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A Comprehensive and Reproducible
Comparison of Clustering and Optimization

Rules in Wi-Fi Fingerprinting
Joaquı́n Torres-Sospedra , Philipp Richter , Adriano Moreira , Germán M. Mendoza-Silva ,

Elena Simona Lohan , Sergio Trilles , Miguel Matey-Sanz and Joaquı́n Huerta

Abstract—Wi-Fi fingerprinting is a well-known technique used for indoor positioning. It relies on a pattern recognition method that
compares the captured operational fingerprint with a set of previously collected reference samples (radio map) using a similarity
function. The matching algorithms suffer from a scalability problem in large deployments with a huge density of fingerprints, where the
number of reference samples in the radio map is prohibitively large. This paper presents a comprehensive comparative study of
existing methods to reduce the complexity and size of the radio map used at the operational stage. Our empirical results show that
most of the methods reduce the computational burden at the expense of a degraded accuracy. Among the studied methods, only
k-means, affinity propagation, and the rules based on the strongest access point properly balance the positioning accuracy and
computational time. In addition to the comparative results, this paper also introduces a new evaluation framework with multiple
datasets, aiming at getting more general results and contributing to a better reproducibility of new proposed solutions in the future.

Index Terms—Indoor positioning, Wi-Fi fingerprinting, clustering, computational costs, time complexity, benchmarking, reproducibility
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1 INTRODUCTION

LOCATION information bridges the gap between the
physical and the digital worlds, creating new oppor-

tunities and challenges. As smart devices and pervasive
mobile connectivity are increasingly penetrating our daily
lives, more and more applications and location-based ser-
vice (LBS) are built on the location awareness.

Outdoors, Global Navigation Satellite System (GNSS)
technologies successfully provide position estimates, even
in low satellite coverage situations, as long as they are com-
bined with other well-known technologies such as inertial
sensors, cellular networks, or IEEE 802.11 Wireless LAN
(Wi-Fi) [1, 2, 3]. However, people spend about 80 % of their
time indoors [4, 5], so indoor positioning and tracking is of
high relevance for LBS. The difficulty of achieving a model
that fits every indoor environment and which can deal with
particularities such as signal multipath and heterogeneity of
devices and building structures, makes the indoor location
estimation a challenge [6]. Despite that, Wi-Fi fingerprinting
(FP) is among the preferred indoor positioning technologies.
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Wi-Fi fingerprinting exploits the detected Received Sig-
nal Strength (RSS) from Wi-Fi Access Points (APs) – the
Wi-Fi fingerprint – to predict user’s arbitrary location.
In contrast to other approaches using Wi-Fi as the main
positioning technology (e.g. proximity or ranging), Wi-Fi
fingerprinting does not require information about the po-
sition of the APs. Wi-Fi fingerprinting relies on a set of
fingerprints taken at well-known positions for the position
estimation; i.e., Wi-Fi FP requires a reference dataset (or radio
map) to operate. Different well-known methods tackle this
problem, including the Nearest Neighbour (NN) algorithm
k-NN [7], Gaussian kernels [8], Bayesian models [9], Neural
Networks [10] and, even, Deep Learning [11, 12].

Among the techniques mentioned above, the ones based
on advanced Machine Learning (ML) are the most accurate
ones [13]. The high accuracy comes at the expense of high
complexity; which is often prohibitive for smartphone im-
plementation [14]. The other methods balance better posi-
tioning accuracy and computational complexity. Especially
k-NN stands out, because it is simple but able to achieve
very good positioning performance. For these reasons, k-
NN has been widely adopted [7, 15, 16] –even on interna-
tional competitions [17, 18, 19]– and we adopt it as base
algorithm in this study. Nevertheless, the computational
complexity can be an issue and requires further attention;
especially because of the inherent trade-off between posi-
tioning accuracy and computational complexity.

Most FP methods (except the advanced ML methods)
share the drawback that in the on-line phase the computa-
tional costs increase the with number of fingerprints [20].
This operation is the computationally most demanding op-
eration [21], because for each operational fingerprint the
distance to all reference fingerprints are calculated. How-
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ever, the computational load in the on-line phase can be
reduced if the distance calculation is restricted to a subset of
reference fingerprints relevant to the operational fingerprint.

The approaches to alleviate the computational burden
in the operational phase can be divided in two categories,
namely clustering and optimization rules. Some of them focus
on creating groups (clusters) of similar fingerprints off-line,
and then apply a two-level search in the on-line (opera-
tional) phase, for instance, using k-Means clustering to split
the radio map and create the cluster centroids [22]. For each
operational fingerprint, the distances to the centroids are
first computed and, then, the distances to all the reference
fingerprints in the nearest cluster are calculated to estimate
the final position (see Figure 1a). Other works correspond
to optimization rules (heuristics) based on signal prop-
agation characteristics, where the distance calculation is
restricted to the reference fingerprints that are relevant (see
Figure 1b). For instance, keeping the reference fingerprints
whose strongest AP matches the operational one [23].
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Fig. 1. Workflow of Wi-Fi FP. (a) based on k-NN with and without
clustering (e.g., k-Means Clustering [22]). (b) based on k-NN with an
optimization rule (e.g. Moreira Strongest [23]).

Given the large amount of different approaches, either
clustering methods [8, 22, 24, 25] or optimization rules
[23, 26, 27], it would be interesting to know which of the
proposed methods achieves the best trade-off between posi-
tioning accuracy and computational complexity. Most of the
studies focus on the positioning accuracy only. Moreover,
these studies are not comparable, as they differ in their
experimental setups, the area of evaluation, the localization
devices, the strategy to collect data, or they are tailored
to specific environments [28]. A few studies address the
computational effort [8, 27]. Similar issues prevail here, the
methodology for evaluating the computational complexity
and the used metrics are so different that these methods are
not comparable either. Having a comprehensive evaluation
framework will enable the research community to get gen-
eral results and allow for direct results comparisons.

This paper aims to fill this gap and introduces a compar-
ison, through experimental evaluation, of existing clustering
and optimization rules for Wi-Fi fingerprinting based on k-
NN . Moreover, it also provides the tools to reproduce and
extend this work, which might be useful for the research
community when evaluating a new method. The major
contributions of this paper are:

• Identification of the best strategy (clustering or opti-
mization rule) depending on the scenario features.

• Identification of the best general methods to reduce
computational costs in fingerprinting.

• Independent evaluation of surveyed methods in
terms of positioning error and execution time.

• Evaluation procedure to normalize results and ex-
tract general conclusions from different perspectives.

• Supplementary materials for research reproducibility
and to allow this work extension.

2 BACKGROUND AND RELATED WORK

In fingerprinting (FP) positioning systems, the position esti-
mate is frequently computed from a fingerprint representing
the RSS from wireless signals, such as Wi-Fi or Bluetooth
Low Energy (BLE), at unknown locations and a reference set
with previously collected fingerprints. FP methods typically
have two well differentiated phases: the off-line phase (also
known as training or learning phase) and the on-line phase
(also known as operational or test phase).

During the off-line phase, some known locations are se-
lected for system calibration. In each of those locations, also
known as Reference Points (RPs), multiple fingerprints are
usually collected to capture the inherent temporal diversity
of radio signals due to reflections, refraction, diffraction,
scattering and interference. However, there is no standard
procedure to carry out the off-line phase which depends
on the deployment, the developer’s strategies and other
characteristics of the environment. The data-collection strat-
egy includes the spatial distribution of RPs, the number of
repeated measurements (fingerprints) per RP, the height for
the sensing device [26], the user orientations [7], the devices
and users [29, 30], and also the collection times [29, 31]. A
common notion, though, is that the more dense the dataset,
the lower the positioning error [32, 33]. However, this is not
always the case, as shown by comparing the density values
(Table 2) to the position errors (Table 4). For instance, TUT 6
provides the lowest error with low density values, and UJI 1
provides high error with higher density values.

During the on-line phase, one fingerprint collected at an
unknown location is further processed using the selected
positioning algorithm to compute a position estimate. A
FP algorithm only relies on the radio map to estimate the
position. The core idea behind FP is that a pair of similar
fingerprints are physically close to each other and, therefore,
similar samples in the radio map can be used to compute
the location of the unknown fingerprint. Selecting the best
model at this stage is a crucial step for FP.

Wi-Fi FP was introduced by Bahl et al. [7] in 2000.
RADAR was presented as a system for locating and tracking
users inside a building using only the RSS traces from a
Wi-Fi network; and it had the above-mentioned two-phase
procedure. In the off-line phase, multiple fingerprints were
collected at each RP and user’s orientation. In the on-line
phase, the position was estimated using multiple Nearest
Neighbour (k-NN). Twenty years later, Wi-Fi FP and methods
based on k-NN are still very popular [19, 34, 35, 36].

