
DEGREE IN DESIGN AND DEVELOPMENT OF
VIDEOGAMES.

VJ 1241 - BACHELOR’S THESIS

3D to 2D transformation of environment and
characters in videogames

Author:
Francisco Miguel Morales Sánchez

Tutor of the project:
José Vicente Martí Avilés

07/07/2020

Page 2

Francisco Miguel Morales Sánchez Final Degree Project

Acknowledgments
First of all, I would like to thank my Final Degree Project supervisor, José Vicente Martí Avilés, for
his guidance in creating this memory, I am not good at creating this type of document, but he has
given me his advice to improve it increasingly.

Also, I would like to thank him for some of the talks that we had in his office about what I could
do with the TFG, because at the beginning I couldn’t decide on any idea and when this occurred
to me, he supported me from the beginning.

I would also like to thank him for the LaTex template recommendation that I have relied on to
create this document.

I would also like to thank all the teachers I have had, that although there are some with whom I
have not had much affinity. They all ended up teaching me useful things that I can use in my pro-
fessional and personal life.

Page 3

Francisco Miguel Morales Sánchez Final Degree Project

INDEX
1 - Introduction...pg6

 1.1 Work Motivation...pg6

 1.2 Objectives..pg6

 1.3 Environment and Initial State..pg7

 1.4 Concepts...pg8

2 - Planning and resources evaluation..pg9

 2.1- Initial Planning...pg9

 2.2 Planning Followed...pg10

 2.3 - Resource Evaluation...pg11

 2.4 - Economic Cost..pg12

3 - Tools...pg13

 3.1 - Blender...pg13

 3.1.1 - Modeling preparation..pg13

 3.1.2 - Add Animations..pg16

 3.1.3 - 2D Sensation..pg17

 3.1.4 - Illumination..pg22

 3.1.5 - Rendering..pg23

 3.2- TexturePackerGUI...pg24

 3.3- Useful frames...pg25

Page 4

Francisco Miguel Morales Sánchez Final Degree Project

 3.4- Image Magick...pg26

4 - Work Development and Results..pg29

 4.1- Work Development..pg29

 4.1.1- Demo1..pg29

 4.1.2- Demo2...pg38

 4.1.3- Demo3...pg44

 4.1.4- Demo4...pg50

 4.1.5- Menu...pg52

 4.2- Results...pg52

 4.2.1- Scenarios...pg54

 4.2.2- Non-human characters..pg55

5 - Conclusions and Future Work...pg56

 5.1- Conclusions...pg56

 5.2- Future work...pg56

Bibliography..pg57

Page 5

Francisco Miguel Morales Sánchez Final Degree Project

Page 6

Francisco Miguel Morales Sánchez Final Degree Project

1 - Introduction
1.1 - Work Motivation
There are two types of video games, 2D and 3D games, each one has its own visual and playable
characteristics and both can become famous games, however, both skills are very important in
the video game industry, but there are people who have more facility creating 3D modeling, the
question and motivation that arose with this thought was

What if there was some way to convert 3D modeling to 2D?

It is an idea that could bring great benefits to indie studios:

1- Allow looking at the character or scenario from any angle / perspective

2- Easily change animations that we don’t like without having to do everything from the beginning

This idea was also inspired by the video game “Dead cells” where only one person was in charge
of the entire artistic section, where this person created 2D art from 3D art (Figures 1 and 2).

1.2 - Objectives

 - To use different programs and techniques to convert 3D character and scene modeling to 2D
character and scenario modeling
 - To create several Demos that implement this technique with different uses, to observe its po-
tential and possible errors

Figure 2: Dead Cells videogame pipeline image, 2D
visual transformation performed by the head of the
artistic section.

Figure 1: Dead Cells videogame pipeline image, 3D
character modeling.

Page 7

Francisco Miguel Morales Sánchez Final Degree Project

1.3 Environment and Initial State
There are several options in the modeling environments, “3ds Max”, “Blender”, “Maya”, “ZBrush”,
etc.

All these programs are very powerful, any of these would help us to achieve the objective of this
project, however, we are going to focus on “3ds Max” and “Blender”, because both have been tau-
ght throughout the university.

Nowadays, these two programs are the most widely used modeling environments worldwide and
have been taught throughout the university, making any student familiar with them.
Both are good options, but only one program will be used for the development of the project.
“Blender” has been chosen because:

 - It is for free (“3ds max” is a paid program)

 - It is a program that since its last update 2.8., is increasingly booming.

 - Any student is acquainted with it, because it is the most used in GameJam.

With video game engines there are also several options, “Unity”, “UnrealEngine”, “GameMaker”,
etc.
Of all these engines, the one that interests us most is Unity, the reasons are several:

 - It is the videogame engine taught throughout the university.

 - It is used in GameJam’s, so any student is familiar with it.

 - It is also for free.

 - It is a very powerful game engine, it is possible to do almost anything with it.

In summary:
As development environment, Unity (version: 2018.4.12f1) has been chosen as game engine and
Blender as 3D environment.

Page 8

Francisco Miguel Morales Sánchez Final Degree Project

1.4 Concepts

 - Sprite:
It is a two-dimensional bitmap that is integrated into a larger scene, most often in a 2D video
game.

 - SpriteSheet:
It is an image that consists of several smaller images (sprites) and/or animations. Combining the
small images in one big image improves the game performance, reduces the memory usage and
speeds up the startup time of the game.

 - Rigging:
It is needed for animation and physics simulations in Blender. Rigging gives a solid model arti-
culation at certain points in certain ways, usually to simulate a biological skeleton of some kind.
These articulations allow to create the model animation (manually or with Mixamo)

 - FBX and OBJ:
File format. These formats are used to provide interoperability between digital content creation
applications.

