_{\text{máx}}$  | 5.554   | 5.554    | 5.554     | 5.554     | 5.554      | 5.554   | 5.554   | 5.554   | 5.554   |
|         |                     | $Vy_{min}$        | -0.072  | -0.072   | -0.072    | -0.072    | -0.072     | -0.072  | -0.072  | -0.072  | -0.072  |
|         |                     | $Vy_{max}$        | 0.072   | 0.072    | 0.072     | 0.072     | 0.072      | 0.072   | 0.072   | 0.072   | 0.072   |
|         |                     | $Vz_{min}$        | -0.281  | -0.224   | -0.166    | -0.108    | -0.050     | 0.004   | 0.038   | 0.072   | 0.107   |
|         |                     | $Vz_{\text{máx}}$ | -0.166  | -0.131   | -0.097    | -0.063    | -0.029     | 0.009   | 0.067   | 0.125   | 0.183   |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $Mt_{\text{máx}}$ | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.25   | -0.09    | 0.01      | 0.07      | 0.10       | 0.10    | 0.09    | 0.06    | 0.00    |
|         |                     | $My_{max}$        | -0.14   | -0.05    | 0.04      | 0.12      | 0.17       | 0.18    | 0.16    | 0.10    | 0.00    |
|         |                     | $Mz_{min}$        | -0.36   | -0.31    | -0.27     | -0.22     | -0.18      | -0.14   | -0.09   | -0.05   | 0.00    |
|         |                     | Mz <sub>máx</sub> | 0.36    | 0.32     | 0.27      | 0.23      | 0.18       | 0.13    | 0.09    | 0.04    | 0.00    |

|         |                     |                   | Envolv  | entes de | los esfue | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|-----------|------------|---------|---------|---------|---------|
| Porro   | Tino do combinación | Esfuerzo          |         |          |           | Posici    | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Estuerzo          | 0.000 m | 1.158 m  | 2.316 m   | 3.474 m   | 4.632 m    | 5.791 m | 6.949 m | 8.107 m | 9.265 m |
| N42/N32 | Acero laminado      | $N_{min}$         | -23.412 | -23.374  | -23.335   | -23.296   | -23.258    | -23.219 | -23.181 | -23.142 | -23.104 |
|         |                     | N <sub>máx</sub>  | 24.683  | 24.706   | 24.729    | 24.751    | 24.774     | 24.797  | 24.820  | 24.843  | 24.866  |
|         |                     | $Vy_{min}$        | 0.000   | 0.000    | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vy_{max}$        | 0.000   | 0.000    | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vz_{min}$        | -0.099  | -0.074   | -0.049    | -0.025    | 0.000      | 0.015   | 0.029   | 0.044   | 0.059   |
|         |                     | $Vz_{max}$        | -0.059  | -0.044   | -0.029    | -0.015    | 0.000      | 0.025   | 0.049   | 0.074   | 0.099   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | 0.00    | 0.06     | 0.10      | 0.13      | 0.14       | 0.13    | 0.10    | 0.06    | 0.00    |
|         |                     | $My_{max}$        | 0.00    | 0.10     | 0.17      | 0.21      | 0.23       | 0.21    | 0.17    | 0.10    | 0.00    |
|         |                     | $Mz_{min}$        | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mz <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

|         |                     |                   | Envolv                                                                                            | entes de | los esfue | rzos en ba | arras      |         |         |         |         |  |  |
|---------|---------------------|-------------------|---------------------------------------------------------------------------------------------------|----------|-----------|------------|------------|---------|---------|---------|---------|--|--|
| Danna   | Tino do combinación | Fofuerza          |                                                                                                   |          |           | Posici     | ones en la | barra   |         |         |         |  |  |
| Barra   | Tipo de combinación | Esfuerzo          | 0.135 m                                                                                           | 0.337 m  | 0.741 m   | 0.943 m    | 1.348 m    | 1.752 m | 1.954 m | 2.358 m | 2.560 m |  |  |
| N47/N55 | Acero laminado      | $N_{min}$         |                                                                                                   |          |           |            |            |         |         |         |         |  |  |
|         |                     | N <sub>máx</sub>  | Thiax                                                                                             |          |           |            |            |         |         | 69.308  | 69.308  |  |  |
|         |                     | $Vy_{min}$        | -0.295                                                                                            | -0.295   | -0.295    | -0.295     | -0.295     | -0.295  | -0.295  | -0.295  | -0.295  |  |  |
|         |                     | $Vy_{max}$        | 0.293                                                                                             | 0.293    | 0.293     | 0.293      | 0.293      | 0.293   | 0.293   | 0.293   | 0.293   |  |  |
|         |                     | $Vz_{min}$        | -40.461                                                                                           | -40.365  | -40.172   | -40.075    | -39.883    | -39.690 | -39.593 | -39.400 | -39.304 |  |  |
|         |                     | $Vz_{\text{máx}}$ | z <sub>máx</sub>   15.506   15.563   15.678   15.735   15.849   15.963   16.020   16.135   16.192 |          |           |            |            |         |         |         |         |  |  |
|         |                     | Mt <sub>min</sub> | 0.00                                                                                              | 0.00     |           |            |            |         |         |         |         |  |  |



TFM\_nave\_industrial\_R30\_mortero

|       |                     |                   | Envolv  | entes de | los esfue | zos en ba | arras      |         |         |         |         |
|-------|---------------------|-------------------|---------|----------|-----------|-----------|------------|---------|---------|---------|---------|
| Barra | Tipo de combinación | Esfuerzo          |         |          |           | Posici    | ones en la | barra   |         |         |         |
| Dalla | Tipo de combinación | Estuerzo          | 0.135 m | 0.337 m  | 0.741 m   | 0.943 m   | 1.348 m    | 1.752 m | 1.954 m | 2.358 m | 2.560 m |
|       |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|       |                     | $My_{min}$        | -64.36  | -56.19   | -39.92    | -31.81    | -15.65     | -4.08   | -3.89   | -7.86   | -10.98  |
|       |                     | $My_{max}$        | 27.76   | 24.62    | 18.31     | 15.14     | 8.75       | 3.82    | 8.44    | 24.40   | 32.36   |
|       |                     | $Mz_{min}$        | -0.03   | -0.09    | -0.21     | -0.27     | -0.39      | -0.51   | -0.57   | -0.68   | -0.74   |
|       |                     | $Mz_{max}$        | 0.03    | 0.09     | 0.21      | 0.27      | 0.39       | 0.51    | 0.57    | 0.69    | 0.75    |

|         |                     |                   | Envolv  | entes de | los esfuer | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tino do combinación | Fofuerzo.         |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Dalla   | Tipo de combinación | Esfuerzo          | 0.040 m | 0.455 m  | 0.662 m    | 1.077 m   | 1.284 m    | 1.699 m | 1.907 m | 2.322 m | 2.529 m |
| N55/N59 | Acero laminado      | $N_{min}$         | -45.648 | -45.648  | -45.648    | -45.648   | -45.648    | -45.648 | -45.648 | -45.648 | -45.648 |
|         |                     | N <sub>máx</sub>  | 72.475  | 72.475   | 72.475     | 72.475    | 72.475     | 72.475  | 72.475  | 72.475  | 72.475  |
|         |                     | $Vy_{min}$        | -0.089  | -0.089   | -0.089     | -0.089    | -0.089     | -0.089  | -0.089  | -0.089  | -0.089  |
|         |                     | $Vy_{max}$        | 0.089   | 0.089    | 0.089      | 0.089     | 0.089      | 0.089   | 0.089   | 0.089   | 0.089   |
|         |                     | $Vz_{min}$        | -4.535  | -4.418   | -4.359     | -4.242    | -4.183     | -4.066  | -4.007  | -3.890  | -3.831  |
|         |                     | $Vz_{max}$        | 11.407  | 11.605   | 11.704     | 11.902    | 12.001     | 12.199  | 12.298  | 12.496  | 12.595  |
|         |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -10.57  | -8.75    | -7.85      | -6.11     | -5.25      | -3.58   | -2.76   | -1.46   | -1.14   |
|         |                     | My <sub>máx</sub> | 31.02   | 26.25    | 23.83      | 18.93     | 16.46      | 11.44   | 8.90    | 3.75    | 1.27    |
|         |                     | $Mz_{min}$        | -0.14   | -0.10    | -0.08      | -0.06     | -0.05      | -0.04   | -0.03   | -0.07   | -0.09   |
|         |                     | Mz <sub>máx</sub> | 0.14    | 0.10     | 0.08       | 0.05      | 0.05       | 0.03    | 0.03    | 0.07    | 0.09    |

|         |                     |                   | Envolv  | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Barra   | Tipo de combinación | Esfuerzo          |         |          |           | Posici     | ones en la | barra   |         |         |         |
| Dalla   | ripo de combinación | Estuerzo          | 0.071 m | 0.277 m  | 0.689 m   | 0.895 m    | 1.306 m    | 1.718 m | 1.924 m | 2.336 m | 2.542 m |
| N59/N63 | Acero laminado      | N <sub>min</sub>  | -50.716 | -50.716  | -50.716   | -50.716    | -50.716    | -50.716 | -50.716 | -50.716 | -50.716 |
|         |                     | N <sub>máx</sub>  | 135.890 | 135.890  | 135.890   | 135.890    | 135.890    | 135.890 | 135.890 | 135.890 | 135.890 |
|         |                     | $Vy_{min}$        | -0.141  | -0.141   | -0.141    | -0.141     | -0.141     | -0.141  | -0.141  | -0.141  | -0.141  |
|         |                     | $Vy_{max}$        | 0.140   | 0.140    | 0.140     | 0.140      | 0.140      | 0.140   | 0.140   | 0.140   | 0.140   |
|         |                     | $Vz_{min}$        | -2.228  | -2.130   | -1.933    | -1.835     | -1.638     | -1.442  | -1.344  | -1.147  | -1.049  |
|         |                     | $Vz_{max}$        | 0.256   | 0.314    | 0.430     | 0.489      | 0.605      | 0.722   | 0.780   | 0.896   | 0.955   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -1.22   | -1.00    | -0.95     | -0.94      | -0.96      | -1.02   | -1.08   | -1.25   | -1.43   |
|         |                     | $My_{max}$        | 0.87    | 1.04     | 1.45      | 1.77       | 2.49       | 3.12    | 3.41    | 3.92    | 4.15    |
|         |                     | $Mz_{min}$        | -0.17   | -0.20    | -0.25     | -0.28      | -0.34      | -0.40   | -0.43   | -0.48   | -0.51   |
|         |                     | Mz <sub>máx</sub> | 0.17    | 0.20     | 0.25      | 0.28       | 0.34       | 0.40    | 0.43    | 0.49    | 0.51    |

|         | Envolventes de los esfuerzos en barras |                   |         |          |            |            |            |         |         |         |         |
|---------|----------------------------------------|-------------------|---------|----------|------------|------------|------------|---------|---------|---------|---------|
|         |                                        |                   | Envolv  | entes de | los esfuei | rzos en ba | arras      |         |         |         |         |
| Porro   | Tino do combinación                    | Cofuerzo          |         |          |            | Posici     | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación                    | Esfuerzo          | 0.058 m | 0.266 m  | 0.681 m    | 1.096 m    | 1.304 m    | 1.719 m | 1.926 m | 2.341 m | 2.549 m |
| N63/N67 | Acero laminado                         | $N_{min}$         | -46.633 | -46.633  | -46.633    | -46.633    | -46.633    | -46.633 | -46.633 | -46.633 | -46.633 |
|         |                                        | $N_{\text{máx}}$  | 142.813 | 142.813  | 142.813    | 142.813    | 142.813    | 142.813 | 142.813 | 142.813 | 142.813 |
|         |                                        | $Vy_{min}$        | -0.029  | -0.029   | -0.029     | -0.029     | -0.029     | -0.029  | -0.029  | -0.029  | -0.029  |
|         |                                        | $Vy_{\text{máx}}$ | 0.030   | 0.030    | 0.030      | 0.030      | 0.030      | 0.030   | 0.030   | 0.030   | 0.030   |
|         |                                        | $Vz_{min}$        | -0.635  | -0.535   | -0.337     | -0.147     | -0.088     | 0.029   | 0.088   | 0.205   | 0.264   |
|         |                                        | $Vz_{max}$        | -0.141  | -0.082   | 0.035      | 0.160      | 0.260      | 0.458   | 0.557   | 0.755   | 0.854   |
|         |                                        | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                                        | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                                        | $My_{min}$        | -1.46   | -1.38    | -1.25      | -1.16      | -1.14      | -1.13   | -1.14   | -1.20   | -1.25   |
|         |                                        | $My_{max}$        | 4.12    | 4.18     | 4.24       | 4.21       | 4.17       | 4.02    | 3.91    | 3.64    | 3.48    |
|         |                                        | $Mz_{min}$        | -0.11   | -0.11    | -0.12      | -0.13      | -0.13      | -0.14   | -0.15   | -0.16   | -0.16   |
|         |                                        | Mz <sub>max</sub> | 0.10    | 0.11     | 0.12       | 0.13       | 0.13       | 0.14    | 0.15    | 0.16    | 0.16    |

|         |                     |                  | Envolv  | entes de | los esfuer | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|------------------|---------|----------|------------|------------|------------|---------|---------|---------|---------|
| Danna   | Tipo de combinación | Fafrianza        |         |          |            | Posici     | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Estuerzo         | 0.051 m | 0.259 m  | 0.676 m    | 0.885 m    | 1.302 m    | 1.719 m | 1.927 m | 2.344 m | 2.553 m |
| N67/N71 | Acero laminado      | N <sub>min</sub> | -40.720 | -40.720  | -40.720    | -40.720    | -40.720    | -40.720 | -40.720 | -40.720 | -40.720 |
|         |                     | $N_{\text{máx}}$ | 136.722 | 136.722  | 136.722    | 136.722    | 136.722    | 136.722 | 136.722 | 136.722 | 136.722 |

TFM\_nave\_industrial\_R30\_mortero

|       |                     |                   | Envolv  | entes de | los esfue | rzos en ba | arras      |         |         |         |         |
|-------|---------------------|-------------------|---------|----------|-----------|------------|------------|---------|---------|---------|---------|
| Barra | Tipo de combinación | Esfuerzo          |         |          |           | Posici     | ones en la | barra   |         |         |         |
| Dalla | Tipo de combinación | Estuerzo          | 0.051 m | 0.259 m  | 0.676 m   | 0.885 m    | 1.302 m    | 1.719 m | 1.927 m | 2.344 m | 2.553 m |
|       |                     | $Vy_{min}$        | -0.036  | -0.036   | -0.036    | -0.036     | -0.036     | -0.036  | -0.036  | -0.036  | -0.036  |
|       |                     | $Vy_{max}$        | 0.034   | 0.034    | 0.034     | 0.034      | 0.034      | 0.034   | 0.034   | 0.034   | 0.034   |
|       |                     | $Vz_{min}$        | -0.956  | -0.897   | -0.779    | -0.721     | -0.603     | -0.485  | -0.426  | -0.308  | -0.249  |
|       |                     | $Vz_{\text{max}}$ | 1.293   | 1.392    | 1.591     | 1.691      | 1.889      | 2.088   | 2.188   | 2.387   | 2.486   |
|       |                     | Mt <sub>min</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|       |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00      | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|       |                     | $My_{min}$        | -1.31   | -1.11    | -0.78     | -0.63      | -0.38      | -0.17   | -0.09   | -0.81   | -1.32   |
|       |                     | $My_{max}$        | 3.41    | 3.13     | 2.50      | 2.16       | 1.41       | 0.59    | 0.18    | 0.14    | 0.20    |
|       |                     | $Mz_{min}$        | -0.18   | -0.19    | -0.20     | -0.21      | -0.22      | -0.24   | -0.25   | -0.26   | -0.27   |
|       |                     | $Mz_{max}$        | 0.18    | 0.19     | 0.20      | 0.21       | 0.23       | 0.24    | 0.25    | 0.26    | 0.27    |

|         |                     |                   | Envolv  | entes de | los esfue | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|-----------|-----------|------------|---------|---------|---------|---------|
| Barra   | Tino do combinación | Fofuerzo.         |         |          |           | Posici    | ones en la | barra   |         |         |         |
| Вапа    | Tipo de combinación | Esfuerzo          | 0.135 m | 0.136 m  | 0.349 m   | 0.563 m   | 0.776 m    | 0.990 m | 1.204 m | 1.417 m | 1.418 m |
| N55/N91 | Acero laminado      | $N_{min}$         | -50.212 | -50.212  | -50.195   | -50.178   | -50.161    | -50.144 | -50.126 | -50.109 | -50.109 |
|         |                     | N <sub>máx</sub>  | 20.786  | 20.786   | 20.796    | 20.806    | 20.816     | 20.826  | 20.837  | 20.847  | 20.847  |
|         |                     | $Vy_{min}$        | -0.003  | -0.003   | -0.003    | -0.003    | -0.003     | -0.003  | -0.003  | -0.003  | -0.003  |
|         |                     | $Vy_{max}$        | 0.023   | 0.023    | 0.023     | 0.023     | 0.023      | 0.023   | 0.023   | 0.023   | 0.023   |
|         |                     | $Vz_{min}$        | -3.168  | -3.168   | -3.168    | -3.168    | -3.168     | -3.168  | -3.168  | -3.168  | -3.168  |
|         |                     | $Vz_{max}$        | 1.098   | 1.098    | 1.098     | 1.098     | 1.098      | 1.098   | 1.098   | 1.098   | 1.098   |
|         |                     | Mt <sub>min</sub> | -0.04   | -0.04    | -0.04     | -0.04     | -0.04      | -0.04   | -0.04   | -0.04   | -0.04   |
|         |                     | Mt <sub>máx</sub> | 0.04    | 0.04     | 0.04      | 0.04      | 0.04       | 0.04    | 0.04    | 0.04    | 0.04    |
|         |                     | $My_{min}$        | -2.02   | -2.02    | -1.35     | -0.67     | -0.02      | -0.23   | -0.47   | -0.70   | -0.70   |
|         |                     | $My_{max}$        | 0.71    | 0.71     | 0.47      | 0.24      | 0.04       | 0.69    | 1.36    | 2.04    | 2.04    |
|         |                     | $Mz_{min}$        | 0.00    | 0.00     | 0.00      | 0.00      | 0.00       | 0.00    | -0.01   | -0.01   | -0.01   |
|         |                     | Mz <sub>máx</sub> | 0.02    | 0.02     | 0.01      | 0.01      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

|          |                     |                   | Envolve | entes de l | os esfuer. | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|------------|-----------|------------|---------|---------|---------|---------|
| Danna    | Tino do combinación | Fof               |         |            |            | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.179 m | 0.641 m    | 1.103 m    | 1.566 m   | 2.028 m    | 2.490 m | 2.952 m | 3.415 m | 3.877 m |
| N71/N103 | Acero laminado      | N <sub>min</sub>  | -22.421 | -22.393    | -22.365    | -22.337   | -22.309    | -22.281 | -22.253 | -22.225 | -22.197 |
|          |                     | N <sub>máx</sub>  | 10.360  | 10.377     | 10.393     | 10.410    | 10.426     | 10.443  | 10.460  | 10.476  | 10.493  |
|          |                     | Vy <sub>min</sub> | -0.002  | -0.002     | -0.002     | -0.002    | -0.002     | -0.002  | -0.002  | -0.002  | -0.002  |
|          |                     | Vy <sub>máx</sub> | 0.005   | 0.005      | 0.005      | 0.005     | 0.005      | 0.005   | 0.005   | 0.005   | 0.005   |
|          |                     | $Vz_{min}$        | -0.103  | -0.079     | -0.055     | -0.030    | -0.010     | 0.004   | 0.019   | 0.033   | 0.047   |
|          |                     | Vz <sub>máx</sub> | -0.039  | -0.024     | -0.010     | 0.004     | 0.023      | 0.047   | 0.071   | 0.096   | 0.120   |
|          |                     | Mt <sub>min</sub> | -0.01   | -0.01      | -0.01      | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|          |                     | Mt <sub>máx</sub> | 0.01    | 0.01       | 0.01       | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |
|          |                     | My <sub>min</sub> | -0.07   | -0.03      | -0.01      | 0.01      | 0.01       | 0.01    | -0.01   | -0.05   | -0.10   |
|          |                     | My <sub>máx</sub> | 0.00    | 0.02       | 0.03       | 0.04      | 0.03       | 0.03    | 0.01    | 0.00    | -0.02   |
|          |                     | Mz <sub>min</sub> | -0.02   | -0.02      | -0.02      | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|          |                     | Mz <sub>máx</sub> | 0.02    | 0.02       | 0.02       | 0.02      | 0.02       | 0.01    | 0.01    | 0.01    | 0.01    |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| -        | T. 1 1. 1.          | F 6               |         |            |           |           | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.000 m | 0.696 m    | 1.392 m   | 2.089 m   | 2.785 m    | 3.481 m | 4.177 m | 4.874 m | 5.570 m |
| N32/N122 | Acero laminado      | N <sub>min</sub>  | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | N <sub>máx</sub>  | 22.349  | 22.349     | 22.349    | 22.349    | 22.349     | 22.349  | 22.349  | 22.349  | 22.349  |
|          |                     | Vy <sub>min</sub> | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | Vy <sub>máx</sub> | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{min}$        | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{max}$        | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | Mt <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mt <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | My <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | My <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mz <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mz <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

TFM\_nave\_industrial\_R30\_mortero

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Dorro     | Tino do combinación | Fofuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.757 m     | 1.515 m    | 2.273 m   | 3.030 m    | 3.787 m | 4.545 m | 5.302 m | 6.060 m |
| N180/N200 | Acero laminado      | N <sub>min</sub>  | -36.584 | -35.288     | -33.992    | -32.696   | -31.400    | -30.103 | -28.807 | -27.511 | -26.215 |
|           |                     | N <sub>máx</sub>  | 4.723   | 5.491       | 6.259      | 7.028     | 7.796      | 8.564   | 9.332   | 10.100  | 10.868  |
|           |                     | Vy <sub>min</sub> | -0.121  | -0.121      | -0.121     | -0.121    | -0.121     | -0.121  | -0.121  | -0.121  | -0.121  |
|           |                     | Vy <sub>máx</sub> | 0.122   | 0.122       | 0.122      | 0.122     | 0.122      | 0.122   | 0.122   | 0.122   | 0.122   |
|           |                     | $Vz_{min}$        | -29.638 | -26.010     | -22.383    | -18.755   | -15.128    | -11.501 | -7.873  | -4.246  | -0.838  |
|           |                     | Vz <sub>máx</sub> | 26.697  | 23.492      | 20.288     | 17.084    | 13.880     | 10.676  | 7.471   | 4.267   | 1.063   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -58.67  | -37.59      | -19.26     | -5.69     | -4.28      | -13.58  | -20.46  | -24.90  | -26.92  |
|           |                     | My <sub>máx</sub> | 57.19   | 38.18       | 21.60      | 7.45      | 9.16       | 19.24   | 26.57   | 31.16   | 33.01   |
|           |                     | $Mz_{min}$        | -0.37   | -0.28       | -0.19      | -0.09     | 0.00       | -0.09   | -0.18   | -0.28   | -0.37   |
|           |                     | Mz <sub>máx</sub> | 0.37    | 0.28        | 0.19       | 0.09      | 0.00       | 0.09    | 0.18    | 0.27    | 0.37    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Estuerzo          | 0.135 m | 0.522 m     | 0.910 m    | 1.491 m   | 1.878 m    | 2.265 m | 2.846 m | 3.234 m | 3.621 m |
| N200/N128 | Acero laminado      | N <sub>min</sub>  | -23.244 | -22.582     | -21.919    | -20.925   | -20.262    | -19.599 | -18.606 | -18.002 | -17.497 |
|           |                     | N <sub>máx</sub>  | 12.559  | 12.951      | 13.344     | 13.933    | 14.326     | 14.719  | 15.308  | 15.665  | 15.965  |
|           |                     | Vy <sub>min</sub> | -0.174  | -0.174      | -0.174     | -0.174    | -0.174     | -0.174  | -0.174  | -0.174  | -0.174  |
|           |                     | Vy <sub>máx</sub> | 0.153   | 0.153       | 0.153      | 0.153     | 0.153      | 0.153   | 0.153   | 0.153   | 0.153   |
|           |                     | $Vz_{min}$        | -0.386  | -1.620      | -3.258     | -5.716    | -7.354     | -8.993  | -11.448 | -12.894 | -14.023 |
|           |                     | Vz <sub>máx</sub> | 0.673   | 2.527       | 4.382      | 7.164     | 9.019      | 10.874  | 13.654  | 15.291  | 16.569  |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -27.07  | -26.78      | -25.86     | -23.29    | -20.78     | -17.64  | -11.74  | -7.03   | -1.83   |
|           |                     | My <sub>máx</sub> | 33.01   | 32.44       | 31.15      | 27.87     | 24.78      | 20.97   | 13.92   | 8.35    | 2.22    |
|           |                     | $Mz_{min}$        | -0.29   | -0.22       | -0.16      | -0.05     | -0.03      | -0.06   | -0.15   | -0.21   | -0.27   |
|           |                     | Mz <sub>máx</sub> | 0.26    | 0.20        | 0.14       | 0.05      | 0.04       | 0.08    | 0.18    | 0.25    | 0.31    |

|         |                     |                   | Envolv  | entes de | los esfuei | rzos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|------------|------------|---------|---------|---------|---------|
| Dorro   | Tipo de combinación | Esfuerzo          |         |          |            | Posici     | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Estuerzo          | 0.035 m | 0.651 m  | 1.267 m    | 1.884 m    | 2.500 m    | 3.116 m | 3.732 m | 4.349 m | 4.965 m |
| N91/N92 | Acero laminado      | N <sub>min</sub>  | -2.978  | -2.978   | -2.978     | -2.978     | -2.978     | -2.978  | -2.978  | -2.978  | -2.978  |
|         |                     | $N_{\text{máx}}$  | 9.123   | 9.123    | 9.123      | 9.123      | 9.123      | 9.123   | 9.123   | 9.123   | 9.123   |
|         |                     | $Vy_{min}$        | -0.102  | -0.102   | -0.102     | -0.102     | -0.102     | -0.102  | -0.102  | -0.102  | -0.102  |
|         |                     | $Vy_{max}$        | 0.102   | 0.102    | 0.102      | 0.102      | 0.102      | 0.102   | 0.102   | 0.102   | 0.102   |
|         |                     | $Vz_{min}$        | -0.228  | -0.171   | -0.114     | -0.057     | 0.000      | 0.034   | 0.067   | 0.101   | 0.135   |
|         |                     | $Vz_{\text{máx}}$ | -0.130  | -0.096   | -0.063     | -0.029     | 0.005      | 0.062   | 0.119   | 0.176   | 0.233   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | -0.19   | -0.06    | 0.01       | 0.05       | 0.05       | 0.04    | 0.01    | -0.08   | -0.20   |
|         |                     | My <sub>máx</sub> | -0.10   | -0.03    | 0.03       | 0.08       | 0.10       | 0.08    | 0.03    | -0.03   | -0.11   |
|         |                     | $Mz_{min}$        | -0.25   | -0.19    | -0.13      | -0.06      | -0.06      | -0.06   | -0.13   | -0.19   | -0.25   |
|         |                     | Mz <sub>máx</sub> | 0.25    | 0.19     | 0.13       | 0.06       | 0.06       | 0.06    | 0.12    | 0.19    | 0.25    |

|         |                     |                   | Envolv  | entes de | los esfuer | zos en ba | arras      |         |         |         |         |
|---------|---------------------|-------------------|---------|----------|------------|-----------|------------|---------|---------|---------|---------|
| Danna   | Tino do combinación | Fofuerra          |         |          |            | Posici    | ones en la | barra   |         |         |         |
| Barra   | Tipo de combinación | Esfuerzo          | 0.140 m | 0.758 m  | 1.375 m    | 1.993 m   | 2.610 m    | 3.228 m | 3.845 m | 4.463 m | 5.080 m |
| N55/N92 | Acero laminado      | N <sub>min</sub>  | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $N_{\text{máx}}$  | 0.592   | 0.592    | 0.592      | 0.592     | 0.592      | 0.592   | 0.592   | 0.592   | 0.592   |
|         |                     | $Vy_{min}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vy_{max}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vz_{min}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Vz_{max}$        | 0.000   | 0.000    | 0.000      | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|         |                     | $Mt_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | Mt <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $My_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | My <sub>máx</sub> | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $Mz_{min}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|         |                     | $Mz_{max}$        | 0.00    | 0.00     | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |



TFM\_nave\_industrial\_R30\_mortero

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Danna    | Time de combinación | Fafa.vaa          |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.412 m | 1.004 m    | 1.595 m   | 2.187 m   | 2.778 m    | 3.370 m | 3.961 m | 4.553 m | 5.144 m |
| N196/N37 | Acero laminado      | N <sub>min</sub>  | -7.208  | -7.206     | -7.203    | -7.200    | -7.198     | -7.195  | -7.192  | -7.189  | -7.187  |
|          |                     | N <sub>máx</sub>  | 8.325   | 8.330      | 8.335     | 8.339     | 8.344      | 8.348   | 8.353   | 8.357   | 8.362   |
|          |                     | $Vy_{min}$        | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | Vy <sub>máx</sub> | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{min}$        | -0.053  | -0.040     | -0.026    | -0.013    | 0.000      | 0.008   | 0.016   | 0.023   | 0.031   |
|          |                     | Vz <sub>máx</sub> | -0.031  | -0.023     | -0.016    | -0.008    | 0.000      | 0.013   | 0.026   | 0.040   | 0.053   |
|          |                     | Mt <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mt <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | $My_{min}$        | 0.00    | 0.02       | 0.03      | 0.03      | 0.04       | 0.03    | 0.03    | 0.02    | 0.00    |
|          |                     | My <sub>máx</sub> | 0.00    | 0.03       | 0.05      | 0.06      | 0.06       | 0.06    | 0.05    | 0.03    | 0.00    |
|          |                     | $Mz_{min}$        | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mz <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Dalla     | ripo de combinación | Estuerzo          | 0.180 m | 0.808 m     | 1.435 m    | 2.063 m   | 2.690 m    | 3.318 m | 3.945 m | 4.572 m | 5.200 m |
| N192/N196 | Acero laminado      | N <sub>min</sub>  | -5.153  | -5.153      | -5.153     | -5.153    | -5.153     | -5.153  | -5.153  | -5.153  | -5.153  |
|           |                     | N <sub>máx</sub>  | 10.730  | 10.730      | 10.730     | 10.730    | 10.730     | 10.730  | 10.730  | 10.730  | 10.730  |
|           |                     | $Vy_{min}$        | -0.072  | -0.072      | -0.072     | -0.072    | -0.072     | -0.072  | -0.072  | -0.072  | -0.072  |
|           |                     | Vy <sub>máx</sub> | 0.140   | 0.140       | 0.140      | 0.140     | 0.140      | 0.140   | 0.140   | 0.140   | 0.140   |
|           |                     | $Vz_{min}$        | -2.405  | -2.106      | -1.806     | -1.507    | -1.207     | -1.010  | -0.832  | -0.655  | -0.477  |
|           |                     | Vz <sub>máx</sub> | 0.289   | 0.467       | 0.644      | 0.821     | 0.999      | 1.278   | 1.578   | 1.877   | 2.177   |
|           |                     | Mt <sub>min</sub> | -0.01   | -0.01       | -0.01      | -0.01     | -0.01      | -0.01   | -0.01   | -0.01   | -0.01   |
|           |                     | Mt <sub>máx</sub> | 0.02    | 0.02        | 0.02       | 0.02      | 0.02       | 0.02    | 0.02    | 0.02    | 0.02    |
|           |                     | My <sub>min</sub> | -5.63   | -4.21       | -3.00      | -2.08     | -1.28      | -0.59   | -0.02   | -0.86   | -2.13   |
|           |                     | My <sub>máx</sub> | 3.26    | 3.02        | 2.68       | 2.35      | 1.83       | 1.12    | 0.23    | 0.45    | 0.81    |
|           |                     | $Mz_{min}$        | -0.04   | -0.09       | -0.16      | -0.24     | -0.31      | -0.39   | -0.47   | -0.56   | -0.65   |
|           |                     | Mz <sub>máx</sub> | 0.06    | 0.02        | 0.05       | 0.10      | 0.14       | 0.19    | 0.23    | 0.28    | 0.33    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Danna     | Time de combinación | F-6               |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.650 m     | 1.300 m    | 1.950 m   | 2.600 m    | 3.250 m | 3.900 m | 4.550 m | 5.200 m |
| N196/N200 | Acero laminado      | N <sub>min</sub>  | -2.041  | -2.041      | -2.041     | -2.041    | -2.041     | -2.041  | -2.041  | -2.041  | -2.041  |
|           |                     | N <sub>máx</sub>  | 11.748  | 11.748      | 11.748     | 11.748    | 11.748     | 11.748  | 11.748  | 11.748  | 11.748  |
|           |                     | Vy <sub>min</sub> | -0.261  | -0.261      | -0.261     | -0.261    | -0.261     | -0.261  | -0.261  | -0.261  | -0.261  |
|           |                     | Vy <sub>máx</sub> | 0.160   | 0.160       | 0.160      | 0.160     | 0.160      | 0.160   | 0.160   | 0.160   | 0.160   |
|           |                     | $Vz_{min}$        | -1.312  | -1.001      | -0.691     | -0.381    | -0.077     | 0.106   | 0.290   | 0.474   | 0.658   |
|           |                     | Vz <sub>máx</sub> | -0.698  | -0.514      | -0.330     | -0.146    | 0.044      | 0.354   | 0.664   | 0.974   | 1.285   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -1.34   | -0.60       | -0.15      | 0.06      | 0.13       | 0.05    | -0.15   | -0.62   | -1.35   |
|           |                     | My <sub>máx</sub> | -0.36   | 0.05        | 0.43       | 0.73      | 0.83       | 0.72    | 0.42    | 0.06    | -0.36   |
|           |                     | Mz <sub>min</sub> | -0.64   | -0.51       | -0.39      | -0.26     | -0.13      | -0.20   | -0.30   | -0.40   | -0.51   |
|           |                     | $Mz_{max}$        | 0.33    | 0.22        | 0.12       | 0.06      | 0.10       | 0.23    | 0.40    | 0.57    | 0.74    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Dalla     | Tipo de combinación | Estuerzo          | 0.000 m | 0.650 m     | 1.300 m    | 1.950 m   | 2.600 m    | 3.250 m | 3.900 m | 4.550 m | 5.200 m |
| N200/N202 | Acero laminado      | N <sub>min</sub>  | -2.021  | -2.021      | -2.021     | -2.021    | -2.021     | -2.021  | -2.021  | -2.021  | -2.021  |
|           |                     | N <sub>máx</sub>  | 11.845  | 11.845      | 11.845     | 11.845    | 11.845     | 11.845  | 11.845  | 11.845  | 11.845  |
|           |                     | Vy <sub>min</sub> | -0.067  | -0.067      | -0.067     | -0.067    | -0.067     | -0.067  | -0.067  | -0.067  | -0.067  |
|           |                     | Vy <sub>máx</sub> | 0.067   | 0.067       | 0.067      | 0.067     | 0.067      | 0.067   | 0.067   | 0.067   | 0.067   |
|           |                     | $Vz_{min}$        | -1.397  | -1.087      | -0.777     | -0.467    | -0.157     | 0.027   | 0.211   | 0.395   | 0.579   |
|           |                     | Vz <sub>máx</sub> | -0.579  | -0.395      | -0.211     | -0.027    | 0.157      | 0.467   | 0.777   | 1.087   | 1.397   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -1.50   | -0.69       | -0.14      | 0.14      | 0.30       | 0.14    | -0.14   | -0.69   | -1.50   |
|           |                     | My <sub>máx</sub> | -0.24   | 0.07        | 0.32       | 0.52      | 0.61       | 0.52    | 0.32    | 0.07    | -0.24   |
|           |                     | $Mz_{min}$        | -0.50   | -0.50       | -0.50      | -0.50     | -0.50      | -0.50   | -0.50   | -0.50   | -0.50   |
|           |                     | Mz <sub>máx</sub> | 0.74    | 0.69        | 0.65       | 0.60      | 0.56       | 0.60    | 0.65    | 0.69    | 0.74    |



TFM\_nave\_industrial\_R30\_mortero

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Dame      | Time de combinación | F-6               |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Barra     | Tipo de combinación | Esfuerzo          | 0.000 m | 0.650 m     | 1.300 m    | 1.950 m   | 2.600 m    | 3.250 m | 3.900 m | 4.550 m | 5.200 m |
| N202/N198 | Acero laminado      | N <sub>min</sub>  | -2.041  | -2.041      | -2.041     | -2.041    | -2.041     | -2.041  | -2.041  | -2.041  | -2.041  |
|           |                     | N <sub>máx</sub>  | 11.748  | 11.748      | 11.748     | 11.748    | 11.748     | 11.748  | 11.748  | 11.748  | 11.748  |
|           |                     | Vy <sub>min</sub> | -0.160  | -0.160      | -0.160     | -0.160    | -0.160     | -0.160  | -0.160  | -0.160  | -0.160  |
|           |                     | Vy <sub>máx</sub> | 0.261   | 0.261       | 0.261      | 0.261     | 0.261      | 0.261   | 0.261   | 0.261   | 0.261   |
|           |                     | $Vz_{min}$        | -1.285  | -0.974      | -0.664     | -0.354    | -0.044     | 0.146   | 0.330   | 0.514   | 0.698   |
|           |                     | Vz <sub>máx</sub> | -0.658  | -0.474      | -0.290     | -0.106    | 0.077      | 0.381   | 0.691   | 1.001   | 1.312   |
|           |                     | Mt <sub>min</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | Mt <sub>máx</sub> | 0.00    | 0.00        | 0.00       | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|           |                     | My <sub>min</sub> | -1.35   | -0.62       | -0.15      | 0.05      | 0.13       | 0.06    | -0.15   | -0.60   | -1.34   |
|           |                     | My <sub>máx</sub> | -0.36   | 0.06        | 0.42       | 0.72      | 0.83       | 0.73    | 0.43    | 0.05    | -0.36   |
|           |                     | $Mz_{min}$        | -0.51   | -0.40       | -0.30      | -0.20     | -0.13      | -0.26   | -0.39   | -0.51   | -0.64   |
|           |                     | Mz <sub>máx</sub> | 0.74    | 0.57        | 0.40       | 0.23      | 0.10       | 0.06    | 0.12    | 0.22    | 0.33    |

|           |                     |                   | Envolve | entes de la | os esfuerz | os en bar | ras        |         |         |         |         |
|-----------|---------------------|-------------------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|
| Barra     | Tipo de combinación | Esfuerzo          |         |             |            | Posici    | ones en la | barra   |         |         |         |
| Бана      | Tipo de combinación | ESIUEIZO          | 0.000 m | 0.627 m     | 1.255 m    | 1.882 m   | 2.510 m    | 3.137 m | 3.765 m | 4.393 m | 5.020 m |
| N198/N194 | Acero laminado      | N <sub>min</sub>  | -5.153  | -5.153      | -5.153     | -5.153    | -5.153     | -5.153  | -5.153  | -5.153  | -5.153  |
|           |                     | N <sub>máx</sub>  | 10.730  | 10.730      | 10.730     | 10.730    | 10.730     | 10.730  | 10.730  | 10.730  | 10.730  |
|           |                     | Vy <sub>min</sub> | -0.140  | -0.140      | -0.140     | -0.140    | -0.140     | -0.140  | -0.140  | -0.140  | -0.140  |
|           |                     | Vy <sub>máx</sub> | 0.072   | 0.072       | 0.072      | 0.072     | 0.072      | 0.072   | 0.072   | 0.072   | 0.072   |
|           |                     | Vz <sub>min</sub> | -2.177  | -1.877      | -1.578     | -1.278    | -0.999     | -0.822  | -0.644  | -0.467  | -0.289  |
|           |                     | Vz <sub>máx</sub> | 0.477   | 0.655       | 0.832      | 1.010     | 1.207      | 1.507   | 1.806   | 2.106   | 2.405   |
|           |                     | Mt <sub>min</sub> | -0.02   | -0.02       | -0.02      | -0.02     | -0.02      | -0.02   | -0.02   | -0.02   | -0.02   |
|           |                     | Mt <sub>máx</sub> | 0.01    | 0.01        | 0.01       | 0.01      | 0.01       | 0.01    | 0.01    | 0.01    | 0.01    |
|           |                     | My <sub>min</sub> | -2.13   | -0.86       | -0.02      | -0.59     | -1.28      | -2.08   | -3.00   | -4.21   | -5.63   |
|           |                     | My <sub>máx</sub> | 0.81    | 0.45        | 0.23       | 1.12      | 1.83       | 2.35    | 2.68    | 3.02    | 3.26    |
|           |                     | $Mz_{min}$        | -0.65   | -0.56       | -0.47      | -0.39     | -0.31      | -0.24   | -0.16   | -0.09   | -0.04   |
|           |                     | Mz <sub>máx</sub> | 0.33    | 0.28        | 0.23       | 0.19      | 0.14       | 0.10    | 0.05    | 0.02    | 0.06    |

|          |                     |                   | Envolve | entes de l | os esfuer | zos en ba | rras       |         |         |         |         |
|----------|---------------------|-------------------|---------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| Downs    | Tino do combinación | Fof               |         |            |           | Posici    | ones en la | barra   |         |         |         |
| Barra    | Tipo de combinación | Esfuerzo          | 0.275 m | 1.210 m    | 2.145 m   | 3.081 m   | 4.016 m    | 4.951 m | 5.886 m | 6.822 m | 7.757 m |
| N42/N196 | Acero laminado      | N <sub>min</sub>  | -16.044 | -16.028    | -16.011   | -15.994   | -15.978    | -15.961 | -15.944 | -15.928 | -15.911 |
|          |                     | N <sub>máx</sub>  | 14.818  | 14.828     | 14.838    | 14.848    | 14.858     | 14.867  | 14.877  | 14.887  | 14.897  |
|          |                     | Vy <sub>min</sub> | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | Vy <sub>máx</sub> | 0.000   | 0.000      | 0.000     | 0.000     | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |
|          |                     | $Vz_{min}$        | -0.058  | -0.043     | -0.029    | -0.014    | 0.000      | 0.009   | 0.017   | 0.026   | 0.034   |
|          |                     | Vz <sub>máx</sub> | -0.034  | -0.026     | -0.017    | -0.009    | 0.000      | 0.014   | 0.029   | 0.043   | 0.058   |
|          |                     | Mt <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mt <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | My <sub>min</sub> | 0.00    | 0.03       | 0.05      | 0.06      | 0.06       | 0.06    | 0.05    | 0.03    | 0.00    |
|          |                     | My <sub>máx</sub> | 0.00    | 0.05       | 0.08      | 0.10      | 0.11       | 0.10    | 0.08    | 0.05    | 0.00    |
|          |                     | Mz <sub>min</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |
|          |                     | Mz <sub>máx</sub> | 0.00    | 0.00       | 0.00      | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00    |

#### 2.2.2.- Flechas

#### Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

|           |             |                                   |             | Flechas                            |             |                                   |             |                                   |
|-----------|-------------|-----------------------------------|-------------|------------------------------------|-------------|-----------------------------------|-------------|-----------------------------------|
| Crupo     |             | ma absoluta xy<br>ima relativa xy |             | ima absoluta xz<br>ima relativa xz |             | va absoluta xy<br>iva relativa xy |             | va absoluta xz<br>iva relativa xz |
| Grupo     | Pos.<br>(m) | Flecha<br>(mm)                    | Pos.<br>(m) | Flecha<br>(mm)                     | Pos.<br>(m) | Flecha<br>(mm)                    | Pos.<br>(m) | Flecha<br>(mm)                    |
| NO. /NO.7 | 4.595       | 21.83                             | 3.496       | 0.53                               | 4.595       | 34.32                             | 4.229       | 0.72                              |
| N36/N37   | 4.595       | L/351.9                           | 3.496       | L/(>1000)                          | 4.595       | L/352.4                           | 3.496       | L/(>1000)                         |