There is an intrinsic trade-off when generating the radio
map, because the accuracy of the FP-based positioning sys-
tem increases typically with the density of the radio map,
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i.e. the number of fingerprints per area, and the number
of RSS values per fingerprint [37, 38]. However, generating
the radio map is a demanding task. Some works have
applied crowdsourcing [39, 40, 41, 42, 43], interpolation [37,
44, 45], signal-propagation models [34, 46] or Simultaneous
Localization and Mapping (SLAM) [47, 48] to reduce data
granularity and manual site surveying. However, the meth-
ods that augment the radio map to reduce the positioning
error (e.g. applying Universal Krigging to generate a denser
radio map as in [37]) also increase the computational costs in
the on-line phase as they depend on the radio map size [49].

Although reducing computational costs is not identified
as the main objective in previous works, computing the
distances to all the reference fingerprints for every location
request might be too inefficient [50]. A literature review on
FP in Scopus and Web of Science raised many attempts
to improve the accuracy of FP methods and reduce their
computational load, being the relevant reproducible works
implemented in this paper. Some of them apply optimiza-
tion rules to reduce the radio map in the operational stage,
while others apply clustering to group similar fingerprints.

The Horus indoor positioning system [51] addressed this
problem in 2003, where a multi-level clustering process was
proposed to estimate the position by means of a probabilistic
approach. Only the detected APs in the on-line phase were
used for computation and the search is restricted to the
RPs covered by the strongest AP – the AP with the largest
detected RSS value in the operational fingerprint.

Kushki et al. [8] proposed a kernel-based FP system
where spatial filtering was done in the on-line phase. The
idea behind the filtering is that the Wi-Fi coverage is similar
in adjacent locations. First, a coarse estimation is done to
get the RPs which have similar coverage (as the number of
common APs) as the on-line fingerprint. Then, the reduced
radio map only contains the fingerprints of these RPs.

Gallagher et al. [50] investigated a simple approach
for radio-map reduction before computing the fingerprint
distances [52, 53]. It keeps only the RPs which contained
the strongest AP of the operational fingerprint. Gallagher et
al. proposed some variants where the number of matching
APs from the operational fingerprint was higher –without
clearly specifying which APs were added– and by filtering
by similar RSS values (±15 or ±20dB).

Shin et al. [22] applied k-Means clustering (renamed in
this paper as c-Means to avoid confusion k-NN) to extract
and organise spaces from the radio map. However, c-Means
has also been used for coordinate-based clustering [54],
floor-wise fingerprint clustering [55] and, even, to cluster the
positions of the nearest neighbors obtained with k-NN [56].

Marques et al. [26] filtered the radio map based on the
notion that fingerprints are dominated by just one or two
APs. For an on-line fingerprint, the reduced radio map only
contains the reference samples whose strongest AP matches
the strongest AP of the operational fingerprint, or the two
strongest operational APs, if their RSSs values are close.

Chen et al. [24] and Caso et al. [57] decomposed the
radio map in multiple clusters using the Affinity Propagation
algorithm and applied the traditional two step, coarse and
fine, location strategy. The novelty in [24] was to select the
samples from multiple clusters to avoid the edge problem,

whereas the novelty in [57] was the adoption of different
metrics in different steps of the estimation procedure.

Razavi et al. [55] proposed a floor estimation method
based on c-Means clustering. Their method clusters the
data of each floor separately, thus relies on a preliminary
search of the database’s fingerprints according to their floor
label. Subsequently, the mean of the clusters of each floor
is computed. The reduction of data and communication
overhead is achieved because only the cluster heads of each
floor are used to estimate the floor.

Yu et al. [27] proposed to filter the radio map on the fly
during the on-line stage. First, the non-detected APs in the
on-line fingerprint are removed from the radio map. Then,
the fingerprints without any detected RSS values are also
removed. Finally, the filtered radio map, which contained
the reference fingerprints in the same region where the
unknown one was collected, is used for the localization.

Moreira et al. [23] proposed some rules to create subsets
of the radio map. To estimate the building, the APs from
the on-line fingeprint were sorted from the strongest to
the weakest. The reference samples whose strongest AP
matched the first AP of the sorted list were selected for the
reduced radio map. If the reduced radio map was empty,
they moved to the next AP in the list. This was repeated
until reaching a valid radio map. For the floor estimation,
they restrict the radio map to those reference fingerprints
where the strongest AP corresponds to the first, second or
third strongest AP of the on-line fingerprint.

Chen et al. [25] reduce the radio map by selecting the
fingerprint with the strongest RSS for an AP as a cluster
center, thus having as many clusters as APs, in an scenario
with eight APs. In the operational stage, they used weighted
k-NN upon the most similar cluster selection. No guides
were given for contexts with larger amounts of APs, let
alone for cases where there are more APs than samples.

Liu et al. [58] explored location-based clustering, where
clusters are determined using the minimal radius circles that
enclose all RPs. The circles are then used to cluster the RP
by their distance to the circles’ centers. In the operational
stage, they used k-NN or a variant of weighted k-NN upon
the most similar cluster selection.

The difficulty in comparing the performance of the meth-
ods introduced above is that they have not been evaluated
using a common comprehensive evaluation setup. There-
fore, from the existing literature, it is impossible to compare
their relative merit no matter the considered perspective.

3 MATERIAL AND METHODS

Table 1 introduces our notations used further to compare
and analyse different radio-map FP methods.

3.1 Fingerprinting with reduced radio maps
The approaches to reduce the computational costs can be
roughly divided into clustering and optimization rules,
where the later commonly refers to some kind of threshold-
ing to decide if a fingerprint deemed relevant and therefore
is considered or not. Algorithm 1 shows the processing
stages of FP with k-NN over a reduced radio map.

The clustering and optimization rules trade-off on-line
computation for mostly off-line computation, but as well
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TABLE 1
Symbols and notation used in the paper.

T radio map, set of fingerprints and associated reference positions
T̂ reduced radio map after clustering or filtering, T̂ ⊆ T
V Evaluation dataset, set of labelled fingerprints for testing
P set of reference positions/labels, p ∈ P
| · | cardinality (e.g., |C| number of clusters, |Ci| number of samples

in i-th cluster)
C set of clusters C = {C1, ..., C|C|}
Ci i-th cluster, Ci ⊆ T or Ci ⊆ P
A set of access points, APγ ∈ A
δ average number of fingerprints per m2 in a 5 m radius circle
st fingerprint of radio map or reduced radio map
sv evaluation fingerprint
s RSS value
γ identifier associating sγ to the APγ emitting the signal
f floor
b building
k number of neighbours of NN
τDB Execution time of the evaluation set (all operational samples)
τ̃DB Execution time of the evaluation set, normalized to baseline
ε3D Positioning error of the evaluation set (all operational samples)
ε̃3D Positioning error of the evaluation set, normalized to baseline

Algorithm 1 Pseudocode of k-NN for positioning
1: input |T |, |V|, k, distance metric, RSS representation
2: Off-line pre-processing of training datasets
3: for i = 1 to |V| do
4: Generate reduced radio map, T̂ , using T and svi
5: for j = 1 to |T̂ | do
6: Compute distance between svi and stj
7: end for
8: Sort distances in RSS space
9: Select the k closest candidates

10: Estimate building, floor and position
11: end for
12: return Estimated positions, floors, buildings

for some additional on-line computation. Both approaches
pre-process the training datasets in the off-line phase. That
is, training data (i.e., the radio map) is clustered or certain
statistics of the training data – frequently thresholds for
subsequent filtering – are computed (cf. line 2 in Alg. 1).
During the on-line phase, the clustering methods perform
a coarse search over the found clusters, to find the closest
cluster (cf. line 4 in Alg. 1) and then match the fingerprints
of that cluster with the operational fingerprint (cf. line 6
in Alg. 1). The optimization rules compute the respective
statistic of the operational fingerprint, filter this fingerprint
according to the computed statistic, intersect the filtered
operational fingerprint and the filtered training dataset to
obtain the reduced training data (cf. line 4 in Alg. 1) and then
match the reduced dataset with the operational fingerprint
(cf. line 6 in Alg. 1). The estimation of the position equals
that of the baseline algorithm without radio map reduction
and is common for clustering and optimization rules (cf.
lines 8 to 10).

3.2 Methods implemented

For the experimental evaluation described here, some of
clustering and optimization-rules introduced in Section 2
were implemented, their code is available in [69]. The ones
with lack of key implementation details, i.e. not following
reproducible research principles, were discarded.

3.2.1 Clustering methods
The method based on Kushki et al. [8] is Kushkix. In
Kushkix, x refers to the threshold value to filter the RPs. We
have considered threshold values in the range of [1 . . . 15].

The methods based on c-Means clustering [70] are
cMeansTrad and cMeansAlt. For the two methods, c refers
to number of intended clusters. The particular values that
correspond to c =

√
|T | and c = |T |

25 are identified by
‘rfp1’ and ‘rfp2’, respectively. cMeansTrad corresponds to
the traditional method used in several indoor positioning
works [22, 55]. cMeansAlt variant uses the Manhattan dis-
tance and the centroid initialization proposed in [71].

