
Development of an interactive
experience to highlight the gambling

addiction caused by betting houses and
his consequences in the affected ones’

lives

Jorge Nieto Morales

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 5, 2020

Supervised by: Emilio Sáez Soro

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my mom, my dad and my sister for supporting me in my
adventure

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Emilio Sáez Soro,
for helping me find the idea of this project and for his always welcomed suggestions.

Thanks to Marta, Laura and Dani for testing my game and give me some essential
tips to improve it.

To Pau for me helping to decide how the game should look like.
To Jon, for making easier for me to start this report.
And to Maria, for being with me in the most stressful moments and supporting me.
Besides, I would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for

their inspiring LaTeX template for writing the Final Degree Work report, which I have
used as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document represents the Final Degree Work report of Jorge Nieto Morales in Video
Game Design and Development.

This work consists of a videogame which shows the daily life of an affected by the
gambling addiction caused by sports bettings in betting houses or another kind of gam-
bling. The videogame put the player in the skin of a man with a gambling addiction
who tries to get over this situation and continue with his life while he is trying to avoid
different elements which could make him return to betting habits. Every intern battle
between the main character and these temptations is represented by different puzzles or
minigames that the player has to pass. This experience is accompanied by conversations
with NPC’s who offer their opinion on the gambling houses and related topics.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3
2.2 Resource Evaluation . 6

3 System Analysis and Design 7
3.1 Requirement Analysis . 7
3.2 System Design . 9
3.3 System Architecture . 21
3.4 Interface Design . 21

4 Work Development and Results 27
4.1 Work Development . 27
4.2 Results . 44

5 Conclusions and Future Work 45
5.1 Conclusions . 45
5.2 Future work . 46

Bibliography 47

A Source code 49

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

This chapter is an explanation about which were the motivations that took to
project’s idea, which were the objectives initially fixed and how the idea started to
be developed [1].

1.1 Work Motivation

Nowadays, gambling addiction is a worrying problem in society, especially on people
who live in working-class neighbourhoods. In recent years there has been an increase in
the number of open betting houses, and in consequence, this problem is starting to be
more noticeable among people. It can affect people’s lives, mentally and physically, and
affect their families too.

So it seemed necessary to talk about this problem, or at least, treat this topic through
the media. And a good way of doing so is with videogames. It is important to ensure
that people know that this kinds of problems are affecting to a lot of people, and for
that reason, is necessary to let everyone know this problem and make them understand
that gambling addiction is dangerous. In that way, people will be warned and will know
the consequences of starting to play this kind of games before they try them.

1

2 Introduction

1.2 Objectives
• Develop a videogame with different minigames on it that gives variety to the expe-

rience of the players, allowing them to experience different mechanics and gameplay
with a challenging aspect that keeps them playing without getting bored.

• Create four levels, with two sections inside each one: one based on exploration,
where the player moves through familiar spaces, as a street, a house, an office or
a bar; and another one where the player plays a minigame inspired by a classic
arcade game, as Frogger, Simon says and others.

• Design minigames that include elements that are a reference to gambling houses
and casinos (as cards, coins, slot machines, etc).

• Representing the problem with gambling addiction in a way that can be interesting
and entertaining for the players, using conversations with NPCs that give their
opinion on this topic or make reference to gambling, and through the minigames’
elements mentioned before, showing them as something that can harm the player.

1.3 Environment and Initial State
The idea of the work came up in the meetings with the project supervisor. The impor-
tance of the work addressing an important topic for the author of the work was stressed,
as this would facilitate its realization. The supervisor suggested that the job could be
about an issue that affected people nowadays, and it was thus concluded that the topic
of work would be gambling addiction.

Once the topic was chosen, it was needed to think about how it would develop. A
game that would mix exploration mechanics with more entertaining and interactive me-
chanics was proposed. That way it would be managed to give it the touch of seriousness
that requires a problem as serious as addiction, but at the same time, the entertainment
function of a video game would be fulfilled. So the idea arose to divide each level into
two parts: exploration and minigame.

The work would be done with the Unity game engine, and its programming would
be entirely done by the author of the work. For the visual aspect, both assets created
by the author and free assets included in the Unity asset store would be used.

Finally, meetings would be held with the supervisor each time the author of the work
fully completes the creation of a level. That way, the supervisor could look at the project
and suggest changes to improve it.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 6

This chapter shows the planning that has been followed to complete the project and
the resources used to accomplish that purpose.

2.1 Planning
The next lines show the tasks that have been done to build all the project. Not all the
tasks were done one by one (finishing one before starting the next), but some were made
alternating between them. This section also includes a Gantt chart showing the same
tasks in a more visual way (see Figure 2.1)

• Information gathering and understanding (10 hours): look for articles or
blogs to understand how people with gambling addiction feel, which are the main
difficulties in their daily lives and learn about the situation in Spain with this
problem. Besides, search for references for the game, as which minigames that
could be an inspiration and how those could be adapted.

• Game concept design (10 hours): the initial design of all the levels of the
videogame, including how will be the map, where the NPCs will be located, which
dialogue will be assigned to each NPC, which minigame will be assigned at each
level, the interface and the HUD, the mechanics and other details.

3

4 Planning and resources evaluation

• Game design (190 hours):

– Level 1 (65 hours): the construction and programming of the level 1,
including the first scripts of movement of the player, the option of talking
with NPCs, the movement of the camera and the change of perspective trough
the level, create the canvas, etc. Moreover, this task included the creation of
the first minigame, based on Frogger.

– Level 2 (45 hours): the construction and programming of the level 2,
including the second minigame, based on the classic game of matching cards.

– Level 3 (45 hours): the construction and programming of the level 3,
including the third minigame, based on Simon!.

– Level 3 (35 hours): the construction and programming of the level 4,
including the fourth minigame, based on Aerogun field.

• Create and search assets (20 hours): use programs to create 3D models or
search for them in the asset store of Unity or the Internet.

• Documentation (70 hours): write the Final Degree Work report, the presenta-
tion or other necessary documents.

To give a little explanation about the Gantt chart of the tasks, there are two periods
of time where the project was paused. The first one took place in December, and it
lasted until the last days of January. The reason was that in December there was a
deadline to make the technical proposal of the project. After finish it, I had to study for
my final exams, so I had to stop the project for a while. Then, in February there was
another deadline, but this time was about the GDD. A few days later, I started with
my university practices, so I needed two weeks to adapt to my new routine. After that,
I continued with my final degree work.

In the Gantt chart, it can be seen that the levels were made in order. For each level,
first, it was needed to find the resources that would be used in that level (3D models,
inspirations, canvas...), and the next step was to create and develop the level.

2.1. Planning 5

Figure 2.1: Gantt chart of the tasks (made with Gantt Project)

6 Planning and resources evaluation

2.2 Resource Evaluation
The resources used for this project are:

• A Lenovo Ideapad 100 PC, with I5, 4GB of RAM and 500 GB of hard disk. Cost:
400 €.

• Unity 2019.2.6 version, used to create the project and work on it [2]. Cost: free.

• Visual Studio 2019, used to program the project [3]. In this case, Visual Studio is
attached to Unity, in order to make easier its function. Cost: free.

• 3DSMax 2019, used to create some 3D models to include them on the project [4].
Cost: free, with student license.

• GitHub Desktop, a tool used to create a repository and use it to upload the project
and keep a copy of it [5]. Cost: free.

• Gantt Project, a desktop application used to create the Gantt chart [6]. Cost: free.

• Cool Text Graphics Generator, a web page used to create texts for the game [7].
Cost: free.

• Mixamo, a web page used to obtain 3D animations [8]. Cost: free.

• TeXnicCenter, a tool used to edit the LaTex document [9]. Cost: free.

• Unity Asset Store, the store of assets of Unity used to obtain 3D models and other
resources [10]. Cost: depends on the asset.

• Grammarly, a google chrome extension used to correct texts in English [11]. Coste:
free (standard).

• Visual Paradigm Online, a web page used that allows to create different kinds of
diagrams, like a case use diagram [12]. Coste: free.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 7
3.2 System Design . 9
3.3 System Architecture . 21
3.4 Interface Design . 21

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as its interface design.

3.1 Requirement Analysis

Firstly, let’s clarify how the game works, and then the requirements will be clearer. The
first thing that is seen when the game starts is the main menu. It is composed by four
buttons. The first one is Start game, and it simply takes the player to the first level.
The second one is Select level, which allows the player to choose which level he wants
to play. However, to select a specific level, the player has to have played it before. The
third one is Options, which gives the option to turn on or turn off the sound. And the
final one is Exit game, which allows the player to quit the game.

