UNIVERSITAT
JAUME-I

Development and training of an
Artificial Neural Network in
Unity3D, including a game to
interact with it and observe its
performance.

Final Degree Work
Bachelor’s Degree in Video Game Design and Development
Universitat Jaume |
June 8, 2020

Author: Sergio Valdelvira Pérez
Advisor: Angel Pascual del Pobil

Abstract

This document presents the Final Report of the Video Game Design and Development
project. The work consists of creating an Al with the ANN (Artificial Neural Network)
method, to face the player in different game modes and then training as best as possible
with the Reinforcement learning method. Then, we will introduce our Al into different
game environments the player may encounter. All this can be done using the Unity game
engine.

Key Words

Artificial Intelligence, Machine Learning, Neural Networks, Brain, Perceptrons,
Reinforcement Learning.

Index

Abstract

Key Words

1 - Introduction

Work motivation

Project’s Objectives

2 - Planning

Related Courses

3 - Game Design

Overview

Game concept

Genre

Target Audience

Look and feel / game experience

Gameplay and mechanics

Gameplay overview

Game Modes

Environments

Game progression

Mission / challenge / level structure

O WooWoWOomWOoO 0 N N N N N o 60 oo 6o W W

Movements and controls:

Physics and objects

Actions

Screenflow

Game flow

Replaying and saving

Narrative design

Storyline

Characters

Gameworld

Functional and technical specifications
Tools

4 - Work Development

Perceptrons/ Neuron

A.N.N

Brain

Modeling and artistic parts

“Draw your Circuit” Mode

O T N
W Rk Rk =B, OO

[e
w w ww

.
o n

N N R R = Rk
W O 00 N o o

Race Mode

Trainning Mode

“SacaCaminos” Algorithm

Results

Project Access

Conclusions

Future work

Audio

Bibliography

Appendix — Additional documentation

Figure Index

Figure 1 Gantt chart

27

31
31

35
36
36
36
37
37
38

Figure 2 Random Circuit

Figure 3 Controls

Figure 4 Game Flow

Figure 5 Neuron - Representation

Figure 6 How Perceptron work

Figure 7 ANN Graph

Figure 8 RayCast

Figure 9 Layer Terrain

Figure 10 WayPoints

Figure 11 Main Menu 1

Figure 12 Hexagonal Grid

Figure 13 Valid Circuit

Figure 14 Winning

Figure 15 Third View

Figure 16 Pause Menu

Figure 17 Circuit 2

Figure 18 Circuit 3

Figure 19 Circuit 4

Figure 20 Circuit 1

Figure 21 WayPoints in Modular Track

Figure 22 Layer and Tag from de Modular Track
Figure 23 Circuit 4 Pink Bot

Figure 24 Circuit 1 Green Bot

Figure 25 Results

Figure 26 Pseudocode

Figure 27 Duplicate problem Sample

Figure 28 Paths and piles

Figure 29 Training Path Creator.cs

Figure 30 Training Mode

Figure 31 Test 1

Figure 32 Test 2

10
12
16
17
17
18
19
19
21
23
24
25
26
27
28
28
28
28
28
29
29
29
30
32
33
34
34
35
35
35

file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536649
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536650
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536651
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536652
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536656
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536657
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536658
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536663
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536664
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536665
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536666
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536667
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536668
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536669
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536670
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536671
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536672
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536673
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536674
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536675
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536677
file:///C:/Users/sergio/Desktop/Development%20and%20training%20of%20an%20Artificial%20Neural%20Network%20in%20Unity3D.docx%23_Toc40536678

1 - Introduction

Work motivation

Computational Intelligence based on Artificial Neural Networks, also called ANNs, is not
currently being exploited enough in the world of video games, but | believe that if they
are well-developed, they have a lot of potential when it comes to generating Al for any

video game.

Project’s Objectives

e To develop an Artificial Neural Network.

e To train this ANN to pass a simple circuit using Reinforcement Learning.
e Toimprove training to pass any circuit set by a player.

e To develop a game for the player to interact with the Al.

2 —Planning

This is the planning of the different tasks that have been carried out and in their respective
schedules, to achieve the completion of the development of both the ANN and the video

game.
Nombre de tarea

Start
"Beat A.N.N.43"

., Duracién

8 horas

352 horas

Research de different types of Al and their iplementation in Unity 40 horas

Research and study the structure that the ANN will follow.
Development and implementation of nreurons in Unity.
Development in unity of the necessary layer of neurons.
Development and implementation of the ANN class where the
previus ones converge.

Creation and implementation of the first brain.

Design and development of the first training camp and first
training

Debug Brain code and improve the learning system.
Hexagonal Grid creation for semi-infinite levels to draw.
Modeling and search asset of the Annae and the Race Mode
circuits

Creation of an Algorithm that creates circuits to the First mode
Final Memory

Related Courses

15 horas
15 horas
15 horas
30 horas

25 horas
45 horas

20 horas
46 horas
40 horas

30 horas
30 horas

mar 31/03/20 lun 06/04/20
mar 07/04/20 mié 08/04/20
jue 09/04/20 vie 10/04/20
sab 11/04/20 lun 13/04/20
mar 14/04/20 vie 17/04/20

sab 18/04/20 mié 22/04/20
jue 23/04/20 jue 30/04/20

vie 01/05/20 mar 05/05/20
mié 06/05/20 mié 13/05/20
jue 14/05/20 mié 20/05/20

jue 21/05/20 mar 26/05/20
mié 27/05/20 lun 01/06/20

. Comienzo _ Fin Dmar'20 |06abr'20 |13abr'20 |20abr'20 |27abr'20 |04may'20 |11may'20 |18may'20 |25may'20 |01jun'20
MIJ[SILIX[V|D[M[J]|S[L[X|VI[D[M[J[S|L[X[VID[M[J|S[L|X[V[D|M[J[S|L[X[V

lun 27/01/20 lun 27/01/20

mar 31/03/20 lun 01/06/20 «©

Figure 1 Gantt chart

e VJ1231 - ARTIFICIAL INTELLIGENCE
e VJ1222 - VIDEO GAME CONCEPTUAL DESIGN
e VJ1229 - STATISTICS AND OPTIMIZATION

o VJ1227 - GAME ENGINES

3 - Game Design

Create an ANN capable of passing any race circuit that the player can draw. However, to
do this the ANN must first be created and trained with Reinforcement Learning to pass
a basiccircuit, and then the level must be raised to ascertain whether it can be improved.

The game that the player is going to use will be an editor where he can draw the circuit
that the IA must beat (drawing a circuit that takes more than 1000 attempts to solve),
watch training with new brains, and even compete against the previously trained ANN.

There is also a Race Mode where the player will face 3 more ANNs from a random list of
circuits with different environments.

Overview

Game concept:

“Beat A.N.N. 43” is an experimental videogame, in which the main character is
not you. It is about seeing the performance of “Annae,” (acronym and name of
A.N.N. 43) an ANN previously trained to beat any circuit and obstacle that the
player can imagine. The action of the game can be contemplated both from a
zenithal view of the circuit and in third person, using a PC as a platform.

The visual style of “Beat A.N.N. 43” is not one of its most important factors,
although it is not to be underestimated either, since it is a low poly aesthetic with
flat colors, leaving more pleasant and attractive environments and agents to the
players.

The player can play in different game modes, and some of them with different
difficulties, such as:

e Create circuits with obstacles, and try to make them unbeatable
for Annae.

e Participate in races on different random circuits, competing with
different versions of Annae and her different difficulties.

e See the training and learning process of an Annae unit from
scratch.

Genre:
Logic & Race

Target Audience:
Users interested in both Artificial Intelligence and Artificial Neural Networks
applied to video games, and even any arcade racing game player.

Look and feel / game experience:

The player must feel equal conditions against the ANNs at all times enjoying the
competitive component against ANN, with simple and intuitive controls and
pleasant scenarios and interfaces.

Gameplay and mechanics

Gameplay overview:

Many games use pre-programmed artificial intelligence, with a few actions pre-
set by the developers, whether or not those are the best strategy to try to beat
the player. In this case, we use a previously trained ANN who has tried thousands
of strategies until she found the best one.

Game Modes: The player has different types of interactions with the
game depending on the chosen mode:

Draw your circuit mode, which, as its name suggests, consists of
preparing a circuit for “Annae” to try to make her fail. The player
is given a grid of hexagons which he can select to shape the circuit
that he has in his imagination.

Race mode, where we will select the difficulty of “Annae” and
compete against her in different random circuits, driving another
“Annae” unit.

Training mode, which is the least interactive because it consists of
watching the training process of an “Annae” unit from the
beginning.

Environments: We will have two types of very different environments,
both in the Drawing Mode and in the Training Mode, which intend to give
the impression of an experimental game and of working with robots.
Here is where the different training tests are going to be performed, or
there are even remains from previous tests. It is very bright so it gives a
great feeling of spaciousness, with a certain industrial style where light
colors predominate, in particular white.

On the other hand in the Race Mode, the player will be outside with much
more natural scenarios, where the different random circuits will be
inserted in different natural environments, with the asphalt of the circuit
contrasting heavily with these environments.

Game progression:

As with any game that focuses on its game modes or mini-games, progression is
not a priority. A more important element is to have fun exploiting these almost
infinite modes to the fullest.

How do you know the goal? In the game's introduction you will meet Professor
Roger Poplar, who will explain that he has developed a new robot and ask you
to help him prove how advanced he has become. Poplar will ask you to defeat
“Annae” in different tests.

So there is no progress? There is some progress in both circuit and race mode.
In the circuit mode, you must defeat “Annae” at least once to be able to unlock
the obstacles, and in the race mode, “Annae” will have three types of difficulties:
Easy, Mid and Hard.

Mission / challenge / level structure

The main mission in all modes is to beat “Annae,” either by designing complex
circuits that she is unable to overcome, or by reaching the finish line before her
in the Race mode.

The challenge consists of defeating an artificial intelligence trained during tens
of hours in different circuits, managing to improve it, based on the failed as well
as the successful attempts of the player. This is because the Al will be storing all
kinds of information, learning from all its mistakes.

Random circuits: In race mode, neither contestant will know the circuit in
advance, adding a race game factor.

ﬁﬁ\
ﬁ"

=

Figure 2 Random Circuit

Movements and controls:

The player will only be able to move in the Race Mode when competing against
“Annae.” In a very simple way, using the WASD keys:

up: Speed up
down: Brake
left: Turn left
right: Turn right

Figure 3 Controls

While in the Draw your circuit mode, the player will use the left mouse click to
select the shape of the circuit as well as the positioning of the obstacles, and the
right mouse click to move the camera.

Physics and objects:
The decorative objects will be static objects that, once chosen, their position will

not be affected at all even if “Annae” crashes into them. They will simply be used
by their colliders to detect if “Annae” has crashed.

10

Actions:

Although “Beat A.N.N. 43" is a simple game in terms of visuals and controls, it
still has a fun and entertaining gameplay, while being re-playable.

Restricted areas: The laboratory (Draw your Circuit Mode) as a restricted area
provides the possibility of making almost infinite circuits for “Annae,” plus the
ability to set up obstacles at any point of the routes or not.

Players can access this title even if it focuses on the experimentation of Artificial
Intelligence and the behavior of Artificial Neuronal Networks, because the
actions and interactions needed to enjoy the game are accessible to any player.

Screenflow:

Depending on the selected game mode, we will have different viewpoints:

-The first in Draw your circuit mode is similar to the vision a scientist would have,
watching as his mice try to reach the end of a maze to get the reward.