TFM\_nave\_industrial\_R30\_mortero

L/(>1000)

3.741

L/13.8

Flechas Flecha máxima absoluta xy Flecha máxima absoluta xz Flecha activa absoluta xy Flecha activa absoluta xz Flecha máxima relativa xy Flecha máxima relativa xz Flecha activa relativa xy Flecha activa relativa xz Grupo Pos. Flecha Pos. Flecha Pos. Flecha Pos. Flecha (m) (mm) (m) (mm) (m) (mm) (m) (mm) 5.490 3.50 9.650 0.47 5.868 6.62 9.650 0.77 N37/N40 5.490 L/(>1000) 10.407 L/(>1000) 5.490 L/(>1000) 2.258 L/(>1000) 2.145 0.44 5.578 6.71 2.145 0.87 5.578 11.37 N21/N22 2.145 L/(>1000) 5.578 L/823.9 2.145 L/(>1000)5.578 L/896.0 6.862 3.08 3.995 10.46 6.862 6.16 3.995 11.04 N22/N25 6.862 L/(>1000) 3.995 L/(>1000)6.862 L/(>1000)3.995 L/(>1000) 13.438 26.05 2.500 1.82 13.438 51.27 5.938 0.71 N2/N37 L/(>1000) 21.563 L/(>1000) 2.188 L/(>1000)21.563 2.188 L/(>1000) 6.949 0.00 4.632 627.68 6.949 0.00 0.000 0.00 N42/N32 L/(>1000) 4.632 L/14.8 L/(>1000)L/(>1000) 12.866 12.48 11.516 22.86 12.767 24.92 14.116 24.14 N47/N51 12.866 L/(>1000)11.516 L/(>1000)12.866 L/(>1000)11.099 L/(>1000) 0.428 0.00 1.069 0.40 0.428 0.00 1.069 0.43 N55/N91 0.428 L/(>1000)1.069 L/(>1000)0.428 L/(>1000)1.069 L/(>1000)1.618 0.15 1.387 0.24 1.618 0.28 1.156 0.15 N71/N103 1.156 L/(>1000)1.387 L/(>1000) L/(>1000)1.618 1.618 L/(>1000)4.525 0.00 4.525 4.525 0.00 3.133 0.00 0.00 N32/N122 L/(>1000)L/(>1000) L/(>1000)L/(>1000)5.302 5.302 5.681 19.09 5.681 0.75 33.19 1.45 N180/N128 5.302 5.681 L/507.2 5.302 L/(>1000) 5.681 L/512.7 L/(>1000)2.465 2.465 2.465 0.64 3.081 0.10 0.68 1.33 N91/N92 4.929 0.924 2.465 0.924 L/(>1000) L/(>1000)L/(>1000)L/(>1000)4.014 0.00 3.705 4.631 0.00 4.631 0.00 0.00 N55/N92 L/(>1000) L/(>1000)L/(>1000)L/(>1000)2.366 125.26 3.845 0.002.662 4.731 0.000.00 N196/N37 2.366 L/37.8 L/(>1000) L/(>1000)L/(>1000)12.820 23.444 13.57 2 196 0.37 13 145 23.68 0.63 N192/N194 L/(>1000) 12.820 L/(>1000) 1.569 L/(>1000)12.820 L/(>1000)1.569 7.481 0.00 3.741 542.82 7.481 7.482 0.00 0.00 N42/N196

L/(>1000)

Producido por una versión educativa de CYPE

L/(>1000)



TFM\_nave\_industrial\_R30\_mortero

#### 2.2.3.- Comprobaciones E.L.U. (Resumido)

|                        |                                      | •                                               |                        |                        | `                                    | COMPROBAC              | IONES (CTE I           | DB SE-A) - TE         | MDEDATIII                     | DA AMRIE                      | NTF                            |                   |                                               |                               |                               |                    |
|------------------------|--------------------------------------|-------------------------------------------------|------------------------|------------------------|--------------------------------------|------------------------|------------------------|-----------------------|-------------------------------|-------------------------------|--------------------------------|-------------------|-----------------------------------------------|-------------------------------|-------------------------------|--------------------|
| Barras                 | $\bar{\lambda}$                      | λ <sub>w</sub>                                  | N <sub>t</sub>         | N <sub>c</sub>         | M <sub>Y</sub>                       | M <sub>z</sub>         | V <sub>z</sub>         | V <sub>Y</sub>        | M <sub>Y</sub> V <sub>z</sub> | M <sub>z</sub> V <sub>y</sub> | NM <sub>Y</sub> M <sub>Z</sub> | $NM_YM_ZV_YV_Z$   | Mt                                            | M <sub>t</sub> V <sub>z</sub> | M <sub>t</sub> V <sub>Y</sub> | Estado             |
| N42/N192               | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 5.859 m<br>η = 1.4  | x: 0 m<br>η = 5.5      | x: 0 m<br>η = 7.2                    | x: 0 m<br>η = 48.9     | x: 0 m<br>η = 2.1      | x: 0 m<br>η = 2.4     | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 56.3             | η < 0.1           | η = 0.1                                       | x: 0 m<br>η = 2.1             | x: 0 m<br>η = 2.4             | CUMPLE<br>h = 56.3 |
| N192/N37               | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 1.62 m<br>η = 1.6   | x: 0.135 m<br>η = 1.6  | x: 1.621 m<br>η = 3.6                | x: 0.135 m<br>η = 25.3 | x: 0.135 m<br>n = 1.4  | x: 1.621 m<br>n = 1.4 | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>n = 39.9         | η < 0.1           | η = 1.8                                       | x: 0.135 m<br>n = 1.4         | x: 1.621 m<br>n = 1.4         | CUMPLE<br>h = 39.9 |
| N37/N122               | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 0.4  | x: 0.184 m<br>η = 3.5  | x: 0.184 m<br>η = 3.6                | x: 2.648 m<br>η = 3.8  | x: 0.184 m<br>n = 1.4  | x: 2.648 m<br>n = 0.2 | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 8.7          | η < 0.1           | η = 3.9                                       | x: 0.184 m<br>n = 1.4         | x: 2.648 m<br>n = 0.2         | CUMPLE<br>h = 8.7  |
| N122/N124              | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 0.5  | x: 0 m<br>η = 3.6      | x: 2.648 m<br>η = 2.5                | x: 2.648 m<br>η = 6.1  | x: 2.648 m<br>η = 1.5  | x: 0 m<br>η = 0.3     | η < 0.1                       | η < 0.1                       | x: 2.459 m<br>η = 10.4         | η < 0.1           | η = 1.8                                       | x: 2.648 m<br>η = 1.5         | x: 0 m<br>η = 0.3             | CUMPLE<br>h = 10.4 |
| N124/N126              | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 1.0  | x: 0 m<br>η = 3.9      | x: 0 m<br>η = 2.5                    | x: 2.648 m<br>η = 6.6  | x: 0 m<br>η = 1.5      | x: 2.648 m<br>n = 0.4 | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 11.4         | η < 0.1           | η = 2.1                                       | x: 0 m<br>η = 1.5             | x: 2.648 m<br>η = 0.4         | CUMPLE<br>h = 11.4 |
| N126/N128              | $\bar{\lambda}$ < 2.0 Cumple         | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 1.3  | x: 0 m<br>η = 5.2      | x: 2.648 m<br>η = 3.0                | x: 0 m<br>η = 6.7      | x: 2.648 m<br>n = 1.5  | x: 0 m<br>n = 0.4     | η < 0.1                       | η < 0.1                       | x: 0 m<br>n = 11.1             | η < 0.1           | η = 2.6                                       | x: 2.648 m<br>n = 1.5         | x: 0 m<br>n = 0.4             | CUMPLE<br>h = 11.1 |
| N128/N40               | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.648 m<br>η = 1.5  | x: 0 m<br>η = 4.5      | x: 2.648 m<br>η = 4.0                | x: 0 m<br>η = 5.2      | x: 0 m<br>η = 1.8      | x: 2.648 m<br>η = 0.2 | η < 0.1                       | η < 0.1                       | x: 0.567 m<br>η = 10.7         | η < 0.1           | η = 1.0                                       | x: 0 m<br>η = 1.8             | x: 2.648 m<br>η = 0.2         | CUMPLE<br>h = 10.7 |
| N21/N47                | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 6.864 m<br>η = 2.0  | x: 0 m<br>n = 29.5     | x: 0 m<br>η = 58.5                   | x: 0 m<br>η = 1.5      | x: 0 m<br>η = 9.1      | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>n = 65.9             | η < 0.1           | η = 0.2                                       | x: 0 m<br>η = 5.0             | η < 0.1                       | CUMPLE<br>h = 65.9 |
| N47/N22                | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 0.917 m<br>η = 1.0  | x: 0.135 m<br>η = 2.6  | x: 0.135 m<br>n = 36.7               | x: 0.135 m<br>η = 0.7  | η = 21.8               | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>n = 38.8         | η < 0.1           | M <sub>Ed</sub> = 0.00<br>N.P. (1)            | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 38.8 |
| N22/N91                | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.593 m<br>n = 8.3  | x: 0.138 m<br>n = 15.6 | x: 0.138 m<br>n = 49.9               | x: 2.594 m<br>η = 3.1  | x: 0.138 m<br>n = 9.7  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.138 m<br>η = 67.6         | η < 0.1           | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 67.6 |
| N91/N95                | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.6 m<br>η = 9.5    | x: 0.054 m<br>η = 28.9 | x: 0.903 m<br>n = 13.4               | x: 0.054 m<br>η = 2.1  | x: 2.601 m<br>η = 5.3  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.903 m<br>n = 43.2         | η < 0.1           | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 43.2 |
| N95/N99                | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.604 m<br>n = 9.1  | x: 0.047 m<br>n = 30.5 | x: 0.047 m<br>n = 7.9                | x: 2.605 m<br>η = 2.7  | x: 0.047 m<br>n = 4.1  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.047 m<br>n = 39.0         | η < 0.1           | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 39.0 |
| N99/N103               | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.606 m<br>n = 9.0  | x: 0.043 m<br>n = 29.2 | x: 1.325 m<br>η = 6.0                | x: 0.043 m<br>η = 0.6  | x: 0.043 m<br>n = 3.9  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 1.325 m<br>n = 35.4         | η < 0.1           | M <sub>Ed</sub> = 0.00<br>N.P. (1)            | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 35.4 |
| N103/N25               | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 2.606 m<br>η = 8.5  | x: 0.041 m<br>η = 26.6 | x: 2.607 m<br>η = 10.6               | x: 2.607 m<br>η = 1.1  | x: 2.607 m<br>η = 4.4  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 2.607 m<br>η = 37.5         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 37.5 |
| N22/N27                | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 3.6                | η = 3.4                | x: 0 m<br>η = 2.9                    | x: 5 m<br>η = 5.3      | x: 0 m<br>η = 0.3      | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 5 m<br>η = 11.6             | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 11.6 |
| ☐<br>>N32/N37          | λ̄ < 2.0<br>Cumple                   | $x: 0 m$ $\lambda_w \le \lambda_{w,max}$ Cumple | η = 2.4                | η = 27.0               | x: 0 m<br>η = 3.8                    | x: 0 m<br>η = 5.5      | x: 0 m<br>η = 0.4      | η = 0.1               | x: 0 m<br>η < 0.1             | x: 0 m<br>η < 0.1             | x: 0 m<br>η = 30.6             | x: 0 m<br>η < 0.1 | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 30.6 |
| <b>0</b> 47/N55        | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 5.8                | η = 17.6               | x: 0.135 m<br>η = 50.8               | x: 2.56 m<br>η = 3.0   | x: 0.135 m<br>η = 12.1 | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 56.5         | η < 0.1           | η = 0.1                                       | x: 2.559 m<br>η = 4.6         | η = 0.1                       | CUMPLE<br>h = 56.5 |
| <b>(45</b> 5/N59       | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 6.0                | η = 17.8               | x: 0.04 m<br>η = 24.5                | x: 0.04 m<br>η = 0.5   | x: 2.529 m<br>η = 3.8  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.04 m<br>η = 30.5          | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. (2)                      | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 30.5 |
| -N59/N63               | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 11.3               | η = 19.8               | x: 2.542  m<br>$\eta = 3.3$          | x: 2.542 m<br>η = 2.0  | x: 0.071 m<br>η = 0.7  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 2.542 m<br>η = 20.8         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 20.8 |
| ₩63/N67                | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 11.9               | η = 18.2               | x: 0.681  m<br>$\eta = 3.3$          | x: 2.548 m<br>η = 0.6  | x: 2.549 m<br>η = 0.3  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.058 m<br>η = 19.2         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 19.2 |
| 7/N71                  | λ̄ < 2.0<br>Cumple                   | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 11.4               | η = 15.9               | x: $0.051 \text{ m}$<br>$\eta = 2.7$ | x: 2.553 m<br>η = 1.1  | x: 2.553 m<br>η = 0.7  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.051 m<br>η = 16.5         | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 16.5 |
| \$5/N91                | $\overline{\lambda} < 2.0$<br>Cumple | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 1.417 m<br>η = 10.3 | x: 0.135 m<br>η = 32.7 | x: 1.418 m<br>η = 41.0               | x: 0.135 m<br>η = 0.3  | η = 5.5                | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 1.418 m<br>η = 79.6         | η < 0.1           | η = 1.1                                       | η = 3.9                       | η < 0.1                       | CUMPLE<br>h = 79.6 |
| 1/N103                 | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \le \lambda_{w,max}$ Cumple          | x: 3.876 m<br>η = 5.2  | x: 0.179 m<br>η = 42.9 | x: 3.877 m<br>η = 2.1                | x: 0.179 m<br>η = 0.5  | x: 3.876 m<br>η = 0.2  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 3.877 m<br>η = 45.0         | η < 0.1           | $\eta = 0.3$                                  | x: 3.876 m<br>η = 0.2         | η < 0.1                       | CUMPLE<br>h = 45.0 |
| N380/N200              | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | x: 6.059 m<br>η = 1.1  | x: 0 m<br>η = 14.9     | x: 0 m<br>η = 61.0                   | x: 0 m<br>η = 1.9      | x: 0 m<br>η = 10.2     | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 67.6             | η < 0.1           | η = 0.2                                       | x: 0 m<br>η = 10.3            | η < 0.1                       | CUMPLE<br>h = 67.6 |
| № 0/N128               | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \le \lambda_{w,max}$ Cumple          | x: 3.62 m<br>η = 1.6   | x: 0.135 m<br>η = 7.6  | x: 0.135 m<br>η = 34.3               | x: 3.621 m<br>η = 1.6  | x: 3.621 m<br>η = 5.7  | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 37.8         | η < 0.1           | η = 0.1                                       | x: 3.621 m<br>η = 5.7         | η < 0.1                       | CUMPLE<br>h = 37.8 |
| N91/N92                | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \leq \lambda_{w,max}$ Cumple         | η = 3.9                | η = 5.7                | x: 4.965  m<br>$\eta = 3.0$          | x: 0.035 m<br>η = 3.8  | x: 4.965 m<br>η = 0.3  | η = 0.2               | η < 0.1                       | η < 0.1                       | x: 0.035 m<br>η = 11.2         | η < 0.1           | η = 0.1                                       | x: 0.035 m<br>η = 0.3         | η = 0.2                       | CUMPLE<br>h = 11.2 |
| NB92/N196              | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 0.9                | η = 2.0                | x: 0.18 m<br>η = 4.4                 | x: 5.2 m<br>η = 2.5    | x: 0.18 m<br>η = 0.7   | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 5.2 m<br>η = 5.3            | η < 0.1           | η = 0.8                                       | x: 0.18 m<br>η = 0.7          | η < 0.1                       | CUMPLE<br>h = 5.3  |
| <b>№</b> 6/N200        | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 1.0                | η = 0.8                | x: 5.2 m<br>η = 1.1                  | x: 5.2 m<br>η = 2.9    | x: 0 m<br>η = 0.4      | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 5.2 m<br>η = 3.9            | η < 0.1           | $\eta = 0.2$                                  | x: 0 m<br>η = 0.4             | η = 0.1                       | CUMPLE<br>h = 3.9  |
| N <del>2</del> 00/N202 | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 1.0                | η = 0.8                | x: 0 m<br>η = 1.2                    | x: 0 m<br>η = 2.9      | x: 0 m<br>η = 0.4      | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 4.2              | η < 0.1           | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup>        | N.P. <sup>(2)</sup>           | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 4.2  |
| <b>2/N198</b>          | $\overline{\lambda}$ < 2.0<br>Cumple | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 1.0                | η = 0.8                | x: 0 m<br>η = 1.1                    | x: 0 m<br>η = 2.9      | x: 5.2 m<br>η = 0.4    | η = 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 3.9              | η < 0.1           | $\eta = 0.2$                                  | x: 5.2 m<br>η = 0.4           | η = 0.1                       | CUMPLE<br>h = 3.9  |
| M198/N194              | $\overline{\lambda}$ < 2.0 Cumple    | $\lambda_w \le \lambda_{w,max}$ Cumple          | η = 0.9                | η = 2.0                | x: 5.02 m<br>η = 4.4                 | x: 0 m<br>η = 2.5      | x: 5.02 m<br>η = 0.7   | η < 0.1               | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 5.3              | η < 0.1           | η = 0.8                                       | x: 5.02 m<br>η = 0.7          | η < 0.1                       | CUMPLE<br>h = 5.3  |

| Darres   |                                        |                        |                                 |                                        | COMPROBAG                              | CIONES (CTE                 | DB SE-A) -                  | TEMPERATUR            | A AMBIE  | ENTE                   |                                    |                                        |                     |                               | Estado             |
|----------|----------------------------------------|------------------------|---------------------------------|----------------------------------------|----------------------------------------|-----------------------------|-----------------------------|-----------------------|----------|------------------------|------------------------------------|----------------------------------------|---------------------|-------------------------------|--------------------|
| Barras   | $\overline{\lambda}$                   | N <sub>t</sub>         | N <sub>c</sub>                  | M <sub>Y</sub>                         | Mz                                     | Vz                          | V <sub>Y</sub>              | $M_{Y}V_{z}$          | $M_zV_y$ | $NM_yM_z$              | $NM_{Y}M_{z}V_{Y}V_{z}$            | M,                                     | $M_tV_z$            | $M_tV_{\scriptscriptstyle Y}$ | ESIAGO             |
| N42/N32  | $\overline{\lambda}$ < 2.0 Cumple      |                        | x: 0 m<br>η = 24.4              | x: 4.632  m<br>$\eta = 51.1$           | $M_{Ed} = 0.00$<br>N.P. (3)            | x: 0 m<br>η = 0.2           | $V_{Ed} = 0.00$<br>N.P. (4) | x: 0.579 m<br>η < 0.1 | N.P. (5) | x: 4.632 m<br>η = 76.1 | x: 0.579  m<br>$\eta < 0.1$        | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$        | N.P. (2)            | N.P. (2)                      | CUMPLE<br>h = 76.1 |
| N32/N122 | $\overline{\lambda} \le 4.0$<br>Cumple | $\eta = 75.5$          | $N_{Ed} = 0.00$<br>$N.P.^{(6)}$ | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | $V_{Ed} = 0.00$<br>N.P. (4) | $V_{Ed} = 0.00$<br>N.P. (4) | N.P. (5)              | N.P. (5) | N.P. <sup>(7)</sup>    | N.P. <sup>(8)</sup>                | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$        | N.P. (2)            | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 75.5 |
| N55/N92  | $\overline{\lambda} \le 4.0$<br>Cumple | $\eta = 2.9$           | $N_{Ed} = 0.00$<br>$N.P.^{(6)}$ | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | $V_{Ed} = 0.00$<br>N.P. (4) | $V_{Ed} = 0.00$<br>N.P. (4) | N.P. (5)              | N.P. (5) | N.P. <sup>(7)</sup>    | N.P. <sup>(8)</sup>                | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$        | N.P. (2)            | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 2.9  |
| N196/N37 | $\overline{\lambda}$ < 2.0 Cumple      |                        | x: 0.412 m<br>η = 12.6          | x: 2.778  m<br>$\eta = 30.2$           | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | x: 0.412 m<br>η = 0.2       | $V_{Ed} = 0.00$<br>N.P. (4) | x: 0.708 m<br>η < 0.1 | N.P. (5) | x: 2.778 m<br>η = 44.8 | x: 0.708 m<br>η < 0.1              | $M_{Ed} = 0.00$<br>$N.P.^{(1)}$        | N.P. (2)            | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 44.8 |
| N42/N196 | $\overline{\lambda}$ < 2.0 Cumple      | x: 7.756 m<br>η = 26.0 | x: 0.275 m<br>η = 28.0          | x: 4.016 m<br>η = 52.4                 | $M_{Ed} = 0.00$<br>N.P. <sup>(3)</sup> | x: 0.275 m<br>η = 0.2       | $V_{Ed} = 0.00$<br>N.P. (4) | x: 0.743 m<br>η < 0.1 | N.P. (5) | x: 4.016 m<br>η = 80.2 | $x: 0.743 \text{ m} \\ \eta < 0.1$ | $M_{Ed} = 0.00$<br>N.P. <sup>(1)</sup> | N.P. <sup>(2)</sup> | N.P. <sup>(2)</sup>           | CUMPLE<br>h = 80.2 |



#### TFM\_nave\_industrial\_R30\_mortero

Notación:

`I: Limitación de esbeltez

I w: Abolladura del alma inducida por el ala comprimida

N<sub>t</sub>: Resistencia a tracción

N<sub>c</sub>: Resistencia a compresión

M<sub>Y</sub>: Resistencia a flexión eje Y

Mz: Resistencia a flexión eje Z

Vz: Resistencia a corte Z

V<sub>Y</sub>: Resistencia a corte Y

 $M_YV_Z$ : Resistencia a momento flector Y y fuerza cortante Z combinados

M<sub>z</sub>V<sub>y</sub>: Resistencia a momento flector Z y fuerza cortante Y combinados

NM<sub>Y</sub>M<sub>z</sub>: Resistencia a flexión y axil combinados

NM<sub>y</sub>M<sub>z</sub>V<sub>y</sub>V<sub>z</sub>: Resistencia a flexión, axil y cortante combinados

M<sub>t</sub>: Resistencia a torsión

 $M_t V_z$ : Resistencia a cortante Z y momento torsor combinados  $M_t V_v$ : Resistencia a cortante Y y momento torsor combinados

x: Distancia al origen de la barra

h: Coeficiente de aprovechamiento (%)

N.P.: No procede

Comprobaciones que no proceden (N.P.):

La comprobación no procede, ya que no hay momento torsor.

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

La comprobación no procede, ya que no hay momento flector.

(4) La comprobación no procede, ya que no hay esfuerzo cortante

(5) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no

De la comprobación no procede, ya que no hay axil de compresión.

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

(8) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

| Barras       |                                               |                                               |                             |                                               | COMPROBACI                                    | ONES (CTE D                                   | B SF-A) - SIT                 | LIACIÓN F                     | DE INCENDIO                    |                       |                                    |                       |                       |                    |
|--------------|-----------------------------------------------|-----------------------------------------------|-----------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------|------------------------------------|-----------------------|-----------------------|--------------------|
| Barras       | N,                                            | N <sub>c</sub>                                | M <sub>v</sub>              | M <sub>z</sub>                                | V <sub>7</sub>                                | V <sub>v</sub>                                | M <sub>v</sub> V <sub>z</sub> | M <sub>z</sub> V <sub>y</sub> | NM <sub>v</sub> M <sub>z</sub> | $NM_yM_zV_yV_z$       | M,                                 | M,V,                  | M,V,                  | Estado             |
| 0<br>N42/N19 | W. E 0E0 m                                    | x: 0 m<br>η = 4.0                             | x: 0 m<br>η = 2.4           | x: 0 m<br>η = 16.4                            | x: 0 m<br>η = 0.7                             | x: 0 m<br>η = 0.8                             | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 19.9             | η < 0.1               | η < 0.1                            | x: 0 m<br>η = 0.7     | x: 0 m<br>η = 0.8     | CUMPLE<br>h = 19.9 |
| 92/N3        | x: 1.62 m<br>η = 0.4                          | x: 0.135 m<br>η = 0.8                         | x: 1.621 m<br>η = 1.5       | x: 0.135 m<br>η = 8.5                         | x: 0.135 m<br>η = 0.6                         | x: 1.621 m<br>η = 0.5                         | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 13.7         | η < 0.1               | η = 0.6                            | x: 0.135 m<br>η = 0.6 | x: 1.621 m<br>η = 0.5 | CUMPLE<br>h = 13.7 |
| 7/N12        | x: 2.648 m<br>η < 0.1                         | x: 0.184 m<br>η = 2.2                         | x: 0.184 m<br>η = 1.5       | x: 2.648 m<br>η = 1.3                         | x: 0.184 m<br>η = 0.6                         | x: 2.648 m<br>η = 0.1                         | η < 0.1                       | $\eta  <  0.1$                | x: 0.184 m<br>η = 3.8          | $\eta < 0.1$          | η = 1.1                            | x: 0.184 m<br>η = 0.6 | x: 2.648 m<br>η = 0.1 | CUMPLE<br>h = 3.8  |
| M22/N12      | x: 2.648 m<br>η = 0.1                         | x: 0 m<br>η = 2.0                             | x: 2.648 m<br>η = 1.2       | x: 2.648 m<br>η = 2.1                         | x: 2.648 m<br>η = 0.7                         | x: 0 m<br>η = 0.1                             | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 4.2          | η < 0.1               | η = 0.6                            | x: 2.648 m<br>η = 0.7 | x: 0 m<br>η = 0.1     | CUMPLE<br>h = 4.2  |
| NT24/N12     | $\eta = 0.3$                                  | x: 0 m<br>η = 2.3                             | x: 0 m<br>η = 1.1           | x: 2.648 m<br>η = 2.2                         | x: 0 m<br>η = 0.6                             | x: 2.648 m<br>η = 0.1                         | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 4.1              | $\eta < 0.1$          | η = 0.7                            | x: 0 m<br>η = 0.6     | x: 2.648 m<br>η = 0.1 | CUMPLE<br>h = 4.1  |
| 100 26/N12   | 8 $x: 2.648 \text{ m}$<br>$\eta = 0.4$        | x: 0 m<br>η = 2.7                             | x: 2.648 m<br>η = 1.1       | x: 0 m<br>η = 2.3                             | x: 2.648 m<br>η = 0.6                         | x: 0 m<br>η = 0.1                             | η < 0.1                       | η < 0.1                       | x: 2.648 m<br>η = 5.0          | $\eta < 0.1$          | η = 0.8                            | x: 2.648 m<br>η = 0.6 | x: 0 m<br>η = 0.1     | CUMPLE<br>h = 5.0  |
| 28/N40       | x: 2.648 m<br>η = 0.5                         | x: 0 m<br>η = 2.4                             | x: 2.648 m<br>η = 1.6       | x: 0 m<br>η = 1.8                             | x: 0 m<br>η = 0.6                             | x: 2.648 m<br>η = 0.1                         | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 4.6              | $\eta < 0.1$          | η = 0.3                            | x: 0 m<br>η = 0.6     | x: 2.648 m<br>η = 0.1 | CUMPLE<br>h = 4.6  |
| 21/N47       | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0 m<br>η = 19.5                            | x: 0 m<br>η = 22.1          | x: 0 m<br>η = 0.6                             | x: 0 m<br>η = 3.2                             | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 30.5             | η < 0.1               | η = 0.1                            | x: 0 m<br>η = 2.1     | η < 0.1               | CUMPLE<br>h = 30.5 |
| 947/N22      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.135 m<br>η = 1.2                         | x: 0.135 m<br>η = 19.2      | x: 0.135 m<br>η = 0.3                         | x: 0.918 m<br>η = 10.8                        | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.135  m<br>$\eta = 20.4$   | $\eta  <  0.1$        | $M_{Ed} = 0.00$<br>N.P. (2)        | N.P. <sup>(3)</sup>   | N.P. (3)              | CUMPLE<br>h = 20.4 |
| N22/N91      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.138 m<br>η = 12.1                        | x: 0.138 m<br>η = 27.6      | x: 2.594 m<br>η = 1.6                         | x: 0.138 m<br>η = 5.1                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.138 m<br>η = 38.7         | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. <sup>(3)</sup>   | CUMPLE<br>h = 38.7 |
| N91/N95      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.054 m<br>η = 18.8                        | x: 0.691 m<br>η = 7.5       | x: 0.054 m<br>η = 1.1                         | x: 2.601 m<br>η = 2.6                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.691 m<br>η = 26.7         | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. <sup>(3)</sup>   | CUMPLE<br>h = 26.7 |
| N95/N99      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.047 m<br>η = 19.8                        | x: 0.047 m<br>η = 3.7       | x: 2.605 m<br>η = 1.4                         | x: 0.047 m<br>η = 1.9                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.047 m<br>η = 23.7         | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. <sup>(3)</sup>   | CUMPLE<br>h = 23.7 |
| N99/N10      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.043 m<br>η = 19.0                        | x: 1.325 m<br>η = 3.0       | x: 0.043 m<br>η = 0.3                         | x: 2.607 m<br>η = 1.8                         | η < 0.1                                       | η < 0.1                       | $\eta < 0.1$                  | x: 1.325 m<br>η = 22.1         | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. (3)              | CUMPLE<br>h = 22.1 |
| N103/N2      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.041 m<br>η = 17.3                        | x: 2.607 m<br>η = 5.2       | x: 2.607 m<br>η = 0.5                         | x: 2.607 m<br>η = 2.1                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 2.607 m<br>η = 22.6         | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. (3)              | CUMPLE<br>h = 22.6 |
| N22/N27      | η = 2.0                                       | η = 2.6                                       | x: 0 m<br>η = 3.7           | x: 5 m<br>η = 2.9                             | x: 0 m<br>η = 0.4                             | η = 0.1                                       | η < 0.1                       | x: 0 m<br>η < 0.1             | x: 5 m<br>η = 8.3              | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3)              | h = 8.3            |
| N32/N37      | η = 1.6                                       | η = 18.2                                      | x: 0 m<br>η = 4.6           | x: 0 m<br>η = 3.1                             | x: 0 m<br>η = 0.5                             | η = 0.1                                       | x: 0 m<br>η < 0.1             | x: 0 m<br>η < 0.1             | x: 0 m<br>η = 23.4             | x: 0 m<br>η < 0.1     | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3)              | CUMPLE<br>h = 23.4 |
| N42/N32      | x: 9.265 m<br>η = 7.3                         | x: 0 m<br>η = 8.4                             | x: 4.632 m<br>η = 36.2      | M <sub>Ed</sub> = 0.00<br>N.P. (4)            | x: 0 m<br>η = 0.1                             | V <sub>Ed</sub> = 0.00<br>N.P. <sup>(5)</sup> | x: 0.579 m<br>η < 0.1         | N.P. <sup>(6)</sup>           | x: 4.632 m<br>η = 44.5         | x: 0.579 m<br>η < 0.1 | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. (3)              | CUMPLE<br>h = 44.5 |
| N47/N55      | η = 2.8                                       | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 0.135 m<br>η = 21.2      | x: 2.56 m<br>η = 1.1                          | x: 0.135 m<br>η = 5.1                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 23.4         | η < 0.1               | η = 0.1                            | x: 0.135 m<br>η = 1.7 | η < 0.1               | CUMPLE<br>h = 23.4 |
| N55/N59      | η = 2.9                                       | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 0.04 m<br>η = 10.0       | x: 0.04 m<br>η = 0.2                          | x: 2.529 m<br>η = 1.6                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.04 m<br>η = 12.5          | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3)              | CUMPLE<br>h = 12.5 |
| N59/N63      | $\eta = 4.7$                                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 2.542 m<br>η = 1.3       | x: 2.542 m<br>η = 0.8                         | x: 0.071 m<br>η = 0.4                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 2.542 m<br>η = 6.0          | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. (3)              | h = 6.0            |
| N63/N67      | η = 4.9                                       | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 1.096 m<br>η = 1.4       | x: 2.548 m<br>η = 0.2                         | x: 2.549 m<br>η = 0.2                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 1.096 m<br>η = 6.3          | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. <sup>(3)</sup>   | N.P. (3)              | CUMPLE<br>h = 6.3  |
| N67/N71      | $\eta = 4.7$                                  | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 0.051 m<br>η = 1.0       | x: 2.552 m<br>η = 0.4                         | x: 2.553 m<br>η = 0.4                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.051 m<br>η = 5.7          | η < 0.1               | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3)              | CUMPLE<br>h = 5.7  |
| N55/N91      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.135 m<br>η = 21.5                        | x: 1.418 m<br>η = 24.9      | x: 0.135 m<br>η = 0.2                         | η = 3.3                                       | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 1.418 m<br>η = 49.4         | η < 0.1               | η = 0.6                            | η = 2.8               | η < 0.1               | CUMPLE<br>h = 49.4 |
| N71/N10      | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(1)</sup> | x: 0.179 m<br>η = 42.3                        | x: 3.877 m<br>η = 2.1       | x: 0.179 m<br>η = 0.3                         | x: 3.877 m<br>η = 0.2                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 3.877 m<br>η = 44.3         | η < 0.1               | η = 0.2                            | x: 3.877 m<br>η = 0.2 | η < 0.1               | CUMPLE<br>h = 44.3 |
| N32/N12      |                                               | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | $M_{Ed} = 0.00$<br>N.P. (4) | M <sub>Ed</sub> = 0.00<br>N.P. <sup>(4)</sup> | V <sub>Ed</sub> = 0.00<br>N.P. <sup>(5)</sup> | V <sub>Ed</sub> = 0.00<br>N.P. <sup>(5)</sup> | N.P. <sup>(6)</sup>           | N.P. <sup>(6)</sup>           | N.P. <sup>(8)</sup>            | N.P. (9)              | M <sub>Ed</sub> = 0.00<br>N.P. (2) | N.P. (3)              | N.P. (3)              | CUMPLE<br>h = 41.7 |
| N180/N20     | $N_{Ed} = 0.00$<br>$N.P.^{(1)}$               | x: 0 m<br>η = 13.8                            | x: 0 m<br>η = 24.2          | x: 0 m<br>η = 0.8                             | x: 0 m<br>η = 4.1                             | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0 m<br>η = 29.6             | η < 0.1               | η = 0.1                            | x: 0 m<br>η = 4.1     | η < 0.1               | CUMPLE<br>h = 29.6 |
| N200/N12     | 8 $x: 3.621 \text{ m}$<br>$\eta = 0.1$        | x: 0.135 m<br>η = 5.9                         | x: 0.135 m<br>η = 13.7      | x: 3.621 m<br>η = 0.7                         | x: 3.621 m<br>η = 2.2                         | η < 0.1                                       | η < 0.1                       | η < 0.1                       | x: 0.135 m<br>η = 16.4         | η < 0.1               | η = 0.1                            | x: 3.621 m<br>η = 2.2 | η < 0.1               | CUMPLE<br>h = 16.4 |



#### TFM\_nave\_industrial\_R30\_mortero

|           |                       |                                               |                             |                                 | COMPROBACI                         | ONES (CTE D                     | B SE-A) - SIT         | UACIÓN D            | E INCENDIO                     |                       |                                 |                       |                     | E. L. L.           |
|-----------|-----------------------|-----------------------------------------------|-----------------------------|---------------------------------|------------------------------------|---------------------------------|-----------------------|---------------------|--------------------------------|-----------------------|---------------------------------|-----------------------|---------------------|--------------------|
| Barras    | N <sub>t</sub>        | N <sub>c</sub>                                | M <sub>Y</sub>              | Mz                              | Vz                                 | V <sub>Y</sub>                  | $M_YV_z$              | $M_zV_y$            | NM <sub>Y</sub> M <sub>Z</sub> | $NM_yM_zV_yV_z$       | M,                              | $M_tV_z$              | $M_tV_Y$            | Estado             |
| N91/N92   | η = 2.2               | η = 3.6                                       | x: 4.965 m<br>η = 3.6       | x: 0.035 m<br>η = 2.1           | x: 4.965 m<br>η = 0.4              | $\eta = 0.1$                    | η < 0.1               | η < 0.1             | x: 0.035 m<br>η = 8.5          | η < 0.1               | η < 0.1                         | x: 0.035 m<br>η = 0.4 | $\eta = 0.1$        | CUMPLE<br>h = 8.5  |
| N55/N92   | η = 2.1               | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | $M_{Ed} = 0.00$<br>N.P. (4) | $M_{Ed} = 0.00$<br>$N.P.^{(4)}$ | V <sub>Ed</sub> = 0.00<br>N.P. (5) | $V_{Ed} = 0.00$<br>$N.P.^{(5)}$ | N.P. <sup>(6)</sup>   | N.P. (6)            | N.P. <sup>(8)</sup>            | N.P. <sup>(9)</sup>   | $M_{Ed} = 0.00$<br>$N.P.^{(2)}$ | N.P. (3)              | N.P. (3)            | CUMPLE<br>h = 2.1  |
| N196/N37  | x: 5.143 m<br>η = 5.7 | x: 0.412 m<br>η = 4.3                         | x: 2.778 m<br>η = 25.1      | $M_{Ed} = 0.00$<br>$N.P.^{(4)}$ | x: 0.412 m<br>η = 0.1              | $V_{Ed} = 0.00$<br>N.P. (5)     | x: 0.708 m<br>η < 0.1 | N.P. (6)            | x: 2.778 m<br>η = 30.8         | x: 0.708 m<br>η < 0.1 | $M_{Ed} = 0.00$<br>N.P. (2)     | N.P. (3)              | N.P. (3)            | CUMPLE<br>h = 30.8 |
| N192/N196 | η = 0.4               | η = 0.1                                       | x: 0.18 m<br>η = 2.1        | x: 5.2 m<br>η = 0.9             | x: 0.18 m<br>η = 0.4               | η < 0.1                         | η < 0.1               | η < 0.1             | x: 0.18 m<br>η = 2.3           | η < 0.1               | η = 0.3                         | x: 0.18 m<br>η = 0.4  | η < 0.1             | CUMPLE<br>h = 2.3  |
| N196/N200 | η = 0.5               | N <sub>Ed</sub> = 0.00<br>N.P. (7)            | x: 5.2 m<br>η = 0.8         | x: 5.2 m<br>η = 1.1             | x: 5.2 m<br>η = 0.3                | η < 0.1                         | η < 0.1               | η < 0.1             | x: 5.2 m<br>η = 1.9            | η < 0.1               | η = 0.1                         | x: 5.2 m<br>η = 0.3   | η < 0.1             | CUMPLE<br>h = 1.9  |
| N200/N202 | η = 0.5               | N <sub>Ed</sub> = 0.00<br>N.P. (7)            | x: 0 m<br>η = 0.8           | x: 0 m<br>η = 1.1               | x: 0 m<br>η = 0.3                  | η < 0.1                         | η < 0.1               | η < 0.1             | x: 0 m<br>η = 2.1              | η < 0.1               | $M_{Ed} = 0.00$<br>N.P. (2)     | N.P. <sup>(3)</sup>   | N.P. <sup>(3)</sup> | CUMPLE<br>h = 2.1  |
| N202/N198 | η = 0.5               | N <sub>Ed</sub> = 0.00<br>N.P. <sup>(7)</sup> | x: 0 m<br>η = 0.8           | x: 0 m<br>η = 1.1               | x: 0 m<br>η = 0.3                  | η < 0.1                         | η < 0.1               | η < 0.1             | x: 0 m<br>η = 1.9              | η < 0.1               | η = 0.1                         | x: 0 m<br>η = 0.3     | η < 0.1             | CUMPLE<br>h = 1.9  |
| N198/N194 | η = 0.4               | η = 0.1                                       | x: 5.02 m<br>η = 2.1        | x: 0 m<br>η = 0.9               | x: 5.02 m<br>η = 0.4               | η < 0.1                         | η < 0.1               | η < 0.1             | x: 5.02 m<br>η = 2.3           | η < 0.1               | η = 0.3                         | x: 5.02 m<br>η = 0.4  | η < 0.1             | CUMPLE<br>h = 2.3  |
| N42/N196  | x: 7.756 m<br>η = 9.0 | x: 0.275 m<br>η = 11.1                        | x: 4.016 m<br>η = 43.5      | $M_{Ed} = 0.00$<br>N.P. (4)     | x: 0.275 m<br>η = 0.1              | $V_{Ed} = 0.00$<br>N.P. (5)     | x: 0.743 m<br>η < 0.1 | N.P. <sup>(6)</sup> | x: 4.016 m<br>η = 54.5         | x: 0.743 m<br>η < 0.1 | $M_{Ed} = 0.00$<br>N.P. (2)     | N.P. (3)              | N.P. (3)            | CUMPLE<br>h = 54.5 |

- tacion:

  N.: Resistencia a tracción
  N.: Resistencia a compresión
  M.: Resistencia a compresión
  M.: Resistencia a floxón eje Y
  M.: Resistencia a floxón eje Y
  M.: Resistencia a floxón eje Z
  V.: Resistencia a corte Z
  V.: Resistencia a corte Y
  M.V.: Resistencia a momento flector Y y fuerza cortante Z combinad
  M.V.: Resistencia a momento flector Z y fuerza cortante Y combinad
  M.V.: Resistencia a momento flector Z y fuerza cortante Y combinad
  M.V.: Resistencia a floxón, axil y cortante combinados
  N.M.M.V.: Resistencia a forsión
  M.V.: Resistencia a cortante Z y momento torsor combinados
  M.V.: Resistencia a cortante Z y momento torsor combinados
  x.: Distancia al origen de la barra
  N.: Resistencia a cortante Z y momento torsor combinados
  x.: Distancia al origen de la barra
  N.: Resistencia a cortante C y
  N.: Resistencia c a cortante C y
  N.: Resistencia a cortante C y
  N.: Resistencia c c y
  N.: Resistencia c a cortante C y
  N.: Resiste

#### - UNIONES

#### 1.- Comprobaciones en placas de anclaje

cada placa de anclaje se realizan las siguientes comprobaciones (asumiendo la hipótesis de placa r@ida):

1 Hormigón sobre el que apoya la placa

Se comprueba que la tensión de compresión en la interfaz placa de anclaje-hormigón es menor a la tensión admisible del hormigón según la naturaleza de cada combinación.

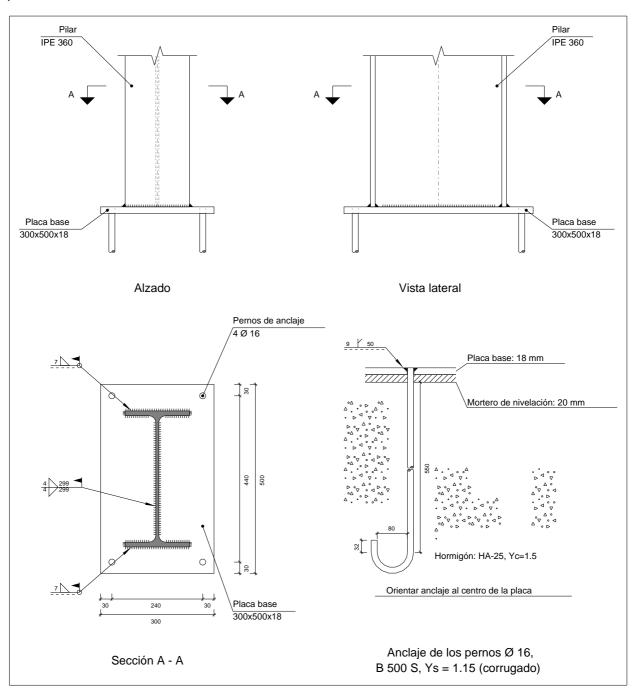
Pernos de anclaje

- a) Resistencia del material de los pernos: Se descomponen los esfuerzos actuantes sobre la placa en axiles y cortantes en los pernos y se comprueba que ambos esfuerzos, por separado y con interacción entre ellos (tensión de Von Mises), producen tensiones menores a la tensión límite del material de los pernos.
- b) Anclaje de los pernos: Se comprueba el anclaje de los pernos en el hormigón de tal manera que no se produzca el fallo de deslizamiento por adherencia, arrancamiento del cono de rotura o fractura por esfuerzo cortante (aplastamiento).
- Aplastamiento: Se comprueba que en cada perno no se supera el cortante que produciría el aplastamiento de la placa contra el perno.