As it has been said before, each level has an exploration section and a minigame
section. The exploration section has the same mechanics in all levels, so it’s better to
start explaining that part. The player can move through the level with W, A, S and D
keys. The player can move in all directions, but to find the path in the first level he can
use the Q key, which will activate the indications to reach the objective during a few
seconds (arrows in the ground that aim to the target). This action is only available at

7

8 System Analysis and Design

the first level, due to that the other levels are smaller and easier to complete. Finally,
to interact with NPCs and talk with them, the player has to press the Space key. Then,
a dialogue will appear on the screen, and to skip it, the player only has to press again
the space key.

Now, let’s talk about each minigame. The first minigame is based on Frogger, where
the player is a frog that has to cross a road and a river to reach the target. In this
case, the player controls the main character, but instead of walk, the player jumps in all
directions with W, A, S and D keys. The player has to avoid that the coins that move
from one side to another touch him, and jump on the cards to avoid falling and reach
the four targets.

The second minigame is based on the classic game of matching cards, where there
are face down cards, and the player has to choose two to see if they are the same card.
The mechanic is the same in this game, and to choose a card the player has to click over
that card with the left click of the mouse.

The third minigame is based on Simon!, which is a classic game where four buttons
with different colours (green, red, yellow and blue) appear in the screen, and the player
has to repeat a pattern of colours. In this project, those buttons represent buttons of a
slot machine, and the player has to repeat the pattern of colours using the left click of
the mouse to press the buttons.

The last minigame is based on Aerogun field, an arcade minigame where the player
has to shoot to different items that are falling following a rail. In this project, the player
doesn’t shoot, and he only has to move between for rails to touch the items and avoid
them touching the ground. To move from one rail to another, the player can use the A
key to move to the left, or the D key to move to the right.

To come back to the main menu, the player will be able to pause the game in any
of the levels (when the game allows it). If the player press the Esc key, a pause menu
will appear with two options: Resume, that allows the player returning to the game, or
Main menu, that allows the player returning to the main menu.

3.1.1 Functional Requirements

Once the previous explanation is clear, it is easy to identify which are the functional
requirements:

• R1: the player can start the game.

• R2: the player can select level.

• R3: the player can mute or unmute the game.

• R4: the player can quit the game.

• R5: the player can move through the level.

• R6: the player can check the indications.

3.2. System Design 9

• R7: the player can talk with other characters.

• R8: the player can jump.

• R9: the player can select a card.

• R10: the player can press a button.

• R11: the player can move between rails.

• R12: the player can pause the game.

• R13: the player can return to the main menu.

• R14: the system will be able to generate items in the scene.

• R15: the system will be able to generate random patterns of colors.

3.1.2 Non-functional Requirements

Non-functional requirements impose conditions on the design or implementation. In this
project, the non-functional requirements are:

• R16: the game will be playable on PC.

• R17: the system will be documented by a manual in pdf format that will describe
how to manage and use it.

• R18: the game will use low poly models.

• R19: the exploration sections will be realistic.

• R20: the minigames will be unrealistic and will have more fictional elements.

• R21: the elements of the game will be related with gambling houses and casinos.

• R22: the mechanics will be easy to learn.

• R23: the UI will have a bigger role in the minigames.

3.2 System Design
This section must present the (logical or operational) design of the system to be carried
out. In the following pages are defined the cases of use (taken from the functional
requirements) and a case of use diagram (see Figure 3.1):

10 System Analysis and Design

Requirement: R1
Actor: Player
Description: The player starts the game pressing by the button Start game

Preconditions:
1. The player must be in the main menu

Normal sequence:
1. The player press the button Start game

2. The system loads the first level

Alternative sequence: None

Table 3.1: Case of use «Start game»

Requirement: R2
Actor: Player
Description: The player selects a level by pressing the button Select level

Preconditions:
1. The player must be in the main menu

2. The player has to have played the level he wants to play

Normal sequence:
1. The player press the button Select level

2. The system takes the player to a new screen where he
can choose the level

3. The player press the button that corresponds with the
level he wants to play

4. The system loads that level

Alternative sequence: 4.1. The system doesn’t load the level, because the player
hasn’t played it before

Table 3.2: Case of use «Select level»

3.2. System Design 11

Requirement: R3
Actor: Player
Description: The player mute or unmute the sound going to the options

screen
Preconditions:

1. The player must be in the main menu

Normal sequence:
1. The player press the button Options

2. The system takes the player to the options screen

3. The player press the button to mute or the button to
unmute

4. The system mute or unmute the game, depending on
which button the player has pressed

Alternative sequence: 3.1. If the player is trying to mute the game when it is already
muted, the system will do nothing. The same with unmute

Table 3.3: Case of use «Control sound»

Requirement: R4
Actor: Player
Description: The player exits from the game
Preconditions:

1. The player must be in the main menu

Normal sequence:
1. The player press the button Quit game

2. The system quit the game

Alternative sequence: None

Table 3.4: Case of use «Quit game»

12 System Analysis and Design

Requirement: R5
Actor: Player
Description: The player moves trough the level
Preconditions:

1. The player must be in the exploration section of a level

2. The title introduction has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

5. The player has to be out of a dialogue with an NPC

Normal sequence:
1. The player press W, A, S or D keys

2. The character moves in the direction assigned to that
button

Alternative sequence: 2.1 The character can’t move because he is colliding with
something

Table 3.5: Case of use «Move»

3.2. System Design 13

Requirement: R6
Actor: Player
Description: The player consults for the path to the target
Preconditions:

1. The player must be at level 1

2. The title introduction has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

5. The player has to be out of a dialogue with an NPC

Normal sequence:
1. The player press the Q keys

2. The system shows the arrows that aim to the target
during a few seconds.

Alternative sequence: None

Table 3.6: Case of use «Check indications»

14 System Analysis and Design

Requirement: R7
Actor: Player
Description: The player consults for the path to the target
Preconditions:

1. The player must be in the exploration section of a level

2. The title introduction has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

5. The player has to be near an NPC with an indicator of
dialogue over his head (an exclamation)

Normal sequence:
1. The player press the Space key

2. A dialogue panel appears, and the NPC starts an ani-
mation

3. The player continues pressing the Space key to continue
the dialogue until it ends

Alternative sequence: None

Table 3.7: Case of use «Talk with a character»

3.2. System Design 15

Requirement: R8
Actor: Player
Description: The player moves jumping in one direction
Preconditions:

1. The player must be at the minigame of the level 1

2. The countdown has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

Normal sequence:
1. The player press W, A, S or D keys

2. The character jumps in the direction assigned to that
button

Alternative sequence: 2.1 The character collides with a coin and turns to the initial
position
2.2 The character falls to the void and turns to the initial
position
2.3 If with that movement the player reaches a target, the
player wins the round and turns to the initial position

Table 3.8: Case of use «Jump»

16 System Analysis and Design

Requirement: R9
Actor: Player
Description: The player selects a card to turn it out
Preconditions:

1. The player must be at the minigame of the level 2

2. The countdown has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

5. The countdown of three seconds that appears when the
player fails has to have ended

Normal sequence:
1. The player clicks over a card

2. The card turns around

Alternative sequence: 2.1 If the card is already face up, it doesn’t do it
2.2 If the card is a card that the player chooses to compare it
with another one that has been turned before this one, then
the system checks if they are the same cards. If they are, they
remain face up and the player can click over other cards.
2.3 If not, the cards turn around after three seconds, and the
player can’t click over other cards during that time
2.4 If these are the two last cards that remain face down, the
player wins the round

Table 3.9: Case of use «Select card»

3.2. System Design 17

Requirement: R10
Actor: Player
Description: The player presses a button to repeat the colours pattern
Preconditions:

1. The player must be at the minigame of the level 3

2. The countdown has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

5. It has to be the player’s turn

Normal sequence:
1. The player clicks over a button

2. The button brights and makes his animation

Alternative sequence: 2.1 If that button is the correct button in the colour pattern,
the player can continue in his turn
2.2 If that button is not the correct one, the player has to
restart the round and lost his turn
2.3 If that is the last button of the pattern, the player wins
the round

Table 3.10: Case of use «Press a button»

18 System Analysis and Design

Requirement: R11
Actor: Player
Description: The player moves from one rail to another
Preconditions:

1. The player must be at the minigame of the level 4

2. The countdown has to have ended

3. The instructions panel has to have been passed by the
player

4. The player has to be out of the pause menu

Normal sequence:
1. The player press A or D keys

2. The character moves to the next rail that is in that di-
rection

Alternative sequence: 2.1 If the player tries to go in one direction where there are
no more rails, the character doesn’t move

Table 3.11: Case of use «Move between rails»

3.2. System Design 19

Requirement: R12
Actor: Player
Description: The player moves from one rail to another
Preconditions:

1. The player must be playing a level

2. The title introduction has to have ended

3. The instructions panel has to have been passed by the
player

Normal sequence:
1. The player press the Esc keys

2. The game stops and the pause menu appears

Alternative sequence: None

Table 3.12: Case of use «Pause the game»

Requirement: R13
Actor: Player
Description: The player returns to the main menu from a level
Preconditions:

1. The player must be at the pause menu

Normal sequence:
1. The player press the button Back menu

2. The system takes the player to the main menu

Alternative sequence: None

Table 3.13: Case of use «Return to the main menu»

20 System Analysis and Design

Figure 3.1: Case use diagram (made with Virtual Paradigm)

The functional requirements are included in the case of use diagram. However, it
can be seen that the main actions of the three first minigames have an extend than can
take the player to win or losing the round (jump, press a button and select a card).
That is because, for example, if the player jumps and falls into the void in the first
minigame he loses the round, but if he jumps and reaches one of the targets, he wins
the round. However, the main mechanic of the fourth minigame (move between rails)
doesn’t have these extends. That is because in this minigame winning or losing is not a
direct consequence of this action. If the timer ends, the player wins, and if the lifebar
drops to zero, the player loses.