-With the second viewpoint in Race mode, the player will have the third person
view, similar to that of another competitor like “Annae.”

Game flow:

- First Splash screen: Unity cinematic.

- Second Splash screen: Title cinematic

- Introduction

- Main menu: A screen appears with the following options.

- Play
- Draw your circuit
- Race Mode
- Training Mode

- Options

- Exit

11

Game Opening

v

Intro)

y

Main menu \<
)

=

Play)

(Draw your circuit)

Y v

(

Race mode J (Training mode)

A 4

(Easy

)(

A 4
Medium) (Hard)

Figure 4 Game Flow

12

Replaying and saving:
The replayability is affected by the player, because he has an infinite number of
options when drawing the circuit.
In the race mode the player will have at his disposal several circuit maps that will

be loaded randomly.

In each race in any of the modes, “Annae” will assimilate the new data that she
believes to be relevant for later confrontations.

Narrative design

Storyline:

Professor Roger Poplar has developed a robot with self-learning ability, A.N.N.
43, and he needs your help in his research.

Characters:

Roger Poplar: A scientist focusing on robotics with the objective that his
creations evolve with experience.

A.N.N. 43: Unit developed by Prof. Poplar with the ability to learn.

Gameworld:

Beat A.N.N. 43 takes its name from the fact that it competes with and tests the
robot developed by Professor Poplar. This robot is called A.N.N. 43 or “Annae”
because it is an Artificial Neural Network followed by a number, which is not the
first version developed by Poplar.

The game always takes place in controlled environments in the laboratory used
in the Draw your circuit and Training modes as well as in the different outdoor
scenarios of the Race mode.

13

WELP PRUFESSOR POPLAR IN WIS RESERRCH.

PROFESSOR ROGER POPLAR HAS DEVELOPED A ROBOT LUITH
SELF-LEARNING ABILITY, A.N.N. Y3, HE NEEDS YOUR HELP IN

CHHALLENLGE AND COMPETE AGAINST A.N.NM Y3 TRYING TO BEAT
HIM. ALL THIS LUILL HELP THE LUMIT TO EVOLVE AND CONTINUE

LERRNING.

PLATFORM: PC
ALGE: +I2
LENRE: LOGIC + RACE

A SCIENTIST ORIENTED TO
ROBOTICS LUITH THE
OBJECTIVE THAT HIS
CREATIONS EVOLVE WUITH
EXPERIEINLCE.

UMT DEVELOPED BY
PROF. POPLAR WUITH THE
AEILITY TO LEARN.

A.N.N. 43

Functional and technical specifications

Tools:

" UNITY 2019 2.8f1
S unity

. . VISUAL STUDIO 2017
b Visual Studio

Adobe ADOBE ILLUSTRATOR 2018
lllustrator
Adobe ADOBE PHOTOSHOP 2018
Photoshop

@blender” BLENDER 2.8

. Microsoft Office 2019
) Office

15

4 - Work Development

What is an ANN? It is a set of both neurons arranged in layers creating a network or
system so that the brain of an Al of the ANN may function. Starting from the bottom,
there are Perceptrons or neurons.

Perceptrons/ Neuron

A Perceptron is an algorithm that imitates the operation and behavior of a neuron that
is likewise capable of learning.

On one hand, the Perceptron takes an input, processes said input with its own function,
and makes a decision that will come out through the Output. (Fig 5)

Figure 5 Neuron - Representation

Between inputs and function, there are weights involved in the final decision depending
on the value of the weights, which signifies learning and being able to see ANN evolve.
In addition to inputs, there is the bias for correct operation

The bias is a value that changes the value of the function regardless of inputs.

The functions, also called activation functions, vary according to the result to be
obtained, e.g. from of 0 to 1 or from -1 to 1.

What we want to accomplish with the weights is for them to give the suitable result to
the neurons, and this is done by multiplying the sum of inputs by their weights, adding
the bias in the end. If the result is greater than 0, the neuron is activated; otherwise, it
is not.

16

(input
S weight
\\\ \\ P

Figure 6 How Perceptron work

AN.N

The concept of neuron is thrilling, but what is most interesting is when several of them
are brought together, thereby creating an artificial neural network.

In a basic neural network, Perceptrons are arranged in three or more layers, the input
layer, one or more hidden layers, and a final output layer, with all the neurons being
connected between with the neurons in the next layer.

new weight = old weight + input * error

Figure 7 ANN Graph

17

The complete neural network basically works like a single neuron. The generated output
is compared with the desired output, and the error is calculated and sent back with a
technique called back propagation, which indicates where the error has been most
decisive, giving priority to a modification of said neuron.

ANNSs have an amazing processing capacity and have been used both in video games like
in other applications outside the video game environment.

Brain

The ANN we already have is executed in the brain, like the learning process, which is
Reinforcement Learning in this case. To start, we first must know how many inputs will
be needed for our ANN and how many outputs and hidden layers.

In our case, since the game is based on a vehicle powered simply by a forward force, we
know that two outputs are needed, one for turning to the left and another for turning
to the right. In this example, we have chosen to place a type of eyes on our vehicle which
is what carries the brain.

These eyes are five Raycasts:
One rotated 902 to the left.
One rotated 902 to the right.
One rotated 452 to the left.
One rotated 4592 to the right.

One looking straight ahead.

Figure 8 RayCast

18

These Raycasts (inputs), which are actually devolving, is the distance from the vehicle to
any obstacle with the terrain layer that it may run into, thereby giving it the effect of
vision with 5 eyes.

¥ ¥ Terrain ¥ Static =
A

Tag [terrain t] Layer [terrain t]

Figure 9 Layer Terrain

Now training must take place. As discussed, we simply place in the scenario a circuit with
a pair of curves, and we test the experiment.

It works yet can still be improved because it never turns around the circuit completely.
To do that, we make the decision and train in the learning section.

Durante travel, if the vehicle crashes, it restarts in this position so that it can try to get
through the circuit again, and the vehicle is penalized with -1. However, if the vehicle
comes out alive, it is rewarded with 0.1. This entire learning process is performed when
the vehicle crashes (BackPropagation).

To improve this learning algorithm, during travel we add waypoints which are added to
the reward with 0.5 + 0.1 (reward: It is a variable, the higher it is, it means that it finds
its way until in the end it does not make any mistake) for being alive every time it passes
one of these waypoints, thereby finally resolving the circuit.

Now all that is left to do is save the weights so that they can later be loaded and the
circuit resolved on the first attempt.

Figure 10 WayPoints

19

To save these weights, we need a Script for loading and saving weights. In this first part
of the save Script, the word “Test” is used so it can be saved in a text file with the
weights, and in the Brain itself we add the condition of checking to see if the circuit is
saved, basically if the file called “Test” exists and the circuit is saved. Then it is loaded,
going through the circuit in the first attempt without any errors. If the file does not exist,
the Brain switches to training mode until it reaches the last of the waypoints to which
we have assigned the ID “Finish Line” and the save Script is run, creating the file called
“Test.”

Modeling and artist part

Before starting any of the game modes, we have to model the robot, our star player,
and the objects we need, and we have to draw Dr. Poplar. This, along with free Asset
and model downloads, can all be found in the art section of the video game.

The modeling part is done with the Blender 2.8 program together with the Box Cutter
add-on. The drawing of Dr. Poplar is done with Photoshop, and the drawing of all the
necessary Canvases, both keys and menus, etc., are done with lllustrator.

In Blender we also create the first piece of the first game mode that we are going to
program, that is, a Cell which is basically is a hexagon with volume.

The robot animations modeled in Blender were done with the Unity animation editor,
requiring no more than two animations, IDLE and RUN, and the suitably separated parts
of the robot. Therefore, rigging the body for better animations is not necessary.

20

OPTIONS

Figure 11 Main Menu 1

DRAW YOUR CIRCUIT

RACE MODE

TRAINING MODE

BACK

Figure 8 Main Menu 2

21

Figure 9 "A.N.N. 43"

22

“Draw your Circuit” Mode

To start, we import into Unity our Cell object modeled in the preceding point. There is a
new script added to it called “Cell.cs,” where we create the ID variables, whether or not
it is selected, whether or not this is the starting point, and a list of neighboring cells.

Next we create a matrix with these hexagonal cells using Grid.cs Script.

Since the cells are hexagonal, we have to add an offset in the horizontal displacement
of the cells in even rows for the result to be visually appealing. However, this causes an
error, since the matrix is hexagonal. With this offset, the cells are disarranged, the
current neighboring cells are not the right ones, for example [0,0] might not have
thereunder [1,0], and that error is transmitted to all the cells in the matrix.

To fix this, we simply create two for loops to run through the matrix. Boundaries, or
better yet a black frame, are put up, and they run through it differently according to
whether they are even or uneven, the right neighboring cells are gradually added to the
lists of neighboring cells of each of the cells.

After that, cell [3,3] is painted red and selected as an output cell because that cell are
going to be the start and the end of the circuit.

=

Figure 12 Hexagonal Grid

With the grid and the starting point created, it is now time to give the player the tool to
draw the circuit he wants in this grid, always beginning at Start.

23

We have for that purpose the SelectionAction.cs code, where it is possible to find the
following variables: a list of selected cells, a current cell, a number of waypoints and a
list of waypoints.

The player will make the selections using a Raycast going from his pointer to the place
where is a cell and if it is connected with a selected cell, the player will be allowed to
continue selecting. However, if at any time the left mouse click is not pressed, the list of
selected cells will be erased. This is to prevent players from drawing impossible circuits
or circuits forked paths. There is also the rule that any single cell can have two selected
neighboring cells.

Conversely, if the player keeps the left mouse click pressed and does not try to add a
third neighbor, anywhere in the list, he has complete freedom to draw the circuit he
wants in the grid and to close it by reuniting with the Start cell.

Once a valid circuit is recognized, all the unselected cells are scaled on the “Y” axis and
have the tag and layer indicating “terrain,” leaving the path of selected cells that are not
augmented in size. A waypoint every three cells is also instantiated in this list, which is
converted into a circuit.

Figure 13 Valid Circuit

Once everything is ready, the bot is instantiated looking at the first cell of the list, and
training begins. The last finish line of this list is instantiated as the finish line.

24

How to save circuits needs to be implemented, and from this point on, all of those
generated in the grid will be given an ID or name, followed by the weights needed to
resolve the circuit once it has been completed.

The ID or name is the set of all the IDs of the cells making up the list of the circuit so that
it can be identified in the future, and training does not have to be repeated, otherwise
load the suitable weights from the Circuits.txt file where they are all saved.

To convert all this into a small game, we use the Fungus Asset for Dr. Poplar to challenge
you to create a circuit that is complicated enough for the robot to take over 1000 tries
to surpass it (victory condition).

In both cases, whether you succeed or not, Dr. Poplar makes a comment about it and if
he has won he stays repeating the circuit. While if the player loses, stays in training mode
until complete.

M
‘ N g
) e
Dr. Roger Poplar

Mmmmm... Una victoria mds, nada que extrafar.

Figure 14 Winning

The possibility of having two cameras, a zenithal and a third person camera, which can
be alternated by pressing “v” as a result of the Cinemachine Asset providing the player
with more dynamic cameras, are added to this game mode.

25

Figure 15 Third View

The circuit implementation system is also updated once a valid circuit is recognized,
where two keys are shown

- Start: To start the training mode or loading mode, if this circuit has already
been passed through.

- Reset: If the drawn circuit does not convince the player and he prefers to
draw it again.