#### 3. Placa de anclaje

- a) Tensiones globales: En placas con vuelo, se analizan cuatro secciones en el perímetro del perfil, y se comprueba en todas ellas que las tensiones de Von Mises sean menores que la tensión límite según la norma.
- b) Flechas globales relativas: Se comprueba que en los vuelos de las placas no aparezcan flechas mayores que 1/250 del vuelo.

axiles de los pernos. El modelo generado se resuelve por diferencias finitas.


TFM\_nave\_industrial\_R30\_mortero

Tensiones locales: Se comprueban las tensiones de Von Mises en todas las placas locales en las que tanto el perfil como los rigidizadores dividen a la placa de anclaje propiamente dicha. Los esfuerzos en cada una de las subplacas se obtienen a partir de las tensiones de contacto con el hormigón y los

#### 3.2.- Memoria de cálculo

#### 3.2.1.- Tipo 1

#### a) Detalle





TFM\_nave\_industrial\_R30\_mortero

#### b) Descripción de los componentes de la unión

|               | Elementos complementarios                |               |               |                 |          |                              |                              |               |      |                         |                         |  |  |
|---------------|------------------------------------------|---------------|---------------|-----------------|----------|------------------------------|------------------------------|---------------|------|-------------------------|-------------------------|--|--|
|               | G                                        | ieometrí      | a             |                 |          | Taladros                     |                              |               |      |                         | Acero                   |  |  |
| Pieza         | Esquema                                  | Ancho<br>(mm) | Canto<br>(mm) | Espesor<br>(mm) | Cantidad | Diámetro<br>exterior<br>(mm) | Diámetro<br>interior<br>(mm) | Bisel<br>(mm) | Tipo | f <sub>y</sub><br>(MPa) | f <sub>u</sub><br>(MPa) |  |  |
| Placa<br>base | \$ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 300           | 500           | 18              | 4        | 34                           | 18                           | 9             | S275 | 275.0                   | 410.0                   |  |  |

#### c) Comprobación

1) Pilar IPE 360

#### Cordones de soldadura

|                            | Comprobaciones geométricas |           |           |           |                    |  |  |  |  |  |  |
|----------------------------|----------------------------|-----------|-----------|-----------|--------------------|--|--|--|--|--|--|
| Ref.                       | Tipo                       | a<br>(mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |  |  |
| Soldadura del ala superior | En ángulo                  | 7         | 170       | 12.7      | 90.00              |  |  |  |  |  |  |
| Soldadura del alma         | En ángulo                  | 4         | 299       | 8.0       | 90.00              |  |  |  |  |  |  |
| Soldadura del ala inferior | En ángulo                  | 7         | 170       | 12.7      | 90.00              |  |  |  |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

|                            | Comprobación de resistencia           |                       |                                |                  |        |                                       |        |                           |             |  |  |  |
|----------------------------|---------------------------------------|-----------------------|--------------------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|--|--|--|
|                            |                                       | Tensió                | n de Von                       | Tensión          | normal | f                                     |        |                           |             |  |  |  |
| Ref.                       | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²) | $\tau_{  } \\ \text{(N/mm}^2)$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | f <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |  |  |  |
| Soldadura del ala superior | 170.7                                 | 170.7                 | 4.5                            | 341.6            | 88.52  | 170.7                                 | 52.05  | 410.0                     | 0.85        |  |  |  |
| Soldadura del alma         | 20.7                                  | 20.7                  | 7.2                            | 43.2             | 11.18  | 20.7                                  | 6.30   | 410.0                     | 0.85        |  |  |  |
| Soldadura del ala inferior | 170.7                                 | 170.7                 | 4.5                            | 341.6            | 88.52  | 170.7                                 | 52.05  | 410.0                     | 0.85        |  |  |  |



TFM\_nave\_industrial\_R30\_mortero

#### 2) Placa de anclaje

| Referencia:                                                                               |                                              |        |
|-------------------------------------------------------------------------------------------|----------------------------------------------|--------|
|                                                                                           | Valaras                                      | Fatada |
| Comprobación                                                                              | Valores                                      | Estado |
| Separación mínima entre pernos: 3 diámetros                                               | Mínimo: 48 mm<br>Calculado: 241 mm           | Cumple |
| Separación mínima pernos-borde: 1.5 diámetros                                             | Mínimo: 24 mm<br>Calculado: 30 mm            | Cumple |
| Longitud mínima del perno:<br>Se calcula la longitud de anclaje necesaria por adherencia. | Mínimo: 17 cm<br>Calculado: 55 cm            | Cumple |
| Anclaje perno en hormigón:                                                                |                                              |        |
| - Tracción:                                                                               | Máximo: 97.79 kN<br>Calculado: 82.19 kN      | Cumple |
| - Cortante:                                                                               | Máximo: 68.45 kN<br>Calculado: 7.33 kN       | Cumple |
| - Tracción + Cortante:                                                                    | Máximo: 97.79 kN<br>Calculado: 92.67 kN      | Cumple |
| Tracción en vástago de pernos:                                                            | Máximo: 80.4 kN<br>Calculado: 77.6 kN        | Cumple |
| Tensión de Von Mises en vástago de pernos:                                                | Máximo: 476.19 MPa<br>Calculado: 391.516 MPa | Cumple |
| Aplastamiento perno en placa:<br>Límite del cortante en un perno actuando contra la placa | Máximo: 150.86 kN<br>Calculado: 6.87 kN      | Cumple |
| Tensión de Von Mises en secciones globales:                                               | Máximo: 261.905 MPa                          |        |
| - Derecha:                                                                                | Calculado: 167.073 MPa                       | Cumple |
| - Izquierda:                                                                              | Calculado: 167.072 MPa                       | Cumple |
| - Arriba:                                                                                 | Calculado: 224.86 MPa                        | Cumple |
| - Abajo:                                                                                  | Calculado: 224.862 MPa                       | Cumple |
| Flecha global equivalente:<br>Limitación de la deformabilidad de los vuelos               | Mínimo: 250                                  |        |
| - Derecha:                                                                                | Calculado: 1069.81                           | Cumple |
| - Izquierda:                                                                              | Calculado: 1069.82                           | Cumple |
| - Arriba:                                                                                 | Calculado: 1132.84                           | Cumple |
| - Abajo:                                                                                  | Calculado: 1132.83                           | Cumple |
| Tensión de Von Mises local:  Tensión por tracción de pernos sobre placas en voladizo      | Máximo: 261.905 MPa<br>Calculado: 0 MPa      | Cumple |
| Se cumplen todas las comprobacion                                                         | es                                           |        |

#### Cordones de soldadura

| Comprobaciones geométricas                |                        |                            |           |           |                    |  |  |  |  |  |
|-------------------------------------------|------------------------|----------------------------|-----------|-----------|--------------------|--|--|--|--|--|
| Ref.                                      | Tipo                   | Preparación de bordes (mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |  |
| Soldadura de los pernos a la placa base   | De penetración parcial | 9                          | 50        | 16.0      | 90.00              |  |  |  |  |  |
| I: Longitud efectiva t: Espesor de piezas |                        |                            |           |           |                    |  |  |  |  |  |

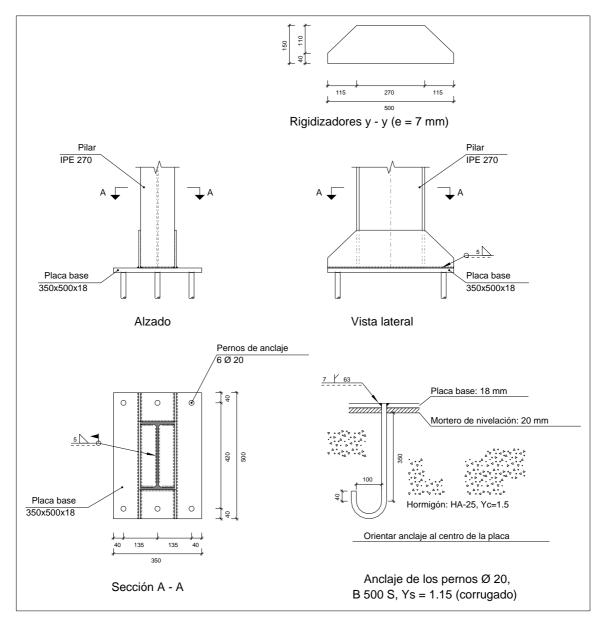
| Comprobación de resistencia             |                                       |                                                                             |                    |                  |        |                                       |        |         |             |  |  |
|-----------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|--------------------|------------------|--------|---------------------------------------|--------|---------|-------------|--|--|
|                                         |                                       | Tensió                                                                      | n de Vor           | Tensión          | normal | f                                     |        |         |             |  |  |
| Ref.                                    | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $\tau_{\!\scriptscriptstyle \perp} \\ \text{(N/mm}^{\scriptscriptstyle 2})$ | $	au_{  }$ (N/mm²) | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | (N/mm²) | $\beta_{w}$ |  |  |
| Soldadura de los pernos a la placa base | 0.0                                   | 0.0                                                                         | 220.6              | 382.0            | 99.00  | 0.0                                   | 0.00   | 410.0   | 0.85        |  |  |

TFM\_nave\_industrial\_R30\_mortero

#### d) Medición

|                         |                        | Soldaduras                                      |                          |                           |
|-------------------------|------------------------|-------------------------------------------------|--------------------------|---------------------------|
| f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                                            | Espesor de garganta (mm) | Longitud de cordones (mm) |
|                         | En taller              | A tope en bisel simple con talón de raíz amplio | 9                        | 201                       |
| 410.0                   | En al lugar de mantais | En ángulo                                       | 4                        | 597                       |
|                         | En el lugar de montaje | En ángulo                                       | 7                        | 643                       |

|                                | Placas de an      | claje    |                      |              |
|--------------------------------|-------------------|----------|----------------------|--------------|
| Material                       | Elementos         | Cantidad | Dimensiones<br>(mm)  | Peso<br>(kg) |
| S275                           | Placa base        | 1        | 300x500x18           | 21.20        |
| 3275                           |                   |          | Total                | 21.20        |
| D FOO C Vo. 1 1F (corrugado)   | Pernos de anclaje | 4        | Ø 16 - L = 604 + 183 | 4.97         |
| B 500 S, Ys = 1.15 (corrugado) |                   |          | Total                | 4.97         |


Producido por una versión educativa de CYPE

#### Listados

#### Fecha: 23/10/20

#### 3.2.2.- Tipo 2

#### a) Detalle





TFM\_nave\_industrial\_R30\_mortero

b) Descripción de los componentes de la unión

|                                |                       |               | Ele           | ementos         | compleme | entarios                     |                              |               |       |                         |                         |  |
|--------------------------------|-----------------------|---------------|---------------|-----------------|----------|------------------------------|------------------------------|---------------|-------|-------------------------|-------------------------|--|
|                                | G                     | Seometrí      | a             |                 |          | Taladı                       | °OS                          |               | Acero |                         |                         |  |
| Pieza  Placa base  Rigidizador | Esquema               | Ancho<br>(mm) | Canto<br>(mm) | Espesor<br>(mm) | Cantidad | Diámetro<br>exterior<br>(mm) | Diámetro<br>interior<br>(mm) | Bisel<br>(mm) | Tipo  | f <sub>y</sub><br>(MPa) | f <sub>u</sub><br>(MPa) |  |
| Placa base                     | ⊕ ⊕ ⊕<br>⊕ ⊕ ⊕<br>350 | 350           | 500           | 18              | 6        | 34                           | 22                           | 7             | S275  | 275.0                   | 410.0                   |  |
| Rigidizador                    | Sp 500                | 500           | 150           | 7               | -        | -                            | -                            | -             | S275  | 275.0                   | 410.0                   |  |

#### c) Comprobación

1) Pilar IPE 270

#### Cordones de soldadura

| Comprobaciones geométricas      |           |           |           |           |                    |  |  |  |  |
|---------------------------------|-----------|-----------|-----------|-----------|--------------------|--|--|--|--|
| Ref.                            | Tipo      | a<br>(mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |
| Soldadura perimetral a la placa | En ángulo | 5         | 906       | 6.6       | 90.00              |  |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

| Comprobación de resistencia         |                                       |                             |                                |                  |        |                                       |        |                           |             |  |
|-------------------------------------|---------------------------------------|-----------------------------|--------------------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|--|
| Tensión de Von Mises Tensión normal |                                       |                             |                                |                  |        |                                       |        |                           |             |  |
| Ref.                                | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²)       | $\tau_{  } \\ \text{(N/mm}^2)$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | I <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |  |
| Soldadura perimetral a la placa     |                                       | La comprobación no procede. |                                |                  |        |                                       |        |                           | 0.85        |  |



TFM\_nave\_industrial\_R30\_mortero

#### 2) Placa de anclaje

| Deferencies                                                                               |                                              |        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------|--------|--|--|--|--|--|--|
| Referencia:                                                                               | Valaras                                      | Catada |  |  |  |  |  |  |
| Comprobación                                                                              | Valores                                      | Estado |  |  |  |  |  |  |
| Separación mínima entre pernos: 3 diámetros                                               | Mínimo: 60 mm<br>Calculado: 135 mm           | Cumple |  |  |  |  |  |  |
| Separación mínima pernos-borde: 1.5 diámetros                                             | Mínimo: 30 mm<br>Calculado: 40 mm            | Cumple |  |  |  |  |  |  |
| Esbeltez de rigidizadores: - Paralelos a Y:                                               | Máximo: 50<br>Calculado: 46.8                | Cumple |  |  |  |  |  |  |
| Longitud mínima del perno:<br>Se calcula la longitud de anclaje necesaria por adherencia. | Mínimo: 22 cm<br>Calculado: 35 cm            | Cumple |  |  |  |  |  |  |
| Anclaje perno en hormigón:                                                                |                                              |        |  |  |  |  |  |  |
| - Tracción:                                                                               | Máximo: 77.78 kN<br>Calculado: 60.45 kN      | Cumple |  |  |  |  |  |  |
| - Cortante:                                                                               | Máximo: 54.45 kN<br>Calculado: 5.37 kN       | Cumple |  |  |  |  |  |  |
| - Tracción + Cortante:                                                                    | Máximo: 77.78 kN<br>Calculado: 68.12 kN      | Cumple |  |  |  |  |  |  |
| Tracción en vástago de pernos:                                                            | Máximo: 125.6 kN<br>Calculado: 57.62 kN      | Cumple |  |  |  |  |  |  |
| Tensión de Von Mises en vástago de pernos:                                                | Máximo: 476.19 MPa<br>Calculado: 185.894 MPa | Cumple |  |  |  |  |  |  |
| Aplastamiento perno en placa:  Límite del cortante en un perno actuando contra la placa   | Máximo: 188.57 kN<br>Calculado: 5.06 kN      | Cumple |  |  |  |  |  |  |
| Tensión de Von Mises en secciones globales:                                               | Máximo: 261.905 MPa                          |        |  |  |  |  |  |  |
| - Derecha:                                                                                | Calculado: 73.3933 MPa                       | Cumple |  |  |  |  |  |  |
| - Izquierda:                                                                              | Calculado: 73.4037 MPa                       | Cumple |  |  |  |  |  |  |
| - Arriba:                                                                                 | Calculado: 124.627 MPa                       | Cumple |  |  |  |  |  |  |
| - Abajo:                                                                                  | Calculado: 124.666 MPa                       | Cumple |  |  |  |  |  |  |
| Flecha global equivalente:<br>Limitación de la deformabilidad de los vuelos               | Mínimo: 250                                  |        |  |  |  |  |  |  |
| - Derecha:                                                                                | Calculado: 1657.62                           | Cumple |  |  |  |  |  |  |
| - Izquierda:                                                                              | Calculado: 1657.18                           | Cumple |  |  |  |  |  |  |
| - Arriba:                                                                                 | Calculado: 8075.25                           | Cumple |  |  |  |  |  |  |
| - Abajo:                                                                                  | Calculado: 8072.82                           | Cumple |  |  |  |  |  |  |
| Tensión de Von Mises local:  Tensión por tracción de pernos sobre placas en voladizo      | Máximo: 261.905 MPa<br>Calculado: 172.93 MPa | Cumple |  |  |  |  |  |  |
| Se cumplen todas las comprobaciones                                                       |                                              |        |  |  |  |  |  |  |

#### Cordones de soldadura

| Comprobaciones geométricas                                 |                        |           |                            |           |           |                    |  |  |  |
|------------------------------------------------------------|------------------------|-----------|----------------------------|-----------|-----------|--------------------|--|--|--|
| Ref.                                                       | Tipo                   | a<br>(mm) | Preparación de bordes (mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |
| Rigidizador y-y $(x = -71)$ :<br>Soldadura a la placa base | En ángulo              | 5         |                            | 500       | 7.0       | 90.00              |  |  |  |
| Rigidizador y-y (x = 71):<br>Soldadura a la placa base     | En ángulo              | 5         |                            | 500       | 7.0       | 90.00              |  |  |  |
| Soldadura de los pernos a la placa base                    | De penetración parcial |           | 7                          | 63        | 18.0      | 90.00              |  |  |  |
| a. Fanasar garganta                                        |                        |           |                            |           |           |                    |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas



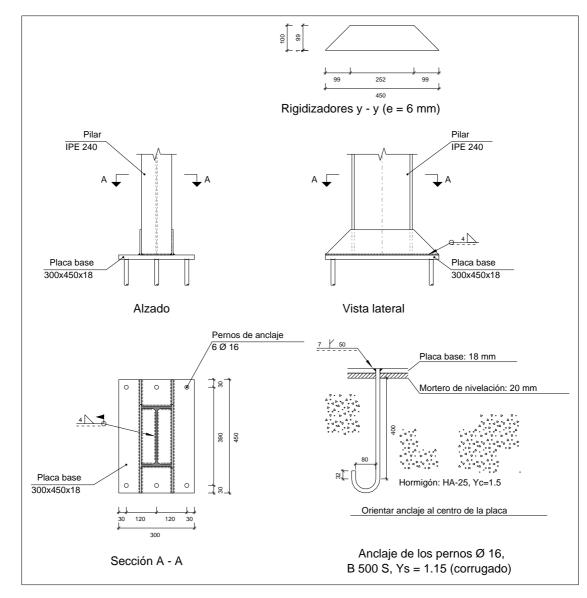
TFM\_nave\_industrial\_R30\_mortero

| Comprobación de resistencia                             |                                       |                             |                                |                  |        |                                       |        |         |                 |  |
|---------------------------------------------------------|---------------------------------------|-----------------------------|--------------------------------|------------------|--------|---------------------------------------|--------|---------|-----------------|--|
|                                                         | 001                                   | •                           | n de Von                       |                  | icia   | Tensión normal                        |        | _       |                 |  |
| Ref.                                                    | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²)       | $\tau_{  } \\ \text{(N/mm}^2)$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | (N/mm²) | $\beta_{\sf w}$ |  |
| Rigidizador y-y (x = -71):<br>Soldadura a la placa base |                                       | La comprobación no procede. |                                |                  |        |                                       |        | 410.0   | 0.85            |  |
| Rigidizador y-y (x = 71):<br>Soldadura a la placa base  |                                       | La comprobación no procede. |                                |                  |        |                                       | 410.0  | 0.85    |                 |  |
| Soldadura de los pernos a la placa base                 | 0.0 0.0 183.4 317.7 82.33 0.0 0.00    |                             |                                |                  |        | 410.0                                 | 0.85   |         |                 |  |

#### d) Medición

|                         | Soldaduras             |                                                 |                          |                           |  |  |  |  |  |  |  |  |  |
|-------------------------|------------------------|-------------------------------------------------|--------------------------|---------------------------|--|--|--|--|--|--|--|--|--|
| f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                                            | Espesor de garganta (mm) | Longitud de cordones (mm) |  |  |  |  |  |  |  |  |  |
|                         |                        | En ángulo                                       | 5                        | 1959                      |  |  |  |  |  |  |  |  |  |
| 410.0                   | En taller              | A tope en bisel simple con talón de raíz amplio | 7                        | 377                       |  |  |  |  |  |  |  |  |  |
|                         | En el lugar de montaje | En ángulo                                       | 5                        | 906                       |  |  |  |  |  |  |  |  |  |

| Placas de anclaje              |                        |   |                      |              |  |  |  |  |  |  |
|--------------------------------|------------------------|---|----------------------|--------------|--|--|--|--|--|--|
| Material                       | Elementos Canti        |   | Dimensiones<br>(mm)  | Peso<br>(kg) |  |  |  |  |  |  |
|                                | Placa base             | 1 | 350x500x18           | 24.73        |  |  |  |  |  |  |
| S275                           | Rigidizadores pasantes | 2 | 500/270x150/40x7     | 6.85         |  |  |  |  |  |  |
|                                |                        |   | Total                | 31.58        |  |  |  |  |  |  |
| B 500 S, Ys = 1.15 (corrugado) | Pernos de anclaje      | 6 | Ø 20 - L = 408 + 228 | 9.42         |  |  |  |  |  |  |
| B 500 5, 15 = 1.15 (corrugado) |                        |   | Total                | 9.42         |  |  |  |  |  |  |


Producido por una versión educativa de CYPE



TFM\_nave\_industrial\_R30\_mortero

#### 3.2.3.- Tipo 3

#### a) Detalle





TFM\_nave\_industrial\_R30\_mortero

b) Descripción de los componentes de la unión

|             | Elementos complementarios               |               |               |                 |          |                              |                              |               |       |                         |                         |  |  |
|-------------|-----------------------------------------|---------------|---------------|-----------------|----------|------------------------------|------------------------------|---------------|-------|-------------------------|-------------------------|--|--|
|             | G                                       | Seometrí      | a             |                 |          | Taladı                       | °OS                          |               | Acero |                         |                         |  |  |
| Pieza       | Esquema                                 | Ancho<br>(mm) | Canto<br>(mm) | Espesor<br>(mm) | Cantidad | Diámetro<br>exterior<br>(mm) | Diámetro<br>interior<br>(mm) | Bisel<br>(mm) | Tipo  | f <sub>y</sub><br>(MPa) | f <sub>u</sub><br>(MPa) |  |  |
| Placa base  | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 300           | 450           | 18              | 6        | 30                           | 18                           | 7             | S275  | 275.0                   | 410.0                   |  |  |
| Rigidizador | 450                                     | 450           | 100           | 6               | -        | -                            | -                            | -             | S275  | 275.0                   | 410.0                   |  |  |

#### c) Comprobación

1) Pilar IPE 240

#### Cordones de soldadura

| Comprobaciones geométricas      |           |   |     |     |       |  |  |  |
|---------------------------------|-----------|---|-----|-----|-------|--|--|--|
| Ref. Tipo a I t Ángul (grados   |           |   |     |     |       |  |  |  |
| Soldadura perimetral a la placa | En ángulo | 4 | 788 | 6.2 | 90.00 |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

| Comprobación de resistencia     |                                       |                       |                    |                  |                |                                       |        |         |             |
|---------------------------------|---------------------------------------|-----------------------|--------------------|------------------|----------------|---------------------------------------|--------|---------|-------------|
|                                 |                                       | Tensió                | n de Von           |                  | Tensión normal |                                       | f      |         |             |
| Ref.                            | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | $	au_{\perp}$ (N/mm²) | $	au_{  }$ (N/mm²) | Valor<br>(N/mm²) | Aprov.         | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | (N/mm²) | $\beta_{w}$ |
| Soldadura perimetral a la placa | La comprobación no procede.           |                       |                    |                  |                | 410.0                                 | 0.85   |         |             |

TFM\_nave\_industrial\_R30\_mortero

#### 2) Placa de anclaje

| Referencia:                                                                               |                                              |        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------|--------|--|--|--|--|--|--|
| Comprobación                                                                              | Valores                                      | Estado |  |  |  |  |  |  |
| Separación mínima entre pernos: 3 diámetros                                               | Mínimo: 48 mm<br>Calculado: 121 mm           | Cumple |  |  |  |  |  |  |
| Separación mínima pernos-borde: 1.5 diámetros                                             | Mínimo: 24 mm<br>Calculado: 30 mm            | Cumple |  |  |  |  |  |  |
| Esbeltez de rigidizadores: - Paralelos a Y:                                               | Máximo: 50<br>Calculado: 41.9                | Cumple |  |  |  |  |  |  |
| Longitud mínima del perno:<br>Se calcula la longitud de anclaje necesaria por adherencia. | Mínimo: 17 cm<br>Calculado: 40 cm            | Cumple |  |  |  |  |  |  |
| Anclaje perno en hormigón:                                                                |                                              |        |  |  |  |  |  |  |
| - Tracción:                                                                               | Máximo: 71.12 kN<br>Calculado: 54.26 kN      | Cumple |  |  |  |  |  |  |
| - Cortante:                                                                               | Máximo: 49.78 kN<br>Calculado: 5.85 kN       | Cumple |  |  |  |  |  |  |
| - Tracción + Cortante:                                                                    | Máximo: 71.12 kN<br>Calculado: 62.61 kN      | Cumple |  |  |  |  |  |  |
| Tracción en vástago de pernos:                                                            | Máximo: 80.4 kN<br>Calculado: 51.28 kN       | Cumple |  |  |  |  |  |  |
| Tensión de Von Mises en vástago de pernos:                                                | Máximo: 476.19 MPa<br>Calculado: 258.657 MPa | Cumple |  |  |  |  |  |  |
| Aplastamiento perno en placa:<br>Límite del cortante en un perno actuando contra la placa | Máximo: 150.86 kN<br>Calculado: 5.48 kN      | Cumple |  |  |  |  |  |  |
| Tensión de Von Mises en secciones globales:                                               | Máximo: 261.905 MPa                          |        |  |  |  |  |  |  |
| - Derecha:                                                                                | Calculado: 69.4122 MPa                       | Cumple |  |  |  |  |  |  |
| - Izquierda:                                                                              | Calculado: 69.4108 MPa                       | Cumple |  |  |  |  |  |  |
| - Arriba:                                                                                 | Calculado: 253.348 MPa                       | Cumple |  |  |  |  |  |  |
| - Abajo:                                                                                  | Calculado: 253.346 MPa                       | Cumple |  |  |  |  |  |  |
| Flecha global equivalente:<br>Limitación de la deformabilidad de los vuelos               | Mínimo: 250                                  |        |  |  |  |  |  |  |
| - Derecha:                                                                                | Calculado: 5365.59                           | Cumple |  |  |  |  |  |  |
| - Izquierda:                                                                              | Calculado: 5365.51                           | Cumple |  |  |  |  |  |  |
| - Arriba:                                                                                 | Calculado: 2847.54                           | Cumple |  |  |  |  |  |  |
| - Abajo:                                                                                  | Calculado: 2847.56                           | Cumple |  |  |  |  |  |  |
| Tensión de Von Mises local:  Tensión por tracción de pernos sobre placas en voladizo      | Máximo: 261.905 MPa<br>Calculado: 137.94 MPa | Cumple |  |  |  |  |  |  |
| Se cumplen todas las comprobaciones                                                       |                                              |        |  |  |  |  |  |  |

#### Cordones de soldadura

| Comprobaciones geométricas                                 |                        |           |                            |           |           |                    |  |  |  |  |
|------------------------------------------------------------|------------------------|-----------|----------------------------|-----------|-----------|--------------------|--|--|--|--|
| Ref.                                                       | Tipo                   | a<br>(mm) | Preparación de bordes (mm) | l<br>(mm) | t<br>(mm) | Ángulo<br>(grados) |  |  |  |  |
| Rigidizador y-y (x = $-63$ ):<br>Soldadura a la placa base | En ángulo              | 4         |                            | 450       | 6.0       | 90.00              |  |  |  |  |
| Rigidizador y-y (x = 63):<br>Soldadura a la placa base     | En ángulo              | 4         |                            | 450       | 6.0       | 90.00              |  |  |  |  |
| Soldadura de los pernos a la placa base                    | De penetración parcial |           | 7                          | 50        | 16.0      | 90.00              |  |  |  |  |
|                                                            |                        |           |                            |           |           |                    |  |  |  |  |

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas



TFM\_nave\_industrial\_R30\_mortero

| Comprobación de resistencia                                |                          |                                    |                               |                  |        |                                       |        |                           |             |  |
|------------------------------------------------------------|--------------------------|------------------------------------|-------------------------------|------------------|--------|---------------------------------------|--------|---------------------------|-------------|--|
|                                                            | 001                      | •                                  | n de Von                      |                  | icia   | Tensión normal                        |        | _                         |             |  |
| Ref.                                                       | $\sigma_{\perp}$ (N/mm²) | $	au_{\perp}$ (N/mm²)              | $\tau_{  } \\ \text{(N/mm²)}$ | Valor<br>(N/mm²) | Aprov. | $\sigma_{\perp}$ (N/mm <sup>2</sup> ) | Aprov. | f <sub>u</sub><br>(N/mm²) | $\beta_{w}$ |  |
| Rigidizador y-y (x = $-63$ ):<br>Soldadura a la placa base |                          | La comprobación no procede.        |                               |                  |        |                                       |        | 410.0                     | 0.85        |  |
| Rigidizador y-y (x = 63):<br>Soldadura a la placa base     |                          | La comprobación no procede.        |                               |                  |        |                                       | 410.0  | 0.85                      |             |  |
| Soldadura de los pernos a la placa base                    | 0.0                      | 0.0 0.0 204.0 353.4 91.58 0.0 0.00 |                               |                  |        |                                       | 410.0  | 0.85                      |             |  |

#### d) Medición

|  |                         | Soldaduras             |                                                            |                          |                           |  |  |  |  |  |  |  |
|--|-------------------------|------------------------|------------------------------------------------------------|--------------------------|---------------------------|--|--|--|--|--|--|--|
|  | f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                                                       | Espesor de garganta (mm) | Longitud de cordones (mm) |  |  |  |  |  |  |  |
|  |                         | En taller              | En ángulo                                                  | 4                        | 1761                      |  |  |  |  |  |  |  |
|  | 410.0                   |                        | En taller  A tope en bisel simple con talón de raíz amplio |                          | 302                       |  |  |  |  |  |  |  |
|  |                         | En el lugar de montaje | En ángulo                                                  | 4                        | 788                       |  |  |  |  |  |  |  |

| Placas de anclaje              |                        |          |                      |              |  |
|--------------------------------|------------------------|----------|----------------------|--------------|--|
| Material                       | Elementos              | Cantidad | Dimensiones<br>(mm)  | Peso<br>(kg) |  |
| S275                           | Placa base             | 1        | 300x450x18           | 19.08        |  |
|                                | Rigidizadores pasantes | 2        | 450/252x100/1x6      | 3.32         |  |
|                                |                        |          | Total                | 22.39        |  |
| B 500 S, Ys = 1.15 (corrugado) | Pernos de anclaje      | 6        | Ø 16 - L = 454 + 183 | 6.03         |  |
|                                |                        |          | Total                | 6.03         |  |

Producido por una versión educativa de CYPE

# ANEXO 3: CATÁLOGOS

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# Índice del anexo 3

| Índice del anexo 3       | 3  |
|--------------------------|----|
| 1. Objeto                | 5  |
| Catálogo de bombas EBARA | 7  |
| Curva característica     | 15 |
| Tablas de selección      | 19 |

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# 1. Objeto

El presente apartado pretende agrupar los listados de cálculo de las dos estructuras dimensionadas. Se incluye para justificar los cálculos realizados en el diseño de la estructura portante. Dichos listados se han obtenido mediante el programa de cálculo de estructuras CYPE 3D.


Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# Catálogo de bombas EBARA

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.











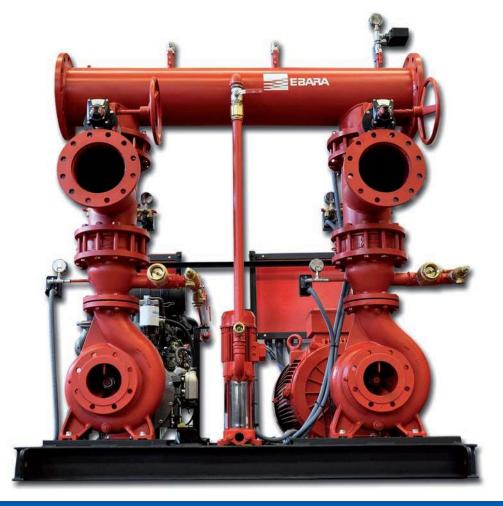
#### Normas CEPREVEN, UNE, NFPA, ULCC, ...

Grupos Contra Incendios diseñados y construidos para ajustarse a las más diversas especificaciones (CEPREVEN, UNE, NFPA, FM, etc.) o bien cubrir con amplio margen y sin seguir normativa específica y/o las características nominales de trabajo (Caudal y Altura), exigidas por nuestros clientes.

Equipos Contra Incendios conforme a NORMAS; UNE EN 12845, CEPREVEN RT2.ABA y UNE 23500:2012 con bomba Normalizada (AF GS/ENI).

La serie de grupos Contra Incendios AF GS/ENI, está especialmente diseñada para cubrir las necesidades de las medianas y grandes instalaciones de extinción provistas de redes de Bocas de Incendios Equipadas, Hidrantes, Rociadores Automáticos, etc., donde se requiera un grupo constituido por una o varias bombas principales más una auxiliar "Jockey", accionadas por motor eléctrico o diesel y conforme a la Normativa especificada.

Construidos en base al tipo de bomba principal utilizada de las series GS / ENI, de tipo "Sobre Bancada" en hierro fundido.














Además, EBARA puede fabricar Equipos Contra Incendios ajustados a la necesidad del cliente y conforme a otras normativas específicas: NFPA20, FM, UL...

#### EBARA es:

| Miembro de:   | Socio colaborador de: |
|---------------|-----------------------|
| cepreven tecn | uego aerme            |







#### Normas CEPREVEN, UNE, NFPA, ULCC, ...

#### Composición de los equipos

| Composicion de     | ios equipos                                                                                                                                                                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bomba principal    | Bombas principales Eléctricas o<br>diésel "Sobre Bancada" serie GS<br>/ ENI normalizada EN 722/ DIN<br>24255 construida en Hierro fundido,<br>impulsor en bronce, sellado por<br>empaquetadura según disposición de<br>la norma UNE 23500:2012 |
| Bomba auxiliar     | Bomba auxiliar "Jockey" eléctrica<br>Serie CVM, MVP o EVMG según<br>modelo, vertical multietapa.                                                                                                                                               |
| Depósito           | Depósito hidroneumático de 20 l. con válvula de aislamiento.                                                                                                                                                                                   |
| Presostatos        | <ul><li>Presostatos de arranque para<br/>cada bomba.</li><li>Presostatos de confirmación de<br/>bomba en marcha.</li></ul>                                                                                                                     |
| Cuadro de control  | Cuadro de control, en chapa de acero conforme a Norma seleccionada.                                                                                                                                                                            |
| Colector           | Colector común de impulsión.                                                                                                                                                                                                                   |
| Válvulas           | Válvulas de corte y retención para cada bomba en impulsión.                                                                                                                                                                                    |
| Manómetro          | Manómetros en caja de ACERO<br>INOXIDABLE en Baño de Glicerina.                                                                                                                                                                                |
| Motores            | <ul> <li>Motores diésel equipados<br/>con depósito de combustible,<br/>tubuladuras, baterías y silenciador.</li> <li>Motores diésel de mediana y<br/>gran potencia refrigerados por<br/>intercambiador de calor.</li> </ul>                    |
| Bancada            | Bancada metálica con soporte de cuadro.                                                                                                                                                                                                        |
| Cuadros eléctricos | Cuadros eléctricos acorde a normativas.                                                                                                                                                                                                        |

#### Grupos para grandes prestaciones con bombas del tipo Cámara Partida (bajo demanda)

normativas.

- Bomba centrífuga de cámara partida. Cuerpo en espiral seccionado longitudinalmente, de doble

- Las bocas de aspiración e impulsión están dispuestas en la parte baja del cuerpo inferior. Con ello es posible el desmontaje y montaje, así como el control del rotor sin necesidad de efectuar ningún desmontaje de las tuberías ni Características la máquina de accionamiento. Rodete radial de

- Empuje axial en los rodetes de doble flujo, compensado ampliamente entre sí.
- Anillos rozantes recambiables en cuerpos.
- Soporte con rodamientos de bolas lubricados por grasa.
- Estanqueidad del eje mediante empaquetadura.

#### **Datos técnicos**

| Caudal      | Caudal nominal máximo: 800 m³/h (mayores bajo demanda).                                 |
|-------------|-----------------------------------------------------------------------------------------|
| Presión     | - Presión máx. proporcionada: Hasta 15 Bar<br>- Presión máx. soportada: Hasta 10/16 Bar |
| Temperatura | Temperatura máxima agua: 40°C                                                           |
| Tensión     | Tensión: 400V Trif+N 50 Hz                                                              |

(otras bajo demanda).