The methods based on Affinity Propagation cluster-
ing [72] are APCSpaTrad and APCSpaAlt. APCSpaTrad
uses the sparse implementation provided in [73]. APC-
SpaTrad computes the pairwise similarities for distances
among all fingerprints. The alternative version considers the
pairwise similarities as the distances among all fingerprints
that have at least one AP in common, to reduce the memory
and computational cost of the clustering stage.

The methods based on grid-based clustering [74] using
fix-sized square cells are Gridx and GridOverlx. The grid-
based clustering was suggested for RSS-based clustering by
Liu et al. [58]. For the two methods, x refers to the size of the
cell in meters. GridOverlx adds new cells that uniformly
overlap each original set of four neighboring cells.

3.2.2 Optimization rules
The method inspired by Gallagher et al. [50] and Machaj et
al. [75] is Prcntilx. The operational RSSs values are ranked
from the strongest to the weakest. The strongest APs falling
in the x percentile of that rank are used to find all the
fingerprints in the radio map which contain these APs in
the x percentile of the corresponding ranks.

The method proposed by Marques et al. [26] is Mar-
ques10. It uses the 1st and 2nd strongest APs of the on-line
fingerprint if their difference is 10 dBm or lower.

The methods based on Yu et al. [27] are FengYu,
FengYuOpt and FengYuOptx%. FengYu follows the orig-
inal method. FengYuOpt additionally pre-computes the
reduced radio map for each AP off-line. FengYuOptx%
modifies FengYuOpt by considering only fingerprints from
the radio map that have at least x% of the total number
of APs detected in the on-line fingerprint, similar to [50].
FengYuOptx% does not apply its modification if the re-
duced radio map is empty.

The methods based on Moreira et al. [23] are Moreira1st,
Moreira3st, MoreiraS06 and MoreiraS12. Moreira1st ap-
plies the basic filtering described for building estimation.
Moreira3st applies the filtering described for the variant 1
of floor estimation. MoreiraS06 and MoreiraS12 apply the
filtering described for the variant 2 of floor estimation using
6 or 12 dB as maximum RSS difference respectively.
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TABLE 2
Features of the selected databases. Fingerprint density is computed as the number of fingerprints per reference point (δfp). Local density is

computed as the average number of fingerprints per m2 in a circle with a radius of 5 m from each reference and evaluation point (δT and δV ). The
scenario size is represented by its dimensions or approximate area (Dimension/Area), number of floors (#f), and number of buildings (#b). The

average number of APs detected in the fingerprints is shown (Valid APs). The number of devices used to collect the dataset is also shown (Dev.).

DB |T | |V| |A| |P| δfp Dimension/Area #f #b δV δT Valid APs Dev. Ref

DSI 1 1369 348 157 230 6 100 m×18 m 1 1 0.70± 0.27 0.73± 0.27 23.6± 7.9 1 [59]
DSI 2 576 348 157 230 2 to 3 100 m×18 m 1 1 0.29± 0.12 0.31± 0.11 23.6± 7.9 1 [59]
LIB 1 576 3120 174 48 12 15 m×10 m 2 1 2.41± 0.70 2.42± 0.59 21.0± 6.3 1 [31]
LIB 2 576 3120 197 48 12 15 m×10 m 2 1 2.41± 0.70 2.42± 0.59 18.8± 5.1 1 [31]
MAN 1 14300 460 28 130 110 50 m×36 m 1 1 20.55± 5.12 20.88± 4.48 10.5± 2.4 1 [60, 61]
MAN 2 1300 460 28 130 10 50 m×36 m 1 1 1.87± 0.47 1.90± 0.41 14.1± 2.7 1 [60, 61]
SIM 10710 1000 8 1071 10 50 m×20 m 1 1 8.86± 1.50 8.86± 1.80 8± 0 1 [62]
TUT 1 1476 490 309 1476 1 124 m×57 m 4 1 0.41± 0.10 0.33± 0.13 25.0± 7.3 1 [63]
TUT 2 584 176 354 584 1 145 m×88 m 3 1 0.12± 0.05 0.11± 0.05 21.9± 7.1 1 [63]
TUT 3 697 3951 992 694 1 130 m×62 m 5 1 0.16± 0.08 0.17± 0.07 49.7± 38.7 21 [64]
TUT 4 3951 697 992 3843 1 130 m×62 m 5 1 0.91± 0.48 0.96± 0.50 48± 38.4 21 [64]
TUT 5 446 982 489 446 1 85 m×145 m 3 1 0.07± 0.02 0.08± 0.03 34.8± 13.5 1 [65]
TUT 6 3116 7269 652 3116 1 135 m×62 m 4 1 0.63± 0.31 0.65± 0.31 34.7± 15.9 1 [66]
TUT 7 2787 6504 801 2787 1 88 m×137 m 3 1 0.47± 0.29 0.48± 0.30 27.1± 11.1 1 [66]
UJI 1 19861 1111 520 933 20 108.703 m2 total 4 to 5 3 2.45± 1.62 2.46± 1.84 16.5± 6.9 25 [29]
UJI 2 20972 5179 520 1968 1 or 20 108.703 m2 total 4 to 5 3 2.42± 1.59 2.63± 1.76 16.2± 4.8 30 [67, 68]

3.3 Description of data sets

The experiments carried out in this paper include 16
datasets (see Table 2) from 12 different data sources. They
have been selected for the experiments because they have
diverse characteristics: small, medium and large scenarios;
single-floor and multiple-building scenarios; unprocessed
RSS data and averaged RSS data per reference point or grid
cell; single device collection and device diversity; systematic
and crowdsourced data collection; and spatially-sparse but
dense radio maps. Moreover, two datasets were collected in
the same place following the same data collection strategy
with a time interval of 10 months. The strategies used to
collect the datasets are summarized in Table 3.

TABLE 3
Strategy of data collection including if it was collected in a Systematic

way, the actor(s) who collected the data and RSS post-processing.

DB Systematic Actor RSS post-process

DSI 1/2 3 Professional 7
LIB 1/2 3 Professional 7
MAN 1 3 Professional 7
MAN 2 3 Professional RP Average
SIM 3 Path-loss 7
TUT 1/2 3 Professional Cell Average (Grid size: 1 m)
TUT 3/4 7 Volunteers 7
TUT 5 3 Professional Cell Average (Grid size: 5 m)
TUT 6/7 3 Professional 7
UJI 1/2 3 Prof. & Vol. 7

Dataset DSI 1 was collected at the Department of In-
formation Systems of the Universty of Minho (Portugal).
The dataset DSI 2 is a version of DSI 1 where the repeated
instances of the same fingerpring – same RSS values in the
same RP – have been removed. Dataset LIB 1 was collected
on two floors of Universitat Jaume I Library (Spain) in June
2016, whereas LIB 2 was collected in the same conditions
in April 2017. MAN 1 is a dataset that covers the corridors
of the second floor of an office building on the campus of
the University of Mannheim (Germany), the evaluation set
has been reduced by randomly picking 10 fingerprints per

evaluation point with respect to the original dataset [60].
In the MAN 2 dataset, the fingerprints from the original
dataset have been averaged in 10 blocks of 10 fingerprints
for the training and evaluation sets to have one dataset
with averaged RSS and fingerprints. We include an artificial
dataset, SIM, based on simple the path-loss model with
additive Gaussian noise (eq.1) as done in [62, 76, 77, 78].

sp = s0 − (α · 10 · log10(
d

d0
)) +X(t) (1)

where s0 = −40 dB, α = 2, d refers to the distance to the
AP ap, d0 = 1 and X(t) corresponds to the noise modelled
as a Gaussian random process with null mean and σ = 2dB
(as it is usually between 2 and 3 [54, 76, 77, 79]).

Datasets TUT 1, TUT 3 and TUT 6 were all indepen-
dently collected in a five-floor building at Tampere Univer-
sity (Finland), but different actors and data collection strate-
gies were used (see Table 3). TUT 4 is identical to TUT 3, but
we used the training points as the test points and vice versa.
TUT 3 and TUT 4 were collected by crowdsourcing means.
TUT 2, TUT 5 and TUT 7 were all independently collected in
a three-floor building of Tampere University using different
actors and data collection strategies (see Table 3). UJI 1 was
collected on three multi-storey buildings of the School of
Technology in Universitat Jaume I. UJI 2 contains all UJI 1
data as training set and a new blind test data set collected
in a 12-month interval for the IPIN 2015 competition [68].

Although the selected datasets mainly come from four
different research teams, the data collection strategy, data
structure and the data formats are diverse, cf. [29, 60, 63].
Due to the different dataset sources and formats, we had to
normalize the datasets and apply a common simple format.