A pause menu is also added with the following options:

- Resume: Eliminates the pause on the game.
- Menu: Takes you to the main menu.
- Help: Dr. Poplar offers a small tutorial on how this game mode works.

26

Fails: 12

Figure 16 Pause Menu

Race Mode

The Race Mode is made up of four scenes with different circuits and scenarios, where
the objects needed to give the right atmosphere, as well as the modular pieces of the
circuit, have been downloaded or modeled. In general, however, these four scenarios
have exactly the same programming, with the variable the bots have presenting a minor
new variable in order distinguish the circuits.

In the main menu, when we select the Race Mode option, one of the circuits is randomly
chosen so as not to have to always start with the same one.

The working of one of these Scenes discussed above, all of which work in a similar
manner, will now be explained.

27

Figure 19 Circuit 2

Figure 17 Circuit 3 Figure 20 Circuit 4

We start by making a circuit with the modular tracks saved in an object given the same
name. When we have the circuit completed, we choose the point of departure and
create the WayPoints Position.cs Script, where in the center of each of the pieces of the
Modular Track a Waypoint of the same kind seen in the Draw your Circuit section is

instantiated, but this time with rectangular shapes, with the last one being indicated as
the Finish Line.

Figure 21 WayPoints in Modular Track

28

To continue preparing the circuit, both the tag and the layer are added to all the pieces
of the modular track as terrain, and an invisible plane is added on the road, but a few
millimeters above it, so that in the later bot training mode, they can only crash into the
barrier of the circuit, as a result of the Mesh Collider in each of the pieces, and not into
the ground as a result of this invisible plane.

Figure 22 Layer and Tag from de Modular Track

With the finish line and the starting point established, all that is left is to place both the
bots, with three in all the circuits, and the robot controlled by the player.

The Player Movement.cs code is very simple. Using the forward and backward arrows,
we can move forward and backwards, while the left and right arrows allow us to rotate
in these directions. Little work is applied to the movement code because it has to be fair
in order to compete against it, with both having the same movement speed.

On the other hand, the Cinemachine is used again as the Main Camera in third person,
providing us with a much more dynamic camera.

Now we have to train the bots, and to do this their Brain.cs has to be improved by adding
restrictions in order to know if they are in the Draw your Circuit or in one of the modeled
circuits. Therefore, they already distinguish being in the Race Mode.

By adding another restriction, an ID is added for the robot to know who it is and the
circuit it is in.

Figure 23 Circuit 4 Pink Bot
Figure 24 Circuit 1 Green Bot

29

Now all that is left is to let them train until they learn the circuit, creating text files with
their ID and weights, ending their training.

We now have to program the game logic. To start, we add a countdown using the Canvas
where the Brain.cs and Player Movement are deactivated. When the countdown
reaches zero and GO appears, the aforementioned Scripts are activated and the race
begins since each of the bots will try to resolve the circuit on their own, with the weights
previously saved during training.

The player, in turn, must try to reach the Finish Line before the bots do.

When all the participants in the race reach the Finish Line, the image fades to black with
the results of the arrival positions and a commentary from Dr. Poplar, depending on if
you were able to defeat his bots or if they defeated the player.

Resultado:
ANNKart: 1
ANNKartCircuitoROSA: 2

ANNKartCircuitoRojo: 3
ANNKartCircuitoVERDE: 4

Dr. Roger Poplar

iDiantres! Fuiste capaz de derrotar a todas mis "Anaes".

v

Figure 25 Results

Once this commentary ends, the player will be sent to the main menu. Then we would
add the pause menu and regard the logic of this game mode as finished.

30

Trainning Mode

The concept of the Training Mode was to gradually extract the paths in the same grid as
the one in Draw your Circuit, and this was to be used to have more circuits saved,
thereby increasing the difficulty of the Draw your Circuit mode.

The bot would be instantiated looking towards the first cell of the circuit and would go
through its training process until reaching the Finish Line, where it would be
deinstantiated, another random circuit not stored in the Circuits.txt would be loaded,
and the bot would be instantiated again generating an automatic process, without the
player needing to intervene.

However it has the same options as in the Draw your Circuit mode, moving the zenithal
camera, zoom, changing cameras, and even pausing the game.

The problem appears when trying to create an algorithm which generates random
circuits in situ. The random circuits are loaded, the bot learns the, and the algorithm is
run again in a reasonable time, since it would be a process requiring loading screens
between the different stages.

After several days of trying to extract the algorithm, one idea is ruled out for another
idea, which is to deploy all the possible paths that can be drawn in Draw your Circuit,
and these are stored in a .txt. Each of the circuits is stored in each line, and with this file,
Unity simply loads them later, line by line, giving rise to the SacaCaminos algorithm.

“SacaCaminos” Algorithm

We will resolve the given problem, an initial cell, and we want to extract all the possible
pathsin a hexagonal grid that depart from and end in said initial cell, with the restrictions
mentioned in the Draw your circuit section, that is, paths without forks and having only
two neighbors at most.

This problem will be solved using an approach with graphs. We will interpret the grid as
a graph with four hundred nodes interconnected with their neighbors by means of the
restrictions.

Translated into graphs, the preceding problem consists of finding all the simple cycles (a
series of vertexes such that from each of these vertexes there is an edge leading to the
next vertex, where a vertex is repeated only once, appearing twice as the beginning and
the end of the cycle) by using or taking into account the initial cell of the grid with id 63
(Cell [3][3] start and finish Cell) as the initial and final node and the condition that a
vertex may only be connected to two vertexes at most.

31

Given that we want to find all the cycles, a brute force algorithm is used. Here, the run
time is exponential because each node has 6 neighbors and we are going to scan all of
them, and then the neighbors of those 6 neighbors, and so on and so forth. This solves
our problem, but the time is too long.

The algorithm proceeds as follows: there is a list of paths in which we save the initial
node and the last one added to the list, such that for each path we scan the vertexes
neighbors of the last node added (corresponding to neighboring hexagons of the grid).
With each of these neighbors, we will check to see if the node is valid for being added
to the path, i.e., it is checked in order to determine that this node is not a neighbor of
any of the nodes already present on the path. To do this, we go through the neighbors
of this node and check to see if they are no longer on the path. If the neighbor is valid,
there are two possibilities. In the first, it checks to see if the neighbor is connected with
the initial vertex, in which case we have found a valid path because the neighbor can be
added to the previous path and is connected with the initial node, thereby finding a cycle
like the one described above. In the second possibility, in the event that the neighbor is
not connected, a new path variable is created and contains the previous path with this
neighbor as the last one added to the path. This new path is then left to be later
processed. The algorithm is shown below in pseudocode.

Algorithm 1: SacaCaminos
Result: Ciclos Ordenados
initialization: Afadir Nodo inicial a CaminosPendientes;
while (CaminosPendientes no este vacio) do
Actual:=Pop first element in CaminosPendientes:
for each Vecino of Actual do ;
Comprobar vecino valido;
if Vialid then
if Conected to initial node then
| Ciclo found, add to result;
else
CaminoActualCopia:= Copy Actual;
CaminoActualCopia Add VecinoValido;
CaminosPendientes Push CaminoActualCopia;
end
end

end
end

Figure 26 Pseudocode

32

A class called “Camino” is therefore defined, and it will represent the paths. This class
has a final integer which represents the last one added to the path and a list of integers
which represents the remaining nodes of the path in the order in which they are passed.

After this first approach of the algorithm, it could be seen that it was inviable to run said
algorithm in memory due to the large number of paths that were accumulated in the
stack to be visited, overrunning the internal memory internal, generating a fault.

To correct this error, files instead of the internal memory are used as a stack, such that
functions are implemented that allow reading and writing the paths in texts files.

After this solution, the algorithm is run with complete normalcy, but the file used as a
stack can become quite large, slowing down input and output operations (because to
read one row and then delete it, the entire file must be loaded and re-written without
that line). To solve this, a maximum stack size of 5 mb is established, such that when the
stack file is about to exceed this size, a new file will be created and it will become the
current stack until it is emptied. For this method to work properly, functions which allow
checking to see if such file already exists and the size of that file are implemented.

Figure 27 Duplicate problem Sample

After the latest modifications to the algorithm, we are faced with another problem: the
paths duplicate. Since only the initial node is indicated, the valid paths appeared in both
directions as being the same one, that is, path ABCDEF is the same as AFEDCB (Fig. 17),
but the algorithm detected them as different paths.

To solve it instead of indicating a single starting vertex, starting triplets are indicated
consisting of an input node, an intermediate node and an output node. The input node
correspondence to the initial of the road structure, the exit to the last aggregate and the
intermediate will be in the accumulated vector that corresponds to the initial node of
the grid, 63.

Therefore, the nodes will always be output nodes and others will be input nodes when
both are present, thereby preventing the duplication of paths.

For the preceding example in Fig. 17 the FAB triad would be added, so only the ABCDF
path would result and not the inverse because B is for output and F for input.

33

Mombre Fecha de modificacién Tipo Tamafio

deftxt 01/05/2020 (:55 Documenteo de te... 88.366 KB
pilal.bet 20,/04/2020 2:21 Documento de te... 4.085 KB
pilal.bct 29/04/2020 2:10 Docurmento de te... 4933 KB
pilad.bxt 25,/04,2020 2:31 Documente de te... 4383 KB
pila3.bxt 29/04,2020 3:30 Documento de te... 4883 KB
pilad.bet 20/04/2020 4:03 Documento de te... 4383 KB
pila3.bet 30/04/2020 612 Documento de te... 4383 KB
pilab.bet 01,/05/2020 0:55 Docurmento de te... 4,384 KB
pila7 bt 01/05/2020 0:35 Documento de te... 0O KB

Figure 28 Paths and piles

After leaving the algorithm running for more than four days, the def.txt file is obtained,
where, as can be seen in Fig. 28, there are still seven stacks that have been created. This
means that not all the possible paths have been extracted yet.

However, taking into account the run time and the fact that more than 270,000 paths
have been extracted and that the mean learning of the ANN is between 50 and 300
attempts to learn a path, learning these 270,000 paths would take considerable time. It
can therefore be left like that and we can start with the Unity logic.

The logic can be recycled from the Draw your Circuit Grid.cs, as occurs with the cameras
and managers, but in this case the user is deprived of the drawing interaction and we
create the Training Path Creator.cs Script from where we can read the def.txt file
imported into Unity.

Figure 29 Training Path Creator.cs

34

Besides reading the file line por line, it remembers the line where it left off so that the
game can be closed and it will open again where it left off.

In this Script we insert both the WayPoints every three cells and the Finish Line, as the
last element of each line, and we achieve the desired result of, once the bot reaches the
Finish Line, the weights and the circuit being saved in Circuit.txt, the bot is
deinstantiated, the next line of the def.txt is loaded, and the bot in the training process
is instantiated again. All this is done in time real and without any loading screen,
ultimately achieving the result that was desired from the beginning, but doing so in a
different way.

Figure 30 Training Mode

Validation
This ANN when starting with random weights leaves similar results when learning the
circuits. A complicated circuit usually takes between 300 and 1000 attempts but as you

can see sometimes the circuit can be done on the third (Fig. 31 and Fig 32 compare
fails).

Fails: 477

Dr. Roger Poplar Dr. Roger Poplar

Mmmmm... Una victoria mas, nada que extranar. Mmmmm... Una victoria mds, nada que extranar

Figure 31 Test 1 Figure 32 Test 2

35

Results

- Afunctional ANN has been created.