Normas CEPREVEN, UNE, NFPA, ULCC, ...



| Equipos ELÉCTRICA + JOCKEY con 1 bomba normalizada en hierro fundido - 380 V 3F+N |                        |          |                            |              |                 |                  |                  |  |
|-----------------------------------------------------------------------------------|------------------------|----------|----------------------------|--------------|-----------------|------------------|------------------|--|
| Modelo de Grupo                                                                   | Bomba                  | kW       | Bomba                      | kW           |                 | NORMA            |                  |  |
| 1 bomba                                                                           | principal              |          | Jockey                     |              | UNE EN 12845    | CEPREVEN         | UNE 23500:2012   |  |
|                                                                                   |                        |          |                            |              | P.V.P. (€)      | P.V.P. (€)       | P.V.P. (€)       |  |
| AF GS 32-200(1)/5,5 EJ                                                            | GS 32-200(1)           | 5,5      | A/12                       | 0,9          | 4.889           | 5.206            | 5.563            |  |
| AF GS 32-200(1)/7,5 EJ                                                            | GS 32-200(1)           | 7,5      | A/12                       | 0,9          | 5.051           | 5.367            | 5.725            |  |
| AF GS 32-200/11 EJ                                                                | GS 32-200              | 11       | A/12                       | 0,9          | 5.639           | 5.956            | 6.313            |  |
| AF GS 32-250/7,5 EJ                                                               | GS 32-250              | 7,5      | A/15                       | 1,1          | 5.214           | 5.532            | 5.889            |  |
| AF GS 32-250/11 EJ                                                                | GS 32-250              | 11       | B/25                       | 1,85         | 5.978           | 6.294            | 6.652            |  |
| AF GS 32-250/15 EJ                                                                | GS 32-250              | 15       | B/25                       | 1,85         | 6.176           | 6.497            | 6.859            |  |
| AF GS 32-250/18,5 EJ                                                              | GS 32-250              | 18,5     | B/25                       | 1,85         | 6.403           | 6.724            | 7.084            |  |
| AF GS 40-200/11 EJ<br>AF GS 40-200/15 EJ                                          | GS 40-200              | 11<br>15 | A/12                       | 0,9<br>1,1   | 5.752           | 6.171            | 6.680            |  |
| AF GS 40-200/13 EJ<br>AF GS 40-200/18,5 EJ                                        | GS 40-200<br>GS 40-200 | 18,5     | A/15<br>A/15               | 1,1          | 5.994<br>6.221  | 6.417<br>6.643   | 6.932<br>7.159   |  |
| AF GS 40-250/15 EJ                                                                | GS 40-250              | 15       | A/15                       | 1,1          | 6.068           | 6.532            | 7.139            |  |
| AF GS 40-250/18,5 EJ                                                              | GS 40-250              | 18,5     | B/25                       | 1,85         | 6.470           | 6.935            | 7.450            |  |
| AF GS 40-250/22 EJ                                                                | GS 40-250              | 22       | B/25                       | 1,85         | 7.269           | 7.744            | 8.269            |  |
| AF GS 40-250/30 EJ                                                                | GS 40-250              | 30       | B/25                       | 1,85         | 8.028           | 8.502            | 9.027            |  |
| AF GS 40-315/22 EJ                                                                | GS 40-315              | 22       | MVP5-380/12                | 2,85         | 8.203           | 8.585            | 9.109            |  |
| AF GS 40-315/30 EJ                                                                | GS 40-315              | 30       | MVP5-380/12                | 2,85         | 9.449           | 9.830            | 10.355           |  |
| AF GS 40-315/37 EJ                                                                | GS 40-315              | 37       | EVMSG 5-17/4               | 4            | 10.914          | 10.956           | 11.481           |  |
| AF GS 40-315/45 EJ                                                                | GS 40-315              | 45       | EVMSG 5-17/4               | 4            | 12.126          | 12.170           | 12.695           |  |
| AF GS 40-315/55 EJ                                                                | GS 40-315              | 55       | EVMSG 5-17/4               | 4            | 13.585          | 13.629           | 14.159           |  |
| AF GS 50-200/15 EJ                                                                | GS 50-200              | 15       | A/12                       | 0,9          | 6.135           | 6.668            | 7.202            |  |
| AF GS 50-200/18,5 EJ                                                              | GS 50-200              | 18,5     | A/12                       | 0,9          | 6.363           | 6.894            | 7.429            |  |
| AF GS 50-200/22 EJ                                                                | GS 50-200              | 22       | A/15                       | 1,1          | 7.187           | 7.730            | 8.276            |  |
| AF GS 50-200/30 EJ                                                                | GS 50-200              | 30       | A/15                       | 1,1          | 7.946           | 8.488            | 9.034            |  |
| AF GS 50-250/22 EJ                                                                | GS 50-250              | 22       | B/23                       | 1,7          | 7.313           | 7.907            | 8.453            |  |
| AF GS 50-250/30 EJ                                                                | GS 50-250              | 30       | B/25                       | 1,85         | 8.214           | 8.810            | 9.354            |  |
| AF GS 50-250/37 EJ                                                                | GS 50-250              | 37       | B/25                       | 1,85         | 8.542           | 9.137            | 9.682            |  |
| AF GS 50-250/45 EJ<br>AF GS 50-315/45 EJ                                          | GS 50-250<br>GS 50-315 | 45<br>45 | MVP5-380/12<br>MVP5-380/12 | 2,85<br>2,85 | 9.928<br>10.847 | 10.522<br>11.317 | 11.067<br>11.863 |  |
| AF GS 50-315/55 EJ                                                                | GS 50-315              | 55       | EVMSG 5-17/4               | 4            | 13.949          | 13.991           | 14.541           |  |
| AF GS 50-315/75 EJ                                                                | GS 50-315              | 75       | EVMSG 5-17/4               | 4            | 15.546          | 15.588           | 16.139           |  |
| AF GS 65-200/15 EJ                                                                | GS 65-200              | 15       | A/10                       | 0,75         | 6.712           | 6.831            | 7.379            |  |
| AF GS 65-200/18.5 EJ                                                              | GS 65-200              | 18,5     | A/12                       | 0,9          | 6.962           | 7.083            | 7.630            |  |
| AF GS 65-200/22 EJ                                                                | GS 65-200              | 22       | A/15                       | 1,1          | 7.798           | 7.923            | 8.481            |  |
| AF GS 65-200/30 EJ                                                                | GS 65-200              | 30       | A/15                       | 1,1          | 8.558           | 8.682            | 9.240            |  |
| AF GS 65-200/37 EJ                                                                | GS 65-200              | 37       | A/15                       | 1,1          | 8.885           | 9.008            | 9.567            |  |
| AF GS 65-250/30 EJ                                                                | GS 65-250              | 30       | A/15                       | 1,1          | 9.006           | 9.146            | 9.704            |  |
| AF GS 65-250/37 EJ                                                                | GS 65-250              | 37       | B/25                       | 1,85         | 9.514           | 9.653            | 10.211           |  |
| AF GS 65-250/45 EJ                                                                | GS 65-250              | 45       | B/25                       | 1,85         | 10.728          | 10.868           | 11.425           |  |
| AF GS 65-250/55 EJ                                                                | GS 65-250              | 55       | MVP5-380/12                | 2,85         | 12,270          | 12.411           | 12.976           |  |
| AF GS 65-315/75 EJ                                                                | GS 65-315              | 75       | EVMSG 5-17/4               | 4            | 15.717          | 15.765           | 16.329           |  |
| AF GS 65-315/90 EJ                                                                | GS 65-315              | 90       | EVMSG 5-17/4               | 4            | 17.571          | 17.618           | 18.181           |  |
| AF GS 65-315/110 EJ                                                               | GS 65-315              | 110      | EVMSG 5-17/4               | 4            | 21.765          | 21.813           | 22.376           |  |







Normas CEPREVEN, UNE, NFPA, ULCC, ...

| Modelo de Grupo       | Bomba       | kW  | Bomba        | kW   | NORMA        |            |                |
|-----------------------|-------------|-----|--------------|------|--------------|------------|----------------|
| 1 bomba               | principal   |     | Jockey       |      | UNE EN 12845 | CEPREVEN   | UNE 23500:2012 |
|                       |             |     |              |      | P.V.P. (€)   | P.V.P. (€) | P.V.P. (€)     |
| AF GS 80-200/30 EJ    | GS 80-200   | 30  | A/15         | 1,1  | 9.259        | 9,431      | 9.965          |
| AF GS 80-200/37 EJ    | GS 80-200   | 37  | A/15         | 1,1  | 9.587        | 9.759      | 10.292         |
| AF GS 80-200/45 EJ    | GS 80-200   | 45  | A/15         | 1,1  | 10.800       | 10.973     | 11.507         |
| AF GS 80-200/55 EJ    | GS 80-200   | 55  | A/15         | 1,1  | 12.246       | 12.419     | 12.959         |
| AF GS 80-250/55 EJ    | GS 80-250   | 55  | B/25         | 1,85 | 12.706       | 12.957     | 13.497         |
| AF GS 80-250/75 EJ    | GS 80-250   | 75  | B/25         | 1,85 | 14.303       | 14.554     | 15.093         |
| AF GS 80-250/90 EJ    | GS 80-250   | 90  | MVP5-380/12  | 2,85 | 16.252       | 16.504     | 17.044         |
| AF GS 80-315/90 EJ    | GS 80-315L  | 90  | MVP5-380/12  | 2,85 | 17.863       | 17.921     | 18.461         |
| AF GS 80-315/110 EJ   | GS 80-315L  | 110 | EVMSG 5-17/4 | 4    | 22.474       | 22.533     | 23.073         |
| AF GS 80-315/132 EJ   | GS 80-315L  | 132 | EVMSG 5-17/4 | 4    | 23.426       | 23.484     | 24.025         |
| AF GS 80-315/160 EJ   | GS 80-315L  | 160 | EVMSG 5-17/4 | 4    | 24.547       | 24.606     | 25.143         |
| AF GS 100-200/37 EJ   | GS 100-200  | 37  | A/15         | 1,1  | 10.176       | 10.388     | 10.898         |
| AF GS 100-200/45 EJ   | GS 100-200  | 45  | A/15         | 1,1  | 11.390       | 11.600     | 12.112         |
| AF GS 100-200/55 EJ   | GS 100-200  | 55  | A/15         | 1,1  | 12.842       | 13.055     | 13.570         |
| AF GS 100-200/75 EJ   | GS 100-200  | 75  | A/15         | 1,1  | 14.439       | 14.652     | 15.167         |
| AF GS 100-250/45 EJ   | GS 100-250  | 45  | A/15         | 1,1  | 11.422       | 11.671     | 12.182         |
| AF GS 100-250/55 EJ   | GS 100-250  | 55  | B/23         | 1,7  | 12.912       | 13.162     | 13.677         |
| AF GS 100-250/75 EJ   | GS 100-250  | 75  | B/25         | 1,85 | 14.763       | 15.014     | 15.530         |
| AF GS 100-250/90 EJ   | GS 100-250  | 90  | B/25         | 1,85 | 16.616       | 16.865     | 17.382         |
| AF GS 100-250/110 EJ  | GS 100-250  | 110 | MVP5-380/12  | 2,85 | 20.909       | 21.160     | 21.674         |
| AF GS 100-315/110 EJ  | GS 100-315L | 110 | EVMSG 5-17/4 | 4    | 22.853       | 22.922     | 23.438         |
| AF GS 100-315/132 EJ  | GS 100-315L | 132 | EVMSG 5-17/4 | 4    | 23.804       | 23.874     | 24.390         |
| AF GS 100-315/160 EJ  | GS 100-315L | 160 | EVMSG 5-17/4 | 4    | 24.925       | 24.995     | 25.510         |
| AF GS 100-315/200 EJ  | GS 100-315L | 200 | EVMSG 5-17/4 | 4    | 27.669       | 27.739     | 28.256         |
| AF GS 125-200/55 EJ   | GS 125-200  | 55  | A/12         | 0,9  | 13.656       | 13.759     | 14.231         |
| AF GS 125-200/75 EJ   | GS 125-200  | 75  | A/15         | 1,1  | 15.283       | 15.387     | 15.856         |
| AF GS 125-200/90 EJ   | GS 125-200  | 90  | A/15         | 1,1  | 17.135       | 17.239     | 17.709         |
| AF GS 125-200/110 EJ  | GS 125-200  | 110 | A/15         | 1,1  | 17.892       | 17.995     | 18.464         |
| AF GS 125-250/90 EJ   | GS 125-250L | 90  | B/23         | 1,7  | 17.283       | 17.655     | 18.123         |
| AF GS 125-250/110 EJ  | GS 125-250L | 110 | B/25         | 1,85 | 21.623       | 21.993     | 22.464         |
| AF GS 125-250/132 EJ  | GS 125-250L | 132 | B/25         | 1,85 | 22.573       | 22.946     | 23.415         |
| AF GS 125-250/160 EJ  | GS 125-250L | 160 | B/25         | 1,85 | 23.694       | 24.065     | 24.535         |
| AF GS 125-250/200 EJ  | GS 125-250L | 200 | MVP5-380/12  | 2,85 | 26.537       | 26.907     | 27.378         |
| AF GS 125-315/110 EJ  | GS 125-315  | 110 | B/25         | 1,85 | 22.557       | 22.685     | 23.155         |
| AF GS 125-315/132 EJ  | GS 125-315  | 132 | MVP5-380/12  | 2,85 | 23.606       | 23.732     | 24.204         |
| AF GS 125-315/160 EJ  | GS 125-315  | 160 | MVP5-380/12  | 2,85 | 24.728       | 24.854     | 25.324         |
| AF GS 125-315/200 EJ  | GS 125-315  | 200 | EVMSG 5-17/4 | 4    | 28.694       | 28.821     | 29.292         |
| AF GS 150-200/75 EJ   | GS 150-200  | 75  | B/25         | 1,85 | 15.752       | 16.094     | 16.565         |
| AF GS 150-200/90 EJ   | GS 150-200  | 90  | B/25         | 1,85 | 17.604       | 17.947     | 18.417         |
| AF GS 150-250/132 EJ  | GS 150-250  | 132 | B/25         | 1,85 | 25.129       | 25.639     | 26.125         |
| AF GS 150-250/160 EJ  | GS 150-250  | 160 | B/25         | 1,85 | 26.249       | 26.759     | 27.246         |
| AF GS 150-250/200 EJ  | GS 150-250  | 200 | MVP5-380/12  | 2,85 | 29.091       | 29.601     | 30.088         |
| AF ENI 100-250/75 EJ  | ENI 100-250 | 75  | B/25         | 1,85 | 15.984       | 16.582     | 17.097         |
| AF ENI 100-250/90 EJ  | ENI 100-250 | 90  | B/25         | 1,85 | 17.836       | 18.435     | 18.950         |
| AF ENI 100-250/110 EJ | ENI 100-250 | 110 | MVP5-380/12  | 2,85 | 22.130       | 22.727     | 23.244         |
| AF ENI 125-250/90 EJ  | ENI 125-250 | 90  | B/25         | 1,85 | 18.852       | 20.020     | 20.491         |
| AF ENI 125-250/110 EJ | ENI 125-250 | 110 | B/25         | 1,85 | 23.045       | 24.215     | 24.686         |
| AF ENI 125-250/132 EJ | ENI 125-250 | 132 | B/25         | 1,85 | 23.997       | 25.167     | 25.637         |
| AF ENI 125-250/160 EJ | ENI 125-250 | 160 | MVP5-380/12  | 2,85 | 25.215       | 26.385     | 26.854         |

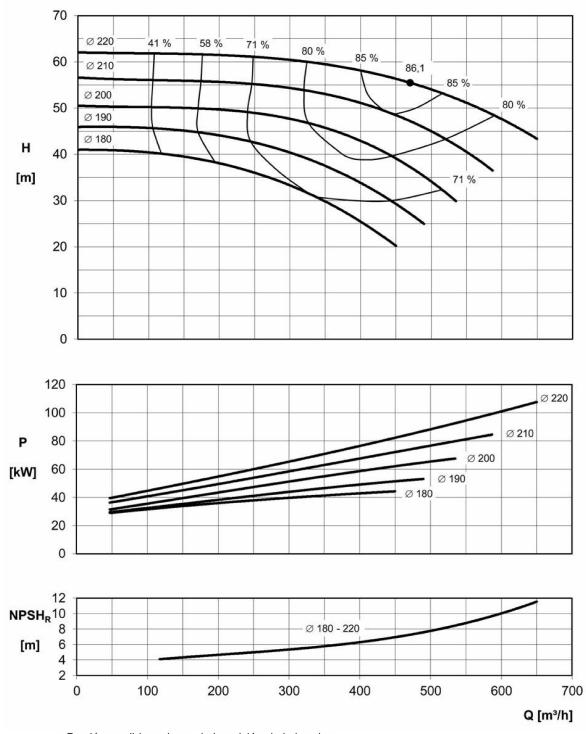


### Curva característica



ANEXO 3: CATÁLOGOS






### **ENR**

www.ebara.es

#### **ELECTROBOMBA CENTRIFUGA NORMALIZADA según EN 733**

### CURVAS DE CARACTERÍSTICAS - ENR 125-200 (según ISO 9906 / 2)



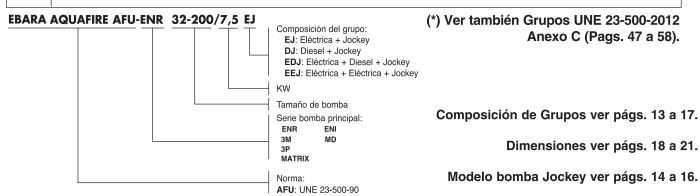


### Tablas de selección



ANEXO 3: CATÁLOGOS






## **UNE 23-500-90**

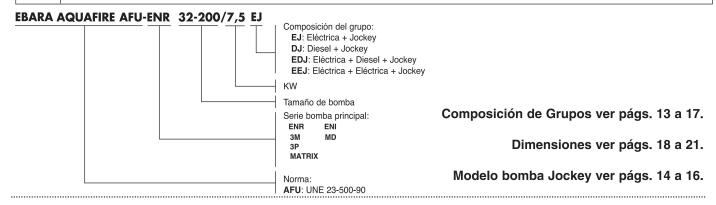
www.ebara.es

### **TABLA DE SELECCIÓN**

|           |                       | 0.1                   | 0.7                   | 40                  |                       |                       | 0.4                   |                       |                     |                  |
|-----------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|------------------|
|           | 12(*)                 | 24                    | 36                    | 48                  | 60                    | 72                    | 84                    | 100                   | 120                 | 150              |
| 40        | AF 3M<br>32-200/4     | AF 3M<br>40-200/5,5   | AF 3M<br>50-200/9,2   | AF 3M<br>50-200/9,2 | AF ENR<br>65-200/15   | AF ENR<br>65-200/15   | AF ENR<br>65-200/18,5 | AF ENR<br>80-200/18,5 | AF ENR<br>80-200/22 | AF EN            |
| 45        | AF 3M<br>32-200/4     | AF 3M<br>40-200/7,5   | AF 3M<br>50-200/9,2   | AF 3M<br>50-200/9,2 | AF ENR<br>65-200/15   | AF ENR<br>65-200/18,5 | AF ENR<br>65-200/18,5 | AF ENR<br>80-200/22   | AF ENR<br>80-200/30 | AF EN<br>100-200 |
| 50        | AF 3M<br>32-200/5,5   | AF 3M<br>40-200/7,5   | AF 3M<br>50-200/11    | AF 3M<br>50-200/11  | AF ENR<br>65-200/18,5 | AF ENR<br>65-200/22   | AF ENR<br>65-200/22   | AF ENR<br>80-200/30   | AF ENR<br>80-200/30 | AF EN            |
| 55        | AF 3M<br>32-200/5,5   | AF 3M<br>40-200/11    | AF 3M<br>50-200/11    | AF 3M<br>50-200/11  | AF ENR<br>65-200/22   | AF ENR<br>65-200/22   | AF ENR<br>65-200/30   | AF ENR<br>80-200/30   | AF ENR<br>80-200/37 | AF EN            |
| 60        | AF 3M<br>32-200/5,5   | AF 3M<br>40-200/11    | AF 3M<br>50-200/15    | AF 3M<br>50-200/15  | AF ENR<br>65-200/30   | AF ENR<br>65-200/30   | AF ENR<br>65-250/30   | AF ENR<br>80-200/37   | AF ENR<br>80-200/37 | AF EN            |
| 65        | AF 3M<br>32-200/5,5   | AF 3M<br>40-200/11    | AF 3M<br>50-200/15    | AF 3M<br>50-200/15  | AF ENR<br>65-250/30   | AF ENR<br>65-250/30   | AF ENR<br>65-250/30   | AF ENR<br>80-250/37   | AF ENR<br>80-250/45 | AF EN            |
| 70        | AF ENR<br>32-250/11   | AF ENR<br>40-250/15   | AF ENR<br>50-250/18,5 | AF ENR<br>50-250/22 | AF ENR<br>65-250/30   | AF ENR<br>65-250/30   | AF ENR<br>65-250/37   | AF ENR<br>80-250/45   | AF ENR<br>80-250/45 | AF EN            |
| <b>75</b> | AF ENR<br>32-250/15   | AF ENR<br>40-250/15   | AF ENR<br>50-250/22   | AF ENR<br>50-250/22 | AF ENR<br>65-250/37   | AF ENR<br>65-250/37   | AF ENR<br>65-250/37   | AF ENR<br>80-250/45   | AF ENR<br>80-250/45 | AF EN            |
| 80        | AF ENR<br>32-250/15   | AF ENR<br>40-250/15   | AF ENR<br>50-250/22   | AF ENR<br>50-250/30 | AF ENR<br>65-250/37   | AF ENR<br>65-250/37   | AF ENR<br>65-250/37   | AF ENR<br>65-250/45   | AF ENR<br>80-250/55 | AF EN            |
| 85        | AF ENR<br>32-250/15   | AF ENR<br>40-250/18,5 | AF ENR<br>50-250/30   | AF ENR<br>50-250/30 | AF ENR<br>65-250/45   | AF ENR<br>65-250/45   | AF ENR<br>65-250/45   | AF ENR<br>65-250/45   | AF ENR<br>80-250/55 | AF EN            |
| 90        | AF ENR<br>40-250/18,5 | AF ENR<br>40-315/22   | AF ENR<br>50-315/37   | AF ENR<br>50-315/37 | AF ENR<br>65-315/45   | AF ENR<br>65-315/45   | AF ENR<br>65-250/45   | AF ENR<br>80-250/55   | AF ENR<br>80-315/75 | AF EN            |
| 95        | AF ENR<br>40-315/18,5 | AF ENR<br>40-315/22   | AF ENR<br>50-315/37   | AF ENR<br>50-315/37 | AF ENR<br>65-315/45   | AF ENR<br>65-315/45   | AF ENR<br>65-315/45   | AF ENR<br>80-315/75   | AF ENR<br>80-315/75 | AF EN            |
| 100       | AF ENR<br>40-315/22   | AF ENR<br>40-315/30   | AF ENR<br>50-315/37   | AF ENR<br>50-315/37 | AF ENR<br>65-315/45   | AF ENR<br>65-315/55   | AF ENR<br>65-315/55   | AF ENR<br>65-315/55   | AF ENR<br>80-315/75 | AF EN            |








## **UNE 23-500-90**

#### www.ebara.es

#### **TABLA DE SELECCIÓN**

|           | I                     |                        |                       | - OAG                 | DAL 10                | TAL (m³/l             | •/                    |                       |                       | I                 |
|-----------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|
|           | 175                   | 200                    | 225                   | 250                   | 275                   | 300                   | 325                   | 350                   | 375                   | 400               |
| 40        | AF ENR<br>100-200/30  | AF ENR<br>100-200/37   | AF ENR<br>125-200/55  | AF ENR<br>125-200/55  | AF ENR<br>125-200/55  | AF ENR<br>125 200/75  |                       |                       |                       |                   |
| 45        | AF ENR<br>100-200/37  | AF ENR<br>100-200/45   | AF ENR<br>125-200/75  | AF ENR<br>125-200/75  | AF ENR<br>125-200/75  | AF ENR<br>125-200/75  |                       |                       |                       |                   |
| 50        | AF ENR<br>100-200/45  | AF ENR<br>100-200/45   | AF ENI<br>100-250/75  | AF ENR<br>125-200/90  | AF ENR<br>125-200/90  | AF ENR<br>125-200/90  |                       |                       |                       |                   |
| 55        | AF ENR<br>100-200/45  | AF ENORM<br>100-250/55 | AF ENI<br>100-250/75  | AF ENI<br>125-250/90  | AF ENR<br>125-200/90  | AF ENI<br>125-250/90  |                       |                       |                       |                   |
| 60        | AF ENR<br>100-250/55  | AF ENR<br>100-250/55   | AF ENI<br>100-250/75  | AF ENI<br>125-250/90  | AF ENI<br>125-250/90  | AF ENI<br>125-250/90  |                       |                       |                       |                   |
| 65        | AF ENR<br>100-250/55  | AF ENR<br>100-250/75   | AF ENI<br>100-250/75  | AF ENI<br>125-250/90  | AF ENI<br>125-250/110 | AF ENR<br>125-250/90  | AF ENI<br>125-250/110 | AF ENI<br>125-250/110 | AF ENI<br>125-250/110 |                   |
| 70        | AF ENR<br>100-250/75  | AF ENR<br>100-250/75   | AF ENI<br>100-250/75  | AF ENI<br>100-250/90  | AF ENI<br>125-250/110 | AF ENI<br>125-250/110 | AF ENI<br>125-250/110 | AF ENI<br>125-250/110 | AF ENI<br>125-250/132 | AF EN<br>125-250/ |
| <b>75</b> | AF ENR<br>100-250/75  | AF ENR<br>100-250/75   | AF ENI<br>100-250/90  | AF ENI<br>100-250/90  | AF ENI<br>100-250/90  | AF ENI<br>125-250/110 | AF ENI<br>125-250/132 | AF ENI<br>125-250/132 | AF ENI<br>125-250/132 | AF EN<br>125-250/ |
| 80        | AF ENR<br>100-250/75  | AF ENR<br>100-250/75   | AF ENR<br>100-250/90  | AF ENI<br>100-250/90  | AF ENI<br>100-250/90  | AF ENI<br>125-250/132 | AF ENI<br>125-250/132 | AF ENI<br>125-250/132 | AF ENI<br>125-250/132 | AF EN<br>125-250/ |
| 85        | AF ENR<br>100-250/75  | AF ENR<br>100-250/90   | AF ENI<br>100-250/90  | AF ENI<br>100-250/90  | AF ENI<br>100-250/110 | AF ENI<br>125-250/132 | AF ENI<br>125-250/132 | AF ENI<br>125-250/160 | AF ENI<br>125-250/160 | AF EN<br>125-250/ |
| 90        | AF ENI<br>100-250/90  | AF ENI<br>100-250/90   | AF ENI<br>100-250/110 | AF ENI<br>100-250/110 | AF ENI<br>100-250/110 | AF ENI<br>125-250/160 | AF ENI<br>125-250/160 | AF ENI<br>125-250/160 | AF ENI<br>125-250/160 | AF EN<br>125-250/ |
| 95        | AF ENI<br>100-250/110 | AF ENI<br>100-250/110  | AF ENI<br>100-250/110 | AF ENI<br>100-250/110 |                       | AF ENI<br>125-250/160 | AF ENI<br>125-250/160 | AF ENI<br>125-250/160 |                       |                   |
| 100       | AF ENI<br>100-250/110 | AF ENI<br>100-250/110  |                       |                       |                       |                       |                       |                       |                       |                   |

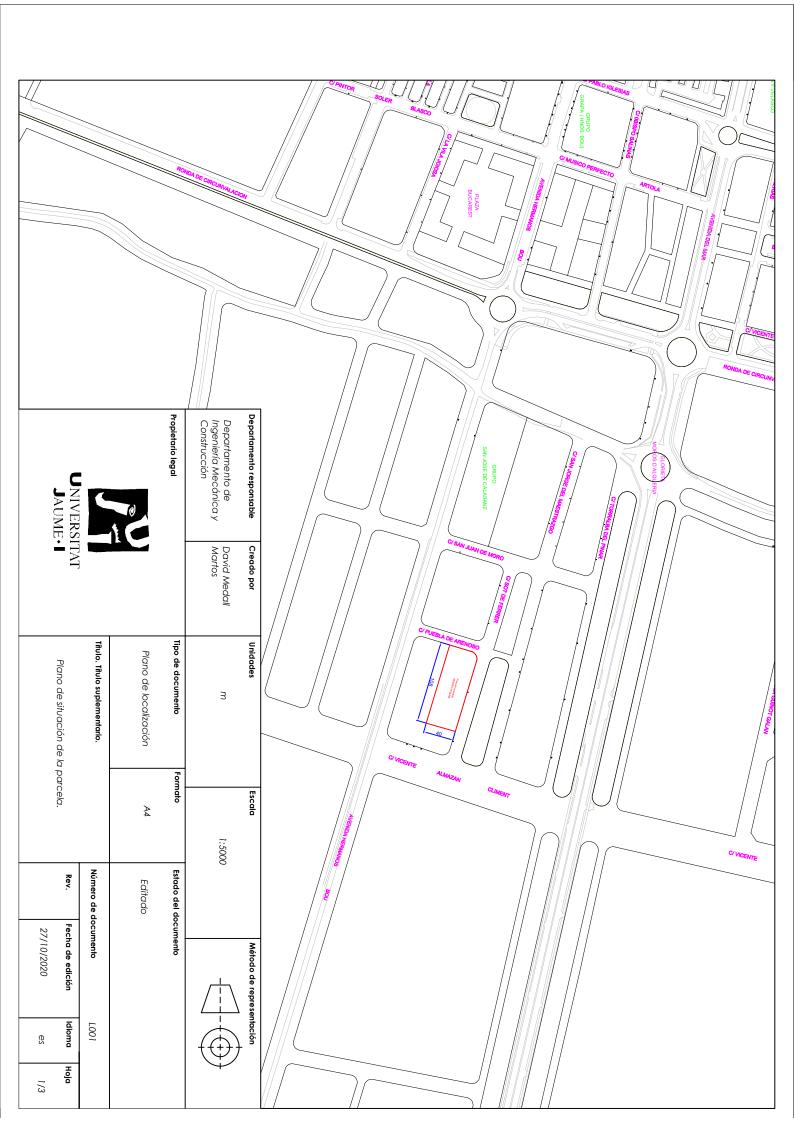


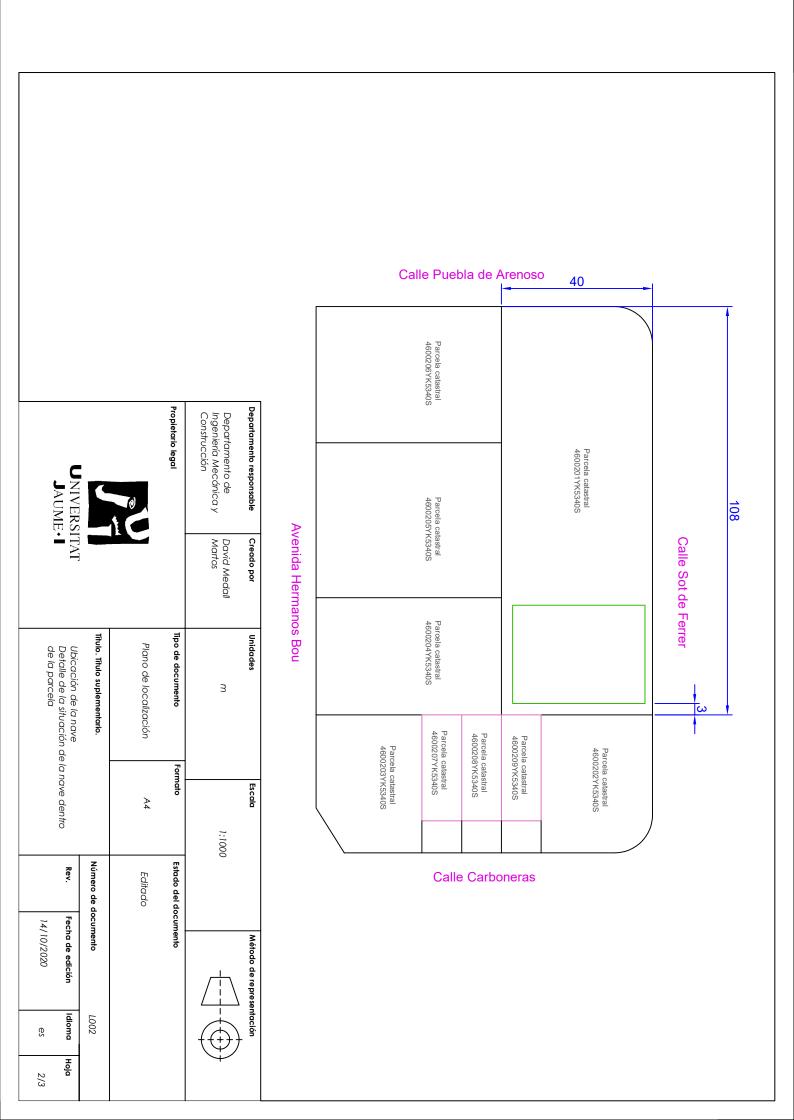


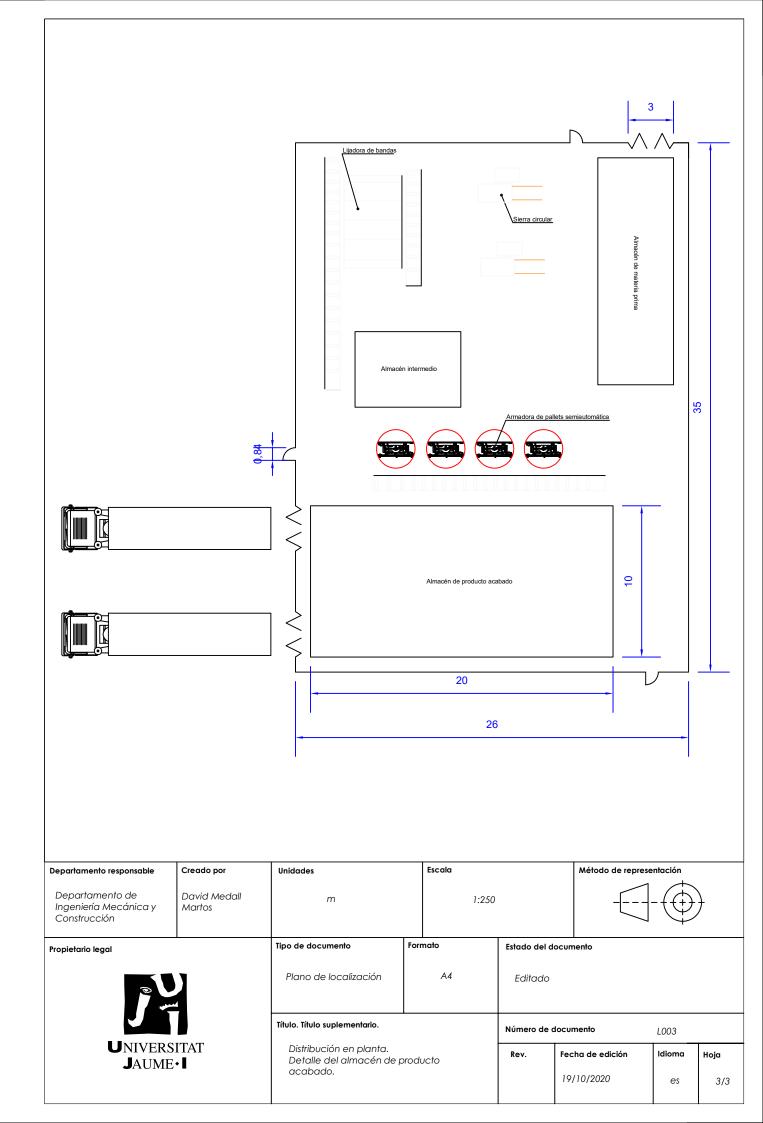


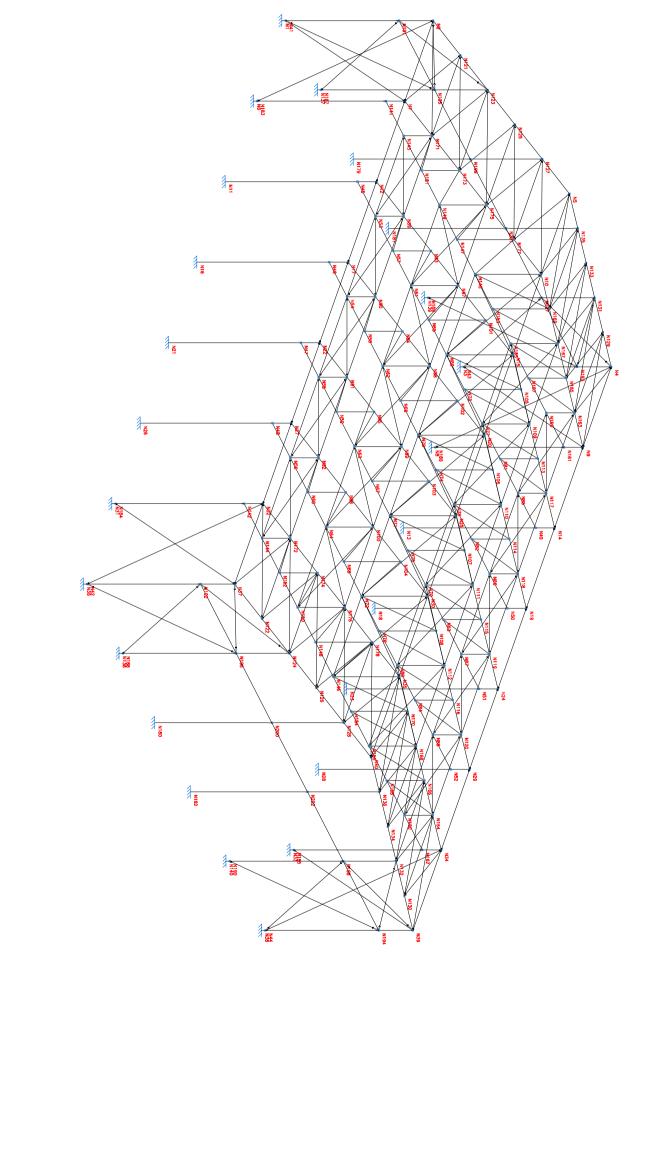
PLANOS Página 2/68

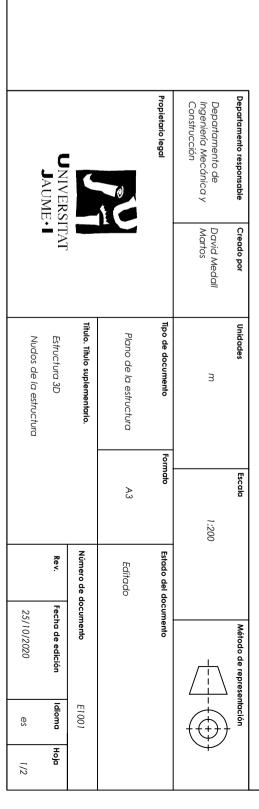


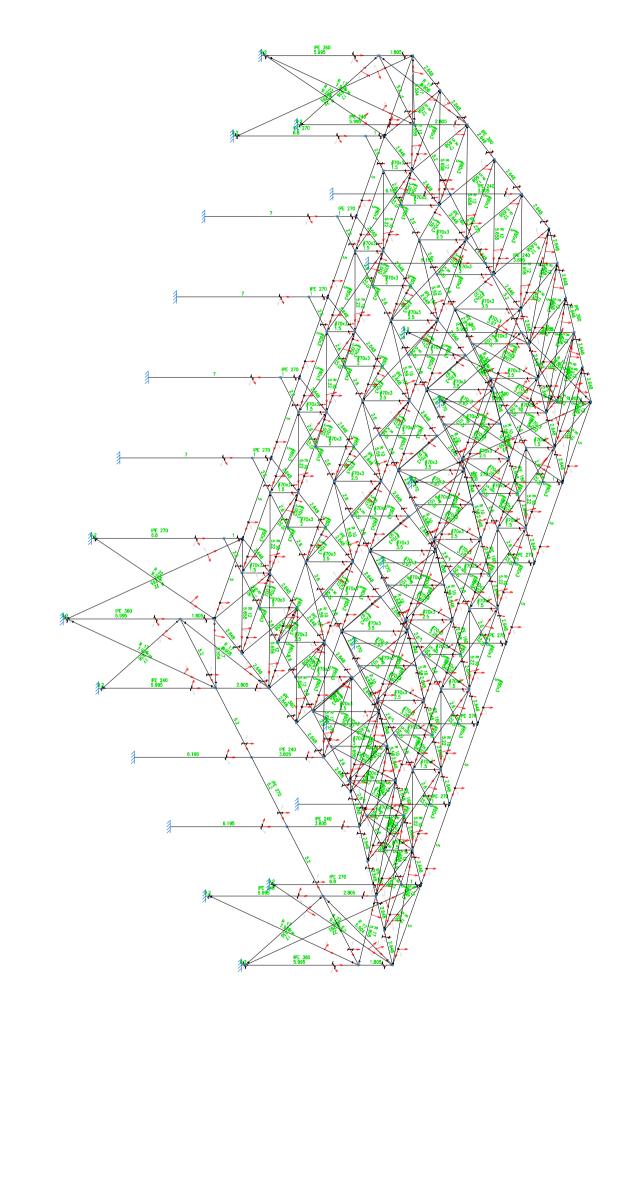

# Índice de planos

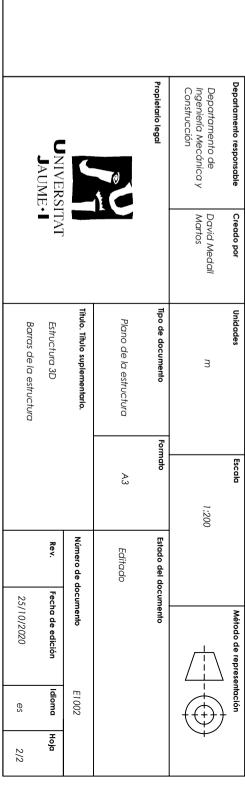

| Índice de planos | 3  |
|------------------|----|
| L001             | 5  |
| L002             | 7  |
| L003             | 9  |
| E1001            | 11 |
| E1002            | 13 |
| E1003            | 15 |
| E1004            | 17 |
| E1005            | 19 |
| E1006            | 21 |
| E1007            | 23 |
| E1008            | 25 |
| E1009            | 27 |
| E1010            | 29 |
| E1011            | 31 |
| E1012            | 33 |
| E1013            | 35 |
| E1014            | 37 |
| E2001            | 39 |
| E2002            | 41 |
| E2003            | 43 |
| E2004            | 45 |
| E2005            | 47 |
| E2006            | 49 |
| E2007            | 51 |
| E2008            | 53 |
| E2009            | 55 |
| E2010            | 57 |
| E2011            | 59 |
| E2012            | 61 |
| E2013            | 63 |
| E2014            | 65 |
| ROC01            | 67 |
|                  |    |

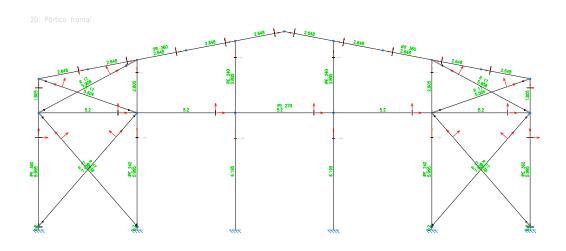

PLANOS Página 3/68

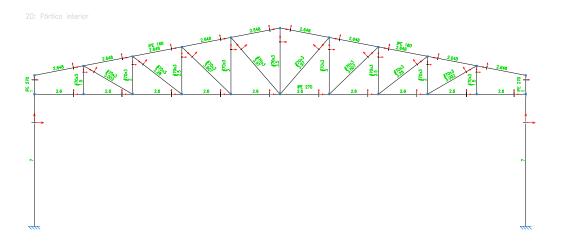




PLANOS Página 4/68

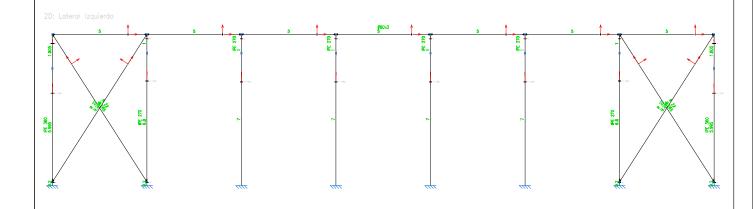


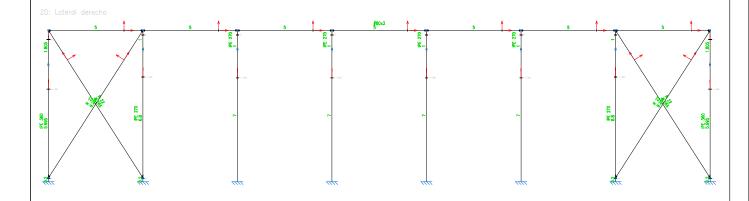







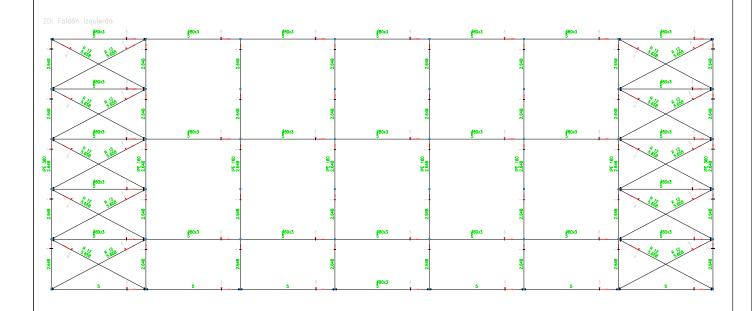


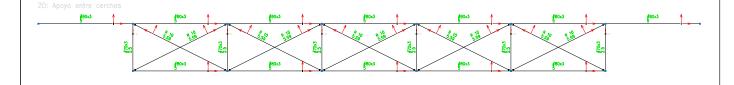

| Departamento responsable                                 | Creado por             | Unidades                      |        | Escala |              | Método de repres | entación |      |
|----------------------------------------------------------|------------------------|-------------------------------|--------|--------|--------------|------------------|----------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | m                             |        | 1:200  |              |                  |          | )    |
| Propietario legal                                        | <b>-</b>               | Tipo de documento             | Form   | nato   | Estado del d | ocumento         |          |      |
|                                                          |                        | Plano de la estructura        |        | A4     | Editado      |                  |          |      |
|                                                          |                        | Título. Título suplementario. |        |        | Número de o  | locumento        | E1003    |      |
| Univers<br><b>J</b> aume                                 |                        | Estructura 2D                 |        |        | Rev.         | Fecha de edición | Idioma   | Ноја |
| JAUWIL                                                   | ) * ■                  | Pórtico interior y pórtico c  | de fac | chada  |              | 25/10/2020       | es       | 1/3  |





| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | m                             |      | 1:200 |              |                  | -      | )    |   |
|----------------------------------------------------------|------------------------|-------------------------------|------|-------|--------------|------------------|--------|------|---|
| Propietario legal                                        |                        | Tipo de documento             | Form | ato   | Estado del d | ocumento         |        |      |   |
|                                                          |                        | Plano de la estructura        |      | A4    | Editado      |                  |        |      |   |
|                                                          |                        | Título. Título suplementario. |      |       | Número de o  | locumento        | E1004  |      |   |
| UNIVERSI<br><b>J</b> AUME                                |                        | Estructura 2D                 |      |       | Rev.         | Fecha de edición | Idioma | Ноја | Ī |
| JAUNIE                                                   | •                      | Laterales izquierdo y dere    | echo |       |              | 25/10/2020       | es     | 1/3  |   |