3.3. System Architecture 21

3.3 System Architecture
The requirements to play the build of this project in a PC are:

• The operating system Windows 7 SP1+, at least.

• A CPU with x86 or x64 architecture with SSE2 instruction set support, at least.

• At least a graphic card (GPU) with DX10.

• A keyboard and a mouse or a touch panel.

The requirements have been taken from Unity documentation.

3.4 Interface Design
The role of the GUI depends on the section of the level that the player is playing. Firstly,
let’s show how the UI looks and which is his function on the exploration sections.

At the start of each level, it can be seen a panel with instructions that gives player
a bit of context on the plot and indications of what the target is (see Figure 3.2). This
instruction panel appears at the beginning of every minigame, to explain how it works.
The other element of interface design that appears at the exploration sections is the
panel of dialogue, which is activated when the player talks with an NPC or when the
main character talks with himself at the end of some levels (see Figure 3.3).

Figure 3.2: The instructions panel at the start of the level

22 System Analysis and Design

Figure 3.3: The dialogue panel

However, the first level includes an element that allows the player to see which is the
path that he has to follow. When the player presses the Q key, some arrows aiming to
the target appears on the ground (see Figure 3.4).

Figure 3.4: The arrows aim to the target

3.4. Interface Design 23

In the minigames, the GUI has an important role. It gives information to the player
about the things that happen on it. There are some elements that appear in all the
minigames. At the start of a minigame, there is a countdown of three seconds until the
game starts (see Figure 3.5). This way, the player can prepare before the minigame starts.

Figure 3.5: The initial countdown

When the player fails, a text appears on the screen, which indicates to him that he
has to try again (see Figure 3.6). In case that the player wins a round, this text will
congratulate him and tell the player which round he has won (see Figure 3.7).

Some minigames have specific elements of GUI for them. The second minigame, for
example, has a timer that indicates to the player how much time he has left to finish
the round (see Figure 3.8).

The third minigame has an accountant that informs the player about in which itera-
tion of the pattern of colour he is. In that way, the player can know how many buttons
he has to press in that iteration, avoiding being lost (see Figure 3.9).

Finally, in the fourth minigame there is lifebar that shows the life of the player. This
bar drops if a bad item reaches the ground, and increases if the player catch a good
item. Besides, this minigame includes a timer to indicates how many time is left until
the minigame ends (see Figure 3.10).

24 System Analysis and Design

Figure 3.6: Text that appears when the player fails

Figure 3.7: Text that appears when the player wins a round

3.4. Interface Design 25

Figure 3.8: Timer in the second minigame

Figure 3.9: Account to indicate the iteration on the round

26 System Analysis and Design

Figure 3.10: Lifebar that show the life of the player

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 27
4.2 Results . 44

This chapter is an explanation of how the project has been developed since his start
until the end of it. It also includes an assessment of the results and how some original
ideas were changed during this process due to changes in the opinion of the author,
recommendations of the supervisor or other reasons.

4.1 Work Development

The work development is going to be explained in chronological order. This is the best
way for this project because it can be divided into four levels, and those levels were
created in order. So the chronological order follows the order of the tasks too. But first,
is better to talk about what the game is about.

The main character is Toni, an adult man that lives in Spain. He is married to
Mónica, and they have a son, Daniel. However, Toni has a secret that no one knows.
He suffers a gambling addiction. Five years ago, Toni started to go to a gambling house
with a job’s partner. He went there searching for a new way to disconnect and earn
some money, but with time he lost the control. Five years later, Toni has decided to get
out of that situation. He has been keeping his secret to all the people he cares about,
and now he has committed to return to his normal life. However, things are not going
to be easy for Toni in a world where gambling games are everywhere.

27

28 Work Development and Results

Let’s start for level 1. This was a level that took more time than the rest of the
levels. The reason is that it was the start of the project, so the player’s movement and
the settings of the camera had to be created from scratch. This two elements would be
reused on the rest of the levels, reducing the amount of work on them. Besides, the first
level has the biggest scene, so his creation took more time than the rest.

The first task was to program the movement of the player. The player moves the
character with the W, A, S and D keys, and the movement works regarding the camera.
For the movement, it was used a character controller. The character controller is a
component in Unity that makes easier for the programmer to control the main character
from script. The 3D model for Toni, the main character, was taken from Itch.io [13].

Once the movement was made, it was the turn of the camera. In the conceptual de-
velopment of the game, it was decided that the view would be isometric. To achieve that,
the camera was changed from perspective to orthographic. An orthographic projection is
a different way to represent three-dimensional objects. While the perspective projection
tries to simulate the human’s view, the orthographic projection basically avoids that the
elements of the scene change their scale depending on how far they are from the camera.
This kind of projection can be seen in games as ’The stillness of the wind’ (see Figure
4.1) and ’Xcom 2’ (see Figure 4.2).

Figure 4.1: The stillness of the wind, by Lambic Studios (2019)

Then, the next thing to do was create a dialogue system. In every level, there are
at least a few NPCs with whom the player can talk. Each NPC has his own dialogue,
so it was necessary to find a way to store all the different dialogues and access them
from a single script attached to all the NPCs. After a deeply search to find out a way
to achieve this, the best way looked to be the use of a list of string arrays. Let’s explain
quickly how this works. Every NPC has an ID, which is unique. Then, in an scriptable
object (which is a script whose variables can be used from one scene to another) a list of
string arrays is stored. Each array of that list stores the dialogue of one NPC. So when
the player interacts with an NPC, the NPC’s script access to that list, and searches the
array that is in the position ID (for example, for the NPC with ID 3, the array will be
in the position 3 of the list).

4.1. Work Development 29

Figure 4.2: Xcom 2, by Firaxis Games (2016)

After creating the dialogue system, there was a need to have something that could
help the player to differentiate between the NPCs with a dialogue and the others NPCs.
The chosen option was to identify this NPCs with an exclamation that appears over the
NPC’s head when the player is in his area (see Figure 4.3). That way, the player can
know if he can talk with the NPC or not. When the player is near enough him, if he
presses the Space key, a panel with the dialogue appears on the screen. The phrases that
appear in the panel are taken from the array corresponding to that NPC (as explained
before). The exclamation is animated, and once the player starts the conversation, it
disappears. When the conversation ends, the exclamation reappears.

Figure 4.3: Exclamation that indicates that the player can talk with this NPC

30 Work Development and Results

With these things, the main mechanics of the exploration section of the four levels
are completed. Now is the turn of the creation of the levels. It was a clear objective
that each level should represents an aspect on the main character’s life. For that reason,
the first level takes place at the streets of a city. Toni has taken his son to the school,
and now he has to go to work. The player will have to control Toni and follow the
indications to arrive to his job. In his play, the player can talk with other characters.
The exploration section ends when Toni sees the new gambling house that the NPCs
have talked about. His starts to speak with himself, but his intern battle takes the player
to the first minigame.

The 3D models used for this level were taken from the Unity Asset Store, in specific
from the packages European buildings [14], Simple City Lite [15] and Viuletti City low
poly [16]. To create the streets, it was taken as a guide the initial design established
during the game concept design (see Figure 4.4). We can see it on the result (see Figure
4.5).

Figure 4.4: The concept design of the first level. The green square represents the start
position of the player. The yellow circles represent the positions of the NPCs with
dialogue option. The white marks represent the crosswalk. And the red square represents
the position where the exploration section ends.