The suggested common data format includes training
and evaluation data in separated structures, where the in-
puts (RSS values) and outputs (positions) are also separated.
The input values (RSS) for the training data are stored in a
|T | × |A|matrix, where the non-detected APs are expressed
with the value +100. The output values (position and labels)
for the training data are expressed in a |T | × 5 matrix,
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where each row contains: the x, y-coordinates (in meters,
either in a local or global reference system), the height,
the floor identifier and the building identifier. Similarly, the
evaluation data include a |V| × |A| matrix with the inputs
and a |V| × 5 matrix with the ground truth.

For single-floor and/or single-building datasets, the
floor and building identifiers were set to 0. For the datasets
where the floor height was undefined, it has been calculated
as the product of the integer floor identifier and a default
height value (3.7 m). The supplementary materials include a
copy of the datasets or the scripts to generate them [69].

4 THEORETICAL ANALYSIS AND EXPERIMENTS

One of the objectives of this work is to compare the com-
putation burden associated to each one of the evaluated
methods. This section approaches such comparison from a
theoretical, when possible, and experimental points of view.

4.1 Time complexity of fingerprinting on-line stage
Before we present the experimental results, we provide
an analysis of the asymptotic time complexities of the FP
on-line stage, including the clustering and optimization
rules. The on-line stage consists of three main processes:
i) reduction of the radio map, ii) matching of the training
and operational fingerprints and iii) the computation of the
position, floor, and building (cf. Alg. 1). For the analysis,
we exclude the position estimation stage from the analysis,
because it is common for all methods based on k-NN.

4.1.1 Reduction of the radio map
The reduction of the training dataset differs for clustering
methods and for optimization rules. Furthermore, both the
clustering and optimization rules process either RPs, or RSSs
or simply the APs identifiers.

Clustering-based methods obtain the reduced training
dataset by finding the cluster that is closest to the op-
erational fingerprint. To that end, the minimum distance
between cluster heads and the operational fingerprint is
computed. This operation has linear complexity O(c), as-
suming a simple distance measure is used and where c = |C|
is the number of clusters.

In the optimization rules, the RSSs of the operational
fingerprints are processed and intersected with the training
dataset to obtain the reduced dataset. This operation is
linear O(m) for many methods too, where m is the number
of elements in the training dataset (m = |T |) or the set of
reference positions (m = |P|). However, some optimization
rules use the strongest(s) APs to filter the radio map or sort
the APs to compute the quantiles on the operational finger-
print. In these cases the worst case complexity of reducing
the training database is at best O(m log(m)), with m = |A|,
in common implementations1. The methods FengYu (and
variants), Prcntilk, Marques10, Moreira1st and Moreira3st
employ algorithms with that asymptotic complexity.

In worst case, the number of clusters may reach theoret-
ically the number of training fingerprints, c ≤ |T |, or RPs,

1. Octave implements ‘Timsort’ which has a worst-case complex-
ity of O(n log(n)). Octave’s computation of the median exploits
nt_element and partial_sort of the standard template library of
C++, both also with asymptotic complexity of O(n log(n)).

c ≤ |P|, depending on the clustered quantity. Also the the
optimization rules may process all RSSs or labels, so that
m ≤ |A|. Unreasonable parameter choices or degenerative
distributions of RSSs or RPs may cause such situation. In
practise however, these are rather unlikely situations as
the number of clusters is usually much smaller than the
number of reference fingerprints. For instance, the number
of clusters was set to small fractions (ρ = 0.01, 0.05, 0.1)
with respect to the reference fingerprints [55]. Similarly, the
number of processed APs in optimization rules is much
lower than the set of APs identified in the dataset.

Figure 2 supports the notion of a moderate average
computational complexity also for the methods that require
sorting to reduce the training set. It exemplifies the his-
togram of the number of valid APs per reference fingerprint
using all datasets. The histogram shows that two thirds of
all reference fingerprints considered in this work contain
less than 30 valid APs. That is, the number of elements to
sort is indeed much smaller than the total number of APs,
and therefore, it has usually has not a large computational
cost attached and is not critical. However, the number of
detected APs in an operational fingerprint is variable and
also depends on the dataset, the location of the operational
sample, and the device used to collect the fingerprint, as
reported in Table 2.
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Fig. 2. Histogram of the number of valid APs per reference fingerprint
considering all fingerprints from the sixteen reference datasets.

4.1.2 Matching of the training and operational fingerprints
Once the radio map is reduced, the worst-case time com-
plexity of the fingerprint matching is determined by the
choice of the distance measure. The majority of distance
measures (see [80, 81]) have in fact the same worst-case time
complexity, namely linear complexity O(n), where n = |T̂ |
is the number of fingerprints of the reduced radio map.

The reduced radiomap depends on the clustering and
optimization rule. Theoretically, there exist scenarios for
all clustering and optimization rules in which the training
dataset will not be reduced, so that the maximal value of
fingerprints is n = |T |. Not only unreasonable parameter
choices may lead to that case, a degenerative distribution
of fingerprints or APs may induce such a situation too. For
example, if the environment is small and only one dominant
AP is observed (the methods and variants proposed by
Moreira et al. [23], Marques et al. [26], and Yu et al. [27]
are vulnerable to this), if the RPs are all located in a small
part of the environment and end up in a single grid, or if
the number of fingerprints per RP is one for the method
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proposed by Kushki et al. [8]. However, the inclusion of
optimization rules and clustering methods in commercial
[82] and competing systems [23] somehow indicate that
they efficiently reduce the computational costs when they
are properly configured for a particular area.

The computational cost for the clustering methods can
be simplified with f(C) = |C| + |T |

|C| ,∀|C| ∈ N : |C| ≤ |T |,
which shows the vector comparisons required for the coarse
(|C| vector distance calculations) and fine-grained ( |T ||C| vec-
tor distance calculations) searches if the fingerprints are
equally distributed in the clusters. The global minimum
of the cost function is located at |C| =

√
|T |. Therefore,

the best scenario is the one where the number of clusters
is the square root of the number of the training samples.
If the reference fingerprints are equally distributed into
disjoint clusters, the coarse and fine grained searched are
both O(|T | 12 ). The computational costs of both searches
would be balanced and optimized, providing the lowest
joint computational load since O(|T | 12 ) << O(|T |). This is
intuitive, because having a small number of clusters would
end in large clusters, whereas a large number of clusters
would end in very small clusters. The extreme cases, c equal
to 1 or |T |, would end with the fine-grained or coarse search
of O(|T |) respectively. The number of clusters can only be
set in c-Means clustering, as it is automatically determined
in Affinity Propagation and it corresponds to the number of
reference points/cells in Kushki and Grid-based clustering.
However, none of the analyzed methods can ensure that the
generated clusters are balanced, so the size of the reduced
radiomap depends on the operational fingerprint.

In contrast, the optimization rules apply some
knowledge-based rules to decide whether a reference fin-
gerprint is included in the reduced radio map or discarded.
The rules based on the strongest(s) APs, for instance, keep
those fingerprints that are near the dominant APs. Thus, the
area covered in the reduced radio map not only depends on
the location of the operational and reference fingerprints but
also on the the APs distribution. Again, the reduced radio
map size is tightly coupled to the operational fingerprint.

The worst-case complexity analysis helps to understand
the trade-offs to be made, but it does not provide a realistic
comparison between the considered methods. A theoretical
assessment of the average computational complexity would
provide a more accurate picture and possibly a guideline
to alleviate the computation burden of FP methods. How-
ever, such an assessment depends on multiple dimensions,
including the distributions of RSSs, RPs and/or APs of the
datasets and, finally, the parameter choices for the clustering
and optimization rule(s). This analysis is not feasible in this
paper due to number of analyzed alternatives to reduce
the radio map and the inner diversity of the considered
indoor environments (i.e, the 16 datasets). Instead, for the
remaining of this study, we opted for an experimental ap-
proach and we assess the average computational complexity
through measured execution times, including as well the
effect on the positioning accuracy. We encourage that further
fingerprint models based on optimization rules or clustering
include a theoretical assessment as done, for instance, in [8].

4.2 Empirical experiments
The purpose of this analysis is to explore the weaknesses
and strengths of the selected methods to reduce the com-
plexity of the radio map and identify hidden general pat-
terns with respect to the datasets. All the experiments were
executed on a cluster based on Intel Xeon E5-2670 proces-
sors, with 128 GB of RAM and GNU Octave 3.8.2. The results
have been confirmed using distinct hardware and software.

4.2.1 Evaluation Framework
According to [81], the three main parameters of this model
are: the data representation for the RSS values, the distance
metric and the value of k. We selected two parameter config-
urations to test how the clustering models perform on differ-
ent datasets with different parametrization of k-NN: i) the
Simple Configuration with 1-NN, Manhattan distance (also
known as City Block or L1 distance) and positive data rep-
resentation; and the Best Configuration, which resulted from
exploring multiple combinations of the main parameters.
For setting the Best Configuration, we have considered three
data representations, namely positive, exponential and powed
[81], eight distance metrics, namely Euclidean, Manhattan,
Euclidean2, Neyman, Sørensen, LGD, PLGD10, PLGD40 [80,
81, 83], and k = {1, 3, 5, 7, 9, 11}. We apply this evaluation
setup on the 16 datasets introduced in Section 3.3. The
results on plain k-NN are shown in Table 4 for each dataset.