Creado por


Departamento responsable

Unidades

Escala

Método de representación





| _                                                        | •                      | Tine de decumente | Formato | Fatarda dal da acco |                          |
|----------------------------------------------------------|------------------------|-------------------|---------|---------------------|--------------------------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | m                 | 1:200   |                     |                          |
| Departamento responsable                                 | Creado por             | Unidades          | Escala  |                     | Método de representación |

| Construction       |                                           |         |                |                 | 4      |      |
|--------------------|-------------------------------------------|---------|----------------|-----------------|--------|------|
| Propietario legal  | Tipo de documento                         | Formato | Estado del doc | umento          |        |      |
|                    | Plano de la estructura                    | A4      | Editado        |                 |        |      |
|                    | Título. Título suplementario.             | ,       | Número de do   | cumento         | E1005  |      |
| Universi<br>Jaume• | Estructura 2D<br>Faldón izquierdo y apoyo | entre   | Rev. F         | echa de edición | Idioma | Ноја |
|                    | cercha                                    |         |                | 25/10/2020      | es     | 3/3  |

|   | N. Opportunity                          | 7                                                                                              | N137 (Tipe 3 |                                                                                                |
|---|-----------------------------------------|------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------|
|   | ## ## ## ## ## ## ## ## ## ## ## ## ##  | 0.1 4040                                                                                       | 3)           | 0.1 40-1                                                                                       |
|   | 2 2                                     | 220 x 220 x 85<br>Sup X: 116122/19<br>Sup Y: 11622/19<br>MM X: 116122/19<br>MM Y: 116122/19    | II.          | 250 x 250 x 60<br>Sup X: 12912c/20<br>Sup Y: 12912c/20<br>inf X: 12912c/20<br>inf X: 12912c/20 |
|   | N6 (Tipo                                | 3233                                                                                           |              | 88,88                                                                                          |
|   | 2)                                      |                                                                                                |              |                                                                                                |
|   | M % 10#20/2<br>M % 5#20x/29             | 145 x 285 x 120<br>Sup 1: 10420/229<br>Sup 1: 5420/229                                         |              |                                                                                                |
|   | 25 N11 (Tipo                            | <b>3</b> 33                                                                                    |              |                                                                                                |
|   | Tipo 2)                                 |                                                                                                |              |                                                                                                |
| l | H % 10420c                              | 145 x 285 x 120<br>Sup %: 10x20x/220<br>Sup %: 5xxx/29                                         |              |                                                                                                |
|   |                                         | /×/28<br>/×/28                                                                                 |              |                                                                                                |
|   | N16 (Tipo 2)                            |                                                                                                |              |                                                                                                |
| ł | E E                                     | 143 x 255 x 120<br>Sup 7: 54050c/29<br>Sup 7: 54050c/29                                        |              |                                                                                                |
|   |                                         | * 120<br>* 120<br>* 120<br>* 0c/29                                                             |              |                                                                                                |
|   | N21 (Tipo 2)                            |                                                                                                |              |                                                                                                |
|   | 10年 | Sep 145 x 2                                                                                    |              |                                                                                                |
|   | 0#20c/29<br>#20c/29                     | 145 x 255 x 120<br>Sup %: 194206/29<br>Sup %: 54206/29                                         |              |                                                                                                |
| ı | N26 (Tipo 2)                            |                                                                                                |              |                                                                                                |
|   | -                                       | 88.2<br>2                                                                                      |              |                                                                                                |
|   | 10#20c/29<br>5#20c/29                   | 145 x 285 x 120<br>Sup it: 10x20c/29<br>Sup it: 5x0x0c/29                                      |              |                                                                                                |
|   | N31 (Tipo 2)                            |                                                                                                |              |                                                                                                |
|   | -                                       | r.<br>E. E. E                                                 |              |                                                                                                |
|   | Y: 5920c/29<br>Y: 5920c/29              | 145 x 285 x 120<br>Sup 7x 1982C/229<br>Sup 7x 1982C/229                                        |              |                                                                                                |
|   | N36                                     | _                                                                                              | N138 (Tipe   | 7                                                                                              |
|   | (Tipo 1)                                | C.1 40×40                                                                                      | <b>3</b> )   | 0.1 40-1                                                                                       |
|   |                                         | 220 × 220 × 85<br>Sup 1: 116126/19<br>Sup 1: 116126/19<br>Int 1: 116126/19<br>Int 1: 116126/19 |              | 250 x 250 x 60<br>Sup X: 12s12c/20<br>Sup Y: 12s12c/20<br>inf X: 12s12c/20<br>inf Y: 12s12c/20 |
|   |                                         | 22/19<br>22/19<br>21/19                                                                        |              | x 60<br>\$12c/20<br>\$12c/20<br>2c/20<br>2c/20                                                 |
|   |                                         |                                                                                                |              |                                                                                                |
|   |                                         |                                                                                                |              |                                                                                                |

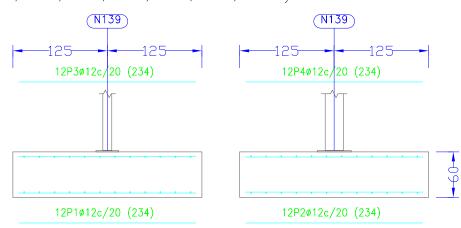
| CAUGHO DE ELBANTOS DE CHARITACIÓN | Famelo esta, x | Amodo e

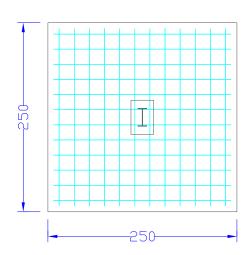
| N (1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N137 (1940)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N173 (Top. 3)                           | N N N N N N N N N N N N N N N N N N N  | N1 99 (70p) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS (100 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - | E E E S S S S S S S S S S S S S S S S S | ### ################################## | E E E ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16. 28. 18. 28. 18. 29. 18. 20. 29. 18. 20. 29. 18. 20. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. 28. 100<br>20. 1000/20<br>20. 1000/20<br>20. 1000/20<br>21. 2000/20<br>21. 2000/20<br>21. 2000/20<br>21. 2000/20<br>21. 2000/20<br>21. 2000/20<br>21. 2000/20<br>22. 2000/20<br>23. 2000/20<br>24. 2000/20<br>25. 2000/20<br>26. 2                                                                                                                                                                                                     |
| 16 1 18 18 18 18 18 18 18 18 18 18 18 18 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 - 38 - 18<br>57 - 185 - 18<br>58 - 185 - 185 - 185<br>58                                                                                                                         |
| 1.0 - 255 - 1.03<br>2.0 - 7 - 1900 / 25<br>10 - 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14. 28. 19<br>15. 19<br>15. 19<br>17. 19<br>17. 19<br>17. 19<br>18. 19<br>18 |
| 18 35 18 18 35 18 35 18 35 18 35 18 35 18 35 18 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 - 25 - 10<br>Sept. 12 - 10<br>17 - 12 - 10<br>17 - 12 - 10<br>18                                                                                                           |
| 10 C 20 1 20 1 20 1 20 1 20 1 20 1 20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.55 (Top 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 mms                                  | W102 (Top 5)                           | 11 the state of th | ### 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Codin de Promo de Accigi Dimendio de Placos de Accigi NISA, NI

CUADRO DE VIGAS DE ATADO

C.1

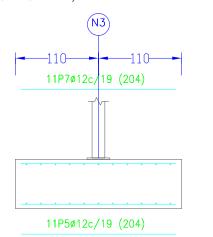

Arm. sup.: 2912

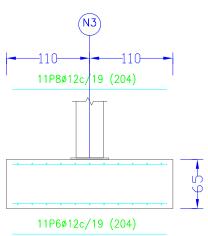

Arm. inf.: 2912

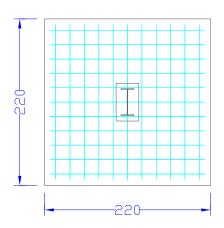
Estribos: 1x80c/30

|            | UNIVERSITAT<br>Jaume-I                                  |                               | To a C                 | Propietario legal    | Departamento de<br>Ingeniería Mecánica y<br>Construcción | Departamento responsable |
|------------|---------------------------------------------------------|-------------------------------|------------------------|----------------------|----------------------------------------------------------|--------------------------|
|            | TAT                                                     |                               |                        | •                    | David Medall<br>Martos                                   | Creado por               |
| (          | Planos cimentación.<br>Plano general de la cimentación. | Título. Título suplementario. | Plano de la estructura | Tipo de documento    | ст                                                       | Unidades                 |
| ntación.   |                                                         |                               | A3                     | Formato              | 1:200                                                    | Escala                   |
|            | Rev.                                                    | Número de documento           | Editado                | Estado del documento | 3                                                        |                          |
| 25/10/2020 | Fecha de edición                                        | ocumento                      |                        | cumento              |                                                          | Método de representación |
| es         | Idioma                                                  | E1006                         |                        |                      |                                                          | entación                 |
| 1/9        | Ноја                                                    |                               |                        |                      | $\downarrow$                                             |                          |

N139, N181, N179, N137, N138, N180, N182 y N140



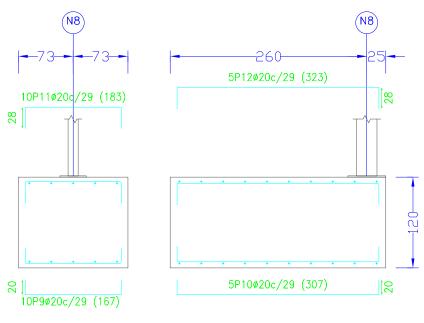



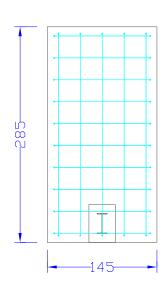


| Elemento                                   | Pos.                | Diám.                    | No.                  |                          | Total<br>(cm)                | B 500 S, Ys=1.15<br>(kg)     |
|--------------------------------------------|---------------------|--------------------------|----------------------|--------------------------|------------------------------|------------------------------|
| N139=N181=N179=N137=N138<br>N180=N182=N140 | 1<br>2<br>3<br>4    | Ø12<br>Ø12<br>Ø12<br>Ø12 | 12<br>12<br>12<br>12 | 234<br>234<br>234<br>234 | 2808<br>2808<br>2808<br>2808 | 24.9<br>24.9<br>24.9<br>24.9 |
|                                            | Total+10%:<br>(x8): |                          |                      |                          |                              | 109.6<br>876.8               |

| Departamento responsable                                 | Creado por             | Unidades                                    | Unidades Escala               |      | Método de repres |                  | entación     |              |
|----------------------------------------------------------|------------------------|---------------------------------------------|-------------------------------|------|------------------|------------------|--------------|--------------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | cm                                          |                               | 1:50 |                  |                  |              | <del>)</del> |
| Propietario legal                                        |                        | Tipo de documento                           | Forr                          | nato | Estado del d     | ocumento         |              |              |
|                                                          |                        | Plano de la estructura                      | Plano de la estructura A4     |      | Editado          |                  |              |              |
|                                                          |                        | Título. Título suplementario.               | Título. Título suplementario. |      | Número de doc    |                  | umento E1007 |              |
| UNIVERS<br><b>J</b> AUME                                 |                        | Planos cimentación.<br>Detalle de zapatas 1 |                               |      | Rev.             | Fecha de edición | Idioma       | Ноја         |
|                                                          | -                      |                                             |                               |      |                  | 25/10/2020       | es           | 2/9          |

N3, N1, N36 y N38



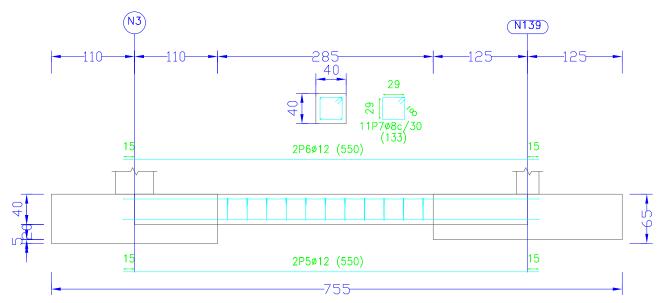



| Elemento      | Pos. | Diám. | No. |     | Total<br>(cm) | B 500 S, Ys=1.15 (kg) |
|---------------|------|-------|-----|-----|---------------|-----------------------|
| N3=N1=N36=N38 | 5    | ø12   | 11  | 204 | 2244          | 19.9                  |
|               | 6    | ø12   | 11  | 204 | 2244          | 19.9                  |
|               | 7    | ø12   | 11  | 204 | 2244          | 19.9                  |
|               | 8    | ø12   | 11  | 204 | 2244          | 19.9                  |
| To            |      |       |     |     |               | 87.6                  |
|               |      |       |     |     | (x4):         | 350.4                 |

| Departamento responsable                                 | Creado por             | Unidades                                    |                               | Escala                  |         | Método de represe | Método de representación |      |
|----------------------------------------------------------|------------------------|---------------------------------------------|-------------------------------|-------------------------|---------|-------------------|--------------------------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | cm                                          |                               | 1:50                    |         |                   |                          |      |
| Propietario legal                                        |                        | Tipo de documento                           | Forn                          | rmato Estado del docume |         | ocumento          |                          |      |
|                                                          |                        | Plano de la estructura                      | Plano de la estructura A4     |                         | Editado |                   |                          |      |
|                                                          |                        |                                             | Título. Título suplementario. |                         |         | ocumento          | E1008                    |      |
| UNIVERS<br>JAUME                                         |                        | Planos cimentación.<br>Detalle de zapatas 2 |                               |                         | Rev.    | Fecha de edición  | Idioma                   | Ноја |
|                                                          | -                      |                                             |                               |                         |         | 25/10/2020        | es                       | 3/9  |
|                                                          |                        |                                             |                               |                         | 1 1     |                   |                          |      |

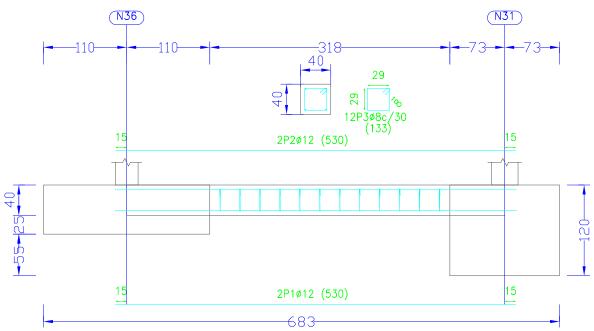
N6, N11, N16, N21, N26, N31 N8, N13, N18, N23, N28 y N33





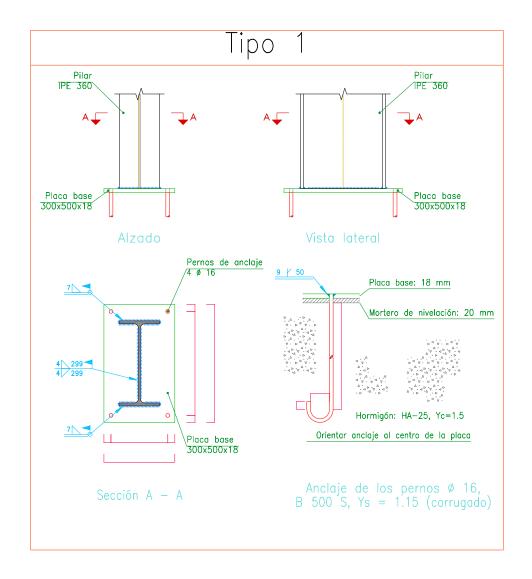

| Elemento               | Pos. | Diám. | No. | Long.<br>(cm) | Total<br>(cm) | B 500 S, Ys=1.15<br>(kg) |
|------------------------|------|-------|-----|---------------|---------------|--------------------------|
| N8=N13=N18=N23=N28=N33 | 9    | ø20   | 10  | 167           | 1670          | 41.2                     |
|                        | 10   | ø20   | 5   | 307           | 1535          | 37.9                     |
|                        | 11   | ø20   | 10  | 183           | 1830          | 45.1                     |
|                        | 12   | ø20   | 5   | 323           | 1615          | 39.8                     |
|                        |      | •     |     | 180.4         |               |                          |
|                        |      |       |     |               | (x12):        | 2164.8                   |

| Departamento responsable                                 | Creado por             | Unidades                                    |                               | Escala                  |             | Método de represe | Método de representación |      |   |
|----------------------------------------------------------|------------------------|---------------------------------------------|-------------------------------|-------------------------|-------------|-------------------|--------------------------|------|---|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | cm                                          |                               | 1:50                    |             |                   |                          |      |   |
| Propietario legal                                        |                        | Tipo de documento                           | Forn                          | mato Estado del documer |             | ocumento          |                          |      |   |
|                                                          |                        | Plano de la estructura                      | Plano de la estructura A4     |                         | Editado     |                   |                          |      |   |
|                                                          |                        | Título. Título suplementario.               | Título. Título suplementario. |                         | Número de d | ocumento          | E1009                    |      |   |
| UNIVERS<br>JAUME                                         |                        | Planos cimentación.<br>Detalle de zapatas 3 |                               |                         | Rev.        | Fecha de edición  | Idioma                   | Ноја |   |
|                                                          | -                      |                                             |                               |                         |             | 25/10/2020        | es                       | 4/9  |   |
|                                                          |                        | 1                                           |                               |                         |             |                   | 1                        | ĺ    | 1 |

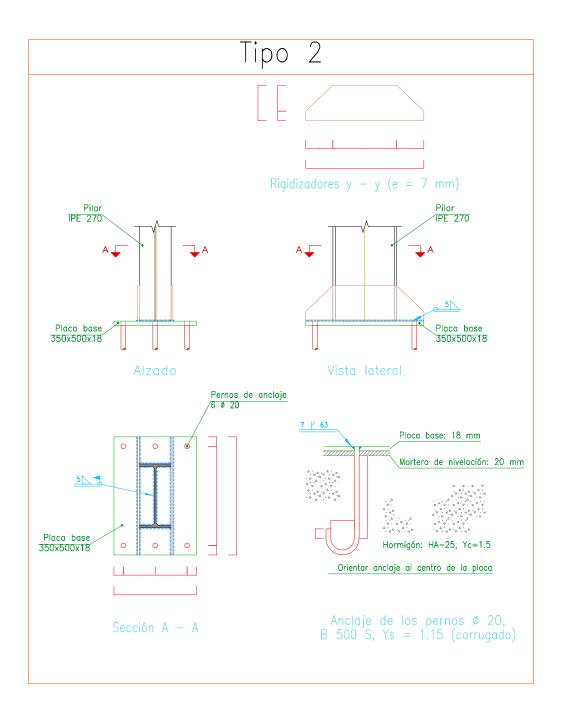

C [N3-N139], C [N139-N181], C [N181-N179], C [N179-N137], C [N137-N1], C [N38-N140], C [N140-N182], C [N182-N180], C [N180-N138] y C [N138-N36]



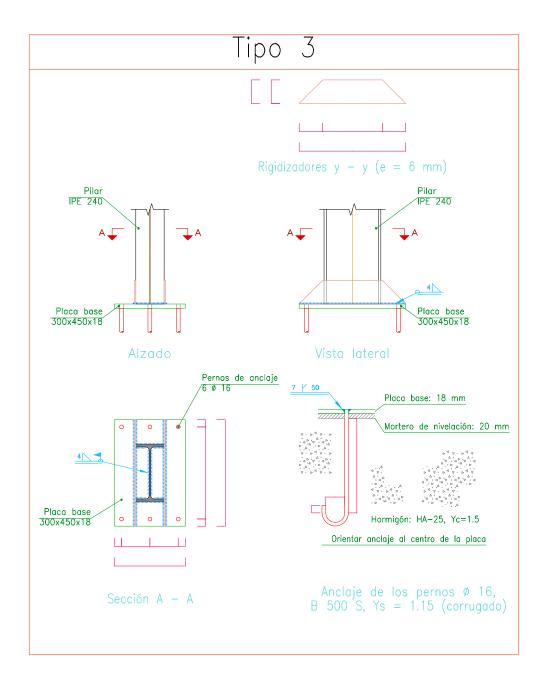
| Elemento                                                                             | Pos.        | Diám.            | No.          | Long.<br>(cm)     | Total<br>(cm)        | B 500 S, Ys=1.15<br>(kg) |
|--------------------------------------------------------------------------------------|-------------|------------------|--------------|-------------------|----------------------|--------------------------|
| C [N3-N139]=C [N139-N181]<br>C [N181-N179]=C [N179-N137]<br>C [N137-N1]=C [N38-N140] | 5<br>6<br>7 | ø12<br>ø12<br>ø8 | 2<br>2<br>11 | 550<br>550<br>133 | 1100<br>1100<br>1463 | 9.8<br>9.8<br>5.8        |
| C [N140-N182]=C [N182-N180]<br>C [N180-N138]=C [N138-N36]                            |             |                  |              | 27.9<br>279.0     |                      |                          |


| Departamento responsable                                 | Creado por             | Unidades                                        |                           | Unidades Escala |                      | Método de repre | Método de representación |     |
|----------------------------------------------------------|------------------------|-------------------------------------------------|---------------------------|-----------------|----------------------|-----------------|--------------------------|-----|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | ст                                              |                           | 1:50            |                      |                 |                          |     |
| Propietario legal                                        |                        | Tipo de documento                               | Forn                      | nato            | Estado del documento |                 |                          |     |
|                                                          |                        | Plano de la estructura                          | Plano de la estructura A4 |                 | Editado              |                 |                          |     |
|                                                          |                        | Título. Título suplementario.                   | •                         |                 | Número de o          | ocumento        | E1010                    |     |
| <b>U</b> NIVERS<br><b>J</b> AUME                         |                        | Planos cimentación.<br>Detalle de vigas de atad |                           | Rev.            | Fecha de edición     | Idioma          | Hoja                     |     |
|                                                          |                        |                                                 |                           |                 |                      | 25/10/2020      | es                       | 5/9 |

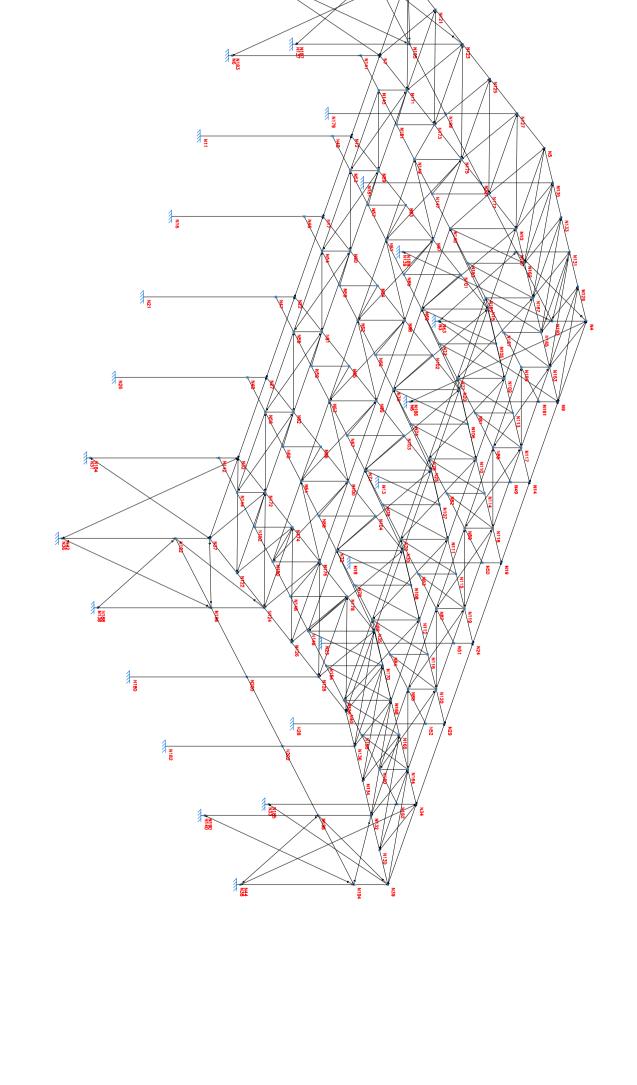
C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33] y C [N33-N38]

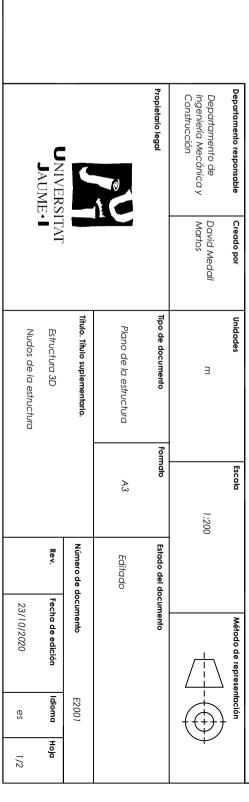


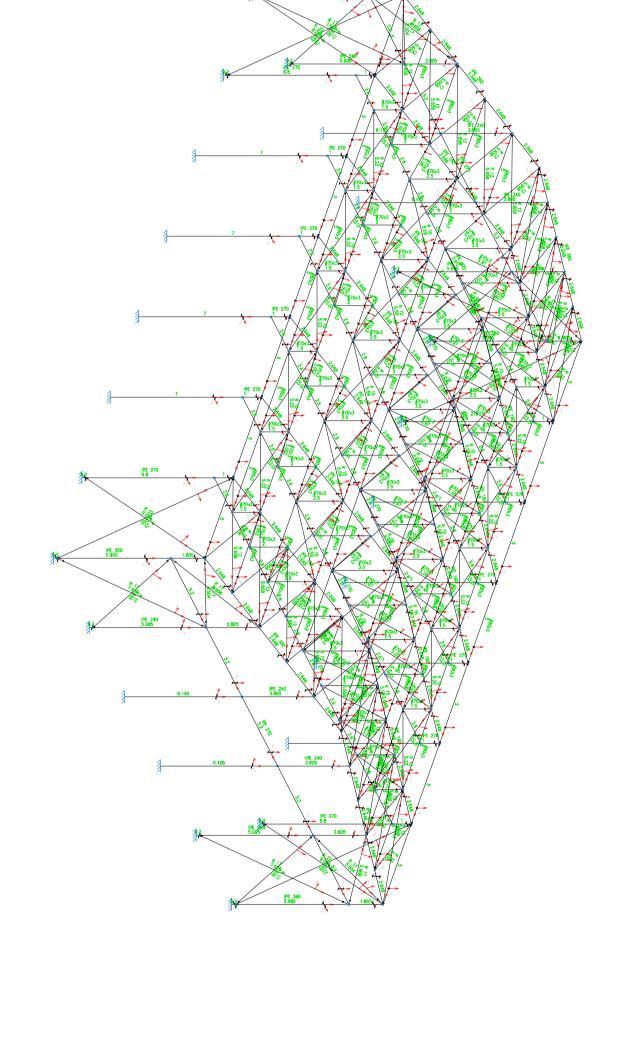

| Elemento                                                                                                                      | Pos.        | Diám.            | No.          | Long.<br>(cm)     | Total<br>(cm)        | B 500 S, Ys=1.15<br>(kg) |
|-------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|--------------|-------------------|----------------------|--------------------------|
| C [N36-N31]=C [N31-N26]<br>C [N26-N21]=C [N21-N16]<br>C [N16-N11]=C [N11-N6]<br>C [N6-N1]=C [N3-N8]<br>C [N8-N13]=C [N13-N18] | 1<br>2<br>3 | ø12<br>ø12<br>ø8 | 2<br>2<br>12 | 530<br>530<br>133 | 1060<br>1060<br>1596 | 9.4<br>9.4<br>6.3        |
| C [N18-N23]=C [N23-N28]<br>C [N28-N33]=C [N33-N38]                                                                            |             |                  |              | Tot               | al+10%;<br>(x14);    | 27.6<br>386.4            |

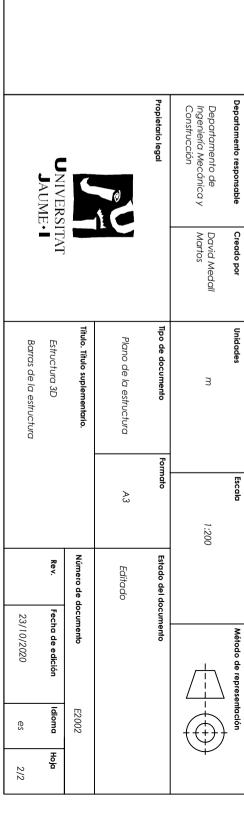

| Departamento responsable                                         | Creado por             | Unidades                                        |                                                    | Escala |             | Método de repres | entación |      |
|------------------------------------------------------------------|------------------------|-------------------------------------------------|----------------------------------------------------|--------|-------------|------------------|----------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción         | David Medall<br>Martos | cm                                              |                                                    | 1:50   |             |                  | )        |      |
| Propietario legal Tipo de documento Formato Estado del documento |                        |                                                 |                                                    |        |             |                  |          |      |
|                                                                  |                        | Plano de la estructura                          | Plano de la estructura A4                          |        | Editado     |                  |          |      |
|                                                                  |                        | Título. Título suplementario.                   |                                                    |        | Número de d | locumento        | E1011    |      |
| UNIVERSITAT<br>JAUME•1                                           |                        | Planos cimentación.<br>Detalle de vigas de atad | Planos cimentación.<br>Detalle de vigas de atado 2 |        | Rev.        | Fecha de edición | Idioma   | Hoja |
| <b>O</b> ATOME                                                   | · <b>-</b>             |                                                 |                                                    |        |             | 25/10/2020       | es       | 6/9  |

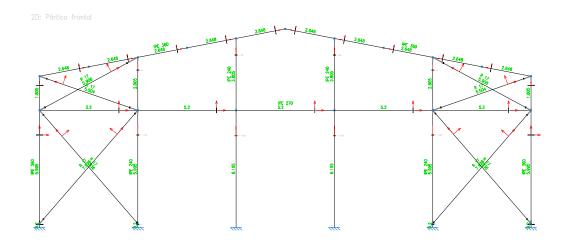


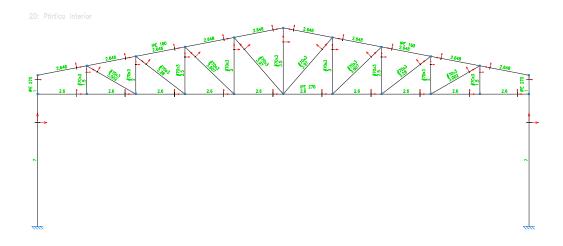

| Departamento responsable                                 | Creado por             | Unidades                                              | Escala |                     |                  | Método de represe | entación |     |
|----------------------------------------------------------|------------------------|-------------------------------------------------------|--------|---------------------|------------------|-------------------|----------|-----|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | mm                                                    |        | 1:16                |                  |                   | ato      |     |
| Propietario legal                                        |                        | Tipo de documento                                     | Forn   | ormato Estado del o |                  | ocumento          |          |     |
|                                                          |                        |                                                       | A4     |                     | Editado          |                   |          |     |
|                                                          |                        | Título. Título suplementario.                         |        |                     | Número de o      | ocumento          | E1012    |     |
| UNIVERSITAT<br>Jaume•1                                   |                        | Planos cimentación.<br>Detalle de placas de anclaje 1 |        | Rev.                | Fecha de edición | Idioma            | Ноја     |     |
|                                                          |                        |                                                       |        |                     |                  | 25/10/2020        | es       | 7/9 |



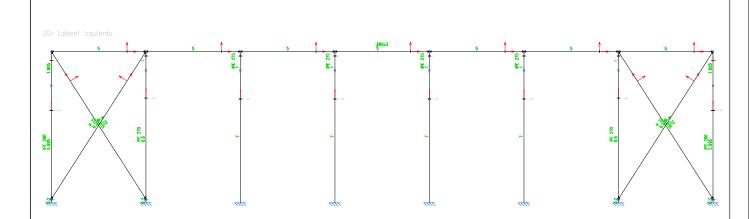


| Departamento responsable                                 | Creado por             | Unidades                                              |      | Escala              |                  | Método de repres | entación |     |
|----------------------------------------------------------|------------------------|-------------------------------------------------------|------|---------------------|------------------|------------------|----------|-----|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | mm                                                    |      | 1:16                |                  |                  |          |     |
| Propietario legal                                        |                        | Tipo de documento                                     | Forn | ormato Estado del d |                  | cumento          |          |     |
|                                                          |                        | Plano de la estructura                                | A4   |                     | Editado          |                  |          |     |
|                                                          |                        | Título. Título suplementario.                         | •    |                     | Número de d      | ocumento         | E1013    |     |
| Universitat<br>Jaume•I                                   |                        | Planos cimentación.<br>Detalle de placas de anclaje 2 |      | Rev.                | Fecha de edición | Idioma           | Ноја     |     |
|                                                          |                        |                                                       |      |                     |                  | 25/10/2020       | es       | 8/9 |

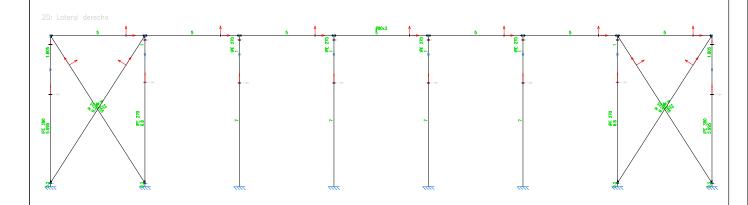




| Departamento responsable                                                         | Creado por | Unidades                                              |      | Escala |                  | Método de repres | entación |     |
|----------------------------------------------------------------------------------|------------|-------------------------------------------------------|------|--------|------------------|------------------|----------|-----|
| Departamento de Ingeniería Mecánica y Construcción  David Medall mm 1:16  Martos |            |                                                       |      | )      |                  |                  |          |     |
| Propietario legal                                                                |            | Tipo de documento                                     | Forn | nato   | Estado del d     | ocumento         | nto      |     |
|                                                                                  | r <u>u</u> |                                                       | A4   |        | Editado          |                  |          |     |
|                                                                                  |            | Título. Título suplementario.                         |      |        | Número de o      | locumento        | E1014    |     |
| Universitat<br>Jaume•1                                                           |            | Planos cimentación.<br>Detalle de placas de anclaje 3 |      | Rev.   | Fecha de edición | Idioma           | Ноја     |     |
|                                                                                  |            |                                                       |      |        |                  | 25/10/2020       | es       | 9/9 |







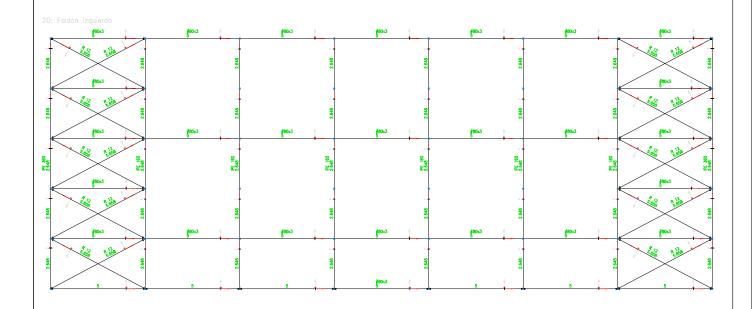


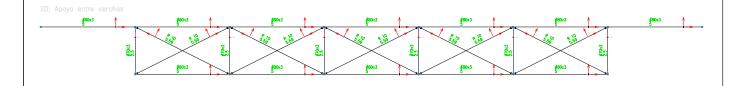

| Departamento responsable                                 | Creado por             | Unidades                              | 1                      | Escala |              | Método de repre  | sentación |      |
|----------------------------------------------------------|------------------------|---------------------------------------|------------------------|--------|--------------|------------------|-----------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | m                                     |                        | 1:200  |              |                  | nto       |      |
| Propietario legal                                        | 1                      | Tipo de documento                     | Forme                  | ato    | Estado del d | ocumento         |           |      |
|                                                          |                        | Plano de la estructura                | no de la estructura A4 |        | Editado      |                  |           |      |
|                                                          |                        | Título. Título suplementario.         |                        |        | Número de o  | locumento        | E2003     |      |
| UNIVERSITAT<br>Jaume•1                                   |                        | Estructura 2D                         | Estructura 2D          |        | Rev.         | Fecha de edición | Idioma    | Hoja |
| JAUNE                                                    | , · •                  | Pórtico interior y pórtico de fachada |                        |        | 23/10/2020   | es               | 1/3       |      |





| Departamento de<br>Ingeniería Mecánica y<br>Construcción | m                             | 1:20    | 0                            |                           |                  | 52004 |   |  |  |
|----------------------------------------------------------|-------------------------------|---------|------------------------------|---------------------------|------------------|-------|---|--|--|
| Propietario legal                                        | Tipo de documento             | Formato | Estado del d                 | ocumento                  | ento             |       |   |  |  |
|                                                          | Plano de la estructura        | A4      | Editado                      |                           |                  |       |   |  |  |
|                                                          | Título. Título suplementario. |         | Número de o                  | Número de documento E2004 |                  |       |   |  |  |
| UNIVERSITAT<br>Jaume•1                                   | Estructura 2D                 |         | Rev. Fecha de edición Idioma |                           |                  | Ноја  | Ī |  |  |
| JAUNIE                                                   | Laterales izquierdo y der     | recho   |                              | 23/10/2020                | 8/10/2020 es 1/3 |       |   |  |  |


Creado por


Departamento responsable

Unidades

Escala

Método de representación





| Departamento responsable                                 | Creado por             | Unidades                      | Escala  |                  | Método de representación |  |  |
|----------------------------------------------------------|------------------------|-------------------------------|---------|------------------|--------------------------|--|--|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | m                             | 1:200   |                  |                          |  |  |
| Propietario legal                                        |                        | Tipo de documento             | Formato | Estado del docum | nento                    |  |  |
|                                                          |                        | Plano de la estructura        | A4      | Editado          |                          |  |  |
|                                                          |                        | Título. Título suplementario. |         | Número de docu   | mento E2005              |  |  |

Estructura 2D

cercha

Faldón izquierdo y apoyo entre

UNIVERSITAT

**J**AUME•

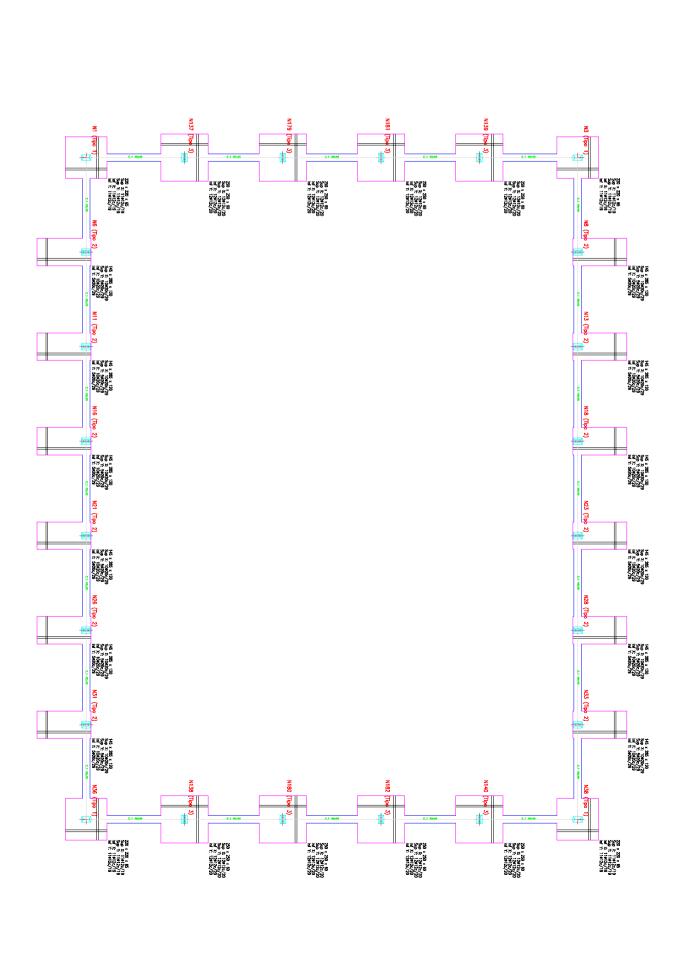
Número de documento

Fecha de edición

23/10/2020

Rev.