- Different game modes have been created for interacting with said ANN,
together with Dr. Poplar's commentaries; there is also a narrative
interconnection between the different game modes.

- Several scenarios with different characterizations have been achieved using
flat colors.

- An automatic training mode has been developed using Reinforcement
Learning.

Project Access

GitHub - https://github.com/sevalper/Beat-A.N.N.-43.git

YouTube — https://youtu.be/ZDibuewxy88

Conclusions

“Beat A.N.N. 43” has been, without question, the most important and complicated
project | have worked on in these years of study. It has been an enormous challenge to
learn so much from scratch to create an artificial intelligence that was able to satiate my
curiosity. | am very satisfied with the obtained result because my knowledge about
artificial intelligence was very sparse at the beginning of this project, and | was able to
combine said artificial intelligence with a game with which one can interact.

| believe that ANNs can still be further developed in the world of video games in order
to create much more dynamic and different experiences.

Future work

In the future | would like to work on new, more ambitious projects involving ANNs so as to apply
them to video games and other possible project or challenges left for me to discover.

36

https://github.com/sevalper/Beat-A.N.N.-43.git
https://youtu.be/ZDibuewxy88

Audio

Having the "Options" menu option opens a small window with a slider to select the
volume of all the scenes in the game.

For this we have the codes of "SaveAndLoad.cs" to save the volume indicated in the
slicer and the "VolumeController.cs" that each of the AudioSouces has to broadcast the
different scenes of the game without copyright and with this "VolumeController.cs" we
load the float of the volume chosen in the main menu, maintaining in all the scenes the
volume selected in the main menu, set to 0.1/1 of base.

Bibliography

Unity Technologies. [Online]. Available: https://unity.com/es

- Unity Learn Tutorials. [Online]. Available: https://unity3d.com/es/learn/tutorials.

- Unity User Manual. [Online]. Available:
https://docs.unity3d.com/es/2018.3/Manual/UnityManual.html

- TextMesh Pro. [Online]. Available:
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-
84126

- GitHub. [Online]. Available: https://github.com/.

- Reddit, Unity3D. [Online]. Available: https://www.reddit.com/r/Unity3D/.

- A Beginner's Guide To Machine Learning with Unity. [Online]. Available:
https://www.udemy.com/course/machine-learning-with-unity/

- Reinforcement Learning: Al Flight with Unity ML-Agents. [Online]. Available:
https://www.udemy.com/course/ai-flight/

- Book: Artificial Intelligence For Games. - by: lan Millington & John Funge

- Fungus. [Online]. Available:
https://assetstore.unity.com/packages/templates/systems/fungus-34184

37

https://unity.com/es
https://unity3d.com/es/learn/tutorials
https://docs.unity3d.com/es/2018.3/Manual/UnityManual.html
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://github.com/
https://www.reddit.com/r/Unity3D/
https://www.udemy.com/course/machine-learning-with-unity/
https://www.udemy.com/course/ai-flight/
https://assetstore.unity.com/packages/templates/systems/fungus-34184

- Karting Microgame. [Online]. Available:
https://assetstore.unity.com/packages/templates/karting-microgame-150956

Appendix — Additional documentation

“Neuron.cs”

1. using System;

2. using System.Collections;

3. using System.Collections.Generic;

4. using UnityEngine;

8o

6. public class Neuron ({

7.

8. public int numInputs;

9, public double bias;

10. public double output;

11. public double errorGradient;

12. public List<double> weights = new List<double>();

13, public List<double> inputs = new List<double>();

14.

15. public Neuron (int nInputs)

16. {

17. float weightRange = (float) 2.4/ (float) nlInputs;
18. bias = UnityEngine.Random.Range (-weightRange, weightRange) ;
19. numInputs = nInputs;

20

21. for(int i = 0; i < nInputs; i++)

22. weights.Add (UnityEngine.Random.Range (-weightRange, weightRange)) ;
23. }

24. }

“Layer.cs”

1. wusing System.Collections;

2. using System.Collections.Generic;

3. wusing UnityEngine;

4.

5. public class Layer ({

6.

7. public int numNeurons;

8. public List<Neuron> neurons = new List<Neuron>();
95

10. public Layer (int nNeurons, int numNeuronInputs)
11. {

12. numNeurons = nNeurons;

13. for(int i = 0; i < nNeurons; i++)

38

https://assetstore.unity.com/packages/templates/karting-microgame-150956
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“A.N.N.cs”

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“BallState.cs”

“Brain.cs”

http://www.google.com/search?q=new+msdn.microsoft.com

66.

67.

68.

70.

71.

ED

74.
750

76.
77.

78.

79

80.

81.

82.

63,

reward = r;

public class Brain : MonoBehaviour {

private Flowchart flowchart;
[SerializeField] private string circuitName = "Circuitol";
private bool WIN = false;

public string currentAleatoryCircuitName;
public List<float> pointsCircuitName;

public static Action<int> onFail;
public bool isAleatoryCircuit;
public Text failText;

public static event Action Death;

public float speed = 50.0f;

public float rotationSpeed = 500.0f;
public float visibleDistance 200.0f;
public LayerMask terrainlayer;

public GameObject ball; //object to monitor
private Manager manager;
private ManagerCircuits managerCircuits;

ANN ann;

float reward = 0.0f; //reward to
associate with actions

List<Replay> replayMemory = new List<Replay>(); //memory - list of past actions and
rewards

int mCapacity = 10000; //memory
capacity
float discount = 0.99f; //how much
future states affect rewards
float exploreRate = 100.0f; //chance of
picking random action
float maxExploreRate = 100.0f; //max chance value
float minExploreRate = 0.01f; //min chance value
float exploreDecay = 0.0001f; //chance decay

amount for each update

Vector3 ballStartPos; //record
start position of object
Quaternion ballStartRot;

int failCount = 0; //count when
the ball is dropped
public float tiltSpeed = 0.5f; //max

angle to apply to tilting each update

//make sure this is large enough so that the g value

//multiplied by it is enough to recover balance

//when the ball gets a good speed up
float timer = 0; //ti
mer to keep track of balancing
float maxBalanceTime = 0; //record time ball is kept
balanced
// Use this for initialization
private string weightsString;

public float timeScaleValue = 25.0f;

private void Awake ()
{
manager = FindObjectOfType<Manager> () ;
managerCircuits = FindObjectOfType<ManagerCircuits> () ;
flowchart = FindObjectOfType<Flowchart> () ;
if (_isAleatoryCircuit) failText = manager.getFailText ();

}

public void Start () {
ann = new ANN(5,2,1,10,0.5f);

44

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

101.
102.
103.
104.
105.
106.

107.
108.
109.
110.
111.
112.
113,
114.
1il5
116.
117.
118.

119.
120.
121.
122.
123.
124.
128,

126.
127.
128.
129.
130.
131.
132.
133.
134.
135,
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.

149.
150.
151.
152.
153.
154.
155,
156.
157.
158.
159.
160.
le6l.
162.
163.
164.
165.
166.
167.
168.
169.

170.

172.
173.

175,
176.

var aux = PlayerPrefs.GetString ("Weights");
//if (aux !'= null)
//ann.LoadWeights (aux) ;
if (_isAleatoryCircuit)
{
if (manager.GetDictionaryCreate () && manager.GetNameDictionary (currentAleatoryCi

rcuitName))

Debug.Log (currentAleatoryCircuitName) ;
Debug.Log (manager.GetDataDictionary (currentAleatoryCircuitName)) ;
ann.LoadWeights (manager.GetDataDictionary (currentAleatoryCircuitName)) ;

}

/*

if (SaveAndLoad.SaveExists (currentAleatoryCircuitName+".txt")

{
Debug.Log ("Cargar") ;

List<string> loadContent =

loadContent =

new List<string>();

SaveAndLoad.Load<List<string>> (currentAleatoryCircuitName+".txt");

Debug.Log (loadContent [0] +

"\n" + loadContent[1]);

ann.LoadWeights (loadContent[1]) ;

yx/
}
else
{
if
ircuitName))

{

Debug.Log (managerCircuits.

(managerCircuits.GetDictionaryCreate ()

&& managerCircuits.GetNameDictionary (c

GetDataDictionary (circuitName)) ;

ann.LoadWeights (managerCircuits.GetDataDictionary (circuitName)) ;

}

ballStartPos =
ballstartRot =

Time.timeScale = timeScaleValue;

GUIStyle guiStyle =
void OnGUI ()

{

/*

new GUIStyle ()

guiStyle.fontSize = 25;
guiStyle.normal.textColor

ball.transform.position;
ball.transform.rotation;

//

7

= Color.white;

GUI.BeginGroup (new Rect (10, 10, 600, 150));

GUI.Box (new Rect (0,0,140,140), "Stats", guiStyle);

GUI.Label (new Rect (10,25,500,30), "Fails: " + failCount, guiStyle);
GUI.Label (new Rect (10,50,500,30), "Decay Rate: " + exploreRate, guiStyle);
GUI.Label (new Rect (10,75,500,30), "Last Best Balance: " + maxBalanceTime,

guiStyle) ;
GUI.Label (new Rect
GUI.Label (new Rect (10, 125,
GUI.EndGroup ();*/
}

500,

// Update is called once per frame

void Update () {
if (Input.GetKeyDown ("space")
{
maxBalanceTime = 0;
ResetBall () ;

}

if
{

(Input.GetKeyDown ("j"))

Debug.Log (ann.PrintWeights()) ;

Debug.DrawRay (transform.position,
Color.red) ;

Debug.DrawRay (transform.position,
Color.red);

Debug.DrawRay (transform.position,
Color.red) ;

Debug.DrawRay (transform.position,
Vector3.up) * this.transform.right)

Debug.DrawRay (transform.position,
this.transform.right) * visibleDistance,

(10,100,500,30),
30),

* visibleDistance,

"This Balance: " + timer, guiStyle);

"Reward: " + reward, guiStyle);

this.transform.forward * visibleDistance,
this.transform.right * visibleDistance,

—-this.transform.right * visibleDistance,

(Quaternion.AngleAxis (-45,
Color.red) ;

(Quaternion.AngleAxis (45, Vector3.up) * -

Color.red) ;

45

http://www.google.com/search?q=new+msdn.microsoft.com

177. weightsString = ann.PrintWeights () ;

178.

179.

180. //

181.

182. }

183.

184. private void OnApplicationQuit (

185. {

186. PlayerPrefs.SetString ("Weights", weightsString);

187. }

188.

189. void FixedUpdate () {

190. timer += Time.deltaTime;

191. List<double> states = new List<double> () ;

192. List<double> gs = new List<double>();

193.

194. RaycastHit hit;

195,

196. float fDist = visibleDistance, rDist = visibleDistance, 1Dist = visibleDistance,
r45Dist = visibleDistance, 145Dist = visibleDistance;

197.

198.

199,

200. if (Physics.Raycast (transform.position, this.transform.forward, out hit,
visibleDistance, terrainLayer))

201. {

202. fDist = Vector3.Distance (transform.position, hit.point);

203.

204. }

205.

206. if (Physics.Raycast (transform.position, this.transform.right, out hit,
visibleDistance, terrainlayer))

207. {

208. rDist = Vector3.Distance (transform.position, hit.point);

209.

210. }

211.

212. if (Physics.Raycast (transform.position, -this.transform.right, out hit,
visibleDistance, terrainLayer))

213. {

214. 1Dist = Vector3.Distance (transform.position, hit.point) ;

215. }

216.