Table 4 provides the absolute error ε3D and cost τDB for
all the datasets, but it also includes the normalized values
(ε̃3D and τ̃DB). The Simple Configuration on the plain k-NN
has been used as the baseline for normalization, so that the
normalized results showed on this paper are all relative to
it. The last row shows the average over the 16 datasets for
extracting general conclusions and further comparisons.

The table also shows three relevant outputs. First, the
optimal value of k seems to depend on the local density (δT

in Table 2). For an operational fingerprint, the number of
relevant very similar reference fingerprints highly depends
on the fingerprint density of the radio map as already
suggested in [84]. Therefore, the value of k should be set
accordingly (e.g. k = 1 for datasets with low δT ). Second,
selecting the best performing configuration can have a sig-
nificant impact in both the accuracy and the computational
costs. The normalized positioning accuracy, ε̃3D, is halved
for some datasets and the normalized computational times,
τ̃DB, drop about 5 %, increase about 15 % and reaches 3
times the value of the normalized computational times for
data sets where the Sørensen-, the Euclidean2- and Proba-
bilistic Log-Gaussian (namely PLGD10 and PLGD40) [83]
distances were used, respectively. That happened under
different configurations of k and data representation, which
seems to indicate that the impact of the distance metric is
constant. i.e., the computational costs are independent to k
and the data representation, as clearly shown in database
MAN 1. Third, the normalized aggregated metrics provided
in the last row show that, in general, selecting the Best
Configuration improves the accuracy by 26 % at the expense
of increasing the computational burden by 76 %. This com-
putational increase is mainly caused by the six cases where a
PLGD distance metric was selected, and it could have been
avoided by selecting an alternative configuration with sim-
ilar accuracy but lower costs (e.g. Sørensen). PLGD includes
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TABLE 4
Comparison of positioning error and computation time for Simple and Best parameter configurations using plain k-NN for each dataset.

Simple Conf. Best Conf.

Database ε3D τDB ε̃3D τ̃DB data rep. distance k ε3D τDB ε̃3D τ̃DB

DSI 1 4.95 31.59 1 1 pow Sørensen 11 3.79 36.32 0.77 1.15
DSI 2 4.95 13.46 1 1 pos PLGD10 9 3.80 39.99 0.77 2.97
LIB 1 3.02 107.43 1 1 pos Euclidean2 11 2.48 102.33 0.82 0.95
LIB 2 4.18 108.22 1 1 pos PLGD10 9 2.27 322.48 0.54 2.98
MAN 1 2.82 353.68 1 1 exp Manhattan 11 2.06 353.64 0.73 1
MAN 2 2.47 32.14 1 1 exp Neyman 11 1.86 50.12 0.75 1.56
SIM 3.24 567.16 1 1 exp Euclidean2 11 2.41 532.66 0.74 0.94
TUT 1 9.59 50.38 1 1 pos PLGD40 3 4.45 152.76 0.46 3.03
TUT 2 14.37 7.34 1 1 pow Sørensen 1 8.09 8.47 0.56 1.15
TUT 3 9.59 208.88 1 1 pos Sørensen 3 8.55 239.06 0.89 1.14
TUT 4 6.36 218.57 1 1 pos PLGD10 3 5.40 705.29 0.85 3.23
TUT 5 6.92 29.20 1 1 pos PLGD40 3 5.26 91.27 0.76 3.13
TUT 6 1.94 1617.56 1 1 pos Sørensen 1 1.91 1850.11 0.98 1.14
TUT 7 2.69 1287.97 1 1 pos Sørensen 1 2.24 1541.50 0.83 1.2
UJI 1 10.81 1766.85 1 1 pow Sørensen 11 6.56 2019.87 0.61 1.14
UJI 2 8.05 8686.48 1 1 exp Neyman 11 6.09 12 410.65 0.76 1.43

average 1.0 1.0 0.74 1.76

complex penalty terms and exponential operations [83],
whereas Sørensen just adds a dynamic normalization term
to Manhattan distance [80]. Despite DSI 2 is the reduced
version of DSI 1, the computational cost of DSI 2 is much
higher than DSI 1 in the best configuration.

4.2.2 Dataset-wise Analysis

In order to analyse and present the results over the multi-
tude of methods and datasets, we introduce a visualization
that allows to depict the four relevant dimensions on once:
the datasets, the method to reduce the computational costs,
the positioning accuracy and the computation time. This
visualization shows the normalized aggregated metrics for
each combination of dataset and method, as colored ellipses.
The color indicates τ̃DB compared to the baseline, where
dark green stands for 0, white for 1 and the darker the
red the higher the computation time. The shape stands for
the ε̃3D, a horizontal ellipse represents values closer to 0, a
circle identifies an error of 1 and a vertical ellipse stands for
an increased error, compared to the baseline. The methods
based on grid clustering, Kushki and c-Means, depend on
an additional parameter; which are set for each dataset
according to the best error (BE) and best time (BT) as shown
in the example Figure 3. This reduces the reported methods
and enhances the clarity of the full results shown in Figure 4.

In the SIM dataset, the eight APs are detected in all the
reference samples. An AP from the datasets MAN 1 and
MAN 2 was detected in most of the evaluation area. A

Extract of the normalized results for TUT 4
Best Conf.

Clustering ε̃3D τ̃DB

→

 

ba
se

lin
eS

ta
ge

2

fe
ng

yo
u

fe
ng

yo
uO

pt
im

iz
ed

fe
ng

yo
u0

25
O

pt
im

iz
ed

fe
ng

yo
u0

50
O

pt
im

iz
ed

fe
ng

yo
u0

75
O

pt
im

iz
ed

m
ar

qu
es

10
db

m
or

ei
ra

m
or

ei
ra

3

m
or

ei
ra

S
im

ila
r6

db
m

m
or

ei
ra

S
im

ila
r1

2d
bm

25
pe

rc
en

til
er

ul
e

m
ed

ia
nr

ul
e

75
pe

rc
en

til
er

ul
e

gr
id

-B
E

gr
id

-B
T

ov
er

la
pp

in
gg

rid
-B

E

ov
er

la
pp

in
gg

rid
-B

T

ku
sh

ki
-t

hr
es

ho
ld

V
al

ue
-B

E

ku
sh

ki
-t

hr
es

ho
ld

V
al

ue
-B

T

km
ea

ns
-b

as
ic

P
ar

am
s-

B
E

km
ea

ns
-b

as
ic

P
ar

am
s-

B
T

km
ea

ns
-a

ltP
ar

am
s-

B
E

km
ea

ns
-a

ltP
ar

am
s-

B
T

af
fin

ity
pr

op
ag

at
io

nS
pa

rs
eA

ltS
im

af
fin

ity
pr

op
ag

at
io

nS
pa

rs
e

al
l M

et
ho

ds

 

all DBs

dsidb01

dsidb02

libdb01

libdb02

mandb01

mandb02

simdb  

tutdb01

tutdb02

tutdb03

tutdb04

tutdb05

tutdb06

tutdb07

ujidb01

ujidb02

D
B

Best conf - Non aggregated shape: error - color: time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5-MeansAlt 0.88 1.45 BE-cMeansAlt ε̃3D=0.88
10-MeansAlt 0.90 0.90 τ̃DB=1.45
15-MeansAlt 0.91 0.62
20-MeansAlt 0.91 0.50

 

ba
se

lin
eS

ta
ge

2

fe
ng

yo
u

fe
ng

yo
uO

pt
im

iz
ed

fe
ng

yo
u0

25
O

pt
im

iz
ed

fe
ng

yo
u0

50
O

pt
im

iz
ed

fe
ng

yo
u0

75
O

pt
im

iz
ed

m
ar

qu
es

10
db

m
or

ei
ra

m
or

ei
ra

3

m
or

ei
ra

S
im

ila
r6

db
m

m
or

ei
ra

S
im

ila
r1

2d
bm

25
pe

rc
en

til
er

ul
e

m
ed

ia
nr

ul
e

75
pe

rc
en

til
er

ul
e

gr
id

-B
E

gr
id

-B
T

ov
er

la
pp

in
gg

rid
-B

E

ov
er

la
pp

in
gg

rid
-B

T

ku
sh

ki
-t

hr
es

ho
ld

V
al

ue
-B

E

ku
sh

ki
-t

hr
es

ho
ld

V
al

ue
-B

T

km
ea

ns
-b

as
ic

P
ar

am
s-

B
E

km
ea

ns
-b

as
ic

P
ar

am
s-

B
T

km
ea

ns
-a

ltP
ar

am
s-

B
E

km
ea

ns
-a

ltP
ar

am
s-

B
T

af
fin

ity
pr

op
ag

at
io

nS
pa

rs
eA

ltS
im

af
fin

ity
pr

op
ag

at
io

nS
pa

rs
e

al
l M

et
ho

ds

 

all DBs

dsidb01

dsidb02

libdb01

libdb02

mandb01

mandb02

simdb  

tutdb01

tutdb02

tutdb03

tutdb04

tutdb05

tutdb06

tutdb07

ujidb01

ujidb02

D
B

Best conf - Non aggregated shape: error - color: time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

25-MeansAlt 0.92 0.42 BT-cMeansAlt ε̃3D=0.99
rfp1-MeansAlt 0.94 0.17 τ̃DB=0.09
rfp2-MeansAlt 0.99 0.09

Fig. 3. Example of how full results are visually represented for the TUT 4
dataset and the best models (Best Error and Best Time) for cMeansAlt.