E2005


Idioma

es

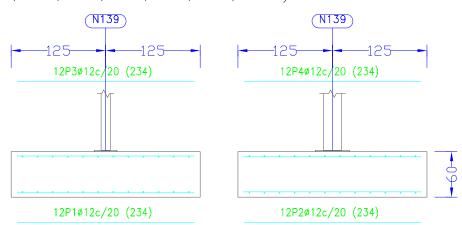
Hoja

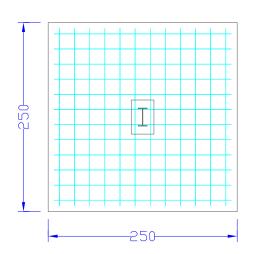
3/3





| Code de Presse de Accioje | Comencia de Accione | Comencia de Accione de

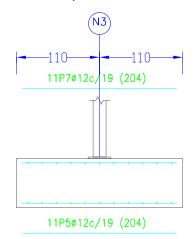

B 500 S, Ys=1.15

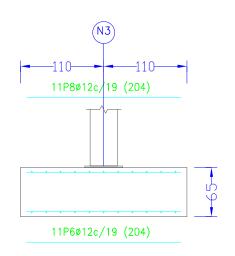

98 369.7912 1774.4920 798.0

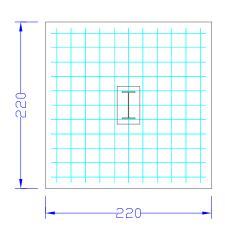
160 1733 2165 Resumen Acero Long, talal Pesa+10% Long talal Pesa+10% Total

| JAUME•1                                                 | NIVERS                        | i C                    | Propietario legal    | Departamento de<br>Ingeniería Mecánica y<br>Construcción | Departamento responsable |
|---------------------------------------------------------|-------------------------------|------------------------|----------------------|----------------------------------------------------------|--------------------------|
| ·                                                       |                               |                        |                      | David Medall<br>Martos                                   | Creado por               |
| Planos cimentación.<br>Plano general de la cimentación. | Título. Título suplementario. | Plano de la estructura | Tipo de documento    | ст                                                       | Unidades                 |
| ntación.                                                |                               | A3                     | Formato              | 1:200                                                    | Escala                   |
| Rev.                                                    | Número de documento           | Editado                | Estado del documento |                                                          |                          |
| Fecha de edición<br>23/10/2020                          | cumento                       |                        | umento               |                                                          | Método de representación |
| Idioma<br>es                                            | E2006                         |                        |                      |                                                          | ≱ntación<br>'            |
| <b>Ноја</b><br>1/9                                      |                               |                        |                      | <b>—</b>                                                 |                          |

N139, N181, N179, N137, N138, N180, N182 y N140



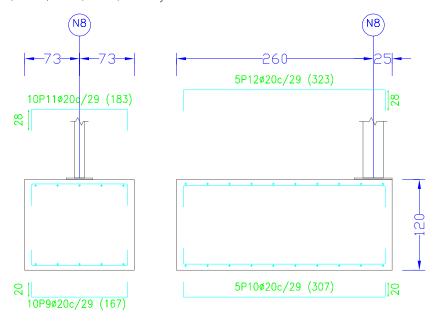



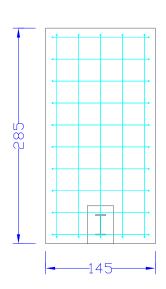


| Elemento                                   | Pos.             | Diám.                    | No.                  | Long.<br>(cm)            | Total E                      | 3 500 S, Ys=1.15<br>(kg)     |
|--------------------------------------------|------------------|--------------------------|----------------------|--------------------------|------------------------------|------------------------------|
| N139=N181=N179=N137=N138<br>N180=N182=N140 | 1<br>2<br>3<br>4 | Ø12<br>Ø12<br>Ø12<br>Ø12 | 12<br>12<br>12<br>12 | 234<br>234<br>234<br>234 | 2808<br>2808<br>2808<br>2808 | 24.9<br>24.9<br>24.9<br>24.9 |
|                                            |                  |                          |                      | al+10%:<br>(x8):         | 109.6<br>876.8               |                              |

| Departamento responsable                                 | amento responsable Creado por Unidades |                                             |      | Escala Método de representación |                              |            |       |     |  |  |
|----------------------------------------------------------|----------------------------------------|---------------------------------------------|------|---------------------------------|------------------------------|------------|-------|-----|--|--|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos                 | cm 1:50                                     |      |                                 |                              |            |       |     |  |  |
| Propietario legal  UNIVERSITAT  JAUME  •                 |                                        | Tipo de documento                           | Form | nato                            | Estado del de                | ocumento   | ento  |     |  |  |
|                                                          |                                        | Plano de la estructura                      |      | A4                              | Editado                      |            |       |     |  |  |
|                                                          |                                        | Título. Título suplementario.               |      |                                 | Número de d                  | ocumento   | E2007 |     |  |  |
|                                                          |                                        | Planos cimentación.<br>Detalle de zapatas 1 |      |                                 | Rev. Fecha de edición Idioma |            | Ноја  |     |  |  |
|                                                          | -                                      |                                             |      |                                 |                              | 23/10/2020 | es    | 2/9 |  |  |

N3, N1, N36 y N38



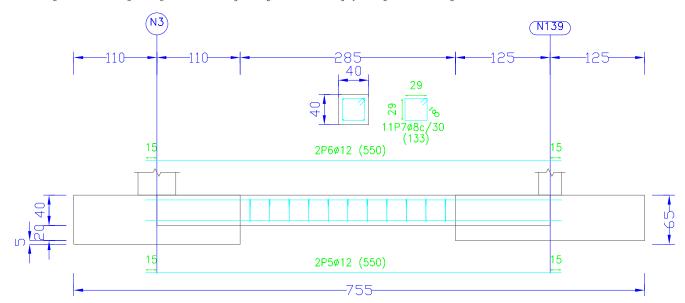



| Elemento      | Pos.                | Diám.                    | No.                  | Long.<br>(cm)            | Total<br>(cm)                | B 500 S, Ys=1.15<br>(kg)     |
|---------------|---------------------|--------------------------|----------------------|--------------------------|------------------------------|------------------------------|
| N3=N1=N36=N38 | 5<br>6<br>7<br>8    | Ø12<br>Ø12<br>Ø12<br>Ø12 | 11<br>11<br>11<br>11 | 204<br>204<br>204<br>204 | 2244<br>2244<br>2244<br>2244 | 19.9<br>19.9<br>19.9<br>19.9 |
|               | Total+10%:<br>(x4): |                          |                      | 87.6<br>350.4            |                              |                              |

|  | Departamento responsable                                 | Creado por             | Unidades                                    |                    | Escala |                  | Método de represe | Método de representación |     |  |
|--|----------------------------------------------------------|------------------------|---------------------------------------------|--------------------|--------|------------------|-------------------|--------------------------|-----|--|
|  | Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | ст                                          |                    | 1:50   |                  |                   |                          | )   |  |
|  | Propietario legal  UNIVERSITAT  JAUME•                   |                        | Tipo de documento                           | Forn               | nato   | Estado del do    | ocumento          | ento                     |     |  |
|  |                                                          |                        | Plano de la estructura                      |                    | A4     | Editado          |                   |                          |     |  |
|  |                                                          |                        | Título. Título suplementario.               |                    |        | Número de d      | ocumento          | E2008                    |     |  |
|  |                                                          |                        | Planos cimentación.<br>Detalle de zapatas 2 | Rev. Fecha de edia |        | Fecha de edición | Idioma            | Ноја                     |     |  |
|  |                                                          |                        |                                             |                    |        |                  | 23/10/2020        | es                       | 3/9 |  |
|  | Universi                                                 | ITAT                   | Planos cimentación.                         |                    |        | Número de d      | Fecha de edición  | Idioma                   |     |  |

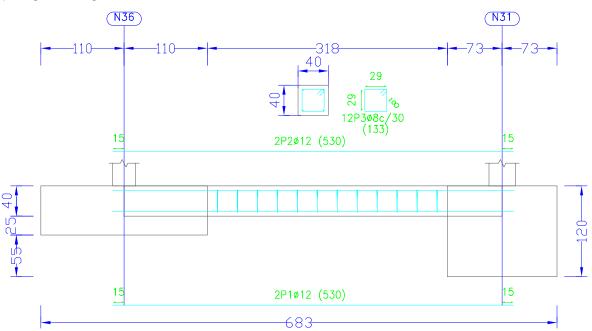
N6, N11, N16, N21, N26, N31 N8, N13, N18, N23, N28 y N33





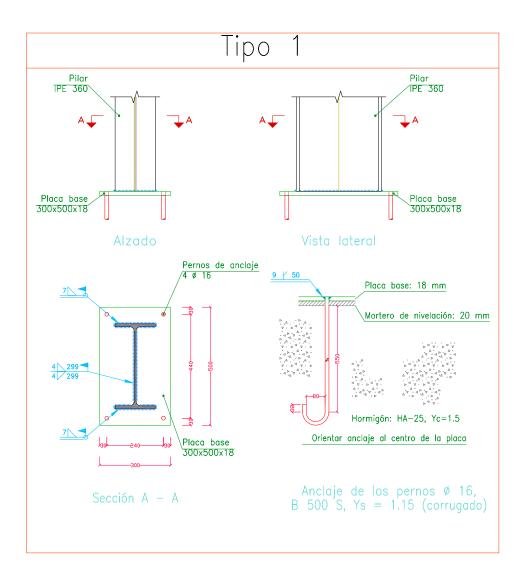

| Elemento                                         | Pos.    | Diám.      | No.                 |            | Total E<br>(cm) | 3 500 S, Ys=1.15<br>(kg) |
|--------------------------------------------------|---------|------------|---------------------|------------|-----------------|--------------------------|
| N8=N13=N18=N23=N28=N33<br>N6=N11=N16=N21=N26=N31 | 9<br>10 | ø20<br>ø20 | 10<br>5             | 167<br>307 | 1670<br>1535    | 41.2<br>37.9             |
| NO=NII=NIO=NZI=NZO=NJI                           | 11      | ø20<br>ø20 | 10                  | 183        | 1830            | 45.1                     |
|                                                  | 12      | ø20        | 5                   | 323        | 1615            | 39.8                     |
|                                                  |         |            | Total+10%:<br>(x6): |            |                 | 180.4<br>1082.4          |

| Departamento responsable Creado por                      | Unidades                                    | Unidades |      | Escala        |                      | Método de representación |      |
|----------------------------------------------------------|---------------------------------------------|----------|------|---------------|----------------------|--------------------------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | all cm                                      | cm       |      | 1:50          |                      |                          |      |
| Propietario legal                                        | Tipo de documento                           | Forr     | mato | Estado del do | Estado del documento |                          |      |
| P                                                        | Plano de la estructura                      |          | A4   | Editado       |                      |                          |      |
|                                                          | Título. Título suplementario.               |          |      | Número de d   | ocumento             | E2009                    |      |
| Universitat<br>Jaume•1                                   | Planos cimentación.<br>Detalle de zapatas 3 |          |      | Rev.          | Fecha de edición     | Idioma                   | Ноја |
|                                                          |                                             |          |      |               | 23/10/2020           | es                       | 4/9  |

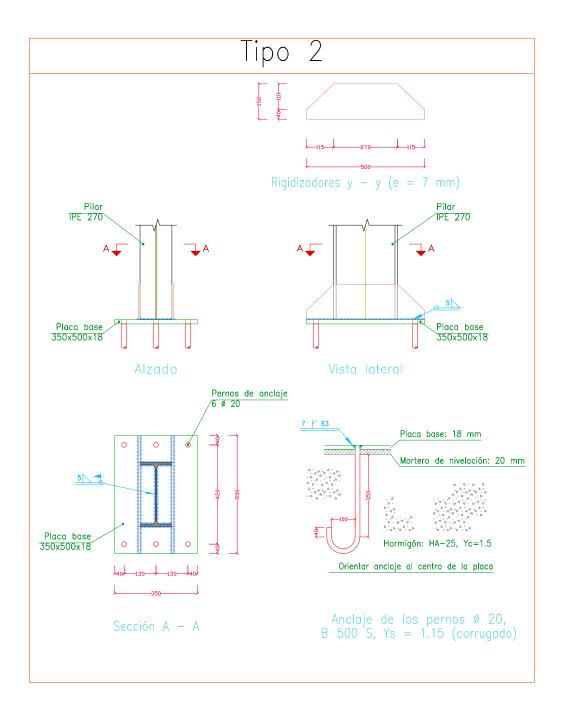

C [N3-N139], C [N139-N181], C [N181-N179], C [N179-N137], C [N137-N1], C [N38-N140], C [N140-N182], C [N182-N180], C [N180-N138] y C [N138-N36]



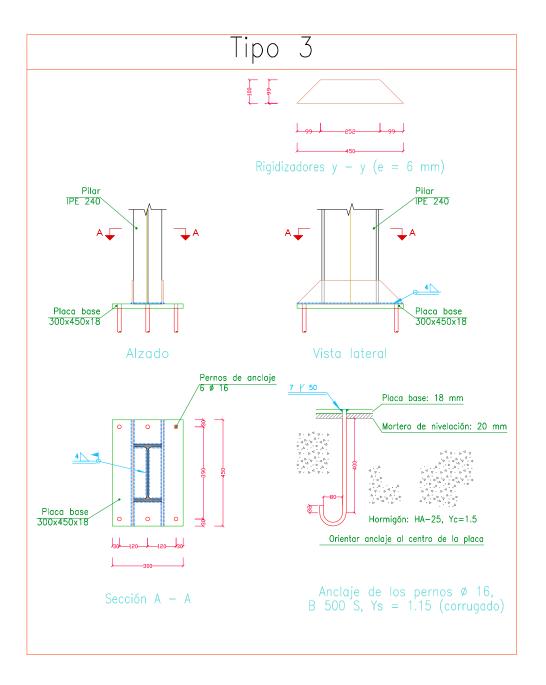
| Elemento                                                                       | Pos.        | Diám.            | No.          | Long.<br>(cm)     | Total I<br>(cm)      | 3 500 S, Ys=1.15 (kg) |
|--------------------------------------------------------------------------------|-------------|------------------|--------------|-------------------|----------------------|-----------------------|
| C [N3-N139]=C [N139-N181] C [N181-N179]=C [N179-N137] C [N137-N1]=C [N38-N140] | 5<br>6<br>7 | ø12<br>ø12<br>ø8 | 2<br>2<br>11 | 550<br>550<br>133 | 1100<br>1100<br>1463 | 9.8<br>9.8<br>5.8     |
| C [N140-N182]=C [N182-N180]<br>C [N180-N138]=C [N138-N36]                      |             |                  | •            | Tot               | al+10%:<br>(x10):    | 27.9<br>279.0         |


| Departamento responsable                                 | Creado por             | Unidades Escala                                  |      | Escala                   |             | Método de repres | Método de representación |      |
|----------------------------------------------------------|------------------------|--------------------------------------------------|------|--------------------------|-------------|------------------|--------------------------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | cm 1:50                                          |      |                          |             |                  |                          |      |
| Propietario legal                                        |                        | Tipo de documento                                | Forn | ato Estado del documento |             |                  |                          |      |
| UNIVERSITAT<br>JAUME•                                    |                        | Plano de la estructura                           |      | A4                       | Editado     |                  |                          |      |
|                                                          |                        | Título. Título suplementario.                    |      |                          | Número de o | ocumento         | E2010                    |      |
|                                                          |                        | Planos cimentación.<br>Detalle de vigas de atado | 0.1  |                          | Rev.        | Fecha de edición | Idioma                   | Ноја |
|                                                          |                        |                                                  |      |                          |             | 24/10/2020       | es                       | 5/9  |

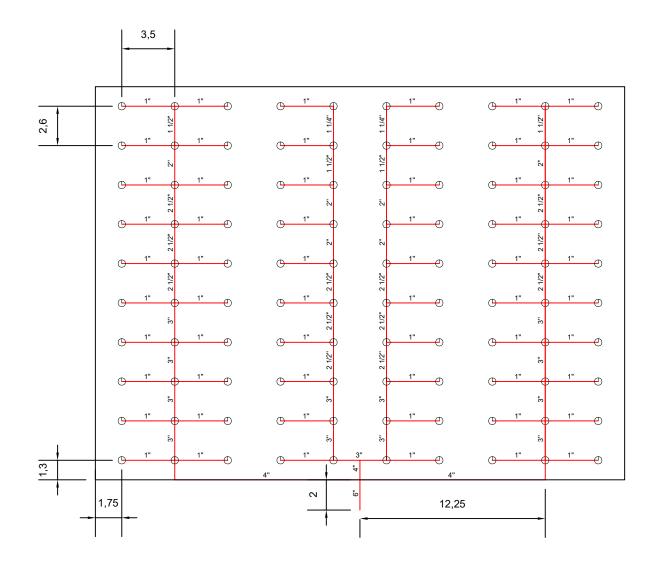
C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33] y C [N33-N38]




| Elemento                                                                                                                      | Pos.        | Diám.            | No.          |                   | Total<br>(cm)         | В | 500 S,<br>(kg          |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|--------------|-------------------|-----------------------|---|------------------------|--|
| C (N36-N31)=C (N31-N26)<br>C (N26-N21)=C (N21-N16)<br>C (N16-N11)=C (N11-N6)<br>C (N6-N1)=C (N3-N8)<br>C (N8-N13)=C (N13-N18) | 1<br>2<br>3 | #12<br>#12<br>#8 | 2<br>2<br>12 | 530<br>530<br>133 | 1060<br>1060<br>1596  |   | 9.4<br>9.4<br>6.3      |  |
| C (N18-N23)=C (N23-N28)<br>C (N28-N33)=C (N33-N38)                                                                            |             |                  | _            | Tot               | al+10%:<br>(x14):     |   | 27.6<br>386.4          |  |
|                                                                                                                               |             |                  |              |                   | #8:<br>#12:<br>Total: |   | 96.6<br>289.8<br>386.4 |  |


| Departamento responsable                                 | Creado por             | Unidades                                         |       | Escala     |              | Método de repres | Método de representación |      |
|----------------------------------------------------------|------------------------|--------------------------------------------------|-------|------------|--------------|------------------|--------------------------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | cm                                               |       | 1:50       |              |                  |                          |      |
| opietario legal                                          |                        | Tipo de documento                                | Forn  | nato       | Estado del d | ocumento         |                          |      |
|                                                          |                        | Plano de la estructura                           |       | A4 Editado |              |                  |                          |      |
|                                                          |                        | Título. Título suplementario.                    |       |            | Número de o  | locumento        | E2011                    |      |
| UNIVERSITAT<br>Jaume•1                                   |                        | Planos cimentación.<br>Detalle de vigas de atado | ado 2 |            | Rev.         | Fecha de edición | Idioma                   | Ноја |
|                                                          |                        |                                                  |       |            |              | 24/10/2020       | es                       | 6/9  |




| Departamento responsable                                 | Creado por             | Unidades                                              |      | Escala     |                      | Método de repres | Método de representación |     |
|----------------------------------------------------------|------------------------|-------------------------------------------------------|------|------------|----------------------|------------------|--------------------------|-----|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | mm                                                    |      | 1:16       |                      |                  |                          |     |
| Propietario legal                                        |                        | Tipo de documento                                     | Forn | nato       | Estado del documento |                  |                          |     |
|                                                          |                        | Plano de la estructura                                |      | A4 Editado |                      |                  |                          |     |
|                                                          |                        | Título. Título suplementario.                         |      |            | Número de d          | ocumento         | E2012                    |     |
| UNIVERSITAT<br>Jaume•1                                   |                        | Planos cimentación.<br>Detalle de placas de anclaje 1 |      | Rev.       | Fecha de edición     | Idioma           | Ноја                     |     |
|                                                          |                        |                                                       |      |            |                      | 24/10/2020       | es                       | 7/9 |



| Departamento responsable                                 | Creado por             | Unidades                                              |       | Escala                  |                  | Método de repre | Método de representación |  |
|----------------------------------------------------------|------------------------|-------------------------------------------------------|-------|-------------------------|------------------|-----------------|--------------------------|--|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | mm                                                    |       | 1:16                    |                  |                 |                          |  |
| Propietario legal                                        |                        | Tipo de documento                                     | Forr  | ormato Estado del docur |                  | ocumento        |                          |  |
|                                                          |                        | Plano de la estructura                                |       | A4                      | Editado          |                 |                          |  |
| V                                                        |                        | Título. Título suplementario.                         | •     |                         | Número de        | documento       | E2013                    |  |
| UNIVERSITAT<br>JAUME•1                                   |                        | Planos cimentación.<br>Detalle de placas de anclaje 2 |       | Rev.                    | Fecha de edición | Idioma          | Hoja                     |  |
| <b>J</b> AUM                                             | E∙∎                    | Detaile de placas de art                              | ciajo | -                       |                  |                 |                          |  |



| Departamento responsable                                 | Creado por             | Unidades                                              |      | Escala                    |             | Método de repre  | sentación |      |
|----------------------------------------------------------|------------------------|-------------------------------------------------------|------|---------------------------|-------------|------------------|-----------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos | mm                                                    | mm   |                           | 1:16        |                  |           |      |
| ropietario legal                                         |                        | Tipo de documento                                     | Forr | mato Estado del documento |             |                  |           |      |
|                                                          |                        | Plano de la estructura                                |      | A4                        | Editado     |                  |           |      |
| V                                                        |                        | Título. Título suplementario.                         |      |                           | Número de o | locumento        | E2014     |      |
| UNIVERS<br><b>J</b> AUMI                                 |                        | Planos cimentación.<br>Detalle de placas de anclaje 3 |      | 3                         | Rev.        | Fecha de edición | Idioma    | Hoja |
|                                                          |                        |                                                       |      |                           |             | 24/10/2020       | es        | 9/9  |



| Departamento responsable                                 | Creado por                                                           | Unidades                      |      | Escala                      |             | Método de repres | Método de representación |      |
|----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|------|-----------------------------|-------------|------------------|--------------------------|------|
| Departamento de<br>Ingeniería Mecánica y<br>Construcción | David Medall<br>Martos                                               | m                             |      | 1:250                       |             |                  |                          | )    |
| Propietario legal                                        |                                                                      | Tipo de documento             | Forn | ormato Estado del documento |             |                  |                          |      |
|                                                          |                                                                      | Plano de instalaciones        |      | A4                          | Editado     |                  |                          |      |
|                                                          |                                                                      | Título. Título suplementario. | •    |                             | Número de o | documento        | ROC01                    |      |
|                                                          | JNIVERSITAT  Distribución de rociadores.  Dimensiones característica |                               |      |                             | Rev.        | Fecha de edición | Idioma                   | Ноја |
|                                                          |                                                                      |                               |      |                             |             | 19/10/2020       | es                       | 1/1  |



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# Índice del pliego de condiciones

| Índice del pliego de condiciones                                      | 3  |
|-----------------------------------------------------------------------|----|
| 1. Pliego de cláusulas administrativas                                | 5  |
| 1.1 Disposiciones generales                                           | 5  |
| 1.1.1 Naturaleza y objeto del pliego de condiciones                   | 5  |
| 1.1.2 Documentación del contrato de obra                              | 5  |
| 1.2 Disposiciones facultativas                                        | 6  |
| 1.2.1 Delimitación de funciones de los agentes intervinientes         | 6  |
| 1.2.1.1 El director del proyecto                                      | 6  |
| 1.2.1.2 El tutor del proyecto                                         | 6  |
| 1.2.1.3 Otros                                                         | 6  |
| 1.2.2 Obligaciones y derechos generales del constructor o contratista | 7  |
| 1.2.2.1 Reponsabilidades                                              | 7  |
| 1.2.2.2 Verificación de los documentos del proyecto                   | 7  |
| 1.2.2.3 Modificaciones                                                | 7  |
| 1.3 Disposiciones económicas                                          | 7  |
| 1.3.1 Objeto                                                          | 7  |
| 1.3.2 Composición de los precios unitarios                            | 8  |
| 2. Pliego de condiciones técnicas particulares                        | 9  |
| 2.1 Objeto                                                            | 9  |
| 2.2 Documentos                                                        | 9  |
| 2.2.1 Memoria                                                         | 9  |
| 2.2.2 Anexos a la memoria                                             | 9  |
| 2.2.3 Presupuesto                                                     | 9  |
| 2.2.4 Planos                                                          | 10 |
| 2.2.5 Pliego de condiciones                                           | 10 |
| 2.3 Materiales y ejecución                                            | 11 |
| 2.3.1 Hormigón en masa                                                | 11 |
| 2.3.2 Acero para armaduras                                            | 12 |
| 2.3.3 Acero en correas metálicas                                      | 13 |
| 2.3.4 Acero en pilares y vigas                                        | 14 |
| 2.3.5 Mortero de vermiculita                                          | 15 |
| 2.3.6 Rociadores                                                      | 16 |

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# 1. Pliego de cláusulas administrativas

# 1.1 Disposiciones generales

# 1.1.1 Naturaleza y objeto del pliego de condiciones

El presente Pliego de Condiciones constituye un documento donde se recogen las condiciones técnicas tanto generales como particulares que deben cumplir los materiales y unidades de obra, además de todo lo especificado en los otros documentos del proyecto.

Este pliego se realiza para describir las condiciones técnicas, administrativas, facultativas y legales que serán de aplicación al proyecto de trabajo de fin de máster (TFM) Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

#### 1.1.2 Documentación del contrato de obra

El contrato de obra estará formado por los siguientes documentos relacionados por orden de importancia en relación al valor de sus especificaciones:

- 1. Las condiciones establecidas en el documento de contrato de empresa o arrendamiento de obra, en caso de existir.
- 2. El presente pliego de cláusulas administrativas así como el pliego de condiciones particulares de este mismo documento.
- Los documentos del proyecto, incluyendo memoria, planos, mediciones y presupuesto. En caso de existir, también se incluirá el estudio de seguridad y salud y el proyecto de control de calidad de la edificación.



# 1.2 Disposiciones facultativas

# 1.2.1 Delimitación de funciones de los agentes intervinientes

#### 1.2.1.1 El director del proyecto

Las obligaciones del director del proyecto son:

- a) Poseer la titulación académica y profesional habilitante de arquitecto, arquitecto técnico o ingeniero técnico y cumplir las condiciones exigibles para el ejercicio de la profesión.
- b) Redactar el proyecto sujeto a la normativa vigente y a lo establecido en el contrato y entregarlo, con los visados preceptivos.
- c) Ajustarse a las indicaciones e instrucciones del tutor del proyecto.
- d) En caso de llevar a cabo el presente proyecto, acordar con el promotor la contratación de colaboraciones parciales.

#### 1.2.1.2 El tutor del proyecto

La función del tutor del proyecto es supervisar el trabajo realizado por el director del proyecto y verificar la precisión técnica y veracidad del proyecto final.

#### 1.2.1.3 Otros

En caso de que el proyecto se llevara a cabo se incluirían como agentes del proyecto al promotor, el constructor, el director de obra, el director de ejecución de obra así como a las entidades y los laboratorios de control de calidad de la edificación.



# 1.2.2 Obligaciones y derechos generales del constructor o contratista

#### 1.2.2.1 Reponsabilidades

El director del proyecto tendrá la plena responsabilidad de aportar la documentación suficiente para comprender la totalidad del proyecto y, en caso de que le sea requerida, aportar las aclaraciones pertinentes.

#### 1.2.2.2 Verificación de los documentos del proyecto

Los documentos del proyecto serán verificados y, en caso de ser adecuados, aceptados por el tutor del proyecto. En caso negativo se indicarán los cambios a realizar para que estos sean validados.

#### 1.2.2.3 Modificaciones

El director del proyecto está cualificado para realizar alteraciones o modificaciones en el proyecto al que hace referencia el presente pliego siempre que cumpla las condiciones técnicas establecidas en el proyecto y en la normativa de aplicación.

# 1.3 Disposiciones económicas

# 1.3.1 Objeto

En el presente apartado se describen detalladamente los precios tenidos en cuenta a la hora de calcular el Presupuesto del proyecto al que se hace referencia.



# 1.3.2 Composición de los precios unitarios

El cálculo de los precios de las diferentes unidades de obra es igual a la suma de los costes directos, los indirectos, los gastos generales y el beneficio industrial.

#### **COSTES DIRECTOS**

ConsistiráN de:

| Ш | La mano de obra que actua directamente en la ejecución de la unidad de  |
|---|-------------------------------------------------------------------------|
|   | obra.                                                                   |
|   | Los materiales necesarios para su ejecución.                            |
|   | Los equipos y sistemas técnicos de seguridad y salud necesarios para su |
|   | ejecución.                                                              |

- ☐ Los gastos derivados tengan lugar por el funcionamiento de la maquinaria utilizada.
- ☐ Los gastos de conservación y amortización de la maquinaria, instalaciones, sistemas y equipos.

#### **COSTES INDIRECTOS**

Los gastos de comunicaciones, almacenes, laboratorios, talleres, seguros....
Todos estos gastos se consideran como un porcentaje de los costes directos.

#### **GASTOS GENERALES**

Los gastos generales de la empresa. Se consideran como un porcentaje de la suma de los costes directos e indirectos (entre un 13% y un 17%).

#### **BENEFICIO INDUSTRIAL**

El beneficio industrial del contratista se establece en el 6% sobre la suma de las anteriores partidas en obras para la administración.

#### PRECIO DE EJECUCIÓN MATERIAL

Es el resultado obtenido de la suma de los anteriores conceptos a excepción del beneficio industrial.

#### PRECIO DE CONTRATA

El precio de contrata es la suma de todos los costes anteriormente descritos. El IVA se aplica sobre esta suma. Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# 2. Pliego de condiciones técnicas particulares

# 2.1 Objeto

El objeto del presente pliego de condiciones técnicas particulares es establecer los diferentes documentos que formarán parte del proyecto así como las características de los materiales utilizados y su ejecución.

Los documentos incluidos en el apartado de Materiales y ejecución se obtienen del Pliego de Condiciones técnicas del Generador de precios.

## 2.2 Documentos

Los documentos que conforman el presente proyecto serán entregados al Departamento de Ingeniería Mecánica y Construcción de la Universidad Jaume I (UJI). Estos documentos serán la memoria descriptiva del proyecto, los anexos correspondientes, el presupuesto, los planos y el pliego de condiciones.

En los siguientes apartados se describe con mayor detalle el contenido de cada uno de dichos documentos:

#### 2.2.1 Memoria

Se trata del documento en el que se describen y justifican las soluciones adoptadas en el proyecto. La memoria debe ser definida y comprendida y debe poder realizarse su ejecución sin necesidad de consultar los anexos a la misma.

En la memoria se incluirán los requisitos de diseño del proyecto, el análisis de soluciones y alternativas y los resultados finales obtenidos y las decisiones tomadas.

#### 2.2.2 Anexos a la memoria

Estarán formados por documentos que tienen como función desarrollar, aclarar y justificar los cálculos y apartados de la memoria o de otros documentos básicos del proyecto.

# 2.2.3 Presupuesto

El presupuesto contendrá un desglose del coste de los elementos involucrados en el desarrollo material del proyecto: material, maquinaria, personal, software, asesoría técnica... Los costes que se incluirán en el mismo son los que se establecen en las Disposiciones económicas del Pliego de condiciones generales.



#### 2.2.4 Planos

Los planos tienen por objeto mostrar de una forma gráfica las diferentes estructuras de estudio. Son esenciales para la materialización del proyecto y, en su realización, se procurará que sean completos, suficientes y concisos para facilitar su comprensión.

# 2.2.5 Pliego de condiciones

El pliego de condiciones es un documento que consta de una descripción de las regulaciones y condiciones facultativas, económicas, administrativas, legales y técnicas que son de aplicación al presente proyecto y a los agentes implicados en el mismo.



# 2.3 Materiales y ejecución

En el presente apartado se establecen las diferentes condiciones que afectan a los materiales utilizados en el presente proyecto así como la normativa que aplica a los mismos.

# 2.3.1 Hormigón en masa

#### CARACTERÍSTICAS TÉCNICAS

Hormigón HA-25/B/20/I fabricado en central y vertido desde camión, para formación de zapata y vigas de armado.

## **NORMATIVA DE APLICACIÓN**

Elaboración, transporte y puesta en obra del hormigón:

☐ Instrucción de Hormigón Estructural (EHE-08).

#### Ejecución:

- ☐ CTE. DB-SE-C Seguridad estructural: Cimientos.
- □ NTE-CSZ. Cimentaciones superficiales: Zapatas.

## CRITERIO DE MEDICIÓN EN PROYECTO

Volumen teórico, según documentación gráfica del Proyecto.

#### PROCESO DE EJECUCIÓN

- ☐ FASES DE EJECUCIÓN.
  - Vertido y compactación del hormigón. Curado del hormigón.
- □ CONDICIONES DE TERMINACIÓN.

El conjunto será monolítico y transmitirá correctamente las cargas al terreno.

#### CRITERIO DE MEDICIÓN EN OBRA Y CONDICIONES DE ABONO

Se medirá el volumen teórico ejecutado según especificaciones del Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.

Página 12/17



## 2.3.2 Acero para armaduras

#### CARACTERÍSTICAS TÉCNICAS

Acero UNE-EN 10080 B 500 S para elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y montaje en viga entre zapatas. Incluso alambre de atar y separadores.

#### **NORMATIVA DE APLICACIÓN**

Montaje:

☐ Instrucción de Hormigón Estructural (EHE-08).

#### CRITERIO DE MEDICIÓN EN PROYECTO

Peso teórico calculado según documentación gráfica del Proyecto.

#### FASES DE EJECUCIÓN.

Corte y doblado de la armadura. Montaje y colocación de la armadura con separadores homologados. Sujeción de la armadura.

## CRITERIO DE MEDICIÓN EN OBRA Y CONDICIONES DE ABONO

Se calculará el peso teórico de la armadura ejecutada según especificaciones del Proyecto.



#### 2.3.3 Acero en correas metálicas

#### CARACTERÍSTICAS TÉCNICAS

Acero UNE-EN 10162 S235JRC, en correas metálicas formadas por piezas simples de perfiles conformados en frío de las series omega, L, U, C o Z, acabado galvanizado, fijadas a las cerchas con uniones soldadas en obra.

#### NORMATIVA DE APLICACIÓN

Ejecución:

- ☐ CTE. DB-SE-A Seguridad estructural: Acero.
- ☐ UNE-EN 1090-2. Ejecución de estructuras de acero y aluminio. Parte 2: Requisitos técnicos para la ejecución de estructuras de acero.
- ☐ Instrucción de Acero Estructural (EAE).

#### CRITERIO DE MEDICIÓN EN PROYECTO

Peso nominal medido según documentación gráfica del Proyecto.

#### PROCESO DE EJECUCIÓN

#### ☐ FASES DE EJECUCIÓN.

Replanteo de las correas sobre las cerchas. Presentación de las correas sobre las cerchas. Aplomado y nivelación definitivos. Ejecución de las uniones soldadas.

#### ☐ CONDICIONES DE TERMINACIÓN.

Las cargas se transmitirán correctamente a la estructura.

#### CONSERVACIÓN Y MANTENIMIENTO.

Se evitará la actuación sobre el elemento de acciones mecánicas no previstas en el cálculo.

#### CRITERIO DE MEDICIÓN EN OBRA Y CONDICIONES DE ABONO

Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones del Proyecto.

#### CRITERIO DE VALORACIÓN ECONÓMICA

El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje, pero no incluye la chapa o panel que actuará como cubierta.



# 2.3.4 Acero en pilares y vigas

#### CARACTERÍSTICAS TÉCNICAS

Acero UNE-EN 10025 S275JR, en pilares o vigas formados por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, colocado con uniones soldadas en obra.

Acero UNE-EN 10210-1 S275J0H, en vigas formadas por piezas simples de perfiles huecos acabados en caliente de las series redondo, cuadrado o rectangular, acabado con imprimación antioxidante, con uniones soldadas en obra.

#### **NORMATIVA DE APLICACIÓN**

Ejecución:

- ☐ CTE. DB-SE-A Seguridad estructural: Acero.
- UNE-EN 1090-2. Ejecución de estructuras de acero y aluminio. Parte 2: Requisitos técnicos para la ejecución de estructuras de acero.
- ☐ Instrucción de Acero Estructural (EAE).
- □ NTE-EAS. Estructuras de acero: Soportes.

#### CRITERIO DE MEDICIÓN EN PROYECTO

Peso nominal medido según documentación gráfica del Proyecto.

#### PROCESO DE EJECUCIÓN

FASES DE EJECUCIÓN.

Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional del pilar. Aplomado y nivelación. Ejecución de las uniones soldadas.

☐ CONDICIONES DE TERMINACIÓN.

Las cargas se transmitirán correctamente a la estructura. El acabado superficial será el adecuado para el posterior tratamiento de protección.

#### CRITERIO DE VALORACIÓN ECONÓMICA

El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, las placas de arranque y de transición de pilar inferior a superior, los casquillos y los elementos auxiliares de montaje.



#### 2.3.5 Mortero de vermiculita

#### CARACTERÍSTICAS TÉCNICAS

Formación de protección pasiva contra incendios de estructura metálica mediante proyección neumática de mortero ignífugo, reacción al fuego clase A1, compuesto de cemento en combinación con perlita o vermiculita formando un recubrimiento incombustible, hasta conseguir una resistencia al fuego de 60 minutos, con un espesor mínimo de 11 mm. Incluso p/p de maquinaria de proyección, protección de paramentos, carpinterías y otros elementos colindantes, y limpieza.

#### NORMATIVA DE APLICACIÓN

Ejecución:

☐ CTE. DB SI Seguridad en caso de incendio.

#### CRITERIO DE MEDICIÓN EN PROYECTO

Superficie resultante del desarrollo de los perfiles metálicos que componen la estructura, según documentación gráfica del Proyecto.

#### PROCESO DE EJECUCIÓN

- ☐ FASES DE EJECUCIÓN.
  - Limpieza y preparación de la superficie del perfil metálico. Aplicación mecánica del mortero, hasta formar el espesor determinado en cálculo.
- CONDICIONES DE TERMINACIÓN.
   Las capas aplicadas serán uniformes y tendrán adherencia entre ellas y con el soporte.

#### CONSERVACIÓN Y MANTENIMIENTO.

Se protegerá el revestimiento recién ejecutado frente a lluvias, heladas y temperaturas elevadas.

#### CRITERIO DE MEDICIÓN EN OBRA Y CONDICIONES DE ABONO

Se medirá la superficie realmente ejecutada según especificaciones del Proyecto, resultante del desarrollo de los perfiles metálicos que componen la estructura.



#### 2.3.6 Rociadores

#### CARACTERÍSTICAS TÉCNICAS

Suministro e instalación de rociador automático montante, respuesta normal con ampolla fusible de vidrio frágil de 5 mm de diámetro y disolución alcohólica de color rojo, rotura a 68°C, de 1/2" DN 15 mm de diámetro de rosca, coeficiente de descarga K de 80 (métrico), presión de trabajo 12 bar, acabado lacado color bronce. Incluso accesorios y piezas especiales para conexión a la red de distribución de agua.

#### NORMATIVA DE APLICACIÓN

Instalación:

□ UNE-EN 12845. Sistemas fijos de lucha contra incendios. Sistemas de rociadores automáticos. Diseño, instalación y mantenimiento.

#### CRITERIO DE MEDICIÓN EN PROYECTO

Número de unidades previstas, según documentación gráfica del Proyecto.

#### PROCESO DE EJECUCIÓN

☐ FASES DE EJECUCIÓN.

Replanteo. Montaje, conexionado y comprobación de su correcto funcionamiento.

☐ CONDICIONES DE TERMINACIÓN.


No existirán elementos que puedan interrumpir o disminuir la descarga del rociador. El rociador no presentará fugas.

#### CONSERVACIÓN Y MANTENIMIENTO

Se protegerá frente a golpes.

#### CRITERIO DE MEDICIÓN EN OBRA Y CONDICIONES DE ABONO

Se medirá el número de unidades realmente ejecutadas según especificaciones del Proyecto.



Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



# Índice del presupuesto y las mediciones

| Índice del presupuesto y las mediciones                    | 3  |
|------------------------------------------------------------|----|
| 1. Mediciones                                              | 4  |
| 1.1 Mediciones de la estructura portante                   | 4  |
| Mediciones Caso 1                                          | 5  |
| Mediciones Caso 2                                          | 13 |
| 1.2 Mediciones de la proyección de mortero de vermiculita  | 21 |
| 1.3 Mediciones de la instalación de rociadores automáticos | 22 |
| 2. Presupuesto                                             | 23 |
| Presupuesto Caso 1                                         | 25 |
| Presupuesto Caso 1 (Redimensionado)                        | 35 |
| Presupuesto Caso 2                                         | 45 |
| Presupuesto Caso 2 (Redimensionado)                        | 55 |



# 1. Mediciones

En el siguiente apartado se incluyen las mediciones de las diferentes instalaciones y estructuras que son de interés para el proyecto. Estas son:

| ■ Mediciones de las estructuras portantes (Caso 1 y 2): |  |
|---------------------------------------------------------|--|
| ☐ Barras.                                               |  |
| Uniones.                                                |  |
| Cimentación.                                            |  |
| Proyección de mortero de vermiculita.                   |  |
| Instalación de rociadores automáticos.                  |  |
|                                                         |  |

# 1.1 Mediciones de la estructura portante

Los documentos que se incluyen a continuación se obtienen a partir de los cálculos realizados mediante CYPE 3D:



Mediciones Caso 1



# ÍNDICE

| 1   | ESTRUCTURA                            | . 2 |
|-----|---------------------------------------|-----|
|     | 1.1 Geometría                         | . 2 |
|     | 1.1.1 Barras                          | . 2 |
|     | 1.2 Uniones                           | 3   |
|     | 1.2.1 Medición                        | . 3 |
| 2 - | CIMENTACIÓN                           | 3   |
|     | 2.1 Elementos de cimentación aislados |     |
|     | 2.1.1 Medición                        | . 3 |
|     | 2.2 Vigas                             | 5   |
|     | 2.2.1 Modición                        | _   |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

## 1.- ESTRUCTURA

#### 1.1.- Geometría

#### 1.1.1.- Barras

#### 1.1.1.1.- Materiales utilizados

| Materiales utilizados |             |           |       |                |                 |          |         |  |  |  |
|-----------------------|-------------|-----------|-------|----------------|-----------------|----------|---------|--|--|--|
| Mater                 | Е           |           | G     | f <sub>v</sub> | α. <sub>t</sub> | γ        |         |  |  |  |
| Tipo                  | Designación | (MPa)     | V     | (MPa)          | (MPa)           | (m/m°C)  | (kN/m³) |  |  |  |
| Acero laminado        | S275        | 210000.00 | 0.300 | 81000.00       | 275.00          | 0.000012 | 77.01   |  |  |  |

#### Notación:

- E: Módulo de elasticidad
- n: Módulo de Poisson
- G: Módulo de cortadura
- f<sub>y</sub>: Límite elástico
- a.t: Coeficiente de dilatación
- g: Peso específico

# 1.1.2.- Resumen de medición

|                 | Resumen de medición |            |                  |          |               |              |                 |                |               |                  |                |               |                  |
|-----------------|---------------------|------------|------------------|----------|---------------|--------------|-----------------|----------------|---------------|------------------|----------------|---------------|------------------|
| Material        |                     |            |                  | Longitud |               |              | Volumen         |                |               | Peso             |                |               |                  |
| Tipo            | De                  | esignación | Serie            | Perfil   | Perfil<br>(m) | Serie<br>(m) | Material<br>(m) | Perfil<br>(m³) | Serie<br>(m³) | Material<br>(m³) | Perfil<br>(kg) | Serie<br>(kg) | Material<br>(kg) |
|                 |                     |            |                  | IPE 300  | 96.000        |              |                 | 0.516          |               |                  | 4054.37        |               |                  |
|                 |                     |            |                  | IPE 240  | 158.858       |              |                 | 0.621          |               |                  | 4875.92        |               |                  |
|                 |                     |            |                  | IPE 360  | 84.953        |              |                 | 0.618          |               |                  | 4848.21        |               |                  |
|                 |                     |            |                  | IPE 270  | 284.000       |              |                 | 1.304          |               |                  | 10232.95       |               |                  |
|                 |                     |            | IPE              |          |               | 623.811      |                 |                | 3.059         |                  |                | 24011.45      |                  |
|                 |                     |            |                  | #80x5    | 410.000       |              |                 | 0.577          |               |                  | 4530.85        |               |                  |
|                 |                     |            |                  | #70x5    | 295.305       |              |                 | 0.357          |               |                  | 2799.74        |               |                  |
|                 |                     |            | Huecos cuadrados |          |               | 705.305      |                 |                | 0.934         |                  |                | 7330.59       |                  |
|                 |                     |            |                  | R 24.5   | 74.120        |              |                 | 0.035          |               |                  | 274.30         |               |                  |
|                 |                     |            |                  | R 16     | 503.549       |              |                 | 0.101          |               |                  | 794.77         |               |                  |
|                 |                     |            |                  | R 23.6   | 109.139       |              |                 | 0.048          |               |                  | 374.77         |               |                  |
|                 |                     |            | R                |          |               | 686.807      |                 |                | 0.184         |                  |                | 1443.84       |                  |
| Acero<br>Iamina | I                   | S275       |                  |          |               |              | 2015.923        |                |               | 4.177            |                |               | 32785.88         |

#### 1.1.1.3.- Medición de superficies

| Acero laminado: Medición de las superficies a pintar |         |                               |                 |                    |  |  |  |  |  |
|------------------------------------------------------|---------|-------------------------------|-----------------|--------------------|--|--|--|--|--|
| Serie                                                | Perfil  | Superficie unitaria<br>(m²/m) | Longitud<br>(m) | Superficie<br>(m²) |  |  |  |  |  |
|                                                      | IPE 300 | 1.186                         | 96.000          | 113.837            |  |  |  |  |  |
| IPE                                                  | IPE 240 | 0.948                         | 158.858         | 150.534            |  |  |  |  |  |
| IPC                                                  | IPE 360 | 1.384                         | 84.953          | 117.575            |  |  |  |  |  |
|                                                      | IPE 270 | 1.067                         | 284.000         | 302.971            |  |  |  |  |  |
| Huecos cuadrados                                     | #80x5   | 0.297                         | 410.000         | 121.830            |  |  |  |  |  |
| nuecos cuadi ados                                    | #70x5   | 0.257                         | 295.305         | 75.936             |  |  |  |  |  |
|                                                      | R 24.5  | 0.077                         | 74.120          | 5.705              |  |  |  |  |  |
| R                                                    | R 16    | 0.050                         | 503.549         | 25.311             |  |  |  |  |  |
|                                                      | R 23.6  | 0.074                         | 109.139         | 8.092              |  |  |  |  |  |
|                                                      | 921.790 |                               |                 |                    |  |  |  |  |  |

Fecha: 23/10/20

#### 1.2.- Uniones

#### 1.2.1.- Medición

|                         | Soldaduras             |                                      |                          |                           |  |  |  |  |
|-------------------------|------------------------|--------------------------------------|--------------------------|---------------------------|--|--|--|--|
| f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                                 | Espesor de garganta (mm) | Longitud de cordones (mm) |  |  |  |  |
| 410.0                   | En taller              | En ángulo                            | 4                        | 37560                     |  |  |  |  |
|                         |                        | En taller A tope en bisel simple con | 7                        | 4524                      |  |  |  |  |
|                         |                        | talón de raíz amplio                 | 9                        | 2413                      |  |  |  |  |
|                         |                        |                                      |                          | 2389                      |  |  |  |  |
|                         | En el lugar de montaje | En ángulo                            | 5                        | 19524                     |  |  |  |  |
|                         |                        |                                      | 6                        | 2571                      |  |  |  |  |

|                | Placas de anclaje              |                              |                 |                      |              |  |  |  |  |
|----------------|--------------------------------|------------------------------|-----------------|----------------------|--------------|--|--|--|--|
|                | Material                       | Elementos                    | Cantidad        | Dimensiones<br>(mm)  | Peso<br>(kg) |  |  |  |  |
| /PE            |                                |                              | 4               | 300x500x18           | 84.78        |  |  |  |  |
| educativa de C |                                | Placa base                   | 12              | 350x500x18           | 296.73       |  |  |  |  |
|                | S275                           |                              | 8               | 300x450x18           | 152.60       |  |  |  |  |
|                | 3275                           | Rigidizadores pasantes 24 50 | 24              | 500/300x100/1x5      | 37.77        |  |  |  |  |
| ıca            |                                |                              | 450/270x100/1x5 | 22.66                |              |  |  |  |  |
| eqr            |                                | Total                        |                 |                      |              |  |  |  |  |
| ón             |                                |                              | 16              | Ø 16 - L = 554 + 183 | 18.61        |  |  |  |  |
| rsi            | E00 C Vo 1 1E (corrugado)      | Pernos de anclaje            | 32              | Ø 16 - L = 604 + 183 | 39.74        |  |  |  |  |
| N Ve           | 500  S, Ys = 1.15  (corrugado) |                              | 72              | Ø 20 - L = 408 + 228 | 113.02       |  |  |  |  |
| une            |                                |                              |                 | Total                | 171.36       |  |  |  |  |