However, once the level was designed, a problem with the camera appeared. There
were some sections of the scene where the player couldn’t be seen because he was behind
a building. To solve this, the only solution was to move the camera to catch a new
perspective, so the player can see the main character all the time. An easy solution
would be to create three cameras, with different positions and rotations, and turn on or
turn off them depending on the position of the player. But finally, the decision was to
use a unique camera that will change his position and rotation once the player would
arrive at a place where is necessary to change the perspective. That way, the change of
perspective would be more attractive and soft. To achieve this, it was necessary not only
change the position and the rotation of the camera with a soft movement but change

4.1. Work Development 31

Figure 4.5: The final appearance of level 1

the value of the distance between the camera and the main character. This task was a
bit complicated and took some time, but the result was worth it. There are three points
in the level where perspective changes, and we can see in figures 4.6 and 4.7 an example.
When the player collides with the colliders placed in these points, perspective changes.
The code can be seen in appendix A.

Figure 4.6: The initial perspective of the camera

32 Work Development and Results

Figure 4.7: The change of perspective regarding the previous image

To finish the exploration section of level 1 and give it a bit of life, there was added
a generator of vehicles and a crosswalk. When the player enters into the crosswalk, the
vehicles stop near it, as in real life (see Figure 4.8). Once the player exits from the
crosswalk, the vehicles continue. However, the vehicles that are already passing over the
crosswalk don’t stop (as in real life again). The 3D models of the vehicles were taken
from the Unity asset Simple Vehicle Pack [17].

Figure 4.8: The player on the crosswalk and the vehicles respecting the traffic laws

As a recommendation of the supervisor, there was added an indications option to
know which is the path to reach the target. This was necessary because it was a bit

4.1. Work Development 33

difficult to find the correct way due to the scale of the scene. These indications are
arrows that appear on the ground, which can be seen in figure 3.4.

Now let’s talk about the minigame of level 1. In the game conceptual design, it was
taken as an inspiration the arcade game Frogger. The first Frogger is a 1981’s game
where the player controls a frog. The frog moves jumping in four directions, and the
player has to cross a road and a river. In the road, he has to avoid getting hit by a
car, while in the river he has to jump over trunks to reach the other shore and avoid
falling into the water. However, more than from the 1981’s game, the inspiration came
from his remake for PS1 that was released in 1997 (see Figure 4.9). This version had 3D
graphics, unlike the original game, which only had 2D graphics. Nevertheless, this new
version works with the same mechanics as the original.

Figure 4.9: Frogger, by SCE Cambridge Studio (1997)

The minigame of level 1 has essentially the same mechanics. The main character
stills been Toni, and the player has to control him to reach the four targets. When the
player presses the W, A, S or D keys, Toni jumps in the direction assigned to the key he
has pressed. The scene is divided into two areas, as the original game. In the first one,
the player has to avoid getting hit by poker coins that go from left to right and from
right to left. The second one would be the corresponding to the river in the original
game, and here the player has to jump over poker cards that are moving from left to
right and vice-versa to avoid falling into the void (see Figure 4.11). Once the player
passes this part, he will find four targets, and if he enters in one of them, the game will
take the player to his start position, and he will have to repeat the same route to reach
another target. When the player reaches the four targets, the level ends. However, if
the player is getting hit by a coin or he falls into the void, he will return to the start
position and will have to repeat the route (see Figure 4.10).

About the GUI, this minigame only uses it to tell the player how many targets are

34 Work Development and Results

Figure 4.10: The player has to avoid getting hit by the coins

Figure 4.11: The player must jump over the cards to avoid falling into the void

4.1. Work Development 35

left and when he fails (as it was seen in figures 3.7 and 3.6). And that is all about the
first level.

Level 2 takes place at Toni’s house. Mónica, who is Toni’s wife, wants to talk with
him. She doesn’t know Toni’s gambling addiction. However, she has noticed something
strange on their bank account. To talk with her, Toni has to go to the kitchen. On his
way, Toni can talk with Daniel, his son. In this dialogue, Daniel asks Toni to give him
some money to pay for a lootbox on his game. This kind of products works similarly to
the gambling machines, where the prize depends on chance. Talking about this was a
clear objective since the first steps of the game.

Figure 4.12: The final appearance of level 2

As it can be seen in figure 4.12, level 2 is less big than the first one. So it took less
time to finish his creation. There was also no need to add the change of perspective
or the indications option of the previous level, due to this level works perfectly without
those things. The models used for this scene were taken from Furniture Kit [18] and
Home Assets [19], two assets downloaded from Kenney and Unity Assets Store.

After all the level was complete, it was time to start with the second minigame. For
this minigame, it was taken as inspiration the classic card game of matching cards. It
is a memory challenge game where an even number of cards appears on the table, with
all cards face down, and every card has an identical pair between the others. The player
has to select two and check if they are the same card. The game ends when the player
finds all the pairs of cards.

As this game has a lot of variants, there was more freedom on his development. For
this version, the decision was adding a challenging feeling. To do that, the player would
have limited time to find all the pairs. If the timer arrives to zero, the player loses the
game. To increase the difficulty from level to level, the minigame was designed to have
three rounds. The start state of the timer would be different in each round. In the first
one, the player has ninety seconds to find all the pairs, in the second one seventy-five
seconds and the last one sixty seconds.

However, in this state, the game kept being too easy. A solution was to penalize the

36 Work Development and Results

Figure 4.13: Example of a matching cards game (anonymous)

player for matching the wrong cards. If the player had total freedom to select cards, he
could easily find all the pairs in less than thirty seconds. But with the penalization of
three seconds, the player has to think which card he is going to select, or he will lose
time. During those three seconds, the player can’t select any other card, and once that
time ends, the cards return to be face down and the player can try again.

To give a little help to the player, it was added a new mechanic into the game. At
the start of each round, the cards will be face up, and the player can try to remember
where the cards are. After five seconds, the cards are turned, and the round starts (the
player can select cards and the timer starts).

About the technical part (programming), the cards are saved on a list as they are
created. Then, their positions are simply changed for the position of another card in the
list. Once the round or the timer ends, the list is emptied, and the new cards generated
are saved here instead. That way, every round will be different from the rest. The code
can be seen in appendix A

As the idea of the project is that all elements in the game have to be related with
gambling addiction and his consequences, the cards represent excuses that Toni uses to
hide his secret and the problem with the bank account. Every excuse has a different
typography, to make it easier for the player to identify the pairs of cards at the beginning
of the round. Besides, the cards have an animation to rotate when they are selected by
the player and after the three seconds of penalization.

Finally, the GUI in this minigame is used in a similar way as in the previous one. It
informs to the player when he wins or loses a round, indicating in the first case which
round he has won and how many rounds are left, and when the player matches correctly
(see Figure 3.8) or badly a pair of cards. Moreover, it shows the player’s remaining time
to find all the pairs. It is important to remark that a suggestion of the supervisor was
to add a countdown on the screen when the penalization is applied, to be sure that the

4.1. Work Development 37

player understands that he can’t select another card until that countdown ends.
It has to be mentioned that initially, the second level didn’t have a minigame. This

minigame was intended to appear at the beginning of level 4 when Toni talks with an
old friend of the family. This way, level 2 would not have a minigame (it would only
be a transition level with dialogue), and level 4 would have two minigames, one at the
beginning and another one at the end to finish the level. However, after a meeting with
the supervisor, it seemed much better to include this minigame in the second level, ap-
pearing when Toni talks with Mónica and preventing the player from getting bored. For
this objective, it was necessary to make a little change on Mónica’s background story,
due to that at the first steps of the game she knew Toni’s problem, and with this change
in the distribution of the game, it was necessary that she didn’t know anything.

Figure 4.14: Screenshot from the second minigame, with the countdown of penalization

Level 3 takes place at Toni’s office. Toni has been working in that office for fifteen
years, and he has made very close friends there. However, Iker, one of his partners,
is the one who took Toni for the first time to a gambling house, and they used to go
together to those places. The level starts when Toni takes a break to go for a coffee
to the coffee pot, which is in front of the boss’ door. On his way, the player can talk
with a partner, which has a little dialogue, and with Rosa. Rosa is Toni’s best friend
in his job, and they have been friends since he started to work there. However, Rosa
is having problems with his son, now that he has started to gambling on the Internet,
replacing his old drugs addiction for this one. Toni and Rosa will talk about that if
the player interacts with Rosa. Once the player reaches the coffee pot, he will see Iker,
and dialogue will start. But this time, the dialogue will be activated automatically (the
player collides with a collider and it activates). In this dialogue, Iker tries to convince
Toni of going with him to a gambling house and betting for a football match. When the

38 Work Development and Results

dialogue ends, the third minigame starts, representing that Toni is having an internal
fight to resist the temptation.