 
 
 
 
p
l
a
i
n
 
k
-
N
N

 
 
 
F
e
n
g
Y
u
-
-
-
-

 
 
 
F
e
n
g
Y
u
O
p
t
-

 
 
 
F
e
n
g
Y
u
2
5
%
-

 
 
 
F
e
n
g
Y
u
5
0
%
-

 
 
 
F
e
n
g
Y
u
7
5
%
-

 
 
 
M
a
r
q
u
e
s
1
0
-

 
 
 
M
o
r
e
i
r
a
1
S
t

 
 
 
M
o
r
e
i
r
a
3
S
t

 
 
 
M
o
r
e
i
r
a
S
0
6

 
 
 
M
o
r
e
i
r
a
S
1
2

 
 
 
P
r
c
n
t
i
l
e
2
5

 
 
 
P
r
c
n
t
i
l
e
5
0

 
 
 
P
r
c
n
t
i
l
e
7
5

B
E
-
G
r
i
d
-
-
-
-
-
-

B
T
-
G
r
i
d
-
-
-
-
-
-

B
E
-
G
r
i
d
O
v
e
r
l
-

B
T
-
G
r
i
d
O
v
e
r
l
-

B
E
-
K
u
s
h
k
i
-
-
-
-

B
T
-
K
u
s
h
k
i
-
-
-
-

B
E
-
c
M
e
a
n
s
T
r
a
d

B
T
-
c
M
e
a
n
s
T
r
a
d

B
E
-
c
M
e
a
n
s
A
l
t
-

B
T
-
c
M
e
a
n
s
A
l
t
-

 
 
 
A
P
C
S
p
a
T
r
a
d

 
 
 
A
P
C
S
p
a
A
l
t
-

 
 
 
A
l
l
-
-
-
-
-
-
-

Method

 
All--
UJI 2
UJI 1
TUT 7
TUT 6
TUT 5
TUT 4
TUT 3
TUT 2
TUT 1
SIM--
MAN 2
MAN 1
LIB 2
LIB 1
DSI 2
DSI 1

D
B

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a)

 
 
 
 
p
l
a
i
n
 
k
-
N
N

 
 
 
F
e
n
g
Y
u
-
-
-
-

 
 
 
F
e
n
g
Y
u
O
p
t
-

 
 
 
F
e
n
g
Y
u
2
5
%
-

 
 
 
F
e
n
g
Y
u
5
0
%
-

 
 
 
F
e
n
g
Y
u
7
5
%
-

 
 
 
M
a
r
q
u
e
s
1
0
-

 
 
 
M
o
r
e
i
r
a
1
S
t

 
 
 
M
o
r
e
i
r
a
3
S
t

 
 
 
M
o
r
e
i
r
a
S
0
6

 
 
 
M
o
r
e
i
r
a
S
1
2

 
 
 
P
r
c
n
t
i
l
e
2
5

 
 
 
P
r
c
n
t
i
l
e
5
0

 
 
 
P
r
c
n
t
i
l
e
7
5

B
E
-
G
r
i
d
-
-
-
-
-
-

B
T
-
G
r
i
d
-
-
-
-
-
-

B
E
-
G
r
i
d
O
v
e
r
l
-

B
T
-
G
r
i
d
O
v
e
r
l
-

B
E
-
K
u
s
h
k
i
-
-
-
-

B
T
-
K
u
s
h
k
i
-
-
-
-

B
E
-
c
M
e
a
n
s
T
r
a
d

B
T
-
c
M
e
a
n
s
T
r
a
d

B
E
-
c
M
e
a
n
s
A
l
t
-

B
T
-
c
M
e
a
n
s
A
l
t
-

 
 
 
A
P
C
S
p
a
T
r
a
d

 
 
 
A
P
C
S
p
a
A
l
t
-

 
 
 
A
l
l
-
-
-
-
-
-
-

Method

 
All--
UJI 2
UJI 1
TUT 7
TUT 6
TUT 5
TUT 4
TUT 3
TUT 2
TUT 1
SIM--
MAN 2
MAN 1
LIB 2
LIB 1
DSI 2
DSI 1

D
B

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b)

Fig. 4. Visualization of ε̃3D and τ̃DB for (a) Simple Configuration and (b)
Best Configuration. The magnitude of vertical or horizontal stretching of
the ellipses represents the ε̃3D values above or under 1, respectively.
The best models include the best result for each dataset.
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similar behavior is found in datasets LIB 1 and LIB 2, where
the evaluation environment had 8 APs which were detected
in almost all the RP. Those cases include relative small areas
with low attenuation where an important subset of APs are
received over all the area and, therefore, the rule proposed
by Yu et al. [27] does not reduce the computations.

For the Best Configuration, the visual results of the plain
k-NN indicate that the alternative distance metrics are, in
general, more time-consuming than the Manhattan distance
(there are reddish ellipsoids for almost all datasets). The
choice of notably expensive distance metrics also affected
the computational burden for clustering methods (reddish
ellipsoids on Feng Yu and Percentile rules).

BE-Kushki reports an accuracy similar to plain k-NN.
However, Figure 4 shows that BE-Kushki is not suitable
for TUT databases and UJI 2. They contain many reference
points with just 1 fingerprint. In those cases, the number
of clusters is so high that the coarse grained search has
a computational load similar to the matching stage of the
plain k-NN. Moreover, it is not suitable for the SIM dataset,
in which all APs are detected in all fingerprints. Therefore,
the coarse search never filters the radio map. However, it
has the expected behavior in the other datasets, reducing
the computational load while keeping the accuracy.

The rules proposed by Marques and Moreira gave good
results in both dimensions for many cases. The cases include
datasets LIB 2, TUT 1 and TUT 2 for the Best Conf., which
reported very high computational cost in plain k-NN. For
datasets TUT 6 and TUT 7, it seems that only Moreira3st,
MoreiraS03 and MoreiraS06 are suitable. Their low position-
ing error in the baseline was really hard to improve.

Finally, the results reflects the heterogeneity of datasets.
TUT 1 and TUT 2, where the samples lie in a regular 1 m
grid, provided the worst accuracy for the baseline. The
methods based on grid clustering report either very large
error or very large computational time in most of cases.
In contrast, TUT 6 provided the lowest accuracy for the
baseline and further reductions on its computational cost
usually result in large increases in the error. TUT 6 applied
a strict systematic data collection without post-processing,
in contrast to TUT 1, TUT 3 and TUT 4 that applied grid
average or crowdsourcing in the same environment. Fur-
thermore, methods based on grid-clustering never provide
good positioning error for UJI 1, which has fingerprints from
at least two devices at every reference point.

4.2.3 Method-wise analysis
Table 5 shows the aggregated normalized results for all
the clustering methods and optimization rules described in
Section 3.2. It contains the average normalized error and
computational time over the sixteen datasets. The values in
parenthesis show the standard deviation of the averaged
values. These two metrics have been calculated as shown
in the two last rows of Table 4 for the plain k-NN method.
Most of the methods have more than one entry in the table
since different parameters were tested, BE and BM denotes
the best error and best time for each dataset considering
different parameter values (see Figure 3).

As before, the baseline corresponds to the results of
Simple Configuration in Table 4. Thus, the plain k-NN
algorithm without any radio map reduction provides an

TABLE 5
Positioning error and computation time of all methods in two cases.

Simple Conf. Best Conf.