# 2. - CIMENTACIÓN 2. 1.- Elementos de cimentación aislados

#### 2.1.1.- Medición

| Referencias: N139, N181, N179, N137, N138, N180, N182 y N140 |                           | B 500 S, Ys=1.15   | Total |
|--------------------------------------------------------------|---------------------------|--------------------|-------|
| Nombre de armado                                             | Ø12                       |                    |       |
| Parrilla inferior - Armado X                                 | Longitud (m)<br>Peso (kg) | 11x2.09<br>11x1.86 | 1     |
| Parrilla inferior - Armado Y                                 | Longitud (m)<br>Peso (kg) | 11x2.09<br>11x1.86 | 1     |
| Parrilla superior - Armado X                                 | Longitud (m)<br>Peso (kg) | 11x2.09<br>11x1.86 |       |
| Parrilla superior - Armado Y                                 | Longitud (m)<br>Peso (kg) | 11x2.09<br>11x1.86 |       |
| Totales                                                      | Longitud (m)<br>Peso (kg) | 91.96<br>81.64     | 81.64 |
| Total con mermas (10.00%)                                    | Longitud (m)<br>Peso (kg) | 101.16<br>89.80    | 89.80 |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

| Referencias: N3, N1, N36 y N38 |                           | B 500 S, Ys=1.15 | Total  |
|--------------------------------|---------------------------|------------------|--------|
| Nombre de armado               |                           | Ø12              |        |
| Parrilla inferior - Armado X   | Longitud (m)              | 12x2.24          | 26.88  |
|                                | Peso (kg)                 | 12x1.99          | 23.87  |
| Parrilla inferior - Armado Y   | Longitud (m)              | 12x2.24          | 26.88  |
|                                | Peso (kg)                 | 12x1.99          | 23.87  |
| Parrilla superior - Armado X   | Longitud (m)              | 12x2.24          | 26.88  |
|                                | Peso (kg)                 | 12x1.99          | 23.87  |
| Parrilla superior - Armado Y   | Longitud (m)              | 12x2.24          | 26.88  |
|                                | Peso (kg)                 | 12x1.99          | 23.87  |
| Totales                        | Longitud (m)<br>Peso (kg) | 107.52<br>95.48  | 95.48  |
| Total con mermas (10.00%)      | Longitud (m)<br>Peso (kg) | 118.27<br>105.03 | 105.03 |

| Referencias: N8, N13, N18, N23, N28 y N33 B 500 S, Ys=1.15 |                           |                  |        |  |  |
|------------------------------------------------------------|---------------------------|------------------|--------|--|--|
| Nombre de armado                                           |                           | Ø20              | Total  |  |  |
| Parrilla inferior - Armado X                               | Longitud (m)              | 9x1.67           | 15.03  |  |  |
|                                                            | Peso (kg)                 | 9x4.12           | 37.07  |  |  |
| Rarrilla inferior - Armado Y                               | Longitud (m)              | 5x2.97           | 14.85  |  |  |
|                                                            | Peso (kg)                 | 5x7.32           | 36.62  |  |  |
| Parrilla superior - Armado X                               | Longitud (m)              | 9x1.83           | 16.47  |  |  |
|                                                            | Peso (kg)                 | 9x4.51           | 40.62  |  |  |
| Farrilla superior - Armado Y                               | Longitud (m)              | 5x3.13           | 15.65  |  |  |
|                                                            | Peso (kg)                 | 5x7.72           | 38.60  |  |  |
| rotales                                                    | Longitud (m)<br>Peso (kg) | 62.00<br>152.91  | 152.91 |  |  |
| total con mermas                                           | Longitud (m)              | 68.20            | 168.20 |  |  |
| (70.00%)                                                   | Peso (kg)                 | 168.20           |        |  |  |
| Referencias: N6, N11, N16, N21, N26 y N31                  |                           | B 500 S, Ys=1.15 | Total  |  |  |
| Nombre de armado                                           |                           | Ø20              |        |  |  |
| Parrilla inferior - Armado X                               | Longitud (m)              | 9x1.67           | 15.03  |  |  |
|                                                            | Peso (kg)                 | 9x4.12           | 37.07  |  |  |
| Parrilla inferior - Armado Y                               | Longitud (m)              | 5x2.97           | 14.85  |  |  |
|                                                            | Peso (kg)                 | 5x7.32           | 36.62  |  |  |
| Parrilla superior - Armado X                               | Longitud (m)              | 9x1.83           | 16.47  |  |  |
|                                                            | Peso (kg)                 | 9x4.51           | 40.62  |  |  |
| Parrilla superior - Armado Y                               | Longitud (m)              | 5x3.13           | 15.65  |  |  |
|                                                            | Peso (kg)                 | 5x7.72           | 38.60  |  |  |
| Totales                                                    | Longitud (m)<br>Peso (kg) | 62.00<br>152.91  | 152.91 |  |  |
| Total con mermas (10.00%)                                  | Longitud (m)<br>Peso (kg) | 68.20<br>168.20  | 168.20 |  |  |

#### Resumen de medición (se incluyen mermas de acero)

|                                                              | B 500 S, Ys=1.15 (kg) |          |         | Hormigón (m³) |          |  |
|--------------------------------------------------------------|-----------------------|----------|---------|---------------|----------|--|
| Elemento                                                     | Ø12                   | Ø20      | Total   | HA-25, Yc=1.5 | Limpieza |  |
| Referencias: N139, N181, N179, N137, N138, N180, N182 y N140 | 8x89.80               |          | 718.40  | 8x3.29        | 8x0.51   |  |
| Referencias: N3, N1, N36 y N38                               | 4x105.03              |          | 420.12  | 4x3.46        | 4x0.58   |  |
| Referencias: N8, N13, N18, N23, N28 y N33                    |                       | 6x168.20 | 1009.20 | 6x4.59        | 6x0.40   |  |
| Referencias: N6, N11, N16, N21, N26 y N31                    |                       | 6x168.20 | 1009.20 | 6x4.59        | 6x0.40   |  |
| Totales                                                      | 1138.52               | 2018.40  | 3156.92 | 95.18         | 11.14    |  |



TFM\_nave\_industrial\_R15\_sin\_revestimiento

# 2.2.- Vigas

#### 2.2.1.- Medición

| Referencias: C [N3-N139], C [N139-N181], C [N181-N179], C [N179-N137], C [N137-N1], C [N38-N140], C [N140-N182], C [N182-N180], C [N180-N138] y C [N138-N36] |                           |                    | B 500 S, Ys=1.15 |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------|---------------|--|
| Nombre de armado                                                                                                                                             |                           | Ø8                 | Ø12              |               |  |
| Armado viga - Armado inferior                                                                                                                                | Longitud (m)<br>Peso (kg) |                    | 2x5.50<br>2x4.88 |               |  |
| Armado viga - Armado superior                                                                                                                                | Longitud (m)<br>Peso (kg) |                    | 2x5.50<br>2x4.88 |               |  |
| Armado viga - Estribo                                                                                                                                        | Longitud (m)<br>Peso (kg) | 11x1.33<br>11x0.52 |                  | 14.63<br>5.77 |  |
| Totales                                                                                                                                                      | Longitud (m)<br>Peso (kg) | 14.63<br>5.77      | 22.00<br>19.54   |               |  |
| Total con mermas (10.00%)                                                                                                                                    | Longitud (m)<br>Peso (kg) | 16.09<br>6.35      | 24.20<br>21.49   |               |  |

| Referencias: C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16],<br>[N16-N11], C [N11-N6], C [N6-N1], C [N3-N8], C [N8-N13],<br>[N13-N18], C [N18-N23], C [N23-N28], C [N28-N33] y C [N33-N38] |                           | B 500 S,           | Ys=1.15          | Total         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------|---------------|
| Mombre de armado                                                                                                                                                                               |                           | Ø8                 | Ø12              |               |
| Armado viga - Armado inferior                                                                                                                                                                  | Longitud (m)<br>Peso (kg) |                    | 2x5.30<br>2x4.71 | 10.60<br>9.41 |
| mado viga - Armado superior                                                                                                                                                                    | Longitud (m)<br>Peso (kg) |                    | 2x5.30<br>2x4.71 | 10.60<br>9.41 |
| Armado viga - Estribo                                                                                                                                                                          | Longitud (m)<br>Peso (kg) | 12x1.33<br>12x0.52 |                  | 15.96<br>6.30 |
| totales                                                                                                                                                                                        | Longitud (m)<br>Peso (kg) | 15.96<br>6.30      | 21.20<br>18.82   | 25.12         |
| total con mermas (10.00%)                                                                                                                                                                      | Longitud (m)<br>Peso (kg) | 17.56<br>6.93      | 23.32<br>20.70   | 27.63         |

# Resumen de medición (se incluyen mermas de acero)

|                                                                                                                                                                                              | B 500 S, Ys=1.15 (kg) |          |        | Hormigón (m³) |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------|---------------|----------|--|
| Etjemento                                                                                                                                                                                    | Ø8                    | Ø12      | Total  | HA-25, Yc=1.5 | Limpieza |  |
| Ferencias: C [N3-N139], C [N139-N181], C [N181-N179], C [N179-N137], C [N137-N1], C [N38-N140], C [N140-N182], C [N182-N180], C [N180-N138] y C [N138-N36]                                   | 10x6.35               | 10x21.49 | 278.40 | 10x0.46       | 10x0.12  |  |
| Referencias: C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33] y C [N33-N38] | 14x6.93               | 14x20.70 | 386.82 | 14x0.49       | 14x0.12  |  |
| Totales                                                                                                                                                                                      | 160.52                | 504.70   | 665.22 | 11.49         | 2.87     |  |



Mediciones Caso 2

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.

#### ÍNDICE

| 1 | ESTRUCTURA                            | . 2 |
|---|---------------------------------------|-----|
|   | 1.1 Geometría                         | . 2 |
|   | 1.1.1 Barras                          | . 2 |
|   | 1.2 Uniones                           | 3   |
|   | 1.2.1 Medición                        | . 3 |
| 2 | CIMENTACIÓN                           | 2   |
| 2 | 2.1 Elementos de cimentación aislados |     |
|   |                                       |     |
|   | 2.1.1 Medición                        |     |
|   | 2.2 Vigas                             | 5   |
|   | 2.2.1 Modición                        | _   |



TFM\_nave\_industrial\_R30\_mortero

#### 1.- ESTRUCTURA

#### 1.1.- Geometría

#### 1.1.1.- Barras

#### 1.1.1.1.- Materiales utilizados

| Materiales utilizados |             |           |       |                |                 |          |         |  |  |
|-----------------------|-------------|-----------|-------|----------------|-----------------|----------|---------|--|--|
| Mater                 | Е           |           | G     | f <sub>v</sub> | α. <sub>t</sub> | γ        |         |  |  |
| Tipo                  | Designación | (MPa)     | V     | (MPa)          | (MPa)           | (m/m°C)  | (kN/m³) |  |  |
| Acero laminado        | S275        | 210000.00 | 0.300 | 81000.00       | 275.00          | 0.000012 | 77.01   |  |  |

#### Notación:

- E: Módulo de elasticidad
- n: Módulo de Poisson
- G: Módulo de cortadura
- f<sub>y</sub>: Límite elástico
- a.t: Coeficiente de dilatación
- g: Peso específico

# 1.1.2.- Resumen de medición

| $\circ$   |                   |             |                  |         |               |              |                 |                |               |                  |                |               |                  |
|-----------|-------------------|-------------|------------------|---------|---------------|--------------|-----------------|----------------|---------------|------------------|----------------|---------------|------------------|
| <u>e</u>  |                   |             |                  |         | Res           | umen de      | medición        |                |               |                  |                |               |                  |
|           | Ma                | terial      |                  |         |               | Longitud     |                 |                | Volume        | en               |                | Peso          |                  |
| educativa | Tipo              | Designación | Serie            | Perfil  | Perfil<br>(m) | Serie<br>(m) | Material<br>(m) | Perfil<br>(m³) | Serie<br>(m³) | Material<br>(m³) | Perfil<br>(kg) | Serie<br>(kg) | Material<br>(kg) |
| S         |                   |             |                  | IPE 270 | 304.000       |              |                 | 1.395          |               |                  | 10953.58       |               |                  |
| 0         |                   |             |                  | IPE 160 | 158.858       |              |                 | 0.319          |               |                  | 2506.55        |               |                  |
|           |                   |             |                  | IPE 360 | 84.953        |              |                 | 0.618          |               |                  | 4848.21        |               |                  |
| versión   |                   |             |                  | IPE 240 | 76.000        |              |                 | 0.297          |               |                  | 2332.71        |               |                  |
| 5         |                   |             | IPE              |         |               | 623.811      |                 |                | 2.629         |                  |                | 20641.04      |                  |
|           |                   |             |                  | #80x3   | 410.000       |              |                 | 0.365          |               |                  | 2863.62        |               |                  |
| una       |                   |             |                  | #70x3   | 295.305       |              |                 | 0.227          |               |                  | 1784.36        |               |                  |
| ⋽         |                   |             | Huecos cuadrados |         |               | 705.305      |                 |                | 0.592         |                  |                | 4647.98       |                  |
| 90<br>Por |                   |             |                  | R 22    | 74.120        |              |                 | 0.028          |               |                  | 221.18         |               |                  |
|           |                   |             |                  | R 12    | 226.310       |              |                 | 0.026          |               |                  | 200.92         |               |                  |
| 용         |                   |             |                  | R 10    | 266.059       |              |                 | 0.021          |               |                  | 164.04         |               |                  |
| <u>.</u>  |                   |             |                  | R 16    | 11.180        |              |                 | 0.002          |               |                  | 17.65          |               |                  |
| 쥥         |                   |             |                  | R 17    | 109.139       |              |                 | 0.025          |               |                  | 194.46         |               |                  |
| Producido |                   |             | R                |         |               | 686.807      |                 |                | 0.102         |                  |                | 798.24        |                  |
| Δ.        | Acero<br>laminado | S275        |                  |         |               |              | 2015.923        |                |               | 3.323            |                |               | 26087.26         |

#### 1.1.1.3.- Medición de superficies

| Acero laminado: Medición de las superficies a pintar |         |                               |                 |                    |  |  |  |
|------------------------------------------------------|---------|-------------------------------|-----------------|--------------------|--|--|--|
| Serie                                                | Perfil  | Superficie unitaria<br>(m²/m) | Longitud<br>(m) | Superficie<br>(m²) |  |  |  |
|                                                      | IPE 270 | 1.067                         | 304.000         | 324.307            |  |  |  |
| IPE                                                  | IPE 160 | 0.638                         | 158.858         | 101.352            |  |  |  |
| IPE                                                  | IPE 360 | 1.384                         | 84.953          | 117.575            |  |  |  |
|                                                      | IPE 240 | 0.948                         | 76.000          | 72.018             |  |  |  |
| Huecos cuadrados                                     | #80x3   | 0.306                         | 410.000         | 125.438            |  |  |  |
| nuecos cuadrados                                     | #70x3   | 0.266                         | 295.305         | 78.535             |  |  |  |
|                                                      | R 22    | 0.069                         | 74.120          | 5.123              |  |  |  |
|                                                      | R 12    | 0.038                         | 226.310         | 8.532              |  |  |  |
| R                                                    | R 10    | 0.031                         | 266.059         | 8.358              |  |  |  |
|                                                      | R 16    | 0.050                         | 11.180          | 0.562              |  |  |  |
|                                                      | R 17    | 0.053                         | 109.139         | 5.829              |  |  |  |



TFM\_nave\_industrial\_R30\_mortero

| Acero laminado: Medición de las superficies a pintar |         |                               |                 |                    |  |  |  |
|------------------------------------------------------|---------|-------------------------------|-----------------|--------------------|--|--|--|
| Serie Perfil                                         |         | Superficie unitaria<br>(m²/m) | Longitud<br>(m) | Superficie<br>(m²) |  |  |  |
|                                                      | 847.627 |                               |                 |                    |  |  |  |

#### 1.2.- Uniones

#### 1.2.1.- Medición

|                         | Soldaduras             |                            |                          |                           |  |  |  |  |
|-------------------------|------------------------|----------------------------|--------------------------|---------------------------|--|--|--|--|
| f <sub>u</sub><br>(MPa) | Ejecución              | Tipo                       | Espesor de garganta (mm) | Longitud de cordones (mm) |  |  |  |  |
|                         |                        | En ángulo                  | 4                        | 14086                     |  |  |  |  |
|                         | En taller              | En ángulo                  | 5                        | 23510                     |  |  |  |  |
|                         | En tallel              | A tope en bisel simple con | 7                        | 6937                      |  |  |  |  |
| 410.0                   |                        | talón de raíz amplio       | 9                        | 804                       |  |  |  |  |
|                         |                        |                            | 4                        | 8696                      |  |  |  |  |
| YPE                     | En el lugar de montaje | En ángulo                  | 5                        | 10872                     |  |  |  |  |
|                         |                        |                            | 7                        | 2571                      |  |  |  |  |

| Φ        |                                |                         |          |                      |              |  |  |  |
|----------|--------------------------------|-------------------------|----------|----------------------|--------------|--|--|--|
| a        | Placas de anclaje              |                         |          |                      |              |  |  |  |
| educativ | Material                       | Elementos               | Cantidad | Dimensiones<br>(mm)  | Peso<br>(kg) |  |  |  |
| edu      | 1000                           |                         | 4        | 300x500x18           | 84.78        |  |  |  |
| Sión     |                                | Placa base              | 12       | 350x500x18           | 296.73       |  |  |  |
| SI       | S275                           |                         | 8        | 300x450x18           | 152.60       |  |  |  |
| N Ve     | 3275                           | Digidiza danaa naaantaa | 16       | 450/252x100/1x6      | 26.53        |  |  |  |
| nug      |                                | Rigidizadores pasantes  | 24       | 500/270x150/40x7     | 82.23        |  |  |  |
| por      |                                |                         |          | Total                | 642.87       |  |  |  |
| 0        |                                |                         | 16       | Ø 16 - L = 604 + 183 | 19.87        |  |  |  |
| ucid     | D FOO C Vo. 1 15 (corrugado)   | Pernos de anclaje       | 48       | Ø 16 - L = 454 + 183 | 48.24        |  |  |  |
| npc      | B 500 S, Ys = 1.15 (corrugado) |                         | 72       | Ø 20 - L = 408 + 228 | 113.02       |  |  |  |
| Pro      |                                |                         |          | Total                | 181.13       |  |  |  |

# 2.- CIMENTACIÓN

#### 2.1.- Elementos de cimentación aislados

#### 2.1.1.- Medición

| Referencias: N139, N181, N179, N137, N138, N180, N182 y N140 |                           | B 500 S, Ys=1.15 | Total |
|--------------------------------------------------------------|---------------------------|------------------|-------|
| Nombre de armado                                             |                           | Ø12              |       |
| Parrilla inferior - Armado X                                 | Longitud (m)              | 12x2.34          | 28.08 |
|                                                              | Peso (kg)                 | 12x2.08          | 24.93 |
| Parrilla inferior - Armado Y                                 | Longitud (m)              | 12x2.34          | 28.08 |
|                                                              | Peso (kg)                 | 12x2.08          | 24.93 |
| Parrilla superior - Armado X                                 | Longitud (m)              | 12x2.34          | 28.08 |
|                                                              | Peso (kg)                 | 12x2.08          | 24.93 |
| Parrilla superior - Armado Y                                 | Longitud (m)              | 12x2.34          | 28.08 |
|                                                              | Peso (kg)                 | 12x2.08          | 24.93 |
| Totales                                                      | Longitud (m)<br>Peso (kg) | 112.32<br>99.72  | 99.72 |





TFM\_nave\_industrial\_R30\_mortero

| Referencias: N139, N181, N179, N137, N138, N180, N182 y N140 |              | B 500 S, Ys=1.15 | Total  |
|--------------------------------------------------------------|--------------|------------------|--------|
| Nombre de armado                                             |              | Ø12              |        |
| Total con mermas                                             | Longitud (m) | 123.55           |        |
| (10.00%)                                                     | Peso (kg)    | 109.69           | 109.69 |

| Referencias: N3, N1, N36 y N38 | B 500 S, Ys=1.15 | Total   |       |
|--------------------------------|------------------|---------|-------|
| Nombre de armado               |                  | Ø12     |       |
| Parrilla inferior - Armado X   | Longitud (m)     | 11x2.04 |       |
|                                | Peso (kg)        | 11x1.81 | 19.92 |
| Parrilla inferior - Armado Y   | Longitud (m)     | 11x2.04 | 22.44 |
|                                | Peso (kg)        | 11x1.81 | 19.92 |
| Parrilla superior - Armado X   | Longitud (m)     | 11x2.04 | 22.44 |
|                                | Peso (kg)        | 11x1.81 | 19.92 |
| Parrilla superior - Armado Y   | Longitud (m)     | 11x2.04 | 22.44 |
|                                | Peso (kg)        | 11x1.81 | 19.92 |
| Totales                        | Longitud (m)     | 89.76   |       |
|                                | Peso (kg)        | 79.68   | 79.68 |
| Total con mermas               | Longitud (m)     | 98.74   |       |
| <b>對</b> 0.00%)                | Peso (kg)        | 87.65   | 87.65 |
| O                              | V                |         |       |

| <b>B</b> eferencias: N8, N13, N18, N23, N28 y N33 | B 500 S, Ys=1.15          | Total           |        |
|---------------------------------------------------|---------------------------|-----------------|--------|
| Mombre de armado                                  |                           | Ø20             |        |
| Parrilla inferior - Armado X                      | Longitud (m)              | 10x1.67         | 16.70  |
|                                                   | Peso (kg)                 | 10x4.12         | 41.18  |
| Parrilla inferior - Armado Y                      | Longitud (m)              | 5x3.07          | 15.35  |
|                                                   | Peso (kg)                 | 5x7.57          | 37.86  |
| Parrilla superior - Armado X                      | Longitud (m)              | 10x1.83         | 18.30  |
|                                                   | Peso (kg)                 | 10x4.51         | 45.13  |
| Farrilla superior - Armado Y                      | Longitud (m)              | 5x3.23          | 16.15  |
|                                                   | Peso (kg)                 | 5x7.97          | 39.83  |
| totales                                           | Longitud (m)<br>Peso (kg) | 66.50<br>164.00 | 164.00 |
| tal con mermas                                    | Longitud (m)              | 73.15           | 180.40 |
| 0.00%)                                            | Peso (kg)                 | 180.40          |        |

| Referencias: N6, N11, N16, N21, N26 y N31 | B 500 S, Ys=1.15          | Total           |        |
|-------------------------------------------|---------------------------|-----------------|--------|
| Nombre de armado                          | Ø20                       |                 |        |
| Parrilla inferior - Armado X              | Longitud (m)              | 10x1.67         | 16.70  |
|                                           | Peso (kg)                 | 10x4.12         | 41.18  |
| Parrilla inferior - Armado Y              | Longitud (m)              | 5x3.07          | 15.35  |
|                                           | Peso (kg)                 | 5x7.57          | 37.86  |
| Parrilla superior - Armado X              | Longitud (m)              | 10x1.83         | 18.30  |
|                                           | Peso (kg)                 | 10x4.51         | 45.13  |
| Parrilla superior - Armado Y              | Longitud (m)              | 5x3.23          | 16.15  |
|                                           | Peso (kg)                 | 5x7.97          | 39.83  |
| Totales                                   | Longitud (m)<br>Peso (kg) | 66.50<br>164.00 | 164.00 |
| Total con mermas (10.00%)                 | Longitud (m)<br>Peso (kg) | 73.15<br>180.40 | 180.40 |

# Resumen de medición (se incluyen mermas de acero)

|                                                              | B 500 S, Ys=1.15 (kg) |     |        | Hormigón (m³) |          |
|--------------------------------------------------------------|-----------------------|-----|--------|---------------|----------|
| Elemento                                                     | Ø12                   | Ø20 | Total  | HA-25, Yc=1.5 | Limpieza |
| Referencias: N139, N181, N179, N137, N138, N180, N182 y N140 | 8x109.69              |     | 877.52 | 8x3.75        | 8x0.63   |
| Referencias: N3, N1, N36 y N38                               | 4x87.65               |     | 350.60 | 4x3.15        | 4x0.48   |



TFM\_nave\_industrial\_R30\_mortero

|                                           | B 500 S, Ys=1.15 (kg) |          |         | Hormigón (m³) |          |
|-------------------------------------------|-----------------------|----------|---------|---------------|----------|
| Elemento                                  | Ø12                   | Ø20      | Total   | HA-25, Yc=1.5 | Limpieza |
| Referencias: N8, N13, N18, N23, N28 y N33 |                       | 6x180.40 | 1082.40 | 6x4.96        | 6x0.41   |
| Referencias: N6, N11, N16, N21, N26 y N31 |                       | 6x180.40 | 1082.40 | 6x4.96        | 6x0.41   |
| Totales                                   | 1228.12               | 2164.80  | 3392.92 | 102.09        | 11.90    |

# 2.2.- Vigas

#### 2.2.1.- Medición

| Referencias: C [N3-N139], C [N139-N181], C [N181-N179], C [N179-N137], C [N137-N1], C [N38-N140], C [N140-N182], C [N182-N180], C [N180-N138] y C [N138-N36]                               |                           |                    | B 500 S, Ys=1.15 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------|---------------|
| Nombre de armado                                                                                                                                                                           |                           | Ø8                 | Ø12              |               |
| Armado viga - Armado inferior                                                                                                                                                              | Longitud (m)<br>Peso (kg) |                    | 2x5.50<br>2x4.88 | 11.00<br>9.77 |
| Armado viga - Armado superior                                                                                                                                                              | Longitud (m)<br>Peso (kg) |                    | 2x5.50<br>2x4.88 | 11.00<br>9.77 |
| Armado viga - Estribo                                                                                                                                                                      | Longitud (m)<br>Peso (kg) | 11x1.33<br>11x0.52 |                  | 14.63<br>5.77 |
| <b>Lo</b> tales ○ > -                                                                                                                                                                      | Longitud (m)<br>Peso (kg) | 14.63<br>5.77      | 22.00<br>19.54   | 25.31         |
| otal con mermas<br>0.00%)                                                                                                                                                                  | Longitud (m)<br>Peso (kg) | 16.09<br>6.35      | 24.20<br>21.49   | 27.84         |
| Referencias: C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], [N16-N11], C [N11-N6], C [N6-N1], C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33] y C [N33-N38] |                           | B 500 S,           | Ys=1.15          | Total         |
| Nombre de armado                                                                                                                                                                           |                           | Ø8                 | Ø12              |               |
| mado viga - Armado inferior                                                                                                                                                                | Longitud (m)<br>Peso (kg) |                    | 2x5.30<br>2x4.71 | 10.60<br>9.41 |
| Armado viga - Armado superior                                                                                                                                                              | Longitud (m)<br>Peso (kg) |                    | 2x5.30<br>2x4.71 | 10.60<br>9.41 |
| Armado viga - Estribo                                                                                                                                                                      | Longitud (m)<br>Peso (kg) | 12x1.33<br>12x0.52 |                  | 15.96<br>6.30 |
| tales                                                                                                                                                                                      | Longitud (m)<br>Peso (kg) | 15.96<br>6.30      | 21.20<br>18.82   | 25.12         |
| tal con mermas<br>ជា០.00%)                                                                                                                                                                 | Longitud (m)<br>Peso (kg) | 17.56<br>6.93      | 23.32<br>20.70   | 27.63         |

#### Resumen de medición (se incluyen mermas de acero)

|                                                                                                                                                                                              | B 500   | S, Ys=1.15 | (kg)   | Hormigón (m³) |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|--------|---------------|----------|
| Elemento                                                                                                                                                                                     | Ø8      | Ø12        | Total  | HA-25, Yc=1.5 | Limpieza |
| Referencias: C [N3-N139], C [N139-N181], C [N181-N179], C [N179-N137], C [N137-N1], C [N38-N140], C [N140-N182], C [N182-N180], C [N180-N138] y C [N138-N36]                                 | 10x6.35 | 10x21.49   | 278.40 | 10x0.46       | 10x0.11  |
| Referencias: C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33] y C [N33-N38] | 14x6.93 | 14x20.70   | 386.82 | 14x0.51       | 14x0.13  |
| Totales                                                                                                                                                                                      | 160.52  | 504.70     | 665.22 | 11.67         | 2.92     |



# 1.2 Mediciones de la proyección de mortero de vermiculita

Para el cálculo de la cantidad necesaria de mortero se realiza una simplificación debido a que el precio considerado para la proyección de mortero de vermiculita se especifica en m² necesarios de proyección con un espesor estándar. Por este motivo, la medición que es relevante son los metros cuadrados de acero al descubierto que posee la estructura.

Solo se incluye la medición del Caso 2, debido a que será el único que tendrá una protección mediante revestimiento. Según se obtiene de las mediciones de CYPE:

Acero laminado: Medición de las superficies a pintar Superficie unitaria Longitud Superficie Serie Perfil  $(m^2/m)$ (m) (m2) **IPE 270** 1.067 304.000 324.307 158.858 113.330 **IPE 180** 0.713 IPE **IPE 360** 1.384 84.953 117.575 **IPE 240** 0.948 76.000 72.018 #80x3 0.306 410.000 125.438 Huecos cuadrados #70x3 0.266 295.305 78.535 R 22 0.069 74.120 5.123 R 12 0.038 492.368 18.562 R R 16 0.050 11.180 0.562 R 19 0.060 109.139 6.515 Total 861.963

Tabla 1. Medición de las superficies del Caso 2.



# 1.3 Mediciones de la instalación de rociadores automáticos

Las mediciones de la instalación de rociadores se obtienen a partir de los cálculos realizados mediante el predimensionado de la instalación y su comprobación con Epanet. Se muestran a continuación los elementos que componen la red de rociadores:

Tabla 2. Medición de las tuberías de acero galvanizado de la red de rociadores.

|                  | <u> </u>                      |  |  |
|------------------|-------------------------------|--|--|
|                  | Tuberías de acero galvanizado |  |  |
| Diámetro [pulg.] | Longitud real [m]             |  |  |
| 6                | 2                             |  |  |
| 4 1/2            | 28,4                          |  |  |
| 3                | 34,7                          |  |  |
| 2 ½              | 31,2                          |  |  |
| 2                | 15,6                          |  |  |
| 1 1/4            | 10,4                          |  |  |
| 1 ½              | 5,2                           |  |  |
| 1                | 210                           |  |  |

Tabla 3. Medición de los elementos considerados de la red de rociadores.

| Elemento                                | Cantidad [ud] |
|-----------------------------------------|---------------|
| Rociador automático ½ "                 | 100           |
| EBARA AQUAFIRE AFU-EN-ENR 125-200/55 EJ | 2             |



# 2. Presupuesto

El presupuesto del proyecto tendrá en cuenta los materiales incluidos en el apartado Mediciones. Los precios unitarios de cada materia prima considerada se obtienen del Generador de precios de la construcción y se obtiene el presupuesto mediante el software Arquímedes, ambos pertenecientes al paquete de herramientas de CYPE Ingenieros.

Diseño y cálculo de una nave industrial y análisis de su resistencia a la situación de incendio por diferentes métodos. Ventajas y ahorro económico.



PRESUPUESTO CASO 1 Página 38 PRESUPUESTO PARCIAL Nº 1 ACONDICIONAMIENTO **DESCRIPCION** UDS. LARGO ANCHO ALTO CANTIDAD **PRECIO IMPORTE** 1.1 M². Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión. Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión. Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados. Criterio de valoración económica: El precio no incluye la tala de árboles ni el transporte de los materiales retirados. 4.320,000 1,17 5.054,40 1.2 M². Solera de hormigón en masa de 10 cm de espesor, realizada con hormigón HM-15/B/20/I fabricado en central y vertido desde camión, extendido y vibrado manual mediante regla vibrante, sin tratamiento de su superficie con juntas de retracción de 5 mm de espesor, mediante corte con disco de diamante. Incluso panel de poliestireno expandido de 3 cm de espesor, para la ejecución de juntas de dilatación. Incluye: Preparación de la superficie de apoyo del hormigón. Replanteo de las juntas de construcción y de dilatación. Tendido de niveles mediante toques, maestras de hormigón o reglas. Riego de la superficie base. Formación de juntas de construcción y de juntas perimetrales de dilatación. Vertido, extendido y vibrado del hormigón. Curado del hormigón. Replanteo de las juntas de retracción. Corte del hormigón. Limpieza final de las juntas de retracción. Criterio de medición de proyecto: Superficie medida según documentación gráfica de Provecto. Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin deducir la superficie ocupada por los pilares

situados dentro de su perímetro.

Criterio de valoración económica: El precio no incluye la base de la solera.

910,000

14,01

12.749,10

1.08

718.44

665,220

PRESUPUESTO CASO 1 Página 40

| PRESUPUESTO | PARCIAL N | ° 3 FSTRUCT | URA METALICA |
|-------------|-----------|-------------|--------------|

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

#### 3.1 Geometría

3.1.1 Kg. Acero UNE-EN 10025 S275JR, en pilares formados por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, colocado con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional del pilar. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, las placas de arranque y de transición de pilar inferior a superior, los casquillos y los elementos auxiliares de montaje.

625,170 1,81 15.611,56

3.1.2 Kg. Acero UNE-EN 10025 S275JR, en vigas formadas por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de hasta 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaie.

15.408,340 1,76 27.118,68

3.1.3 Kg. Acero UNE-EN 10210-1 S275J0H, en vigas formadas por piezas simples de perfiles huecos acabados en caliente de las series redondo, cuadrado o rectangular, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje.

8.774,430 1,98 17.373,37

3.1.4 Kg. Acero UNE-EN 10162 S235JRC, en correas metálicas formadas por piezas simples de perfiles conformados en frío de las series omega, L, U, C o Z, acabado galvanizado, fijadas a las cerchas con uniones soldadas en obra.

Incluye: Replanteo de las correas sobre las cerchas. Presentación de las correas sobre las cerchas. Aplomado y nivelación definitivos. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje, pero no incluye la chapa o panel que actuará como cubierta.

4.831,400 2,72 13.141,41

PRESUPUESTO CASO 1 Página 41 PRESUPUESTO PARCIAL Nº 3 ESTRUCTURA METÁLICA UDS. LARGO ANCHO **PRECIO DESCRIPCION** ALTO CANTIDAD **IMPORTE** 3.2.1 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x350 mm y espesor 20 mm, con 6 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 20 mm de diámetro y 35 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaie. 12,000 939,84 78.32 3.2.2 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje. 270,68 67.67 3.2.3 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 450x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje. 8 000 62 62 500,96 3.2.4 M³. Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central, y vertido desde camión, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 60 kg/m3. Incluso alambre de atar, separadores y tubos para paso de instalaciones. Incluye: Colocación de la armadura con separadores homologados. Colocación de tubos para paso de instalaciones. Vertido y compactación del hormigón. Coronación y enrase. Curado del hormigón. Criterio de medición de proyecto: Volumen medido sobre las secciones teóricas de la excavación, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados. Criterio de valoración económica: El precio incluye la elaboración de la ferralla

(corte, doblado y conformado de elementos) en taller industrial y el montaje en el

lugar definitivo de su colocación en obra, pero no incluye el encofrado.

155,15

1.810,60

11,670

PRESUPUESTO CASO 1 Página 42

PRESUPUESTO PARCIAL Nº 4 FACHADAS Y CERRAMIENTOS

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

M². Cubierta plana no transitable, ventilada, autoprotegida, tipo convencional, pendiente del 1% al 15%. FORMACIÓN DE PENDIENTES: tablero cerámico hueco machihembrado de 80x25x3,5 cm con capa de regularización de mortero de cemento, industrial, M-5, de 3 cm de espesor, acabado fratasado, sobre tabiques aligerados de ladrillo cerámico hueco de 24x11,5x9 cm, recibido con mortero de cemento, industrial, M-5, dispuestos cada 80 cm y con 30 cm de altura media, rematados superiormente con maestras de mortero de cemento, industrial, M-5; AISLAMIENTO TÉRMICO: fieltro aislante de lana mineral; IMPERMEABILIZACIÓN: tipo monocapa, adherida, formada por lámina de betún modificado con elastómero SBS, LBM(SBS)-50/G-FP previa imprimación con emulsión asfáltica aniónica con cargas tipo EB.

Incluye: Replanteo de los puntos singulares. Replanteo de las pendientes y trazado de limatesas, limahoyas y juntas. Formación de pendientes mediante encintado de limatesas, limahoyas y juntas con maestras de ladrillo. Relleno de juntas con poliestireno expandido. Ejecución de los tabiques aligerados. Revisión de la superficie base en la que se realiza la fijación del aislamiento de acuerdo con las exigencias de la técnica a emplear. Corte, ajuste y colocación del aislamiento. Ejecución del tablero cerámico machihembrado sobre los tabiques aligerados. Vertido, extendido y regleado de la capa de mortero de regularización. Limpieza y preparación de la superficie. Colocación de la impermeabilización.

Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de valoración económica: El precio no incluye la ejecución y el sellado de las juntas ni la ejecución de remates en los encuentros con paramentos y desagües.

926,800 63,97 59.287,40

4.2

4.1

M². Cerramiento de fachada formado por paneles alveolares prefabricados de hormigón pretensado, de 16 cm de espesor, 1,2 m de anchura y 9 m de longitud máxima, con los bordes machihembrados, acabado liso, de color gris, dispuestos en posición horizontal, con inclusión o delimitación de huecos. Incluso colocación en obra de los paneles alveolares con ayuda de grúa autopropulsada, apuntalamientos, resolución del apoyo sobre la superficie superior de la cimentación, enlace de los paneles alveolares por las cabezas a las vigas de la estructura mediante conectores, y por los extremos a los pilares de la estructura y sellado de juntas con silicona neutra. Totalmente montado.

Incluye: Replanteo de los paneles alveolares. Colocación del cordón de caucho adhesivo. Posicionado de los paneles alveolares en su lugar de colocación. Aplomo y apuntalamiento de los paneles alveolares. Soldadura de los elementos metálicos de conexión. Sellado de juntas y retacado final con mortero de retracción controlada.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

1.014,000 23,75 24.082,50

|     | JPUESTO_CASO_1  JPUESTO PARCIAL № 5 ROCIADORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |        | Página 43 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| Nº  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO CANTIDAD                                                                                                                                                        | PRECIO | IMPORTE   |
| 5.1 | Ud. Rociador automático de 1/2", terminación en bronce, pos fusible 141° C. Medida la unidad instalada.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sición colgante,                                                                                                                                                   |        |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100,000                                                                                                                                                            | 23,10  | 2.310,00  |
| 5.2 | M. Red aérea de distribución de agua para abastecimiento de extinción de incendios, formada por tubería de acero galvanizado longitudinal, de 1" DN 25 mm de diámetro, unión roscada, sin arranca desde la fuente de abastecimiento de agua hasta cada equ de incendios. Incluso material auxiliar para montaje y sujec accesorios y piezas especiales, mano de wash-primer + catalizad 50 micras de espesor, y dos manos de esmalte rojo de al meno espesor cada una.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o con soldadura<br>calorifugar, que<br>ipo de extinción<br>ción a la obra,<br>dor de al menos                                                                      |        |           |
|     | Incluye: Replanteo del recorrido de la tubería y de la situación de lo sujeción. Presentación de tubos. Fijación del material auxiliar sujeción a la obra. Raspado y limpieza. Aplicación de wash-prime esmalte. Colocación de tubos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | para montaje y<br>r + catalizador y                                                                                                                                |        |           |
|     | Criterio de medición de proyecto: Longitud medida según documo de Proyecto.  Criterio de medición de obra: Se medirá la longitud realmente e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                  |        |           |
|     | especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ejecutaua segun                                                                                                                                                    |        |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210,000                                                                                                                                                            | 25,96  | 5.451,60  |
| 5.3 | M. Red aérea de distribución de agua para abastecimiento de extinción de incendios, formada por tubería de acero galvanizado longitudinal, de 1 1/4" DN 32 mm de diámetro, unión roscada, sin arranca desde la fuente de abastecimiento de agua hasta cada equ de incendios. Incluso material auxiliar para montaje y sujec accesorios y piezas especiales, mano de wash-primer + catalizad 50 micras de espesor, y dos manos de esmalte rojo de al meno espesor cada una.  Incluye: Replanteo del recorrido de la tubería y de la situación de lo sujeción. Presentación de tubos. Fijación del material auxiliar sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer esmalte. Colocación de tubos.  Criterio de medición de proyecto: Longitud medida según docum de Proyecto.  Criterio de medición de obra: Se medirá la longitud realmente e especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | con soldadura calorifugar, que ipo de extinción ión a la obra, dor de al menos os 40 micras de cos elementos de para montaje y r + catalizador y entación gráfica  |        |           |
|     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,200                                                                                                                                                              | 31,32  | 162,86    |
| 5.4 | M. Red aérea de distribución de agua para abastecimiento de extinción de incendios, formada por tubería de acero galvanizado longitudinal, de 1 1/2" DN 40 mm de diámetro, unión roscada, sin arranca desde la fuente de abastecimiento de agua hasta cada equ de incendios. Incluso material auxiliar para montaje y sujec accesorios y piezas especiales, mano de wash-primer + catalizado 50 micras de espesor, y dos manos de esmalte rojo de al meno espesor cada una.  Incluye: Replanteo del recorrido de la tubería y de la situación de la sujeción. Presentación de tubos. Fijación del material auxiliar sujeción a la obra. Raspado y limpieza. Aplicación de wash-primeresmalte. Colocación de tubos.  Criterio de medición de proyecto: Longitud medida según documo de Proyecto.  Criterio de medición de obra: Se medirá la longitud realmente estatorio de medición de obra: Se medirá la longitud realmente estatorio de medición de obra: Se medirá la longitud realmente estatorio de medición de obra: Se medirá la longitud realmente estatorio de medición de obra: Se medirá la longitud realmente estatorio de medición de obra: Se medirá la longitud realmente de su procesa de servicio de medición de obra: Se medirá la longitud realmente de su procesa de servicio de medición de obra: Se medirá la longitud realmente de su procesa de servicio de medición de obra: Se medirá la longitud realmente de su procesa de servicio de medición de obra: Se medirá la longitud realmente de su procesa de servicio de ser | con soldadura calorifugar, que ipo de extinción sión a la obra, dor de al menos es 40 micras de cos elementos de para montaje y r + catalizador y entación gráfica |        |           |
|     | especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |        |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,400                                                                                                                                                             | 35,24  | 366,50    |

PRESUPUESTO CASO 1 Página 44 PRESUPUESTO PARCIAL Nº 5 ROCIADORES **DESCRIPCION** UDS. LARGO ANCHO ALTO CANTIDAD **PRECIO IMPORTE** M. Red aérea de distribución de agua para abastecimiento de los equipos de 5.5 extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 2" DN 50 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una. Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos. Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto. 15,600 45,14 704,18 5.6 M. Red aérea de distribución de aqua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 2 1/2" DN 65 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una. Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos. Criterio de medición de proyecto: Longitud medida según documentación gráfica de Provecto. Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto. 31.200 54.86 1.711.63 5.7 M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 3" DN 80 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una. Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos. Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto. 34,700 2.965,81 85.47 5.8 M. Tubo de acero galvanizado 4 1/2" 28,400 88,57 2.515,39 5.9 M. Tubo de acero galvanizado 6"

Ud. Bomba EBARA AQUAFIRE AFU-EN-ENR 125-200/55 EJ

5.10

115,23

14.657.93

230,46

29.315.86

2 000

2.000

| RESUMEN POR CAPITULOS             |            |
|-----------------------------------|------------|
| CAPITULO ACONDICIONAMIENTO        | 17.803,50  |
| CAPITULO CIMENTACIONES            | 15.221,43  |
| CAPITULO ESTRUCTURA METÁLICA      | 76.767,10  |
| CAPITULO FACHADAS Y CERRAMIENTOS  | 83.369,90  |
| CAPITULO ROCIADORES               | 45.734,29  |
| REDONDEO                          |            |
| PRESUPUESTO DE EJECUCION MATERIAL | 238.896,22 |

EL PRESUPUESTO DE EJECUCION MATERIAL ASCIENDE A LAS EXPRESADAS DOSCIENTOS TREINTA Y OCHO MIL OCHOCIENTOS NOVENTA Y SEIS EUROS CON VEINTIDOS CÉNTIMOS.