Figure 4.15: The final appearance of level 3

Before talking about the third minigame, there are a few things to comment about
the exploration section. The 3D models were taken from the Unity assets Modern Office
Interior [20], and initially, the level was bigger. However, after some testings made by
the supervisor and other people, the decision was to put fewer desks in the office and
make it smaller. That way, due to the number of things that the player can do in this
scene, the scale of the level would be perfect. Besides, there were added some workers
doing his work on their desks. That way, the level would look more alive.

The third minigame suffered a big change regarding of his initial concept. The idea
was to repeat a pattern of keys of the keyboard to win the game. Every key would have
a different meaning, composing all the keys of the pattern a phrase that Toni would say
to Iker to avoid the temptation. However, this idea had a lot of problems. There would
be a lot of options for the pattern, due to that all the keys of the keyboard could be used,
and that could generate a pattern too difficult to remember. The other main problem
is that all the minigames must include elements related to gambling houses and casinos,
and in this case, there were poor chances to achieve it.

So after thinking about it, the conclusion was that a good solution could be making
the game more similar to the fount of inspiration: Simon!. This game wasn’t originally
a videogame, but it was a board game from the year 1978. However, it has had some
adaptations in videogames. The game has four buttons, each one with a different colour
(in the classic version, the colours are yellow, blue, green and red), and each round the
game establishes a different pattern of colours. First, it illuminates one colour, and
the player has to repeat it. In the next iteration, the game adds a new colour to the
pattern, and the player has to repeat the same colours int the same order. This happens

4.1. Work Development 39

successively, adding colours in each iteration until the player makes a mistake when
repeating the pattern. The round starts again with a new pattern.

Figure 4.16: Simon! board game, created by Ralph Baer and Howard J. Morrison (1978)

In the project’s version, there are a few differences from the original. To relate the
game with gambling houses and casino’s elements, the four buttons are part of a slot
machine. The colours are the same ones of the original game, but each button has an
image on him, which are the elements that appear on the screen of a slot machine. In the
mechanics, there are a few changes too. The minigame is divided into three rounds. The
difficulty increases when the player wins a round, showing the pattern of colours more
quickly than in the previous round, which makes it more difficult to remember it for the
player. Each round has six iterations, which means that each pattern is composed by
six colours, and in each iteration the player has to repeat the colours that the game has
shown, adding a new colour in each one.

If the player wins the three rounds, the minigame ends. However, if he makes a
mistake repeating the pattern, he has to repeat the round from the beginning. To give
feedback to the player, when he presses a button, the button moves as a button pressed,
and it brights with his colour assigned (see Figure 4.17). To make the button shine, it
has been used the spotlight component. Each button has his own spotlight, and this
spotlight is modified to shine with the colour of the button assigned. The problem is that
in his default settings the spotlight illuminates all the buttons, and that is not the effect
searched. To avoid this, the solution was to use the culling mask option. This allows
specifying which components of the scene will be affected by the spotlight, depending
on their tag. In this case, the components would be the slot machine and the button
assigned to the spotlight, and the excluded ones would be the rest of the buttons (see
Figure 4.18).

This minigame represents the battle of Toni against Iker’s words. If the player can
follow the rhythm of the pattern, then Toni successes ignoring the temptation that Iker
represents.

Finally, the GUI in this minigame has two roles. For one hand, it indicates to the
player when he has won the round (indicating which round he has won and how many
rounds are left) and when he has lost the round (when he makes a mistake). For the

40 Work Development and Results

Figure 4.17: A screenshot from the third minigame

Figure 4.18: The light component of the spot light, where it can be seen which tags are
assigned in the culling mask option (in this the green button and the slot machine)

4.1. Work Development 41

other hand, there is a counter which shows the player in what round is he in. These
components where showed in Chapter 3 (see Figure 3.9).

Level 4 is the last one. It was created in the last steps of the project. This level
takes place in a bar where Toni has to meet with two friends. At first, Toni can’t move
through all the level. There is an invisible collider to avoid Toni from passing to the
bathroom area. First, he has to speak with his friends. In this conversation, it will be
cleared that Toni has economical problems as a consequence of his gambling addiction
because Toni borrowed to one of them some money. After the conversation, Toni will
need to go to the bathroom, and his friends will tell him how to arrive. At that moment
the invisible collider will disappear, and Toni will be able to explore a new area. Before
or after speaking with his friends, Toni can talk with a stranger. This stranger will
recognize Toni from a gambling house, and Toni will try to escape from that situation.
The exploration section ends when Toni is on his way to the bathroom and he sees a
gambling machine. Then the final minigame starts.

Figure 4.19: The final appearance of level 4

The 3D models of level 4 were taken from the Unity assets Bar props [21], and as it
has been said before, initially this level was composed by two minigames, the minigame
of the level 2 and another. However, a change on the game design left this level with
only one minigame, like the rest of the levels.

The final minigame is based on Aerogun field, an arcade game from the year 1987 and
developed by Tronica (see Figure 4.20). In this game, the player has to move between
four rails and fire against warplanes that are trying to reach the base of the player by
falling through that rails. If a warplane reaches the player’s base he will lose one life.
Once the player loses three lives the game ends.

For the project’s version of this minigame, there were made a few changes from the

42 Work Development and Results

Figure 4.20: Aerogun Field, created by Tronica (1987)

original. In the original, the game didn’t end until the player lost, but in this version,
there is a victory condition. The player has a lifebar, and this lifebar decreases when an
item touches the ground. If the lifebar drops to zero, the minigame restarts. To win the
game, the player has to survive during two minutes, trying to catch all the items that
are falling before they reach the ground (in the original game the player had to shoot
against them, but in this one, the player has to collide with them). However, the player
can increase the lifebar catching the health item, which will appear when the player is
losing health.

As in the original game, there are four rails. The player can move between them
with the A key (left) and the D key (right), but also with the left arrow key and the
right arrow key. To make the game more challenging, the difficulty increases with time.
Every thirty seconds three variables change and these are the speed of the items (which
fall faster), the time between items (which is reduced) and the probability of a healthy
item to appear (in this case, this variable increases, giving a little help to the player in
the most difficult sections).

To achieve this, the different scripts of this minigame take variables from the script
which manages the minigame. In this script (which controls the timer) the time is
checked, changing the speed, the time between items and the probability of the health
item depending on the time. Then, the other scripts (the script of the items and the
script to spawn them) access to these variables. Besides, health items only appear when
the lifebar is not full, so for this, the script that spawns items has to access to the value
of the slider that represents the lifebar, and which is managed in the manager script.
The code can be seen in appendix A.

Initially, the increase in the difficulty only affected the time between the items.

4.1. Work Development 43

However, in the testing phase, the supervisor and other people said that the minigame
was too easy. So changing the speed of the items would increase the difficulty, but maybe
too much. The conclusion was to increase the probability of the healthy items to appear
too.

The GUI ins this minigame is used to inform the player when he loses or when he
wins the minigame. When the player loses, the instructions panel appears, and when
he presses the Space key, the countdown of three seconds starts and then the minigame
restarts. This happens in the rest of the minigames too. The GUI also includes the
lifebar and the timer. Also, to give feedback to the player, there was added a particles
system. When an item reaches the ground a red smoke appears in that position, and
when the player catches a health item, a green smoke appears (see Figure 4.21). The
particles were created using the Unity Asset Particle Ribbon [22].

Figure 4.21: A screenshot from the fouth minigame, with the green smoke that appears
when the player catches a health item. There are also dices falling, which are objects
that the player has to catch to avoid them reach the ground.

All the game music has been taken from the web page Patrick de Arteaga [23].

44 Work Development and Results

4.2 Results
The initial objectives can be divided into two parts. For one hand, the main objective
was to design and develop four levels, mixing exploration and minigames without losing
the entertaining aspect of the game. As it has been explained in the previous lines, the
game has suffered some changes regarding the initial concept, like moving one of the
minigames of the level 4 to the level 2 and considerable changes in the third minigame.
However, these changes have been necessary to achieve this objective, making the game
entertaining in all levels and giving to the player a variety of experiences with very
different minigames between them.

The mechanics of each minigame are different from the rest of the minigames, so the
initial objective of giving variety to the experience of the player has been accomplished.
Besides, the four levels were created, as it was set in the conceptual design of the game.

On the other hand, another objective to accomplish was representing the problem
with gambling addiction in a way that could be interesting for the players. This represen-
tation can be seen in both parts: exploration and minigames. In the exploration section,
the world where the game takes place shows that everyone has his opinion about the
topic. In the conversations with the NPCs, the player can see how everyone is affected
by this, and what forms the gambling can adapt, as the lootboxes of the videogames, the
people that change one addiction for another, the people who suffer gambling addiction
thinking that they control the situation... In the minigames, there are included elements
that evoke to gambling houses and casinos, and which have a function in the mechanics
(objects that are used in poker and slot machines have a negative meaning). Then, this
game is clearly about gambling addiction, which was one of the objectives.