217. if (Physics.Raycast (transform.position, Quaternion.AngleAxis (-45,
Vector3.up) * this.transform.right, out hit, visibleDistance, terrainLayer))

218. {

219. r45Dist = Vector3.Distance (transform.position, hit.point);

220. }

221.

222. if (Physics.Raycast (transform.position, Quaternion.AngleAxis (45, Vector3.up) * -
this.transform.right, out hit, visibleDistance, terrainlLayer)

223. {

224. 145Dist = hit.distance;

225. }

226.

227. // Debug.Log ("Frontal: " + fDist + ", Derecha: " + rDist + ", Izquierda: " + 1lDist +
", Derechad45: " + r45Dist + ", Izquierdad45: " + 145Dist);

228

229. states.Add (fDist) ;

230. states.Add (rDist) ;

231. states.Add (1Dist) ;

232. states.Add (r45Dist) ;

233. states.Add (145Dist) ;

234

235. gs = SoftMax (ann.CalcOutput (states)) ;

236. double maxQ = gs.Max();

237. int maxQIndex = gs.ToList () .IndexOf (maxQ) ;

238

239. //exploreRate = Mathf.Clamp (exploreRate - exploreDecay, minExploreRate,
maxExploreRate) ;

240.

241

242. //1if (Random.Range (0,100) < exploreRate)

243. // maxQIndex = Random.Range (0,2);

244

245

246. float translation = speed * Time.deltaTime;

247

248. this.transform.Translate (0, 0, translation);

249

250

251

252

253

46

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

254.
293
256.
257 4
258.
259,
260.
261.

262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273,
274.
2794
276.
277.
278.
279.
280.
281.
282.
283
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
293,
296.

297.

299.
300.
301.
302.

303.
304.
305.
306.

307.
308.
309.
310.

if (maxQIndex == 0)

tiltSpeed *

else

(float) g

this.transform.Rotate (Vector3.up,tiltSpeed * (float)gs[maxQIndex]);
if (maxQIndex == 1)

this.transform.Rotate (Vector3.up, -
s [maxQIndex]) ;

if (ball.GetComponent<BallState> () .dropped)

{

else

{

}

else

reward =
//reward

if (bal

reward =

reward =

-1.0£;
= 0;

1.GetComponent<BallState> () .point)

0.5f;

0.1f;// + 0.01f;

Replay lastMemory = new Replay (fDist,rDist,1Dist,r45Dist,145Dist,

1] .states));

reward) ;
if (replayMemory.Count > mCapacity)
replayMemory.RemoveAt (0) ;
replayMemory.Add (lastMemory) ;
if (ball.GetComponent<BallState> () .dropped)
{
ResetBall () ; //Para que no se quede pillado al no tener archivo.
for (int i = replayMemory.Count - 1; i >= 0; 1i--)
{
List<double> toutputsOld = new List<double> () ;
List<double> toutputsNew = new List<double> () ;
toutputsOld = SoftMax (ann.CalcOutput (replayMemory[i].states)
double maxQ0ld = toutputsOld.Max () ;
int action = toutputsOld.ToList () .IndexOf (maxQ0ld) ;
double feedback;
if (i == replayMemory.Count-1 || replayMemory[i].reward == -
feedback = replayMemory([i].reward;
else
{
toutputsNew = SoftMax (ann.CalcOutput (replayMemory [i+
maxQ = toutputsNew.Max() ;
feedback = (replayMemory[i].reward +
discount * maxQ) ;
}
toutputsOld[action] = feedback;
ann.Train (replayMemory([i].states, toutputsOld) ;
}
timer = 0;
ball.GetComponent<BallState> () .dropped = false;
this.transform.rotation = Quaternion.identity;
ResetBall () ;
replayMemory.Clear () ;
failCount++;
if (_isAleatoryCircuit)
{
if (failCount == 1000)

{

}

flowchart.ExecuteBlock ("LOSE") ;

//Debug.Log("Fails: " + failCount);

onFa

il?.Invoke (failCount) ;

47

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

http://www.google.com/search?q=new+msdn.microsoft.com

“ID.cs”

“SaveAndLoad.cs”

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“AlgoritmoCaminolnf.cs”

50

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

&L,
52.
538

54.
55,
56.
57,
58.

59.
60.
61.
62.
63.

64.
65.
66.
67.
68.

69.
70.
71.
72.
73.

74.
75.
76.
77.
78.

79.
80.
81.
82.
83.

84.
85.
86.
87.
88.

89.
90.
91.
92.
€Rj,

94.
958
96.
97.
98.

99.

100.
101.
102.
103.

104.
105.
106.
107.
108.

109.
110.
111.
112.
113.

114.
115.
116.
117.
118.

119.
120.
121.
122.
123.

124.
125.
126.

var lines = File.ReadAllLines(@ruta + arch + ultimo + ".txt");
File.WriteAllLines(@ruta + arch + ultimo + ".txt", lines.Skip(1).ToArray());

return res;

}

public void Escribe(string testo, string arch)

{
long tamanio = 0;
if (File.Exists(@ruta + "pila" + ultimo + ".txt"))
{

tamanio = new System.|O.FileInfo(@ruta + arch + ultimo + ".txt").Length;

}

if (tamanio > 5000000) ultimo++;

using (System.lO.StreamWriter archivo =

new System.|O.StreamWriter(@ruta + arch + ultimo + ".txt", true))
archivo.WriteLine(testo);

}

public void Escribe2(string testo, string arch)

{

using (System.lO.StreamWriter archivo =

new System.lO.StreamWriter(@ruta + arch + ".txt", true))
archivo.WriteLine(testo);

public class Prueba

{

private int num = 20;

public class camino

{

/*

Inicial almacena la celda inicial del camino, ultimo el ultimo nodo afiadido

y acumulado el resto de nodos del camino en orden.
*/
public int inicial;

public int ultimo;
public List<int> acumulado;

/*Constructor con una cadena de texto, no se realizan las comprobaciones necesarias, asumimos que se le
pasa como parametro una cadena de texto con los valores codificados conforme la funcién print. Dada una

cadena de este tipo la codifica separando los nodos y adecuandolos a la estructura de representacion interna.

*/

public camino(string val)

51

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

127. {

128. string[] vect = val.Split(';');

129. inicial = int.Parse(vect[0]);

130. ultimo = int.Parse(vect[1]);

131. acumulado = new List<int>();

132.

133. for (inti=2; i< vect.Length; i++)

134. {

135. acumulado.Add(int.Parse(vect[i]));

136. }

137. }

138.

139. //Constructor de copia

140. public camino(camino valor)

141. {

142. ultimo = valor.ultimo;

143. inicial = valor.inicial;

144. acumulado = new List<int>(valor.acumulado);
145. }

146.

147. //Al afiadir un nodo al camino este pasa a ser el ultimo afiadido
148. public void aniade(int nodo)

149. {

150. if (ultimo != inicial) { acumulado.Add(ultimo); }
151. ultimo = nodo;

152.

153. }

154. //Constructor de camino dada una terna salida-medio-entrada, salida corresponde al primer nodo que se expandira,
55, //entrada al de llegada que finalizara el camino. Se asume que los nodos estan conectados no se comprueba.
156. public camino(int salida, int medio, int entrada)
157. {

158. inicial = entrada;

159. ultimo = salida;

160. acumulado = new List<int>();

161. acumulado.Add(medio);

162. }

163.

164. public int Getlnicial()

165. {

166. return inicial;

167. }

168.

169. public List<int> getAcumulado()

170. {

171. return acumulado;

172.

173. }

174.

175. //Tamafio del camino

176. public int getTamanio()

177. {

178. return acumulado.Count;

179.

180. }

181.

182. //Que esto devuelva el id de la ultima celda afiadida al camino,
183. public int idUltima()

184. {

185. return ultimo;

186.

187. }

188.

189. /*Construimos una cadena de texto representativa del camino para que sea sencillo del almacenar y leer posteriormente,
190. se anade el identificador en orden de cada elemento del camino separados por el caracter ';', y los dos primeros nodos
191. representan el inicial y el dltimo, lo hacemos asi para que sea sencilo de leer para la representacion de la clase camino.*/
192. public string toprint()

193. {

194. string resultado = "";

195. resultado = resultado + inicial + ";";

196. resultado = resultado + ultimo +"";

197. for (inti=0; i< acumulado.Count; i++)

198. {

199. resultado = resultado + ;" + acumuladoli];
200. }

201. return resultado;

202. }

52

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

203. /*Aligual que la funcidn anterior, esta construye una cadena de caracteres que representa el camino, difiere de la anterior

204. en que en este caso el primer nodo que aparece es el primero de la lista acumulado y asi en orden hasta el ultimo que sera el

205. nodo de entrada, esta representacion es mas sencilla para ser leida por una persona u otro programa que no conozca la
representacion

206. interna de la clase.

207. */

208. public string toprint2()

209. {

210. string resultado = "";

211. resultado = resultado + acumuladol[0];

212.

213.

214. for (inti=1;i<acumulado.Count; i++)

215. {

216. resultado = resultado + ";" + acumuladoli];

217. }

218. resultado = resultado + ;" + ultimo;

219. resultado = resultado + ";" + inicial;

220. return resultado;

221. }

222.

223. public bool Comprueba(int candidata)

224. {

225. //Comprobamos si la candidata esta ya en los vecinos

226. //Opcidn eficiente guardar copia del camino como vector ordenado

227. bool resultado = acumulado.Contains(candidata);

228. return !resultado;

229.

230. }

231. }

232.

233. private bool InRange2(int number) => 0 < number && number < num;

234,

235. //Crea una lista con los ids de las celdas vecinas a la pasada como parametro acuerdo a las restricciones que se tienen

236. //del grid

237. public List<int> SacaVecinos(int celda)

238. {

239. List<int> vecinos = new List<int>();

240. int x = celda / num;

241. inty=celda-num * x;

242. int aux;

243.

244, if (y % 2==0)

245. {

246. if (InRange2(x) && InRange2(y - 1))

247. {

248. aux =y -1+num * (x);

249. vecinos.Add(aux);

250. }

251. if (InRange2(x - 1) && InRange2(y - 1))

252. {

253. aux=y-1+num* (x-1);

254. vecinos.Add(aux);

255. }

256. if (InRange2(x - 1) && InRange2(y))

257. {

258. aux =y +num * (x - 1);

259. vecinos.Add(aux);

260. }

261. if (InRange2(x + 1) && InRange2(y))

262. {

263. aux =y +num * (x + 1);

264. vecinos.Add(aux);

265. }

266. if (InRange2(x - 1) && InRange2(y + 1))

267. {

268. aux=y+1+num* (x-1);

269. vecinos.Add(aux);

270. }

271. if (InRange2(x) && InRange2(y + 1))

272. {

273. aux =y + 1+ num * (x);

274. vecinos.Add(aux);

275. }

276. }

277. else

53

http://www.google.com/search?q=new+msdn.microsoft.com

278. {

279. if (InRange2(x + 1) && InRange2(y - 1))
280. {

281. aux=y-1+num*(x+1);

282. vecinos.Add(aux);

283. }

284. if (InRange2(x) && InRange2(y - 1))

285. {

286. aux =y -1+num * (x);

287. vecinos.Add(aux);

288. }

289. if (InRange2(x - 1) && InRange2(y))

290. {

291. aux =y +num * (x- 1);

292. vecinos.Add(aux);

293. }

294, if (InRange2(x + 1) && InRange2(y))
295. {

296. aux =y +num * (x + 1);

297. vecinos.Add(aux);

298. }

299. if (InRange2(x) && InRange2(y + 1))
300. {

301. aux =y +1+num * (x);

302. vecinos.Add(aux);

303. }

304. if (InRange2(x + 1) && InRange2(y + 1))
305.