Method ε̃3D τ̃DB ε̃3D τ̃DB

plain k-NN 1.00 (0.00) 1.00 (0.00) 0.74 (0.14) 1.76 (0.93)
FengYu 0.95 (0.21) 0.90 (0.40) 0.86 (0.23) 1.30 (0.71)
FengYuOpt 0.95 (0.21) 0.58 (0.31) 0.86 (0.23) 0.98 (0.67)
FengYuOpt25% 0.95 (0.21) 0.44 (0.32) 0.86 (0.23) 0.70 (0.51)
FengYuOpt50% 0.95 (0.21) 0.29 (0.31) 0.86 (0.23) 0.41 (0.37)
FengYuOpt75% 1.02 (0.24) 0.24 (0.31) * 0.94 (0.28) 0.37 (0.57)
Prcntil25 0.97 (0.04) 0.27 (0.17) 0.74 (0.14) 0.46 (0.36)
Prcntil50 0.98 (0.03) 0.45 (0.25) 0.74 (0.14) 0.80 (0.59)
Prcntil75 0.98 (0.04) 0.54 (0.27) 0.74 (0.14) 0.97 (0.70)
Grid0050 1.45 (0.83) 0.39 (0.34) 1.52 (0.67) 0.40 (0.33)
Grid0100 1.44 (0.82) 0.36 (0.31) 1.51 (0.66) 0.38 (0.32)
Grid0250 1.40 (0.56) 0.27 (0.26) 1.48 (0.52) 0.27 (0.26)
Grid0500 1.73 (0.79) 0.19 (0.21) 1.87 (0.83) 0.21 (0.21)
Grid1000 2.47 (1.82) 0.13 (0.10) 2.85 (2.07) 0.16 (0.16)
BE-Grid 1.31 (0.55) 0.28 (0.25) 1.35 (0.51) 0.28 (0.23)
BT-Grid 2.40 (1.87) 0.10 (0.10) 2.53 (1.83) 0.11 (0.10)
GridOverl0050 1.45 (0.83) 0.69 (0.65) 1.52 (0.67) 0.69 (0.65)
GridOverl0100 1.41 (0.82) 0.64 (0.62) 1.48 (0.66) 0.64 (0.61)
GridOverl0250 1.42 (0.82) 0.47 (0.50) 1.43 (0.57) 0.47 (0.49)
GridOverl0500 1.64 (0.67) 0.34 (0.42) 1.76 (0.71) 0.35 (0.41)
GridOverl1000 2.16 (1.37) 0.20 (0.20) 2.56 (1.75) 0.22 (0.20)
BE-GridOverl 1.28 (0.54) 0.45 (0.44) 1.32 (0.51) 0.46 (0.44)
BT-GridOverl 2.11 (1.41) 0.18 (0.21) 2.24 (1.38) 0.19 (0.21)
Kushki001 1.02 (0.03) 1.18 (0.37) 0.77 (0.15) 1.83 (1.02)
Kushki002 1.02 (0.03) 1.13 (0.37) 0.78 (0.15) 1.76 (1.02)
Kushki003 1.04 (0.06) 1.08 (0.38) 0.80 (0.17) 1.68 (0.99)
Kushki004 1.04 (0.09) 1.04 (0.38) 0.81 (0.18) 1.61 (0.96)
Kushki005 1.04 (0.09) 1.00 (0.38) 0.82 (0.18) 1.54 (0.93)
Kushki006 1.04 (0.06) 0.96 (0.37) 0.82 (0.17) 1.47 (0.88)
Kushki007 1.03 (0.05) 0.94 (0.36) 0.81 (0.16) 1.41 (0.84)
Kushki008 1.03 (0.04) 0.91 (0.35) 0.81 (0.15) 1.35 (0.80)
Kushki009 1.02 (0.03) 0.90 (0.34) 0.80 (0.15) 1.31 (0.76)
Kushki010 1.02 (0.03) 0.88 (0.33) 0.80 (0.14) 1.26 (0.71)
Kushki011 1.02 (0.03) 0.86 (0.32) 0.79 (0.13) 1.22 (0.67)
Kushki012 1.03 (0.03) 0.84 (0.32) 0.80 (0.12) 1.17 (0.62)
Kushki013 1.03 (0.03) 0.82 (0.32) 0.81 (0.12) 1.11 (0.59)
Kushki014 1.02 (0.02) 0.80 (0.32) 0.81 (0.11) 1.07 (0.55)
Kushki015 1.02 (0.02) 0.79 (0.32) 0.81 (0.11) 1.04 (0.52)
KushkiBE 1.00 (0.01) 1.07 (0.35) 0.74 (0.13) 1.75 (1.00)
KushkiBT 1.05 (0.08) 0.71 (0.35) 0.84 (0.14) 0.93 (0.55)
5-MeansTrad 1.12 (0.14) 0.25 (0.06) 0.97 (0.27) 0.48 (0.24)
10-MeansTrad 1.12 (0.17) 0.15 (0.03) * 0.96 (0.25) 0.27 (0.14)
15-MeansTrad 1.12 (0.16) 0.11 (0.03) * 1.06 (0.45) 0.19 (0.10) *
20-MeansTrad 1.17 (0.41) 0.09 (0.03) * 1.18 (0.69) 0.15 (0.08) *
25-MeansTrad 1.15 (0.37) 0.09 (0.03) * 1.14 (0.68) 0.14 (0.07) *
rfp1-MeansTrad 1.22 (0.43) 0.07 (0.04) * 1.11 (0.50) 0.11 (0.08) *
rfp2-MeansTrad 1.18 (0.31) 0.08 (0.04) * 1.07 (0.35) 0.11 (0.08) *
BE-cMeansTrad 1.04 (0.06) 0.15 (0.08) * 0.86 (0.16) 0.31 (0.18)
BT-cMeansTrad 1.22 (0.43) 0.07 (0.04) * 1.06 (0.38) 0.10 (0.08) *
5-MeansAlt 1.05 (0.10) 0.35 (0.13) 0.80 (0.12) 0.65 (0.34)
10-MeansAlt 1.04 (0.04) 0.21 (0.08) * 0.83 (0.12) 0.39 (0.21)
15-MeansAlt 1.03 (0.03) 0.15 (0.05) * 0.85 (0.10) 0.27 (0.14)
20-MeansAlt 1.03 (0.03) 0.13 (0.04) * 0.86 (0.10) 0.22 (0.12) *
25-MeansAlt 1.03 (0.04) 0.11 (0.04) * 0.87 (0.09) 0.18 (0.10) *
rfp1-MeansAlt 1.05 (0.06) 0.08 (0.05) * 0.89 (0.09) 0.13 (0.09) *
rfp2-MeansAlt 1.06 (0.08) 0.09 (0.05) * 0.92 (0.09) 0.13 (0.09) *
BE-cMeansAlt 1.01 (0.03) 0.27 (0.19) 0.80 (0.12) 0.59 (0.33)
BT-cMeansAlt 1.05 (0.06) 0.08 (0.05) * 0.91 (0.09) 0.12 (0.09) *
APCSpaTrad 1.10 (0.08) 0.10 (0.05) * 0.98 (0.12) 0.11 (0.06) *
APCSpaAlt 1.13 (0.17) 0.10 (0.05) * 1.05 (0.19) 0.11 (0.06) *
Marques10 1.05 (0.16) 0.11 (0.10) * 0.89 (0.22) 0.15 (0.13) *
Moreira1st 1.15 (0.31) 0.07 (0.07) * 1.00 (0.31) 0.10 (0.09) *
Moreira3st 1.02 (0.12) 0.13 (0.13) * 0.83 (0.18) 0.19 (0.17) *
MoreiraS06 0.97 (0.11) 0.12 (0.09) * 0.84 (0.17) 0.19 (0.19) *
MoreiraS12 0.95 (0.08) 0.17 (0.17) * 0.76 (0.14) 0.26 (0.26)
* stands for ε3D < 1.25 and τ3D < 0.25

Bold typeset figures mean highest ε3D and lowest τ3D in the two configurations

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMC.2020.3017176

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, OCTOBER 2018 10

averaged normalized error and computational costs of 1
for the Simple Configuration, whereas the mean normalized
error is 0.74 (26 % lower than the baseline) and the mean
normalized cost is 1.76 (76 % higher than the baseline) for
the Best Configuration in Table 5. Figure 5 visualizes these
results in a scatter plot. Selecting optimal parameters tends
to decrease the positioning error, usually at the expense
of higher computational costs. This negative slope can be
clearly seen in three blocks: Kushki, methods based on
grid-based clustering and other methods. The last group –
including c-Means, Affinity Propagation and the majority
rules– contains the models that achieve a good trade-off
between the positioning error and the computational time.

Only c-Means, Affinity Propagation Clustering and the
methods based on the strongest AP consistently achieved a
normalized accuracy below 1.25 and a normalized compu-
tational burden below 0.25 (marked with * in the Table 5).

The computational cost of c-means decreases as the
value of c increases, but the accuracy also decreases
as shown in Figure 6. The trends reported in the fig-
ure also show that the parameters of c-Means (Tradi-
tional/Alternative generation of clustering and the value
of c) have an impact in the normalized error and compu-
tational time. In general, the normalized accuracy of the
traditional c-means is worse than the plain k-NN algorithm,
whereas the results of the alternative c-means are similar to
the plain k-NN method. Among all the methods based on
c-means clustering, rfp1-MeansAlt provides a remarkably
good compromise between accuracy improvement and time
reduction, while also having a low variability.