You can access to the repository of the project with this link:

https://github.com/JDex18/The-winner-loses-it-all

And also access to the builds of this project for Windows and Mac with this link:

https://drive.google.com/drive/folders/1zPJmagGMNp7TwvN0KNkV0MYbvuuRVxN_?usp=

sharing

https://github.com/JDex18/The-winner-loses-it-all
https://drive.google.com/drive/folders/1zPJmagGMNp7TwvN0KNkV0MYbvuuRVxN_?usp=sharing
https://drive.google.com/drive/folders/1zPJmagGMNp7TwvN0KNkV0MYbvuuRVxN_?usp=sharing

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 45
5.2 Future work . 46

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

During the degree, we have made some videogames with different characteristics for
different subjects. Most of them were made in group, making his development easier
and not having all the responsibility. However, this project is different. This is my final
degree work, and it is the closest experience of developing a videogame that I have ever
had.

A few months ago, before I started with this project, I would have considered this
work too difficult to achieve with my skills. However, my final degree work has coincided
with my university practices. I have learned a lot about Unity in those practices, and
my experience there gave me enough confidence to develop this work. But at the same
time, the time that I dedicated to this project helped me with my practices.

So in conclusion, these months has given me the confidence that I need to consider
myself capable of doing what I want the most: making videogames. This project has
been very important to me, and I think that the amount of time that I have dedicated to
it has made me understand how important is for someone to work in something that he
cares about. In my case, it has been gambling addiction. I am so concerned about this

45

46 Conclusions and Future Work

problem, and I consider that it needs more visibility. So mixing that with videogames
is what I can do for what I consider one of the most important things right now.

5.2 Future work
The game that I have achieved is the game that I had in mind when I started to think
about it, with only a few necessary changes. However, during the development, some
ideas came to my mind. They were good ideas, but maybe too difficult to implement
before the deadline. If I would continue with this project, I would probably add some
kind of difficulty selection. This project already has a changing difficulty, but maybe I
could find the way to adding this modification and giving to the player a motivation to
replay the game.

Another thing that I would consider to add could be more NPCs to talk with. I
like the conversations that you can have with the characters of the game because their
different opinions and experiences make look the game more alive. And another thing to
add related to the dialogues could be different dialogue options. That way, Toni could
have multiple responses, and create a great number of possibilities in the conversations.
This could even make the game more immersive, and as a consequence, maybe the player
could become more concerned with gambling addiction.

Bibliography

[1] Germán Fabregat Llueca. Guía para la redacción de las memorias.
http://mermaja.act.uji.es/itis/IS31/guia_memoria.pdf. Accessed: 2020-06-07.

[2] Unity Technologies. Unity download archive. https://unity3d.com/es/get-
unity/download. Accessed: 2020-06-07.

[3] Microsoft. Visual studio download archive.
https://visualstudio.microsoft.com/es/downloads/. Accessed: 2020-06-07.

[4] Autodesk. 3ds max download archive. https://www.autodesk.com/education/free-
software/3ds-max. Accessed: 2020-06-07.

[5] GitHub. Github desktop download archive. https://desktop.github.com/. Accessed:
2020-06-07.

[6] Gantt Project. Ganttproject download archive.
https://www.ganttproject.biz/download. Accessed: 2020-06-07.

[7] Cool Text Graphics Generator. Cool text graphics generator web page.
https://cooltext.com/. Accessed: 2020-06-07.

[8] Adobe Inc. Mixamo web page. https://www.mixamo.com/. Accessed: 2020-06-07.

[9] TeXnicCenter. Texniccenter download archive.
https://www.texniccenter.org/download/. Accessed: 2020-06-07.

[10] Unity Asset Store. Unity asset store web page. https://assetstore.unity.com/. Ac-
cessed: 2020-06-07.

[11] Grammarly. Grammarly web page and download archive.
https://app.grammarly.com/. Accessed: 2020-06-07.

[12] Visual Paradigm International. Visual paradigm online web page.
https://online.visual-paradigm.com/es/. Accessed: 2020-06-07.

[13] Trex Games. Low poly character from itch.io. https://trexgames.itch.io/low-poly-
character?download. Accessed: 2020-06-07.

47

48 Bibliography

[14] karboosx. Low poly european city pack asset from the unity asset
store. https://assetstore.unity.com/packages/3d/environments/urban/low-poly-
european-city-pack-71042. Accessed: 2020-06-07.

[15] Codery Games. Simple city lite asset from the unity asset store.
https://assetstore.unity.com/packages/3d/environments/urban/simple-city-lite-
133329. Accessed: 2020-06-07.

[16] Viuletti. Low poly city asset from the unity asset store.
https://assetstore.unity.com/packages/3d/environments/urban/low-poly-city-
from-viuletti-132536. Accessed: 2020-06-07.

[17] Myxer Man. Simple cars pack from unity asset store.
https://assetstore.unity.com/packages/3d/vehicles/land/simple-cars-pack-97669.
Accessed: 2020-06-07.

[18] Kenney. Furniture kit asset from kenney. https://www.kenney.nl/assets/furniture-
kit. Accessed: 2020-06-07.

[19] Mohelm97. Simple home stuff asset from the unity asset store.
https://assetstore.unity.com/packages/3d/simple-home-stuff-69129. Accessed:
2020-06-07.

[20] Asset Store Originals. Snaps prototype | office asset from the unity asset
store. https://assetstore.unity.com/packages/3d/environments/snaps-prototype-
office-137490. Accessed: 2020-06-07.

[21] SimpleModelsForMe. Bar props asset from the unity asset store.
https://assetstore.unity.com/packages/3d/props/barprops-137130. Accessed:
2020-06-07.

[22] Moonflower Carnivore. Particle ribbon asset from the unity asset store.
https://assetstore.unity.com/packages/vfx/particles/spells/particle-ribbon-42866.
Accessed: 2020-06-07.

[23] Patrick de Artega. Royalty free music. https://patrickdearteaga.com/es/musica-
libre-derechos-gratis/childs-nightmare/. Accessed: 2020-06-29.

A
p

p
e

n
d

ix A
Source code

CameraFollow script for level 1

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class CameraFollow : MonoBehaviour

7 {

8
9 public Transform player;

10 private Vector3 cameraOffset;

11 private Vector3 cameraOffset1;

12 private Vector3 cameraOffset2;

13 private Vector3 cameraOffset3;

14
15 public Transform cam2;

16 public Transform cam3;

17 public Transform object2;

18 public Transform object3;

19
20 public Transform[] views;

21 private Transform currentView;

22 private float transitionSpeed;

23 public bool cameraTransition;

24 public static bool cambio1;

25 public static bool cambio2;

26 public static bool cambio3;

27
28 public GameObject trigger1;

29 public GameObject trigger2;

49

50 Source code

30 public GameObject trigger3;

31
32
33
34 [Range(0.01f, 1.0f)]

35 public float smoothFactor;//para suavizar el movimiento de la cámara

36 // Start is called before the first frame update

37 void Start()

38 {

39 cameraOffset1 = transform.position - player.position;

40 transitionSpeed = 2f;

41 cameraTransition = false;

42 currentView = views[0];

43
44 //cam2 = new Vector3(39.44464f, -47.32929f, -83.11659f);

45 cameraOffset2 = cam2.position - object2.position;

46 cameraOffset3 = cam3.position - object3.position;

47 cameraOffset = cameraOffset1;

48 cambio1 = false;

49 cambio2 = false;

50 cambio3 = false;

51 }

52
53 // Update is called once per frame

54 private void Update()

55 {

56 if (cambio1 || cambio2 || cambio3)

57 {

58 cambioCamara();

59 }

60
61
62 }

63
64 void LateUpdate()

65 {

66
67 if (!cameraTransition)

68 {

69 Vector3 newPos = cameraOffset + player.position;

70
71 transform.position = Vector3.Slerp(transform.position, newPos, smoothFactor);

72 }

73
74 else

75 {

76 transform.position = Vector3.Lerp(transform.position, currentView.position, Time.deltaTime * transitionSpeed);

77 //transform.rotation = currentView.rotation;

78 transform.rotation = Quaternion.Lerp(transform.rotation, currentView.rotation, Time.deltaTime * 2);

79
80 if (Vector3.Distance(transform.position, currentView.position) <= 5)

81 {

82 cameraTransition = false;

83 }

Source code 51

84 }

85
86 }

87
88
89 void cambioCamara()

90 {

91
92 if (cambio1)

93 {

94 cambio1 = false;

95
96 if (cameraOffset == cameraOffset1)

97 {

98 currentView = views[0];

99 cameraTransition = true;