306. aux =y +1+num* (x+1);

307. vecinos.Add(aux);

308. }

309. }

310.

311.

312. return vecinos;

313. }

314.

315.

316.

317.

318.

319.

320.

321.

322. public void main()

323. {

324. //Este valor booleano controla que queden valores por leer, si no quedaran se establece a true.
325. bool finito = false;

326. //Clase que se encarga del guardado y carga de los caminos
327. SaveAndLoad salvador = new SaveAndLoad();
328. camino actual;

329. //Si ya existe un archivo pila, carga los caminos desde él.
330. if (salvador.existe())

331. {

332.

333. actual = new camino(salvador.Leer("pila"));
334.

335. }

336. //En caso de que no exista, afiadimos las ternas validas.
337. else

338. {

339. actual = new camino(84, 63, 43);

340. salvador.Escribe(actual.toprint(), "pila");
341.

342. actual = new camino(84, 63, 62);

343. salvador.Escribe(actual.toprint(), "pila");
344.

345. actual = new camino(84, 63, 82);

346. salvador.Escribe(actual.toprint(), "pila");
347.

348. actual = new camino(83, 63, 64);

349. salvador.Escribe(actual.toprint(), "pila");
350.

351. actual = new camino(83, 63, 43);

352. salvador.Escribe(actual.toprint(), "pila");
353.

54

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

354, actual = new camino(83, 63, 62);
355. salvador.Escribe(actual.toprint(), "pila");

357. actual = new camino(82, 63, 64);
358. salvador.Escribe(actual.toprint(), "pila");

360. actual = new camino(82, 63, 43);
361. salvador.Escribe(actual.toprint(), "pila");

363. actual = new camino(64, 63, 62);

368. while (!finito)
369. {

371. //Obtenemos los vecinos del Gltimo nodo del camino.
372. List<int> vecinos = SacaVecinos(actual.idUltima());

374. //Para cada vecino, comprobamos si seria valido dentro del camino(que no este conectado con ninglin nodo
375. //ya incluido en el camino) y de ser asi, afiadimos a la pila el camino anterior con este vecino vélido.

376. for (inti=0; i < vecinos.Count; i++)

377. {

378. int vecinaactual = vecinosli];

380. List<int> vecinasvecina = SacaVecinos(vecinaactual);

382. bool valida = true;

384. for (intj = 0; j < vecinasvecina.Count && valida; j++)
385. {
386. valida = actual.Comprueba(vecinasvecinalj]);

389. }

391. if (valida)
392. {
393. bool auxiliar = (vecinasvecina.Contains(actual.GetlInicial()) && actual.getTamanio() > 1);

394. if (auxiliar)
395. {

397. camino caminoauxiliar = new camino(actual);
398. caminoauxiliar.aniade(vecinaactual);

399. salvador.Escribe2(caminoauxiliar.toprint2(), "def");
400.

401. }

402. else

403. {

404. camino caminoauxiliar = new camino(actual);
405. caminoauxiliar.aniade(vecinaactual);

406. salvador.Escribe(caminoauxiliar.toprint(), "pila");
407.

408.

409. }
410.
411.
412.
413.

414.
415.
416.
417. }
418.

419. }

420.

421. string aux = salvador.Leer("pila");
422. finito = string.IsNullOrEmpty(aux);
423, if (!finito)

424, {

425. actual = new camino(aux);

426. }

427.

428.

55

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

429. }

430. }

431.

432.

433.

434, // Start is called before the first frame update
435, void Start()

436. {

437. Prueba main = new Prueba();
438. main.main();

439. }

440.

441, // Update is called once per frame
442. void Update()

443, {

444,

445. }

a46.)

447. }

“CameraControl.cs”

1. using System.Collections;

2. using System.Collections.Generic;

3. using UnityEngine;

4. using Cinemachine;

5o

6. public class CameraControl : MonoBehaviour

7o {

8.

9 static readonly float Field Of View Min = 80f;

10. static readonly float Field Of View Max = 20f;

11.

12 static readonly float Velocity Zoom = 5f;

13.

14. static readonly float Drag Speed = 2f;

15.

16. public float minX, minY, maxX, maxY;

17.

18. public Vector3 dragOrigin;

19.

20. public Camera myCamera;

21

22. private CinemachineVirtualCamera _cameraVirtual;

23.

24. private void Awake (

25. {

26. _cameraVirtual = GetComponent<CinemachineVirtualCamera> () ;

27 }

28

29. // Update is called once per frame

30. void Update ()

3, {

32. float zoom = Input.GetAxisRaw ("Mouse ScrollWheel");

33. if (zoom < Of && myCamera.fieldOfView < Field Of View_Min)

34. _cameraVirtual.m Lens.FieldOfView += Velocity Zoom * Time.deltaTime;

35. else if (zoom > 0f && myCamera.fieldOfView > Field Of View Max)

36. _cameraVirtual.m Lens.FieldOfView -= Velocity Zoom * Time.deltaTime;

37

38. //Arrastrar cémara

39. if (Input.GetMouseButtonDown (1)

40. {

41. dragOrigin = Input.mousePosition;

42 . //Debug.Log ("Arrastrar") ;

43. return;

44 . }

45. else if (!Input.GetMouseButton (1)

46. return;

47.

48. DragCamera () ;

49. }

50

51. void DragCamera ()

52. {

53. Vector3 pos = myCamera.ScreenToViewportPoint (Input.mousePosition - dragOrigin) ;

54. Vector3 move = new Vector3(pos.x * Drag Speed * Time.deltaTime, Of,
pos.y * Drag_Speed * Time.deltaTime);

55.

56. float sumX = transform.position.x + move.x;

57. float sumY = transform.position.z + move.z;

58

56

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“CanvasManager.cs”

“Cell.cs”

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“ChangeScene.cs”

“CountdownEvent.cs”

http://www.google.com/search?q=nameof+msdn.microsoft.com

“ExitApp.cs”

“FailsTextActualize.cs”

http://www.google.com/search?q=nameof+msdn.microsoft.com
http://www.google.com/search?q=nameof+msdn.microsoft.com

“Grid.cs”

60

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

114.
1i5,
116.
117.
118.
119.
120.
121.
122.
123,
124.
125,
126.
127.
128.
129.
130.
131,
132.
133.
134.
135,
136.

138.

139.
140.
141.
142.
143.

for (int x
{

= 0;

for (int y

{

;

x < gridSizeX; x++)

= 0; y < gridSizeY; y++)

if (OnBounds (x, y))
{
continue;
}
if (y $ 2 == 0)
{
if (InRange (min, gridSizeX, x) && InRange (min, gridSizeY, y - 1))
{
neighbourCells.Add (grid[x, y - 1]);
}
if (InRange (min, gridSizeX, x - 1) && InRange (min, gridSizeY, y - 1))
{
neighbourCells.Add (grid[x - 1, y - 1]);
}
if (InRange (min, gridSizeX, x - 1) && InRange (min, gridSizeY, y)
{
neighbourCells.Add (grid(x - 1, y]);
}
if (InRange (min, gridSizeX, x + 1) && InRange (min, gridSizeY, y)
{
neighbourCells.Add (grid(x + 1, y]);
}
if (InRange (min, gridSizeX, x - 1) && InRange (min, gridSizeY, y + 1))
{
neighbourCells.Add (grid[x - 1, y + 1]);
}
if (InRange (min, gridSizeX, x) && InRange (min, gridSizeY, y + 1))
{
neighbourCells.Add (grid[x, y + 1]);
}
}
else
{
if (InRange (min, gridSizeX, x + 1) && InRange (min, gridSizeY, y - 1))
{
neighbourCells.Add (grid[x + 1, y - 11);
}
if (InRange (min, gridSizeX, x) && InRange (min, gridSizeY, y - 1)
{
neighbourCells.Add (grid[x, y - 1]1);
}
if (InRange (min, gridSizeX, x - 1) && InRange (min, gridSizeY, y))
{
neighbourCells.Add (grid[(x - 1, y]);
}
if (InRange (min, gridSizeX, x + 1) && InRange (min, gridSizeY, y)
{
neighbourCells.Add (grid(x + 1, y]);
}
if (InRange (min, gridSizeX, x) && InRange (min, gridSizeY, y + 1))
{
neighbourCells.Add (grid[x , y + 1]);
}
if (InRange (min, gridSizeX, x +1) && InRange (min, gridSizeY, y + 1))
{
neighbourCells.Add (grid[x +1, y + 11);
}
}
grid[x, y].SetNeighbourCells (neighbourCells) ;

neighbourCells = new List<Cell>();

}
}

selAct.SetActual (grid[3,3]);
grid[3, 3].SetSelected(true);
grid[3, 3].SetStart (true);
grid[3, 3].gameObject.GetComponent<Renderer> () .material.color = Color.red;

}

private bool OnBounds (int x, int y)

{
if (x ==
{
grid([x,

y

== || x == gridSizeX - 1

y] .gameObject.GetComponent<Renderer> () .material.color
Vector3 scale = new Vector3(100,100,500) ;

grid[x,
grid[x,
grid[x,

y] .gameObject.tag = "terrain";
y] .gameObject.layer = 8;
y].transform.localScale = scale;

return true;

61

y

== gridSizeY - 1)

Color.black;//Esto es estética

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

144.
145.
146.
147.
148.
149.
150.
151 ¢
152,
153,
154.
155
156.
157
158.
159,
160.
le6l.
162.
163.
164.
165.

166.
167.
168.
169.
170.
171.
172.

173.
174.
175
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.

}
return false;

}

private void UP (
{

floor.SetActive (true

for (int x = 0; x <
{
for (int y = 0;
{
if (!grid(x,
{
Vector3
grid[x,
grid[x,
grid[x,
}
else
{
// gridlx
Color.white;

}
}

)i
gridSizeX; x++)
y < gridSizeY; y++)
y] .GetSelected())
scale = new Vector3(100, 100, 500);
y] .gameObject.tag = "terrain";

y] .gameObject.layer = 8;
y] .transform.localScale = scale;

, y].gameObject.GetComponent<Renderer> () .material.color

buttonContainer.SetActive (true) ;

}

private bool InRange (int min, int max, int number) => min <= number && max -

public void ResetPath ()
{
for (int x = 0; x <
{
for (int y = 0;
{
Destroy (grid
}
}
enabled = false;
grid = new Cell[grid
Start ()

“Manager.cs”

0 Jo U s W

using Fungus;

using System;

using System.Collections;
using System.Collections.Gen

using UnityEngine;
using UnityEngine.UI;

public class Manager : MonoB
{

public static event Acti

[SerializeField] private
[SerializeField] private
[SerializeField] private

[SerializeField] private
[SerializeField] private
[SerializeField] private
[SerializeField] private
zenitalCamera;
[SerializeField] private

[SerializeField] private
[SerializeField] private

public Cinemachine.Cinem

private int _initStartSe
private bool _isFinished

gridSizeX; x++)
y < gridSizeY; y++)

[x, y].gameObject) ;

SizeX, gridSizeY];

eric;

ehaviour

on FinishPath;

SelectionAction action;
Grid grid;
GameObject bot;

Vector3 pos;

GameObject meta;

GameObject ResumeMenuContainer;
Cinemachine.CinemachineVirtualCamera followCamera,

Cinemachine.CinemachineBrain cameraBrain;