Fig. 5. Relation between the normalized positioning error and normal-
ized computation time of the methods reported in Table 5.
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The Affinity Propagation Clustering, while providing a
notable reduction of the computational cost, may require
significant memory and computational resources for the
clustering stage. We had to use the Sparse implementation
provided by its developers because of memory shortage
problems for large datasets. Even using the Sparse imple-
mentation, the time required to compute the centroids was
very high, lasting many hours for the largest databases.

The methods based on the strongest AP proposed by
Marques and Moreira provided remarkable time reductions
while commonly improving the positioning accuracy. The
method proposed by Moreira that filters by one AP (Mor-
eira1St) provides the best overall computation time, at the
expense of slightly increasing the normalized positioning
error, to 1.15 and 1.00 for the Simple and Best Configuration,
respectively. The more APs are used in the filtering stage (1
or 2 in Marques10, 3 in Moreira3St), the more the positioning
error reduces at the expense of a higher computation time.
For the version of Moreira that is based on the similarity to
the strongest AP, the positioning error and the computation
time are well balanced when the threshold value is set to
6 dB (MoreiraS06). The accuracy is close to that of the plain
k-NN but the normalized time is reduced by factor 8.

Other methods miscarry either in the error or time im-
provement. FengYu failed because the radio map reduction
was entirely done during the operational phase without any
off-line pre-processing. The methods based on the percentile
rule kept the positioning error but did not accomplished a
notable time reduction. The grid-based clustering methods
performed very poorly in terms of error. The clustering pro-
posed by Kushki led to an unexpected high computational
time. The possible causes are explained in Section 4.2.2.

5 DISCUSSION

Some attempts to reduce computational costs were identi-
fied in a literature review on FP in the major research data
sets. Although most of them relied on k-Means clustering (c-
Means in this paper) and Affinity Propagation, other inter-
esting rules were found. We implemented and evaluated the
reproducible ones, those that provided enough implemen-
tation details. The proposed evaluation framework allowed
a deep analysis, which led to the following observations.

The election of some parameters of the FP method,
like the distance function to compare the fingerprints, are
usually only based on the positioning accuracy. According
to our experience and the empirical results, we encourage to
ponder the computational cost when selecting the most ap-
propriate distance metrics. The Sørensen distance provides
good accuracy with a reasonable increase of the computa-
tional costs. In contrast, the metrics based on probabilistic
log-Gaussian distance provide the best accuracy in some
cases but they have three times the computational cost of
the Manhattan distance.

The computations in the on-line stage of clustering and
optimization rules mainly depend on the complexity re-
quired to reduce the radio map and the resulting number
of fingerprints. In some cases, the operations required to
reduce the training set can be done off-line, which alleviates
the computational costs during the on-line phase as we
demonstrated with the optimized FengYu method.
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Although some methods promise to reduce the compu-
tational load while barely affecting the accuracy, their as-
sumptions are not applicable to many situations. Examples
of these assumptions are, for instance, having multiple fin-
gerprints in every reference point or a uniform distribution
of fingerprints over the space. Usually, the methods’ original
evaluation fits the requirements and the system does not
present any anomaly. However, they might provide a poorer
accuracy when the evaluation is more realistic and includes
features breaking those assumptions.

Grid-based clustering is not suggested. Averaging fin-
gerprints only works when the distance between RPs is
larger than the cell size and every RP has several finger-
prints taken in the same conditions. Averaging should never
be used neither when the local fingerprint density is very
low not when it includes samples from different sources.

The methods based on the strongest AP proposed by
Marques and Moreira, c-Means clustering and Affinity
Propagation Clustering (APC) appear to be universally
eligible to reduce the computational cost in the on-line
stage of FP positioning while keeping an accuracy similar
to plain k-NN. However, the computational costs and re-
sources required to generate the clusters with APC might be
prohibitive in large datasets.

Regarding c-Means clustering, the variant presented
with the alternative initialization creates effective clusters
that better group similar fingerprints with respect the tra-
ditional initialization. The two-stage search is effective as
in the coarse search, the right cluster is selected and, then,
the fine-grained search provides the right fingerprints to
compute the position estimation. As explained in Section
4.1, the computational cost decreases as the number of
clusters increases, which find the best scenario around the
proposed heuristic rfp1 (square root of reference samples).
However, as a side effect, the positioning error increases.
As the number of clusters increases, the probability that
the operational fingerprint falls near a boundary between
clusters also increase. Selecting the wrong cluster and hav-
ing reference fingerprints from the same reference position
scattered in different clusters are the main causes of this side
effect of c-Means with large c values.

In general, none of the methods guarantees that the
reduced training sets have all the same size. The generated
clusters are generated to group similar fingerprints in the
feature (RSS) space, but they may not be equally distributed
as the groups depend on distribution of APs, localization
of the RPs, the devices used to collect the data and the
noise in signal propagation. Similarly, in the optimization
rules, the size of the reduced radio map depends also on
the coverage of the APs detected on the operational phase.
In other words, the computational costs vary depending on
the reduced radio map linked to the operational fingerprint.

To sum up, most of the analyzed methods apply an
off-line pre-processing stage [85]. It is devoted to create
supporting data, e.g. clusters and reduced radio maps, for
the on-line phase. That pre-processing is highly relevant
for production systems, since it might avoid unnecessary
calculations in the on-line phase that degrade a system’s
scalability. However, this pre-processing stage is not negligi-
ble, like in the case of Affinity Propagation Clustering where
it took several hours for large radio maps on our hardware.

Finally, some of the analyzed methods could not be
implemented due to the lack of details in the publications
introducing them. Lack of details or procedures to set some
parameters are the most common issues we faced when
implementing the methods found in the literature. The In-
door Positioning community should promote the diffusion
and communication of new methods ensuring reproducible
research, e.g., publishing the code and data in a public
repository. Also, different scenarios (e.g., through datasets)
should be considered for generalization purposes.

6 CONCLUSION

This paper presents a comparison of different clustering
and optimization rules to reduce the computational burden
of Wi-Fi fingerprinting (FP) methods. Although researcher
have already published partial results, they cannot be com-
pared as the evaluation scenarios and metrics differ. Also,
the results are usually restricted to one deployment (re-
search facilities or small area) and cannot be generalized.
The Indoor Positioning community needs an evaluation
framework similar to the one used in Machine Learning
with multiple datasets.

To the best of our knowledge, no other work has used an
evaluation framework as comprehensive as the one we have
presented here, which includes two aggregated normalized
metrics and 16 datasets. We implemented 15 methods, test-
ing several parameter values for some of them, to perform
an empirical comprehensive comparison. An evaluation
framework with heterogeneous datasets not only allowed
us to generalise better on the evaluation metrics, but also
enables the research community to compare new methods
against a large set of deployments through datasets.

Balancing the general accuracy and the general compu-
tational costs, MoreiraS06 could be appointed as the best
model within the analysed methods. Moreover, this model
somehow benefits from the fact that two fingerprints shar-
ing the same strongest AP with similar RSS value should be
close in the space, which reduces the computational costs of
FP without degrading its accuracy. In general, the methods
based on the strongest AP proposed by Marques and Mor-
eira, c-Means clustering and Affinity Propagation Clustering
appear to work well in all considered scenarios, and thus
are likely to be universally eligible. However, the cluster
generation of Affinity Propagation is the most demanding
one, requiring several hours or facing some execution issues
in the largest datasets. The problem of averaging finger-
prints with different features makes the methods based on
clustering to be the best choice for single-device datasets
with large local density, whereas the methods based on the
strongest AP are mostly suited for datasets with low local
density or collected by diverse devices.

The efficacy of reducing the computational costs of the
on-line stage depends not only on the clustering or opti-
mization method itself but also on the number APs and the
spatial distribution of the fingerprints. A developer of a FP
system should keep this in mind. Bold assumptions and
requirements during the evaluation stage are not encour-
aged. Moreover, the way of implementing an algorithm may
affect the computational costs. We should move as much as
possible computation to the off-line pre-processing stage.
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As further work we will proceed on the implementation
of the FP models in other computer languages, including C
(assembler) which is used for efficient implementations in
embedded devices with few resources, to test, for instance,
their feasibility for mobile apps. Moreover, our long-term
objective is to settle the best practices for evaluating indoor
positioning systems with multiple scenarios and datasets in
order to ensure reproducible research. Our contribution to
this goal starts here by making available the datasets and
open-source code used in this work. The community can
extend the proposed evaluation setup with their datasets
that consider more realistic propagation models, devices
not included in this work (new smartphones or computing
devices) or, even, disruptive data collection strategies.
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smartphone-based offline indoor location competition at IPIN
2016: Analysis and future work,’ Sensors (Switzerland), vol. 17,
no. 3, pp. 1–17, 2017.
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