100 cameraOffset = cameraOffset2;

101 trigger1.transform.position = new Vector3(-2.3f, 1.1f, -77.59f);

102 return;

103 }

104
105 if (cameraOffset == cameraOffset2)

106 {

107 currentView = views[1];

108 cameraTransition = true;

109 cameraOffset = cameraOffset1;

110 trigger1.transform.position = new Vector3(-3f, 1.1f, -76.8f);

111 return;

112 }

113 }

114
115 if (cambio2)

116 {

117 cambio2 = false;

118
119 if (cameraOffset == cameraOffset1)

120 {

121 currentView = views[2];

122 cameraTransition = true;

123 cameraOffset = cameraOffset2;

124 trigger2.transform.position = new Vector3(57.2f, 1.1f, -125.28f);

125 return;

126 }

127
128 if (cameraOffset == cameraOffset2)

129 {

130 currentView = views[3];

131 cameraTransition = true;

132 cameraOffset = cameraOffset1;

133 trigger2.transform.position = new Vector3(57.2f, 1.1f, -126.3f);

134 return;

135 }

136 }

137

52 Source code

138 if (cambio3)

139 {

140 cambio3 = false;

141
142 if (cameraOffset == cameraOffset3)

143 {

144 currentView = views[4];

145 cameraTransition = true;

146 cameraOffset = cameraOffset2;

147 trigger3.transform.position = new Vector3(-46.97f, 1.1f, 8.05f);

148 return;

149 }

150
151 if (cameraOffset == cameraOffset2)

152 {

153 currentView = views[5];

154 cameraTransition = true;

155 cameraOffset = cameraOffset3;

156 trigger3.transform.position = new Vector3(-45.86f, 1.1f, 8.05f);

157 return;

158 }

159 }

160
161
162 }

163 }

Source code 53

PlayerMovement script for level 1

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using UnityEngine.SceneManagement;

6
7 public class PlayerMovement : MonoBehaviour

8 {

9 private float playerSpeed;

10 private float horizontalMove;

11 private float verticalMove;

12
13 private CharacterController player;

14 private Animator anim;

15 private Vector3 playerInput;

16
17 public Camera cam;

18 private Vector3 camForward;

19 private Vector3 camRight;

20 private Vector3 movePlayer;

21
22 public Controller controller;

23 private float gravity;

24
25 public static bool play;

26
27 public Level1Canvas levelCanvas;

28
29
30 // Start is called before the first frame update

31 void Start()

32 {

33 playerSpeed = 3f;

34 player = GetComponent<CharacterController>();

35 anim = GetComponent<Animator>();

36
37 controller.enConversacion = false;

38 gravity = 9.8f;

39
40 play = false;

41 }

42
43 // Update is called once per frame

44 void Update()

45 {

46 walk();

47
48 }

49
50 void walk()

51 {

52 if (!controller.enConversacion && play) //SI ESTÁ EN UNA CONVERSACIÓN NO PODRÁ MOVERSE

54 Source code

53 {

54 horizontalMove = Input.GetAxis("Horizontal");

55 verticalMove = Input.GetAxis("Vertical");

56
57 playerInput = new Vector3(horizontalMove, 0f, verticalMove);

58 playerInput = Vector3.ClampMagnitude(playerInput, 1);

59
60 camDirection();

61 movePlayer = playerInput.x * camRight + playerInput.z * camForward;

62
63 movePlayer *= playerSpeed;

64
65 player.transform.LookAt(player.transform.position + movePlayer);

66
67 SetGravity();

68
69 player.Move(movePlayer * Time.deltaTime);

70
71 if (Input.GetAxis("Horizontal") != 0 || Input.GetAxis("Vertical") != 0)

72 {

73 anim.SetBool("isWalking", true);

74 }

75
76 else

77 {

78 anim.SetBool("isWalking", false);

79 }

80 }

81
82 else

83 {

84 anim.SetBool("isWalking", false);

85 }

86 }

87
88 void camDirection()

89 {

90 camForward = cam.transform.forward;

91 camRight = cam.transform.right;

92
93 camForward.y = 0;

94 camRight.y = 0;

95
96 camForward = camForward.normalized;

97 camRight = camRight.normalized;

98 }

99
100 void SetGravity()

101 {

102 movePlayer.y = -gravity;

103 }

104
105 private void OnTriggerEnter(Collider other)

106 {

Source code 55

107 if(other.tag == "Trigger1")

108 {

109 CameraFollow.cambio1 = true;

110 }

111
112 if (other.tag == "Trigger2")

113 {

114 CameraFollow.cambio2 = true;

115 }

116
117 if (other.tag == "Trigger3")

118 {

119 CameraFollow.cambio3 = true;

120 }

121
122 if (other.tag == "TriggerCoches")

123 {

124 controller.enPaso = true;

125 }

126
127 if (other.tag == "Finish")

128 {

129 levelCanvas.finish();

130 }

131 }

132
133 private void OnTriggerExit(Collider other)

134 {

135 if (other.tag == "TriggerCoches")

136 {

137 controller.enPaso = false;

138 }

139 }

140 }

56 Source code

CreateCards script for minigame 2

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class CreateCards : MonoBehaviour

7 {

8 public GameObject cardPrefab;

9 public int width;

10
11 public Material[] materials;

12 public Texture2D[] textures;

13 private List<GameObject> cards = new List<GameObject>();

14
15 public Card showedCard;

16 public bool canShow;

17
18 public CanvasMinigame2 canvasMinigame;

19 private int count;

20 private int x;

21 // Start is called before the first frame update

22 void Start()

23 {

24 //create();//PROVISIONAL. PONLO DESPUÉS DONDE QUIERAS QUE SE EMPIECEN A CREAR LAS CARTAS

25 canShow = false;

26 count = 0;

27 x = 0;

28 }

29
30 // Update is called once per frame

31 void Update()

32 {

33
34 }

35
36 public void create()

37 {

38 for(int i = 0; i < width; i++)

39 {

40 x = 0;

41 for(int j = 0; j < width; j++)

42 {

43 GameObject card = Instantiate(cardPrefab, new Vector3(x, 0, i), Quaternion.Euler(new Vector3(0, 180, 0)));

44 cards.Add(card);

45 card.GetComponent<Card>().startPosition = new Vector3(x, 0, i);

46 x += 2;

47 }

48
49 }

50
51 assignTextures();

52 mixCards();

Source code 57

53
54 }

55
56 private void assignTextures()

57 {

58 for(int i = 0; i < cards.Count; i++)

59 {

60 cards[i].GetComponent<Card>().assignTexture(textures[i / 2]);

61 cards[i].GetComponent<Card>().numCard = i / 2;

62 }

63 }

64
65 private void mixCards()

66 {

67 int random = 0;

68 for (int i = 0; i < cards.Count; i = i + 2)

69 {

70 random = Random.Range(i, cards.Count);

71
72 cards[i].transform.position = cards[random].transform.position;

73 cards[random].transform.position = cards[i].GetComponent<Card>().startPosition;

74
75 cards[i].GetComponent<Card>().startPosition = cards[i].transform.position;

76 cards[random].GetComponent<Card>().startPosition = cards[random].transform.position;

77 }

78 }

79
80 public void click(Card card)

81 {

82 if(showedCard == null)

83 {

84 showedCard = card;

85 }

86
87 else

88 {

89 if(checkCards(showedCard.gameObject, card.gameObject))

90 {

91 count++;

92 if(count == 8)

93 {

94 Minigame2Manager.round++;

95 if(Minigame2Manager.round == 3)

96 {

97 canvasMinigame.winGame();

98 }

99
100 else

101 {

102 canvasMinigame.roundCompleted();

103 }

104 Minigame2Manager.start = false;

105 }

106

58 Source code

107 else

108 {

109 canvasMinigame.correctCards();

110 canShow = true;

111 }

112 }

113
114 else

115 {

116 canvasMinigame.wrongCards();

117 card.hideCard();

118 showedCard.hideCard();

119 }

120
121 showedCard = null;

122 }

123 }

124
125 private bool checkCards(GameObject card1, GameObject card2)

126 {

127 return card1.GetComponent<Card>().numCard == card2.GetComponent<Card>().numCard;

128 }

129
130 public void resetCards()

131 {

132 cards.Clear();

133 GameObject[] cardsToRemove = GameObject.FindGameObjectsWithTag("Card");

134 for(int i = 0; i < cardsToRemove.Length; i++)

135 {

136 Destroy(cardsToRemove[i]);

137 }

138 canShow = false;

139 count = 0;

140 }

141 }

Source code 59

Card script for minigame 2

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class Card : MonoBehaviour

7 {

8 public int numCard;

9 public Vector3 startPosition;

10 private Texture2D assignedTexture;