Text failText;
Flowchart fc;

achineBlendDefinition cameraDefinition;

lectedTimes;

7

private GameObject _currentBot;

62

1

> number

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

private GameObject _meta;

private Vector3 _pointToView;

private string circuitName;
private List<float> _circuitPoints = new List<float>();

Dictionary<string, string> _circuitsNameDictionary = new Dictionary<string, string>();
static readonly string DICTIONARY = "Circuits";

public bool GetFinished() => _isFinished;
public void Clear() { _initStartSelectedTimes = 0; _isFinished = false; grid.SetInit();

Destroy(_meta); circuitName = ""; circuitPoints = new List<float>(); }

private void Start (
{
if (!PlayerPrefs.HasKey ("Dibujado")
{
if (fc != null)
{
fc.ExecuteBlock ("Intro") ;
PlayerPrefs.SetInt ("Dibujado", 1);

}
else

{
if (fc != null)
PlayerPrefs.SetInt ("Dibujado", PlayerPrefs.GetInt ("Dibujado") + 1);
}

followCamera.enabled = false;
zenitalCamera.enabled = true;

cameraBrain.m DefaultBlend = cameraDefinition;

if (SaveAndLoad.SaveExists (DICTIONARY))
_circuitsNameDictionary = SaveAndLoad.Load<Dictionary<string, string>>(DICTIONAR

}

[ContextMenu ("DeletePlayerPrefs")]
public void Delete() { PlayerPrefs.DeleteKey("Dibujado"); }

public void SaveNewDataDictionary(string name, string data)

{

if (!GetNameDictionary (name))

{

_circuitsNameDictionary.Add (name, data);

SaveAndLoad.Save<Dictionary<string, string>>(_circuitsNameDictionary,

DICTIONARY) ;

Debug.Log ("primera vez");
}/*
else

{

_circuitsNameDictionary.Remove (name) ;
SaveAndLoad.Save<Dictionary<string, string>>(_circuitsNameDictionary,

DICTIONARY) ;

Debug.Log ("otras") ;
y*/

public bool GetDictionaryCreate ()

{
return SaveAndLoad.SaveExists (DICTIONARY) ;

}

public string GetDataDictionary (string name)

{
string newValue;
_circuitsNameDictionary.TryGetValue (name, out newValue);

return newValue;

}

public bool GetNameDictionary (string name)
{

foreach (string a in _circuitsNameDictionary.Keys)

{
if (name == a)
return true;

63

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

105, return false;

106. }

107.

108. internal Text getFailText ()

109, {

110. return failText;

111. }

112.

113, private void OnEnable ()

114. {

115. Cell.StartCellNeighbourSelected += StartCellNeighbourSelected;
116. Brain.Death += Respawn;

117. }

118.

119. public void Update ()

120. {

121. if (Input.GetKeyDown (KeyCode.P)

122, {

123, ResumeMenuContainer.SetActive (true) ;
124. Time.timeScale = 0f;

125. }

126.

127. if (Input.GetKeyDown (KeyCode.V))

128. {

129. if (_currentBot == null)

130. return;

131.

132. followCamera.enabled = !followCamera.enabled;
133. zenitalCamera.enabled = !zenitalCamera.enabled;
134.

135, if (followCamera.enabled)

136. FollowInstance () ;

137. }

138. }

139.

140. public void AddCellToCircuit (string c)

141. {

142. circuitName += ¢ + ";";

143. float value;

144. float.TryParse (c, out value);

145. _circuitPoints.Add (value) ;

146. }

147.

148. public void Resume ()

149. {

150. Time.timeScale = 25f;

151. }

152.

153. public void KillANN ()

154. {

155, if (_currentBot != null) Destroy(currentBot);
156. }

157.

158. public void Respawn ()

159. {

160. _pointToView.y = pos.y;

le6l.

162. Debug.Log (_pointToView) ;

163.

164. //var botInst = Instantiate (bot, pos, Quaternion.LookRotation (_pointToView - pos,

Vector3.up));

165. var botInst = Instantiate (bot, pos, Quaternion.identity);
166. botInst.transform.LookAt (_pointToView) ;

167. botInst.GetComponentInChildren<Animator> () .SetBool ("Running", true) ;
168. Brain brain = botInst.GetComponent<Brain> () ;

169. brain._isAleatoryCircuit = true;

170. brain.currentAleatoryCircuitName = circuitName;

171. brain.pointsCircuitName = _circuitPoints;

172. _currentBot = botInst;

173. FollowInstance () ;

174 }

175

176. public void SetPointToView (Vector3 p)

177. {

178. _pointToView = p;

179. }

180.

181. private void FollowInstance ()

182. {

183. if (_currentBot == null)

64

184. return;

185.

186. Vector3 newPosition = new Vector3(0f, 0.11f,-0.5f);

187.

188. var transposer = followCamera.GetCinemachineComponent<Cinemachine.CinemachineTranspo
ser>();

189. transposer.m FollowOffset = newPosition;

190. followCamera.m Lens.FieldOfView = 37f;

191, followCamera.m Follow = _currentBot.transform;

192. followCamera.m LookAt = _currentBot.transform;

193. }

194.

195. private void StartCellNeighbourSelected (Cell cellScript)

196. {

197. _initStartSelectedTimes++;

198. if (_initStartSelectedTimes == 1)

199. _pointToView = cellScript.transform.position;

200. else if (_initStartSelectedTimes ==

201. {

202. var position = cellScript.GetPosition;

203

204. float offset = 0;

205

206. if (position.y % 2 != 0.0f)

207. offset = 1.75f / 2f;

208. float x = position.x * 1.75f + offset;

209. float y = position.y * 2f * 0.75f;

210

211. _meta = Instantiate(meta, new Vector3(x, 0, y), Quaternion.Euler (new Vector3 (-
90, 0, 0)));

212.

213. action.enabled = false;

214. FinishPath () ;

215. _isFinished = true;

216. }

217. }

218.

219. public void FinishedTrainingPath() { FinishPath(); }

220.

221. public void Help ()

222. {

223. Time.timeScale = 25f;

224. Invoke (nameof (ExecuteHelp), 1);

225. }

226

227. private void ExecuteHelp() { fc.ExecuteBlock("Help"); }

228.}

229

“ManagerCanvas.cs”

1. using System.Collections;

2. using System.Collections.Generic;

3. using System.Ling;

4. wusing UnityEngine;

5. wusing UnityEngine.SceneManagement;

6. using UnityEngine.UI;

7o

8. public class Player

9, {

10. public int id;

11. public int score;

12, public string name;

13.

14. public Player (int id, int s, string n) { this.id = id; score = s; name = n; }
15, 1}

16.

17. public class ManagerCanvas : MonoBehaviour
18. {

19, private List<Player> players = new List<Player>();
20. public Text text;

21. public string[] names;

22. public GameObject pauseMenu;

23.

24, //finish

25, public Text textoFin;

26. public Image finishCanvas;

65

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=nameof+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“ManagerCircuits.cs”

http://www.google.com/search?q=new+msdn.microsoft.com

9, public string DICTIONARY;

10.

11. [SerializeField] private List<Brain> brains;

12. [SerializeField] private PlayerMovement playerMov;

13,

14. public void GO (

15. {

16, foreach (var brain in brains)

17. brain.enabled = true;

18. playerMov.enabled = true;

19, }

20 .

21. public void STOP (

22. {

23. foreach (var brain in brains)

24. brain.enabled = false;

25. playerMov.enabled = false;

26. }

27

28. private void Awake (

29, {

30. if (SaveAndLoad.SaveExists (DICTIONARY))

31. _circuitsNameDictionary = SaveAndLoad.Load<Dictionary<string, string>>(DICTIONAR
Y) ;

32. }

33.

34. private void OnEnable ()

35, {

36. Time.timeScale = 10f;

37. }

38

39, public void SaveNewDataDictionary (string name, string data)

40. {

41. if (!GetNameDictionary (name))

42. {

43. _circuitsNameDictionary.Add (name, data);

44. SaveAndLoad.Save<Dictionary<string, string>>(_circuitsNameDictionary,
DICTIONARY) ;

45. }

46. }

47.

48. public bool GetDictionaryCreate ()

49. {

50. return SaveAndLoad.SaveExists (DICTIONARY) ;

5, }

52 o

53, public string GetDataDictionary(string name)

54. {

55. string newValue;

56. _circuitsNameDictionary.TryGetValue (name, out newValue);

57. return newValue;

58. }

59

60. public bool GetNameDictionary (string name)

61. {

62. foreach (string a in _circuitsNameDictionary.Keys)

63. {

64. if (name == a)

65. return true;

66. }

67. return false;

68. }

69. }

70

“ManagerMainMenu.cs

1. using Fungus;

2. using System.Collections;

3. using System.Collections.Generic;

4. wusing UnityEngine;

5. wusing UnityEngine.SceneManagement;

6.

7. public class ManagerMainMenu : MonoBehaviour

8. {

9o SerializeField] private Animator animatorMenuButt;

[

10. [SerializeField] private Animator animatorStartButt;
[
[

11. SerializeField] private GameObject poplar;
12, SerializeField] private Flowchart flowchart;
13,

67

14. // Start is called before the first frame update

15. void Start ()

16, {

17. if (!PlayerPrefs.HasKey ("START")

18. {

19. flowchart.ExecuteBlock ("Intro") ;

20. PlayerPrefs.SetInt ("START",1);

21,

22. }

230 else

24. {

25. PlayerPrefs.SetInt ("START",PlayerPrefs.GetInt ("START") +1) ;
26. OnFinishFungus () ;

27. }

28

29. Time.timeScale = 1.0f;

30 . }

31

32. [ContextMenu ("DeletePlayerPrefs")]

33. public void Delete() { PlayerPrefs.DeleteKey ("START"); }
34

35. public void OnFinishFungus ()

36. {

37. poplar.SetActive (true) ;

38. animatorMenuButt.SetBool ("Start", true);
39. }

40.

41. public void OnClickStart ()

42. {

43. animatorMenuButt.SetBool ("Finished", true);
44. animatorStartButt.SetBool ("Initied", true);
45, animatorStartButt.SetBool ("Finish", false);
46. }

47.

48. public void OnClickBack ()

49. {

50. animatorMenuButt.SetBool ("Finished", false);
5, animatorStartButt.SetBool ("Initied", false);
52. animatorStartButt.SetBool ("Finish", true);
53, }

54

55. public void OnClickGameMode (int sceneIndex)

56, {

57. SceneManager.LoadScene (scenelndex) ;

58. }

59, 1§

60

“Meta.cs”

1. using Fungus;

2. using System.Collections;

3. using System.Collections.Generic;

4. wusing UnityEngine;

5,

6. public class FinishPos

7o {

8o public string name;

9, public int pos;

10.

11. public FinishPos (string n, int p) { name = n; pos = p; }

12. }

13.

14. public class Meta : MonoBehaviour

15, |

16. private List<FinishPos> positions = new List<FinishPos>();

17. public int bots;

18. public ManagerCircuits manager;

19, public ManagerCanvas manCanvas;

20.

21, public Flowchart flowchart;

22.

23. private int count = 0;

24

25, private void OnTriggerEnter (Collider other)

26. {

27. if (other.GetComponent<Brain>() != null || other.GetComponent<PlayerMovement>() != n
ull)

28. {

29, count++;

30. positions.Add (new FinishPos (other.gameObject.name, count));

31. }

32. if (count == 4)

68

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

34. manCanvas.Finish (positions) ;

350

36, if (Win())

37. flowchart.ExecuteBlock ("WIN") ;
38. else

39, flowchart.ExecuteBlock ("LOSE") ;
40.