Proyecto: PRESUPUESTO\_CASO\_1

| Capítulo                              | Importe    |
|---------------------------------------|------------|
| Capítulo 1 ACONDICIONAMIENTO          | 17.803,50  |
| Capítulo 2 CIMENTACIONES              | 15.221,43  |
| Capítulo 2.1 Elementos aislados       | 13.212,23  |
| Capítulo 2.2 Vigas                    | 2.009,20   |
| Capítulo 3 ESTRUCTURA METÁLICA        | 76.767,10  |
| Capítulo 3.1 Geometría                | 73.245,02  |
| Capítulo 3.2 Uniones                  | 3.522,08   |
| Capítulo 4 FACHADAS Y CERRAMIENTOS    | 83.369,90  |
| Capítulo 5 ROCIADORES                 | 45.734,29  |
| Presupuesto de ejecución material     | 238.896,22 |
| 15% de gastos generales               | 35.834,43  |
| 6% de beneficio industrial            | 14.333,77  |
| Suma                                  | 289.064,42 |
| 21% IVA                               | 60.703,53  |
| Presupuesto de ejecución por contrata | 349.767,95 |

Asciende el presupuesto de ejecución por contrata a la expresada cantidad de TRESCIENTOS CUARENTA Y NUEVE MIL SETECIENTOS SESENTA Y SIETE EUROS CON NOVENTA Y CINCO CÉNTIMOS.



| PRESU | PUESTO_CASO_1_REDIMENSION                                                                                                                   | NADO                                                                                                                                                                                                                                                 |                                                                                                   |        | Página 38 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|-----------|
| PRESU | PUESTO PARCIAL Nº 1 ACONDIC                                                                                                                 | IONAMIENTO                                                                                                                                                                                                                                           |                                                                                                   |        |           |
| N°    | DESCRIPCION                                                                                                                                 | UDS. LARGO ANCHO                                                                                                                                                                                                                                     | ALTO CANTIDAD                                                                                     | PRECIO | IMPORTE   |
| 1.1   | trabajos necesarios para<br>urbanización: pequeñas p<br>basuras o cualquier otro m                                                          | del terreno, con medios mecán<br>retirar de las zonas previstas<br>lantas, maleza, broza, maderas<br>aterial existente, hasta una profu<br>rra vegetal, considerando como r                                                                          | para la edificación o<br>caídas, escombros,<br>indidad no menor que                               |        |           |
|       |                                                                                                                                             | terreno. Remoción mecánica o<br>sición mecánica de los materiale                                                                                                                                                                                     |                                                                                                   |        |           |
|       | Criterio de medición de p<br>según documentación gráfi                                                                                      | royecto: Superficie medida en p<br>ca de Proyecto.                                                                                                                                                                                                   | proyección horizontal,                                                                            |        |           |
|       | realmente ejecutada seg                                                                                                                     | ora: Se medirá, en proyección ho<br>ún especificaciones de Proye<br>e excavación no autorizados.                                                                                                                                                     | •                                                                                                 |        |           |
|       | Criterio de valoración eco<br>transporte de los materiales                                                                                  | nómica: El precio no incluye la<br>s retirados.                                                                                                                                                                                                      | tala de árboles ni el                                                                             |        |           |
|       |                                                                                                                                             |                                                                                                                                                                                                                                                      | 4.320,000                                                                                         | 1,17   | 5.054,40  |
| 1.2   | HM-15/B/20/I fabricado en<br>manual mediante regla vib<br>retracción de 5 mm de es                                                          | n masa de 10 cm de espesor, re<br>central y vertido desde camión,<br>grante, sin tratamiento de su su<br>pesor, mediante corte con disco<br>ndido de 3 cm de espesor, para                                                                           | extendido y vibrado<br>perficie con juntas de<br>de diamante. Incluso                             |        |           |
|       | juntas de construcción y<br>maestras de hormigón o re<br>de construcción y de jun<br>vibrado del hormigón. O<br>retracción. Corte del hormi | superficie de apoyo del hormig<br>de dilatación. Tendido de nive<br>glas. Riego de la superficie base<br>tas perimetrales de dilatación.<br>turado del hormigón. Replante<br>gón. Limpieza final de las juntas o<br>yecto: Superficie medida según o | les mediante toques, . Formación de juntas Vertido, extendido y o de las juntas de le retracción. |        |           |
|       | Criterio de medición de ob                                                                                                                  | ra: Se medirá la superficie realm<br>cto, sin deducir la superficie oc                                                                                                                                                                               | , .                                                                                               |        |           |

situados dentro de su perímetro. Criterio de valoración económica: El precio no incluye la base de la solera.

910,000

14,01

12.749,10

|                           | ESTO_CASO_1_REDIMENSIONADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | Página 39   |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|
| N°                        | ESTO PARCIAL Nº 2 CIMENTACIONES  DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRECIO  | IMPORTE     |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TILLOIG | IIVII OTTIE |
| <b>2.1 Elemen</b> 2.1.1   | M³. Hormigón HL-150/B/20, fabricado en central y vertido desde camión, para formación de capa de hormigón de limpieza y nivelado de fondos de cimentación, en el fondo de la excavación previamente realizada. Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados. |         |             |
|                           | 11,140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77,98   | 868,70      |
| 2.1.2                     | M³. Hormigón HA-25/B/20/lla fabricado en central, y vertido desde camión para formación de zapata de cimentación. Incluye: Vertido y compactación del hormigón. Curado del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.                                                                                                                                                                      |         |             |
|                           | 95,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96,85   | 9.218,18    |
| 2.1.3                     | Kg. Acero UNE-EN 10080 B 500 S para elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y montaje en zapata de cimentación. Incluso alambre de atar y separadores. Incluye: Corte y doblado de la armadura. Montaje y colocación de la armadura con separadores homologados. Sujeción de la armadura. Criterio de medición de proyecto: Peso teórico calculado según documentación gráfica de Proyecto.  Criterio de medición de obra: Se calculará el peso teórico de la armadura ejecutada según especificaciones de Proyecto.                                                              | 30,00   | 3.210,10    |
|                           | 3.156,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,99    | 3.125,35    |
| <b>2.2 Vigas</b><br>2.2.1 | M³. Hormigón HL-150/B/20, fabricado en central y vertido desde camión, para formación de capa de hormigón de limpieza y nivelado de fondos de cimentación, en el fondo de la excavación previamente realizada. Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados. |         |             |
|                           | 2,870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77,98   | 223,80      |
| 2.2.2                     | M³. Hormigón HA-25/B/20/lla fabricado en central, y vertido desde camión para formación de viga entre zapatas. Incluye: Vertido y compactación del hormigón. Curado del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.                                                                                                                                                                         |         |             |
|                           | 11,490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92,86   | 1.066,96    |
| 2.2.3                     | Kg. Acero UNE-EN 10080 B 500 S para elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y montaje en viga entre zapatas. Incluso alambre de atar y separadores. Incluye: Corte y doblado de la armadura. Montaje y colocación de la armadura con separadores homologados. Sujeción de la armadura. Criterio de medición de proyecto: Peso teórico calculado según documentación gráfica de Proyecto.  Criterio de medición de obra: Se calculará el peso teórico de la armadura ejecutada según especificaciones de Proyecto.                                                                 |         |             |
|                           | 665,220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,08    | 718,44      |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |             |

| № 3 FSTRUCTURA METALICA |
|-------------------------|
|                         |
|                         |

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

#### 3.1 Geometría

3.1.2

3.1.3

3.1.1 Kg. Acero UNE-EN 10025 S275JR, en pilares formados por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, colocado con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional del pilar. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, las placas de arranque y de transición de pilar inferior a superior, los casquillos y los elementos auxiliares de montaje.

8 036 400

1,81

1,76

14.545.88

Kg. Acero UNE-EN 10025 S275JR, en vigas formadas por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de hasta 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaie.

14.090,840

24.799,88

Kg. Acero UNE-EN 10210-1 S275J0H, en vigas formadas por piezas simples de perfiles huecos acabados en caliente de las series redondo, cuadrado o rectangular, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje.

8.774,430

1,98

17.373,37

3.1.4 Kg. Acero UNE-EN 10162 S235JRC, en correas metálicas formadas por piezas simples de perfiles conformados en frío de las series omega, L, U, C o Z, acabado galvanizado, fijadas a las cerchas con uniones soldadas en obra.

Incluye: Replanteo de las correas sobre las cerchas. Presentación de las correas sobre las cerchas. Aplomado y nivelación definitivos. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje, pero no incluye la chapa o panel que actuará como cubierta.

4.831,400

2,72

13.141,41

|       | UESTO_CASO_1_REDIMENSIONADO UESTO PARCIAL № 3 ESTRUCTURA METÁLICA                                                                                                                                                                                                                             |        | Pagina 41 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| N°    | DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD                                                                                                                                                                                                                                                    | PRECIO | IMPORTE   |
| 3.2.1 | Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x350 mm y espesor 20 mm, con 6 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 20 mm de diámetro y 35 cm de longitud total.                                |        |           |
|       | Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto.                           |        |           |
|       | Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto.                                                                                                                                                                        |        |           |
|       | Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje.                                                                                                           |        |           |
|       | 12,000                                                                                                                                                                                                                                                                                        | 78,32  | 939,84    |
| 3.2.2 | Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total.                                |        |           |
|       | Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación.                                                                                                                                    |        |           |
|       | Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto.  Criterio de medición de obra: Se medirá el número de unidades realmente                                                                                                             |        |           |
|       | ejecutadas según especificaciones de Proyecto.                                                                                                                                                                                                                                                |        |           |
|       | Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje.                                                                                                           |        |           |
|       | 4,000                                                                                                                                                                                                                                                                                         | 67,67  | 270,68    |
| 3.2.3 | Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 450x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total.                                |        |           |
|       | Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación.  Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto.                          |        |           |
|       | Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto.                                                                                                                                                                        |        |           |
|       | Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje.                                                                                                           |        |           |
|       | 8,000                                                                                                                                                                                                                                                                                         | 62,62  | 500,96    |
| 3.2.4 | M³. Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla<br>fabricado en central, y vertido desde camión, y acero UNE-EN 10080 B 500 S, con<br>una cuantía aproximada de 60 kg/m³. Incluso alambre de atar, separadores y tubos<br>para paso de instalaciones.             |        |           |
|       | Incluye: Colocación de la armadura con separadores homologados. Colocación de tubos para paso de instalaciones. Vertido y compactación del hormigón. Coronación y enrase. Curado del hormigón.                                                                                                |        |           |
|       | Criterio de medición de proyecto: Volumen medido sobre las secciones teóricas de la excavación, según documentación gráfica de Proyecto.  Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de |        |           |
|       | excavación no autorizados. Criterio de valoración económica: El precio incluye la elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y el montaje en el lugar definitivo de su colocación en obra, pero no incluye el encofrado.                      |        |           |
|       | 11,670                                                                                                                                                                                                                                                                                        | 155,15 | 1.810,60  |
|       | 11,070                                                                                                                                                                                                                                                                                        | 100,10 | 1.010,00  |

PRESUPUESTO PARCIAL Nº 4 FACHADAS Y CERRAMIENTOS

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

M². Cubierta plana no transitable, ventilada, autoprotegida, tipo convencional, pendiente del 1% al 15%. FORMACIÓN DE PENDIENTES: tablero cerámico hueco machihembrado de 80x25x3,5 cm con capa de regularización de mortero de cemento, industrial, M-5, de 3 cm de espesor, acabado fratasado, sobre tabiques aligerados de ladrillo cerámico hueco de 24x11,5x9 cm, recibido con mortero de cemento, industrial, M-5, dispuestos cada 80 cm y con 30 cm de altura media, rematados superiormente con maestras de mortero de cemento, industrial, M-5; AISLAMIENTO TÉRMICO: fieltro aislante de lana mineral; IMPERMEABILIZACIÓN: tipo monocapa, adherida, formada por lámina de betún modificado con elastómero SBS, LBM(SBS)-50/G-FP previa imprimación con emulsión asfáltica aniónica con cargas tipo EB.

Incluye: Replanteo de los puntos singulares. Replanteo de las pendientes y trazado de limatesas, limahoyas y juntas. Formación de pendientes mediante encintado de limatesas, limahoyas y juntas con maestras de ladrillo. Relleno de juntas con poliestireno expandido. Ejecución de los tabiques aligerados. Revisión de la superficie base en la que se realiza la fijación del aislamiento de acuerdo con las exigencias de la técnica a emplear. Corte, ajuste y colocación del aislamiento. Ejecución del tablero cerámico machihembrado sobre los tabiques aligerados. Vertido, extendido y regleado de la capa de mortero de regularización. Limpieza y preparación de la superficie. Colocación de la impermeabilización.

Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de valoración económica: El precio no incluye la ejecución y el sellado de las juntas ni la ejecución de remates en los encuentros con paramentos y desagües.

926,800 63,97 59.287,40

4.2

4.1

M². Cerramiento de fachada formado por paneles alveolares prefabricados de hormigón pretensado, de 16 cm de espesor, 1,2 m de anchura y 9 m de longitud máxima, con los bordes machihembrados, acabado liso, de color gris, dispuestos en posición horizontal, con inclusión o delimitación de huecos. Incluso colocación en obra de los paneles alveolares con ayuda de grúa autopropulsada, apuntalamientos, resolución del apoyo sobre la superficie superior de la cimentación, enlace de los paneles alveolares por las cabezas a las vigas de la estructura mediante conectores, y por los extremos a los pilares de la estructura y sellado de juntas con silicona neutra. Totalmente montado.

Incluye: Replanteo de los paneles alveolares. Colocación del cordón de caucho adhesivo. Posicionado de los paneles alveolares en su lugar de colocación. Aplomo y apuntalamiento de los paneles alveolares. Soldadura de los elementos metálicos de conexión. Sellado de juntas y retacado final con mortero de retracción controlada.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

1.014,000 23,75 24.082,50

| DESCRIPCION  UDS. LARGO ANCHO ALTO CANTIDAD  Ud. Rociador automático de 1/2", terminación en bronce, posición colgante, fusible 141° C. Medida la unidad instalada.  100,000  M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRECIO<br>23,10 | 2.310,00 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
| fusible 141° C. Medida la unidad instalada.  100,000  M. Red aérea de distribución de agua para abastecimiento de los equipos de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23,10           | 2.310,00 |
| M. Red aérea de distribución de agua para abastecimiento de los equipos de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23,10           | 2.310,00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |          |
| longitudinal, de 1" DN 25 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una.  Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y                                                                                                                                                                                                                                                                                         |                 |          |
| esmalte. Colocación de tubos.<br>Criterio de medición de proyecto: Longitud medida según documentación gráfica<br>de Proyecto.<br>Criterio de medición de obra: Se medirá la longitud realmente ejecutada según                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |          |
| especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |          |
| 210,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25,96           | 5.451,60 |
| M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 1 1/4" DN 32 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una.  Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y                                                                                                                                                                                                             |                 |          |
| sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos.<br>Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |          |
| Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |          |
| 5,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31,32           | 162,86   |
| M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 1 1/2" DN 40 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una.  Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos.  Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto. |                 |          |
| Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |          |
| 10,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35,24           | 366,50   |

| PRESUE<br>Nº | PUESTO PARCIAL Nº 5 ROCIADORES  DESCRIPCION LIDS LARGO ANCHO ALTO CANTIDAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DDECIO | IMPORTE   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| Ν°           | DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRECIO | IMPORTE   |
| 5.5          | M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 2" DN 50 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una. Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos.  Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto.  Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto. |        |           |
|              | 15,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45,14  | 704,18    |
| 5.6          | M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 2 1/2" DN 65 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | , , , , , |
|              | Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y esmalte. Colocación de tubos.  Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto.  Criterio de medición de obra: Se medirá la longitud realmente ejecutada según                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           |
|              | especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |           |
|              | 31,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54,86  | 1.711,63  |
| 5.7          | M. Red aérea de distribución de agua para abastecimiento de los equipos de extinción de incendios, formada por tubería de acero galvanizado con soldadura longitudinal, de 3" DN 80 mm de diámetro, unión roscada, sin calorifugar, que arranca desde la fuente de abastecimiento de agua hasta cada equipo de extinción de incendios. Incluso material auxiliar para montaje y sujeción a la obra, accesorios y piezas especiales, mano de wash-primer + catalizador de al menos 50 micras de espesor, y dos manos de esmalte rojo de al menos 40 micras de espesor cada una. Incluye: Replanteo del recorrido de la tubería y de la situación de los elementos de sujeción. Presentación de tubos. Fijación del material auxiliar para montaje y sujeción a la obra. Raspado y limpieza. Aplicación de wash-primer + catalizador y                                                                                                                                                                                                                                        |        |           |
|              | esmalte. Colocación de tubos.<br>Criterio de medición de proyecto: Longitud medida según documentación gráfica<br>de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           |
|              | Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |           |
| 5.8          | M. Tubo de acero galvanizado 4 1/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85,47  | 2.965,81  |
|              | 28,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88,57  | 2.515,39  |
| 5.9          | M. Tubo de acero galvanizado 6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |           |
|              | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115,23 | 230,46    |
| 5.10         | Ud. Bomba EBARA AQUAFIRE AFU-EN-ENR 125-200/55 EJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |           |

14.657,93

29.315,86

2,000

| RESUMEN POR CAPITULOS             |            |  |  |  |
|-----------------------------------|------------|--|--|--|
| CAPITULO ACONDICIONAMIENTO        | 17.803,50  |  |  |  |
| CAPITULO CIMENTACIONES            | 15.221,43  |  |  |  |
| CAPITULO ESTRUCTURA METÁLICA      | 73.382,62  |  |  |  |
| CAPITULO FACHADAS Y CERRAMIENTOS  | 83.369,90  |  |  |  |
| CAPITULO ROCIADORES               | 45.734,29  |  |  |  |
| REDONDEO                          |            |  |  |  |
| PRESUPUESTO DE EJECUCION MATERIAL | 235.511,74 |  |  |  |

EL PRESUPUESTO DE EJECUCION MATERIAL ASCIENDE A LAS EXPRESADAS DOSCIENTOS TREINTA Y CINCO MIL QUINIENTOS ONCE EUROS CON SETENTA Y CUATRO CÉNTIMOS.

#### Proyecto: PRESUPUESTO\_CASO\_1\_REDIMENSIONADO

| Capítulo                              | Importe    |
|---------------------------------------|------------|
| Capítulo 1 ACONDICIONAMIENTO          | 17.803,50  |
| Capítulo 2 CIMENTACIONES              | 15.221,43  |
| Capítulo 2.1 Elementos aislados       | 13.212,23  |
| Capítulo 2.2 Vigas                    | 2.009,20   |
| Capítulo 3 ESTRUCTURA METÁLICA        | 73.382,62  |
| Capítulo 3.1 Geometría                | 69.860,54  |
| Capítulo 3.2 Uniones                  | 3.522,08   |
| Capítulo 4 FACHADAS Y CERRAMIENTOS    | 83.369,90  |
| Capítulo 5 ROCIADORES                 | 45.734,29  |
| Presupuesto de ejecución material     | 235.511,74 |
| 15% de gastos generales               | 35.326,76  |
| 6% de beneficio industrial            | 14.130,70  |
| Suma                                  | 284.969,20 |
| 21% IVA                               | 59.843,53  |
| Presupuesto de ejecución por contrata | 344.812,73 |

Asciende el presupuesto de ejecución por contrata a la expresada cantidad de TRESCIENTOS CUARENTA Y CUATRO MIL OCHOCIENTOS DOCE EUROS CON SETENTA Y TRES CÉNTIMOS.



PRESUPUESTO CASO 2 Página 28 PRESUPUESTO PARCIAL Nº 1 ACONDICIONAMIENTO **DESCRIPCION** UDS. LARGO ANCHO ALTO CANTIDAD **PRECIO IMPORTE** 1.1 M². Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión. Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión. Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados. Criterio de valoración económica: El precio no incluye la tala de árboles ni el transporte de los materiales retirados. 4.320,000 1,17 5.054,40 1.2 M<sup>2</sup>. Solera de hormigón en masa de 10 cm de espesor, realizada con hormigón HM-15/B/20/I fabricado en central y vertido desde camión, extendido y vibrado manual mediante regla vibrante, sin tratamiento de su superficie con juntas de retracción de 5 mm de espesor, mediante corte con disco de diamante. Incluso panel de poliestireno expandido de 3 cm de espesor, para la ejecución de juntas de dilatación. Incluye: Preparación de la superficie de apoyo del hormigón. Replanteo de las juntas de construcción y de dilatación. Tendido de niveles mediante toques, maestras de hormigón o reglas. Riego de la superficie base. Formación de juntas de construcción y de juntas perimetrales de dilatación. Vertido, extendido y vibrado del hormigón. Curado del hormigón. Replanteo de las juntas de retracción. Corte del hormigón. Limpieza final de las juntas de retracción. Criterio de medición de proyecto: Superficie medida según documentación gráfica de Provecto. Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin deducir la superficie ocupada por los pilares

situados dentro de su perímetro.

Criterio de valoración económica: El precio no incluye la base de la solera.

910,000

14,01

12.749,10

ejecutada según especificaciones de Proyecto.

1.08

718.44

665,220

PRESUPUESTO CASO 2 Página 30

| PRESUPUESTO PARCIAL № 3 ESTRUCTURA METÁLICA   |  |
|-----------------------------------------------|--|
| FINESUFUESTO FANCIAL IN SESTINUCTURA METALICA |  |

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

## 3.1 Geometría

3.1.1 Kg. Acero UNE-EN 10025 S275JR, en pilares formados por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, colocado con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional del pilar. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, las placas de arranque y de transición de pilar inferior a superior, los casquillos y los elementos auxiliares de montaje.

7.625,510 1,81 13.802,17

3.1.2 Kg. Acero UNE-EN 10025 S275JR, en vigas formadas por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de hasta 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje.

13.038,970 1,76 22.948,59

3.1.3 Kg. Acero UNE-EN 10210-1 S275J0H, en vigas formadas por piezas simples de perfiles huecos acabados en caliente de las series redondo, cuadrado o rectangular, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje.

8.726,730 1,98 17.278,93

3.1.4 Kg. Acero UNE-EN 10162 S235JRC, en correas metálicas formadas por piezas simples de perfiles conformados en frío de las series omega, L, U, C o Z, acabado galvanizado, fijadas a las cerchas con uniones soldadas en obra.

Incluye: Replanteo de las correas sobre las cerchas. Presentación de las correas sobre las cerchas. Aplomado y nivelación definitivos. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje, pero no incluye la chapa o panel que actuará como cubierta.

5.566,840 2,72 15.141,80

PRESUPUESTO PARCIAL Nº 3 ESTRUCTURA METÁLICA **DESCRIPCION** UDS. LARGO ANCHO ALTO CANTIDAD **PRECIO IMPORTE** 3.2.1 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x350 mm y espesor 20 mm, con 6 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 20 mm de diámetro y 35 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje. 12,000 939,84 78.32 3.2.2 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje. 67,67 270,68 3.2.3 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 450x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Provecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje.

PRESUPUESTO CASO 2

8,000

62,62

500,96

Página 31

PRESUPUESTO CASO 2 Página 32

PRESUPUESTO PARCIAL Nº 4 FACHADAS Y CERRAMIENTOS

4.1

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

M². Cubierta plana no transitable, ventilada, autoprotegida, tipo convencional, pendiente del 1% al 15%. FORMACIÓN DE PENDIENTES: tablero cerámico hueco machihembrado de 80x25x3,5 cm con capa de regularización de mortero de cemento, industrial, M-5, de 3 cm de espesor, acabado fratasado, sobre tabiques aligerados de ladrillo cerámico hueco de 24x11,5x9 cm, recibido con mortero de cemento, industrial, M-5, dispuestos cada 80 cm y con 30 cm de altura media, rematados superiormente con maestras de mortero de cemento, industrial, M-5; AISLAMIENTO TÉRMICO: fieltro aislante de lana mineral; IMPERMEABILIZACIÓN: tipo monocapa, adherida, formada por lámina de betún modificado con elastómero SBS, LBM(SBS)-50/G-FP previa imprimación con emulsión asfáltica aniónica con cargas tipo EB.

Incluye: Replanteo de los puntos singulares. Replanteo de las pendientes y trazado de limatesas, limahoyas y juntas. Formación de pendientes mediante encintado de limatesas, limahoyas y juntas con maestras de ladrillo. Relleno de juntas con poliestireno expandido. Ejecución de los tabiques aligerados. Revisión de la superficie base en la que se realiza la fijación del aislamiento de acuerdo con las exigencias de la técnica a emplear. Corte, ajuste y colocación del aislamiento. Ejecución del tablero cerámico machihembrado sobre los tabiques aligerados. Vertido, extendido y regleado de la capa de mortero de regularización. Limpieza y preparación de la superficie. Colocación de la impermeabilización.

Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de valoración económica: El precio no incluye la ejecución y el sellado de las juntas ni la ejecución de remates en los encuentros con paramentos y desagües.

926,800 63,97 59.287,40

4.2 M². Cerramiento de fachada formado por paneles alveolares prefabricados de hormigón pretensado, de 16 cm de espesor, 1,2 m de anchura y 9 m de longitud máxima, con los bordes machihembrados, acabado liso, de color gris, dispuestos en posición horizontal, con inclusión o delimitación de huecos. Incluso colocación en obra de los paneles alveolares con ayuda de grúa autopropulsada, apuntalamientos, resolución del apoyo sobre la superficie superior de la

apuntalamientos, resolución del apoyo sobre la superficie superior de la cimentación, enlace de los paneles alveolares por las cabezas a las vigas de la estructura mediante conectores, y por los extremos a los pilares de la estructura y sellado de juntas con silicona neutra. Totalmente montado.

Incluye: Replanteo de los paneles alveolares. Colocación del cordón de caucho adhesivo. Posicionado de los paneles alveolares en su lugar de colocación. Aplomo y apuntalamiento de los paneles alveolares. Soldadura de los elementos metálicos de conexión. Sellado de juntas y retacado final con mortero de retracción controlada.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

1.014,000 23,75 24.082,50

| PRESU  | PUESTO_CASO_2                                     |                                                                                                                                                                                     |                                   |        | Página 33 |
|--------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|-----------|
| PRESUF | PUESTO PARCIAL Nº 5 Proyecc                       | on de mortero                                                                                                                                                                       |                                   |        |           |
| N°     | DESCRIPCION                                       | UDS. LARGO ANCHO ALTO                                                                                                                                                               | CANTIDAD                          | PRECIO | IMPORTE   |
| 5.1    | proyección neumática de<br>110/2008, compuesto de | contra incendios de estructura metáli<br>mortero ignífugo, reacción al fuego clase <i>l</i><br>emento en combinación con perlita o veri<br>o de 11 mm y conseguir una resistencia a | A1, según R.D.<br>miculita, hasta |        |           |
|        |                                                   |                                                                                                                                                                                     | 847,627                           | 14,09  | 11.943,06 |

| RESUMEN POR CAPITULOS             |            |  |
|-----------------------------------|------------|--|
| CAPITULO ACONDICIONAMIENTO        | 17.803,50  |  |
| CAPITULO CIMENTACIONES            | 16.204,19  |  |
| CAPITULO ESTRUCTURA METÁLICA      | 70.882,97  |  |
| CAPITULO FACHADAS Y CERRAMIENTOS  | 83.369,90  |  |
| CAPITULO PROYECCIÓN DE MORTERO    | 11.943,06  |  |
| REDONDEO                          |            |  |
| PRESUPUESTO DE EJECUCION MATERIAL | 200.203,62 |  |

EL PRESUPUESTO DE EJECUCION MATERIAL ASCIENDE A LAS EXPRESADAS DOSCIENTOS MIL DOSCIENTOS TRES EUROS CON SESENTA Y DOS CÉNTIMOS.

Proyecto: PRESUPUESTO\_CASO\_2

| Capítulo                              | Importe    |
|---------------------------------------|------------|
| Capítulo 1 ACONDICIONAMIENTO          | 17.803,50  |
| Capítulo 2 CIMENTACIONES              | 16.204,19  |
| Capítulo 2.1 Elementos aislados       | 14.174,37  |
| Capítulo 2.2 Vigas                    | 2.029,82   |
| Capítulo 3 ESTRUCTURA METÁLICA        | 70.882,97  |
| Capítulo 3.1 Geometría                | 69.171,49  |
| Capítulo 3.2 Uniones                  | 1.711,48   |
| Capítulo 4 FACHADAS Y CERRAMIENTOS    | 83.369,90  |
| Capítulo 5 Proyección de mortero      | 11.943,06  |
| Presupuesto de ejecución material     | 200.203,62 |
| 15% de gastos generales               | 30.030,54  |
| 6% de beneficio industrial            | 12.012,22  |
| Suma                                  | 242.246,38 |
| 21% IVA                               | 50.871,74  |
| Presupuesto de ejecución por contrata | 293.118,12 |

Asciende el presupuesto de ejecución por contrata a la expresada cantidad de DOSCIENTOS NOVENTA Y TRES MIL CIENTO DIECIOCHO EUROS CON DOCE CÉNTIMOS.



CASO 2 REDIMENSIONADO Página 28 PRESUPUESTO PARCIAL Nº 1 ACONDICIONAMIENTO **DESCRIPCION** UDS. LARGO ANCHO ALTO CANTIDAD **PRECIO IMPORTE** 1.1 M². Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión. Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión. Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados. Criterio de valoración económica: El precio no incluye la tala de árboles ni el transporte de los materiales retirados. 4.320,000 1,17 5.054,40 1.2 M<sup>2</sup>. Solera de hormigón en masa de 10 cm de espesor, realizada con hormigón HM-15/B/20/I fabricado en central y vertido desde camión, extendido y vibrado manual mediante regla vibrante, sin tratamiento de su superficie con juntas de retracción de 5 mm de espesor, mediante corte con disco de diamante. Incluso panel de poliestireno expandido de 3 cm de espesor, para la ejecución de juntas de dilatación. Incluye: Preparación de la superficie de apoyo del hormigón. Replanteo de las juntas de construcción y de dilatación. Tendido de niveles mediante toques, maestras de hormigón o reglas. Riego de la superficie base. Formación de juntas de construcción y de juntas perimetrales de dilatación. Vertido, extendido y vibrado del hormigón. Curado del hormigón. Replanteo de las juntas de retracción. Corte del hormigón. Limpieza final de las juntas de retracción. Criterio de medición de proyecto: Superficie medida según documentación gráfica de Provecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin deducir la superficie ocupada por los pilares

Criterio de valoración económica: El precio no incluye la base de la solera.

situados dentro de su perímetro.

910,000 14,01 12.749,10

| PRESUP    | UESTO PARCIAL Nº 2 CIMENTACIONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| Nº        | DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) PRECIO    | IMPORTE  |
| 2.1 Eleme | entos aislados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |          |
| 2.1.1     | M³. Hormigón HL-150/B/20, fabricado en central y vertido desde camión, para formación de capa de hormigón de limpieza y nivelado de fondos de cimentación en el fondo de la excavación previamente realizada. Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según                                          | ,<br>/<br>1 |          |
|           | especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |          |
|           | 11,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77,98       | 927,96   |
| 2.1.2     | M³. Hormigón HA-25/B/20/lla fabricado en central, y vertido desde camión para formación de zapata de cimentación. Incluye: Vertido y compactación del hormigón. Curado del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.                                                                                                          | a<br>1      |          |
|           | 102,090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96,85       | 9.887,42 |
| 2.1.3     | Kg. Acero UNE-EN 10080 B 500 S para elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y montaje en zapata de cimentación Incluso alambre de atar y separadores.  Incluye: Corte y doblado de la armadura. Montaje y colocación de la armadura con separadores homologados. Sujeción de la armadura.  Criterio de medición de proyecto: Peso teórico calculado según documentación gráfica de Proyecto.  Criterio de medición de obra: Se calculará el peso teórico de la armadura ejecutada según especificaciones de Proyecto. | 1           |          |
| 2.2 Vigas | 3.392,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,99        | 3.358,99 |
| 2.2.1     | M³. Hormigón HL-150/B/20, fabricado en central y vertido desde camión, para formación de capa de hormigón de limpieza y nivelado de fondos de cimentación en el fondo de la excavación previamente realizada. Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón. Criterio de medición de proyecto: Volumen teórico, según documentación gráfica de Proyecto.                                                                                                                     | ,<br>/      |          |
|           | Criterio de medición de obra: Se medirá el volumen teórico ejecutado segúr especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.                                                                                                                                                                                                                                                                                                                                                                                           |             |          |
|           | 2,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77,98       | 227,70   |
| 2.2.2     | M³. Hormigón HA-25/B/20/lla fabricado en central, y vertido desde camión para<br>formación de viga entre zapatas.<br>Incluye: Vertido y compactación del hormigón. Curado del hormigón.<br>Criterio de medición de proyecto: Volumen teórico, según documentación gráfica                                                                                                                                                                                                                                                                                                |             |          |
|           | de Proyecto.  Criterio de medición de obra: Se medirá el volumen teórico ejecutado segúr especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.                                                                                                                                                                                                                                                                                                                                                                             |             |          |
|           | 11,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92,86       | 1.083,68 |
| 2.2.3     | Kg. Acero UNE-EN 10080 B 500 S para elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y montaje en viga entre zapatas Incluso alambre de atar y separadores. Incluye: Corte y doblado de la armadura. Montaje y colocación de la armadura cor separadores homologados. Sujeción de la armadura. Criterio de medición de proyecto: Peso teórico calculado según documentación                                                                                                                                                    |             |          |

Criterio de medición de proyecto: Peso teórico calculado según documentación gráfica de Proyecto. Criterio de medición de obra: Se calculará el peso teórico de la armadura ejecutada según especificaciones de Proyecto. 665,220 1,08 718,44 Total presupuesto parcial nº 2 ... 16.204,19

CASO 2 REDIMENSIONADO Página 30

| DDECLIDLIESTO DADCIAL | Nº 3 ESTRUCTURA METÁLICA |
|-----------------------|--------------------------|
| PRESUPUES I U PARCIAL | N° 3 ESTRUCTURA METALICA |

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

## 3.1 Geometría

3.1.1 Kg. Acero UNE-EN 10025 S275JR, en pilares formados por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, colocado con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional del pilar. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, las placas de arranque y de transición de pilar inferior a superior, los casquillos y los elementos auxiliares de montaje.

7.107,110 1,81 12.863,87

3.1.2 Kg. Acero UNE-EN 10025 S275JR, en vigas formadas por piezas simples de perfiles laminados en caliente de las series IPN, IPE, HEB, HEA, HEM o UPN, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de hasta 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaie.

12.581,680 1,76 22.143,76

3.1.3 Kg. Acero UNE-EN 10210-1 S275J0H, en vigas formadas por piezas simples de perfiles huecos acabados en caliente de las series redondo, cuadrado o rectangular, acabado con imprimación antioxidante, con uniones soldadas en obra, a una altura de más de 3 m.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la viga. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje.

8.726,730 1,98 17.278,93

3.1.4 Kg. Acero UNE-EN 10162 S235JRC, en correas metálicas formadas por piezas simples de perfiles conformados en frío de las series omega, L, U, C o Z, acabado galvanizado, fijadas a las cerchas con uniones soldadas en obra.

Incluye: Replanteo de las correas sobre las cerchas. Presentación de las correas sobre las cerchas. Aplomado y nivelación definitivos. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, los casquillos y los elementos auxiliares de montaje, pero no incluye la chapa o panel que actuará como cubierta.

5.566,840 2,72 15.141,80

CASO 2 REDIMENSIONADO Página 31 PRESUPUESTO PARCIAL Nº 3 ESTRUCTURA METÁLICA **DESCRIPCION** UDS. LARGO ANCHO **PRECIO** ALTO CANTIDAD **IMPORTE** 3.2.1 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x350 mm y espesor 20 mm, con 6 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 20 mm de diámetro y 35 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje. 12,000 939,84 78.32 3.2.2 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 500x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente ejecutadas según especificaciones de Proyecto. Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos auxiliares de montaje. 67,67 270,68 3.2.3 Ud. Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado, de 450x300 mm y espesor 20 mm, con 4 pernos soldados, de acero corrugado UNE-EN 10080 B 500 S de 16 mm de diámetro y 50 cm de longitud total. Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de la placa. Aplomado y nivelación. Criterio de medición de proyecto: Número de unidades previstas, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá el número de unidades realmente

ejecutadas según especificaciones de Provecto.

auxiliares de montaje.

Criterio de valoración económica: El precio incluye los cortes, los despuntes, la preparación de bordes, las pletinas, las piezas especiales y los elementos

8,000

62,62

500,96

CASO 2 REDIMENSIONADO Página 32

PRESUPUESTO PARCIAL Nº 4 FACHADAS Y CERRAMIENTOS

4.1

N° DESCRIPCION UDS. LARGO ANCHO ALTO CANTIDAD PRECIO IMPORTE

M². Cubierta plana no transitable, ventilada, autoprotegida, tipo convencional, pendiente del 1% al 15%. FORMACIÓN DE PENDIENTES: tablero cerámico hueco machihembrado de 80x25x3,5 cm con capa de regularización de mortero de cemento, industrial, M-5, de 3 cm de espesor, acabado fratasado, sobre tabiques aligerados de ladrillo cerámico hueco de 24x11,5x9 cm, recibido con mortero de cemento, industrial, M-5, dispuestos cada 80 cm y con 30 cm de altura media, rematados superiormente con maestras de mortero de cemento, industrial, M-5; AISLAMIENTO TÉRMICO: fieltro aislante de lana mineral; IMPERMEABILIZACIÓN: tipo monocapa, adherida, formada por lámina de betún modificado con elastómero SBS, LBM(SBS)-50/G-FP previa imprimación con emulsión asfáltica aniónica con cargas tipo EB.

Incluye: Replanteo de los puntos singulares. Replanteo de las pendientes y trazado de limatesas, limahoyas y juntas. Formación de pendientes mediante encintado de limatesas, limahoyas y juntas con maestras de ladrillo. Relleno de juntas con poliestireno expandido. Ejecución de los tabiques aligerados. Revisión de la superficie base en la que se realiza la fijación del aislamiento de acuerdo con las exigencias de la técnica a emplear. Corte, ajuste y colocación del aislamiento. Ejecución del tablero cerámico machihembrado sobre los tabiques aligerados. Vertido, extendido y regleado de la capa de mortero de regularización. Limpieza y preparación de la superficie. Colocación de la impermeabilización.

Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, desde las caras interiores de los antepechos o petos perimetrales que la limitan.

Criterio de valoración económica: El precio no incluye la ejecución y el sellado de las juntas ni la ejecución de remates en los encuentros con paramentos y desagües.

926,800 63,97 59.287,40

4.2 M². Cerramiento de fachada formado por paneles alveolares prefabricados de hormigón pretensado, de 16 cm de espesor, 1,2 m de anchura y 9 m de longitud máxima, con los bordes machihembrados, acabado liso, de color gris, dispuestos en posición horizontal, con inclusión o delimitación de huecos. Incluso colocación en obra de los paneles alveolares con ayuda de grúa autopropulsada, apuntalamientos, resolución del apoyo sobre la superficie superior de la cimentación, enlace de los paneles alveolares por las cabezas a las vigas de la estructura mediante conectores, y por los extremos a los pilares de la estructura y

sellado de juntas con silicona neutra. Totalmente montado. Incluye: Replanteo de los paneles alveolares. Colocación del cordón de caucho adhesivo. Posicionado de los paneles alveolares en su lugar de colocación. Aplomo y apuntalamiento de los paneles alveolares. Soldadura de los elementos metálicos de conexión. Sellado de juntas y retacado final con mortero de

retracción controlada. Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin duplicar esquinas ni encuentros, deduciendo los huecos de superficie mayor de 3 m².

1.014,000 23,75 24.082,50

| CASO_2 | 2_REDIMENSIONADO                                  |                                                                                                                                                                                                                          |          | Página 33 |
|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| PRESUF | PUESTO PARCIAL Nº 5 Proyect                       | ón de mortero                                                                                                                                                                                                            |          |           |
| N°     | DESCRIPCION                                       | UDS. LARGO ANCHO ALTO CANTIDA                                                                                                                                                                                            | D PRECIO | IMPORTE   |
| 5.1    | proyección neumática de<br>110/2008, compuesto de | contra incendios de estructura metálica, mediar<br>mortero ignífugo, reacción al fuego clase A1, según R<br>cemento en combinación con perlita o vermiculita, has<br>no de 11 mm y conseguir una resistencia al fuego de | D.<br>ta |           |
|        |                                                   | 847,6                                                                                                                                                                                                                    | 27 14,09 | 11.943,06 |

| RESUMEN POR CAPITULOS             |            |  |
|-----------------------------------|------------|--|
| CAPITULO ACONDICIONAMIENTO        | 17.803,50  |  |
| CAPITULO CIMENTACIONES            | 16.204,19  |  |
| CAPITULO ESTRUCTURA METÁLICA      | 69.139,84  |  |
| CAPITULO FACHADAS Y CERRAMIENTOS  | 83.369,90  |  |
| CAPITULO PROYECCIÓN DE MORTERO    | 11.943,06  |  |
| REDONDEO                          |            |  |
| PRESUPUESTO DE EJECUCION MATERIAL | 198.460,49 |  |

EL PRESUPUESTO DE EJECUCION MATERIAL ASCIENDE A LAS EXPRESADAS CIENTO NOVENTA Y OCHO MIL CUATROCIENTOS SESENTA EUROS CON CUARENTA Y NUEVE CÉNTIMOS.

Proyecto: CASO\_2\_REDIMENSIONADO

| Capítulo                              | Importe    |
|---------------------------------------|------------|
| Capítulo 1 ACONDICIONAMIENTO          | 17.803,50  |
| Capítulo 2 CIMENTACIONES              | 16.204,19  |
| Capítulo 2.1 Elementos aislados       | 14.174,37  |
| Capítulo 2.2 Vigas                    | 2.029,82   |
| Capítulo 3 ESTRUCTURA METÁLICA        | 69.139,84  |
| Capítulo 3.1 Geometría                | 67.428,36  |
| Capítulo 3.2 Uniones                  | 1.711,48   |
| Capítulo 4 FACHADAS Y CERRAMIENTOS    | 83.369,90  |
| Capítulo 5 Proyección de mortero      | 11.943,06  |
| Presupuesto de ejecución material     | 198.460,49 |
| 15% de gastos generales               | 29.769,07  |
| 6% de beneficio industrial            | 11.907,63  |
| Suma                                  | 240.137,19 |
| 21% IVA                               | 50.428,81  |
| Presupuesto de ejecución por contrata | 290.566,00 |

Asciende el presupuesto de ejecución por contrata a la expresada cantidad de DOSCIENTOS NOVENTA MIL QUINIENTOS SESENTA Y SEIS EUROS.