11 public Material hideCardMaterial;

12 public CreateCards createCards;

13
14 private float timeDelay;

15 private bool showing;

16 //private Animator anim;

17 private Animation animation;

18
19 // Start is called before the first frame update

20 void Start()

21 {

22 timeDelay = 3f;

23 showing = true;

24 }

25
26 private void Awake()

27 {

28 createCards = GameObject.Find("GameManager").GetComponent<CreateCards>();

29 //anim = GetComponent<Animator>();

30 animation = GetComponent<Animation>();

31 Invoke("show", 0.1f);

32 Invoke("hideAnimation", 5f);

33 }

34
35 // Update is called once per frame

36 void Update()

37 {

38
39 }

40
41
42 public void assignTexture(Texture2D texture)

43 {

44 assignedTexture = texture;

45 }

46
47 public void showCard()

48 {

49 if (createCards.canShow && !showing)

50 {

51 //anim.SetBool("isShowing", true);

52 animation.Play("showAnimation");

60 Source code

53 //Invoke("idle", 0.3f);

54 createCards.click(this);

55 showing = true;

56 }

57 }

58
59 public void show()//SE LLAMA DESDE UN EVENTO DE LA ANIMACIÓN

60 {

61 GetComponent<MeshRenderer>().material.mainTexture = assignedTexture;

62 }

63
64 public void hideCard()

65 {

66 createCards.canShow = false;

67 Invoke("hideAnimation", timeDelay);

68 }

69
70 private void hideAnimation()

71 {

72 //anim.SetBool("isHiding", true);

73 animation.Play("hideAnimation");

74 //Invoke("idle", 0.3f);

75 }

76
77 public void hide()//SE LLAMA DESDE UN EVENTO DE LA ANIMACIÓN

78 {

79 GetComponent<MeshRenderer>().material = hideCardMaterial;

80 createCards.canShow = true;

81 showing = false;

82 }

83
84 /*private void idle()

85 {

86 anim.SetBool("isHiding", false);

87 anim.SetBool("isShowing", false);

88 }*/

89
90 private void OnMouseDown()

91 {

92 showCard();

93 }

94
95
96 }

Source code 61

Minigame4Manager script for minigame 4

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using UnityEngine.UI;

6
7 public class Minigame4Manager : MonoBehaviour

8 {

9 public Slider slider;

10 public Text time;

11 private float timer;

12 public static bool start;

13 public CanvasMinigame4 canvasMinigame;

14 public SpawnerMinigame4 spawnerMinigame;

15
16 public float Speed;

17 public static int Probability;

18 public static float lifehealth;

19 // Start is called before the first frame update

20 void Start()

21 {

22 slider.value = 100;

23 timer = 0f;

24 start = false;

25 time.gameObject.SetActive(false);

26 slider.gameObject.SetActive(false);

27 Speed = 1.5f;

28 Probability = 8;

29 lifehealth = slider.value;

30 }

31
32 // Update is called once per frame

33 void Update()

34 {

35 if (start)

36 {

37 timer += Time.deltaTime;

38 checkTimer();

39 if (timer >= 120f)

40 {

41 timer = 120f;

42 start = false;

43 GameObject[] coinsToRemove = GameObject.FindGameObjectsWithTag("Coin");

44 for (int i = 0; i < coinsToRemove.Length; i++)

45 {

46 Destroy(coinsToRemove[i]);

47 }

48 canvasMinigame.loseGame();

49 canvasMinigame.winGame();

50 }

51
52 time.text = CalcularTiempo(120 - (int)timer);

62 Source code

53 }

54 }

55
56 public void loseHealth()

57 {

58 slider.value -= 15;

59 lifehealth = slider.value;

60
61 if(slider.value <= 0 && start)

62 {

63 start = false;

64 GameObject[] coinsToRemove = GameObject.FindGameObjectsWithTag("Coin");

65 for (int i = 0; i < coinsToRemove.Length; i++)

66 {

67 Destroy(coinsToRemove[i]);

68 }

69 canvasMinigame.loseGame();

70 }

71 }

72
73 public void increaseHealth()

74 {

75 slider.value += 10;

76 lifehealth = slider.value;

77 }

78
79 public void startTimer()

80 {

81 time.gameObject.SetActive(true);

82 slider.gameObject.SetActive(true);

83 slider.value = 100;

84 lifehealth = slider.value;

85 start = true;

86 timer = 0;

87 Speed = 1.5f;

88 Probability = 8;

89 spawnerMinigame.spawnDelay = 3f;

90 }

91
92 private string CalcularTiempo(int tsegundos)

93 {

94 int horas = (tsegundos / 3600);

95 int minutos = ((tsegundos - horas * 3600) / 60);

96 int segundos = tsegundos - (horas * 3600 + minutos * 60);

97
98 string hours = horas.ToString();

99 string minutes = minutos.ToString();

100 string seconds = segundos.ToString();

101
102
103 if (horas < 10)

104 {

105 hours = "0" + horas.ToString();

106 }

Source code 63

107
108 if (minutos < 10)

109 {

110 minutes = "0" + minutos.ToString();

111 }

112
113 if (segundos < 10)

114 {

115 seconds = "0" + segundos.ToString();

116 }

117
118 return minutes + ":" + seconds;

119 }

120
121 public void resetTime()

122 {

123 time.gameObject.SetActive(false);

124 slider.gameObject.SetActive(false);

125 }

126
127 private void checkTimer()

128 {

129 if (timer >= 30f && timer <= 60f)

130 {

131 spawnerMinigame.spawnDelay = 2.3f;

132 Speed = 1.8f;

133 Probability = 7;

134 }

135
136 else if(timer >= 60f && timer <= 90f)

137 {

138 spawnerMinigame.spawnDelay = 1.8f;

139 Speed = 2.1f;

140 Probability = 6;

141 }

142
143 else if (timer >= 90f)

144 {

145 spawnerMinigame.spawnDelay = 1.3f;

146 Speed = 2.4f;

147 Probability = 5;

148 }

149 }

150 }

64 Source code

Object script for minigame 4

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class Object : MonoBehaviour

7 {

8 //public float speed;

9 private Rigidbody rigidbody;

10 public Minigame4Manager minigameManager;

11 public GameObject wrongEffect;

12 public int objectId;

13
14 // Start is called before the first frame update

15 void Start()

16 {

17 rigidbody = GetComponent<Rigidbody>();

18 switch (objectId)

19 {

20 case 0:

21 transform.rotation = Quaternion.Euler(new Vector3(90, 0, 0));

22 break;

23 case 1:

24 transform.rotation = Quaternion.Euler(new Vector3(-35.663f, 2.367f, -37.463f));

25 break;

26 }

27
28
29 minigameManager = GameObject.Find("GameManager").GetComponent<Minigame4Manager>();

30 }

31
32 // Update is called once per frame

33 void Update()

34 {

35 rigidbody.velocity = new Vector3(0f, -1f, 0) * minigameManager.Speed;

36 }

37
38 private void OnTriggerEnter(Collider other)

39 {

40 if (other.tag == "TriggerDestroy")

41 {

42 minigameManager.loseHealth();

43 Instantiate(wrongEffect, transform.position, wrongEffect.transform.rotation);

44 Destroy(gameObject);

45 }

46
47 if (other.tag == "Player")

48 {

49 Destroy(gameObject);

50 }

51 }

52 }

Source code 65

66 Source code

SpawnerMinigame4 script for minigame 4

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class SpawnerMinigame4 : MonoBehaviour

7 {

8 public float spawnDelay;

9 private float nextTimeToSpawn;

10
11 public GameObject[] objects;

12 public GameObject[] objectsGood;

13 public Transform[] spawnPoints;

14
15 private int random;

16 // Start is called before the first frame update

17 void Start()

18 {

19 spawnDelay = 3f;

20 nextTimeToSpawn = 0f;

21 }

22
23 // Update is called once per frame

24 void Update()

25 {

26 if (nextTimeToSpawn <= Time.time && PlayerMovementMinigame4.play)

27 {

28 spawnObject();

29 nextTimeToSpawn = Time.time + spawnDelay;

30 }

31 }

32
33 void spawnObject()

34 {

35 random = Random.Range(0, Minigame4Manager.Probability);

36 Transform spawnPoint = spawnPoints[Random.Range(0, spawnPoints.Length)];

37 if (random == 0 && Minigame4Manager.lifehealth < 100f)

38 {

39 Instantiate(objectsGood[Random.Range(0, objectsGood.Length)], spawnPoint.position, spawnPoint.rotation);

40 }

41
42 else

43 {

44 Instantiate(objects[Random.Range(0, objects.Length)], spawnPoint.position, spawnPoint.rotation);

45 }

46 }

47 }

Source code 67

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