41

42. manager.STOP () ;

43. }

44. }

45.

46. private bool Win (

47. {

48. foreach (var p in positions)

49. if (p.name == "ANNKart" && p.pos == 1)
50 return true;

5, return false;

52, }

53. |

54

“PlayerMovement.cs”

1. using System.Collections;

2. using System.Collections.Generic;

3. using UnityEngine;

4.

5. public class PlayerMovement : MonoBehaviour

6. {

7. [SerializeField] private Animator anim;

8. [SerializeField] private float turnSpeed;

9. [SerializeField] private float speed;

10.

11. void Update ()

12. {

13. transform.Translate (Vector3.forward * speed * Time.deltaTime * Input.GetAxis ("Vertic
al"));

14. transform.Rotate (Vector3.up * turnSpeed * Input.GetAxis ("Horizontal"));

15. if (Input.GetAxis ("Vertical") == 0)

16. anim.SetBool ("Running", false);

176 else

18. anim.SetBool ("Running", true);

19. }

20

21. private bool InRange (float value, float max, float min) { return value < max && value >
min; }

22. }

“SelectionAction.cs”

1. using System;

2. using System.Collections;

3. using System.Collections.Generic;

4. wusing UnityEngine;

5.

6. public class SelectionAction : MonoBehaviour

7o {

8. [SerializeField] private Manager manager;

9, [SerializeField] private GameObject wayPoint;
10.

11. private List<Cell> selectedCells = new List<Cell>();
12, private Cell _actual;

13, private int _wayPointCount;

14. private List<GameObject> wayPoints = new List<GameObject>();
15.

16. public void SetActual (Cell c) { _actual = c; }
17.

18. public bool canlInteract;

19,

20. void Update ()

21. {

22 if (!canlInteract) return;

23. if (Input.GetMouseButton (0)

24. {

25. RaycastHit hit;

26. int layerMask = 1 << 9;

69

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

27 Ray ray = Camera.main.ScreenPointToRay (Input.mousePosition) ;

28. if (Physics.Raycast(ray, out hit, Mathf.Infinity,

29, {

30 var cellScript = hit.transform.gameObject.GetComponent<Cell> () ;

31. if (cellScript != null)

32. {

EEN if (!cellscript.CheckCell(_actual)) return;

34 else

35. {

36 string aux = cellScript.SetSelected(true);

37 manager.AddCellToCircuit (aux) ;

38 cellScript.gameObject.GetComponent<Renderer> () .material.color =
r.blue;

39. _actual = cellScript;

40. selectedCells.Add (cellScript) ;

41. TryInstantiateWayPoint (cellScript) ;

42.

43. }

44, }

45. }

46. }

47 . if (Input.GetMouseButtonUp (0)

48. {

49 if (!manager.GetFinished()

50. {

5, foreach (var cell in selectedCells)

52. {

53. if (cell!= null)

54 cell.gameObject.GetComponent<Renderer> ()
e;

55, cell.SetSelected (false) ;

56. }

57 manager.Clear () ;

58 selectedCells.Clear () ;

59 ClearWayPoints () ;

60.

61. }

62. }

63. }

64.

65. private void TryInstantiateWayPoint (Cell cellScript)

66. {

67 _wayPointCount++;

68 if (_wayPointCount <= 3) return;

69

70 _wayPointCount = 0;

71.

72. var position = cellScript.GetPosition;

73.

74. float offset = 0;

75.

76 if (position.y % 2 != 0.0f)

77 offset = 1.75f / 2f;

78 float x = position.x * 1.75f + offset;

79. float y = position.y * 2f * 0.75f;

80.

81 wayPoints.Add(Instantiate (wayPoint, new Vector3(x, 0,
Quaternion.Euler (new Vector3(-90, 0, 0))));

82. }

83.

84 public void ClearWayPoints ()

85. {

86. foreach (var wp in wayPoints)

87. Destroy (wp) ;

88. wayPoints.Clear () ;

89. }

90. }

91.

“TrainingFinisEvent.cs”

1. using System;

2. using System.Collections;

3. using System.Collections.Generic;

4. using UnityEngine;

5,

6. public class TrainingFinishEvent MonoBehaviour
7. A

& public static Action onFinishTraining;
95

10. private bool IN = false;

11. private int count = 0;

12.

70

layerMask))

.material.color

2

Colo

Color.whit

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

13. private void OnTriggerEnter (Collider other)
14. {
15. if (IN) return;

17. if (other.GetComponent<Brain> () != null)
18. {

19. count++;

20 . IN = true;

21. if (count == 1)

22, {

23. onFinishTraining() ;

24. count = 0;

27. }
29. private void OnTriggerExit (Collider other)
30. {

31. if (!IN) return;
32, IN = false;

“TrainingPathCreator.cs”

1. using System.Collections;

2. using System.Collections.Generic;

3. using System.IO;

4. using UnityEngine;

5.

6. public class TrainingPathCreator : MonoBehaviour
7o {

8. SerializeField] private Manager manager;

9, SerializeField] private GameObject wayPoint;

[
[
10. [SerializeField] private Grid grid;
[
[

11. SerializeField] private GameObject meta;

12. SerializeField] private GameObject metaCollider;
13.

14. private List<Cell> selectedCells = new List<Cell>();
15, private Cell _actual;

16. private int wayPointCount;

17. private List<GameObject> wayPoints = new List<GameObject> ()
18.

19. public void SetActual (Cell c¢) { _actual = c; }

20

21. public string[] lines;

22.

23 private void Start(

24. {

25, ReadData () ;

26. if (!PlayerPrefs.HasKey ("Training")

27. PlayerPrefs.SetInt ("Training", 0);

28

29, Invoke (nameof (getNextCircuit), 3f) ;

30. }

31.

32. [ContextMenu ("DeletePlayerPrefs")]

33. private void DeletePlayerPrefs () => PlayerPrefs.DeleteKey ("Training");
34

35, private void ReadData (

36. {

37. var sr = new StreamReader (Application.dataPath + "/" + "DATA/def.txt");
38. var fileContents = sr.ReadToEnd() ;

3%, sr.Close () ;

40. lines = fileContents.Split ("\n"[0]);

41. }

42.

43. private void getNextCircuit ()

44, {

45, var count = PlayerPrefs.GetInt ("Training");

46. bool first = false;

47 . wvar name = "";

48. Debug.Log (lines[count]) ;

49. var positions = lines[count].Split(";"[0]);

50

51. for (int i = 0; i< positions.Length; i++)

52. {

53. if (1 == positions.Length - 1)//Quitando el ultimo caracter no valido de la

cadena

71

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=nameof+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

55, var arrayChars = positions[i].ToCharArray();

56, var res = "";

57. for (int j = 0; j < arrayChars.Length - 1; j++)

58. res += arrayChars[j];

59

60. var cell = grid.GetCell (res);

61. cell.SetSelected (true) ;

62

63. name += res ;

64

65. //Crear meta

66. var position = cell.GetPosition;

67.

68. float offset = 0;

69

70. if (position.y % 2 != 0.0f)

71. offset = 1.75f / 2f;

72. float x = position.x * 1.75f + offset;

73. float y = position.y * 2f * 0.75f;

74

75. wayPoints.Add (Instantiate (meta,new Vector3(x, 0, y),
Quaternion.Euler (new Vector3(-90, 0, 0))));

76

77. //Suscribo al evento de meta

78. TrainingFinishEvent.onFinishTraining += FinalizadaVuelta;

79

80. wayPoints.Add (Instantiate (metaCollider, new Vector3(x, 0, y),
Quaternion.Euler (new Vector3(-90, 0, 0))));

81. }

82. else

83. {

84. name += positions[i] + ";";

85. var cell = grid.GetCell (positions[i]) ;

86. cell.SetSelected (true) ;

87. if (i == 1) manager.SetPointToView (cell.transform.position) ;

88.

89. //Crear waypoints

90. if (1 !'= 0 && 1 & 3 == 0)

9, {

92 var position = cell.GetPosition;

93,

94. float offset = 0;

95

96. if (position.y % 2 != 0.0f)

97. offset = 1.75f / 2f;

98. float x = position.x * 1.75f + offset;

9%, float y = position.y * 2f * 0.75f;

100

101. wayPoints.Add (Instantiate (wayPoint, new Vector3(x, 0, y),
Quaternion.Euler (new Vector3(-90, 0, 0))));

102. }

103.

104. }

105. }

106.

107. manager.FinishedTrainingPath () ;

108. manager .Respawn () ;

109.

110.

111. GameObject.FindObjectOfType<Brain> () .currentAleatoryCircuitName = name;

112. }

113.

114. private void FinalizadaVuelta ()

115. {

116. Debug.Log ("Terminada la vuelta");

117.

118. foreach (var obj in wayPoints)

119. Destroy (obj) ;

120.

121. wayPoints.Clear () ;

122.

123, TrainingFinishEvent.onFinishTraining -= FinalizadaVuelta;

124.

125. manager .KillANN () ;

126. manager.Clear () ;

127. grid.ResetPath() ;

128.

129. PlayerPrefs.SetInt ("Training", PlayerPrefs.GetInt ("Training") + 1);

130.

131. Invoke (nameof (getNextCircuit), 10f);

132. }

133.

134. private void TryInstantiateWayPoint (Cell cellScript)

135. {

72

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=nameof+msdn.microsoft.com

136. _wayPointCount++;

137. if (_wayPointCount <= 3) return;

138.

139, _wayPointCount = 0;

140.

141. var position = cellScript.GetPosition;

142.

143. float offset = 0;

144.

145. if (position.y % 2 != 0.0f)

146. offset = 1.75f / 2f;

147. float x = position.x * 1.75f + offset;

148. float y = position.y * 2f * 0.75f;

149.

150. wayPoints.Add (Instantiate (wayPoint, new Vector3(x, 0, y),
Quaternion.Euler (new Vector3(-90, 0, 0))));

151. }

152.

153, public void ClearWayPoints (

154. {

155. foreach (var wp in wayPoints)

156. Destroy (wp) ;

157. wayPoints.Clear () ;

158. }

159. }

“WayPointsPositioner.cs”

1. using System.Collections;

2. using System.Collections.Generic;

3. wusing System.Ling;

4. using UnityEngine;

5,

6. public class WayPointsPositioner : MonoBehaviour

7o {

8. [SerializeField] private GameObject modularTrackContainer;

9, [SerializeField] private GameObject wayPoint;

10. public MeshCollider[] modularTracks;

11. string meta = "Meta";

12.

13. void Start ()

14. {

15. modularTracks = modularTrackContainer.GetComponentsInChildren<MeshCollider> () ;

16.

17. foreach (var piece in modularTracks)

18. {

19.

20. var wayPt = Instantiate (wayPoint, piece.transform.position, Quaternion.identity,
piece.transform) ;

21. wayPt.transform.localRotation = Quaternion.Euler (new Vector3(0, 0, 0));

22.

23. if (piece.name.Contains (meta)

24. {

25. //Es meta

26. var script = wayPt.AddComponent<ID> () ;

27. script.tipo = tipoCheckpoint.Meta;

28. }

29, }

30.

31. }

32.

33.

“OptionControls.cs”

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

public class OptionControls : MonoBehaviour
{

public Slider sliderVolume;

public AudioSource audioSource;

H 0 oo Jo 0w

73

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

“VolumeController.cs”

74

http://www.google.com/search?q=typeof+msdn.microsoft.com

75