 - GameObject:
GameObjects are the fundamental objects in Unity that represent characters, props and scenery.
They do not accomplish much in themselves but they act as containers for Components, which
implement the real functionality.

 - Instance:
In programming, an instance is usually created as a copy of some template. If you are cloning a
GameObject then you can also optionally specify its position and rotation (these default to the
original GameObject’s position and rotation otherwise). If you are cloning a Component then the
GameObject it is attached to will also be cloned, again with an optional position and rotation.

 - Prefab:
Unity’s Prefab system allows to create, configure, and store a GameObject complete with all its
components, property values, and child.
The Prefab Asset acts as a template from which to create new Prefab instances in the Scene.

 - Collider / Collision:
A collider is invisible, does not need to be the exact same shape as the GameObject’s mesh. When
collisions occur (between two or more GameObjects), the physics engine calls functions with
specific names on any scripts attached to the objects involved.

Page 9

Francisco Miguel Morales Sánchez Final Degree Project

2 Planning and Resources Evaluation
2.1 Initial Planning

Figures 3 and 4 of Section “2.2” shows the planning followed. However, there are no significant
changes in the amount of time spent.

The only difference is that each part of the project has been interspersed with others on different
days, but at the beginning of the project it was believed that each part of the project would be ca-
rried out independently

 10h to get all the 3D models

 25h to add the necessary animations in the 3D models
 10h to learn how to add the animations
 15h to add all the animations in the 3D models

 50h to convert 3D models to 2D sprite sheet
 30h to learn how to do the different types of conversion, because there are at least 3
 different methods to do that
 20h to do all conversions once the method is selected

 25h to obtain the “normal maps” that will be used for dynamic light using the “sprite sheet”
 10h to learn how to obtain the “normal maps”
 15h to obtain all the normal maps

 10h make the scene

 20h to create the dynamic lighting of the scene
 10h to learn how to make the dynamic lighting
 10h to make the dynamic lighting

 80h to programming playable mechanics

 50h for the realization of memory

 20h to the presentation

 10h for unforeseen

Page 10

Francisco Miguel Morales Sánchez Final Degree Project

2.2 Planning followed

Figure 3: First part of the Gantt chart

Figure 4: Second part of the Gantt chart

Page 11

Francisco Miguel Morales Sánchez Final Degree Project

2.3 Resources Evaluation

Hardware:
The computer used for this project has had the following characteristics:

 - Intel Core i7-9700K

 - Graphic Card gtx 1660 Ti

 - 32GB RAM

Although a powerful computer has been used, as long as the computer is capable of using “Unity”,
there should be no problem. Also, keep in mind that “Blender” on a low budget computer will take
longer to render, but it is still possible to be used this program.

Software:

 - Unity:
It is a cross-platform game engine developed by “Unity Technologies”.
The engine can be used to create 3D, 2D, VR, and AR games, as well as simulations and other
experiences.

 - Blender:
It is a free and open-source 3D computer graphics software toolset with multiple purposes (mo-
delling, rigging, visual effects, animating, etc).

 - TexturePackerGUI:
It is a program developed by “Codeandweb”, designed for the use of 2D images, creating SpriteS-
heets automatically and easily. This program allows compatibility with other programs such as
“Unity”, “Photoshop”, etc.

 - Sprite Illuminator:
It is a program developed by “Codeandweb”, designed for creating 2D normal maps.

 - Mixamo:
It is a 3D computer graphics technology, use machine learning methods to automate the steps of
the character animation process, including 3D modeling to rigging and 3D animation.

 - Photoshop:
It is a popular image changing software package. It is widely used by photographers for photo
editing (fixing colors, reducing noise, adding effects, etc). The software is made by the company
“Adobe Systems”.

 - Github:
It is an online repository that offers free accounts that are commonly used to host open source
projects.

Page 12

Francisco Miguel Morales Sánchez Final Degree Project

 - Image Magick:
It is a free and open-source software suite for displaying, creating, converting, modifying, and
editing raster images.

2.4 Economic cost
Once the used hardware and software have been seen, it may be interesting to know an approxi-
mate price required.

Hardware:
On the Internet, the requirements vary depending on the website visited, but to get a rough idea:

Minimum requirements:
SO: Windows 7 / 8 / 10

Processor: Intel Core i3

RAM: 4 GB

Graphic card: Nvidia 560 ti

Nowadays, any computer exceeds these requirements, any PC that fits the budget would be worth
it, so an exact price will not be specified.

Software:
 - Blender, Mixamo, Github y Image Magick are for free.

 - Unity3D offers free licenses for freelancers and videogame development companies that bill less

than $ 100,000 in a year.

 - TexturePackerGUI costs 39.99 and SpriteIlluminator also costs 39.99, although there is an offer

to get both for 59.99

 - Photoshop has 3 types of plans:

 - Annual plan, monthly payment - € 24.19 / month
 - Annual plan, prepaid - € 290.17 / year
 - Monthly plan - € 36.29 / month

Page 13

Francisco Miguel Morales Sánchez Final Degree Project

3. Tools
These tools and processes have been used in all the demos (except for Demo4), instead of seeing
this procedure in each demo, a summary will be made here.
Before using “Unity”, It is necessary to create the 2D transformation. Different tools have been
used. The order described in the memory is the same order in which these tools were used in the
project.

3.1 - Blender
To put the modeling in “Blender”, it is first necessary to get them, for this we will use various pages:

https://clara.io/
https://free3d.com/

https://sketchfab.com/feed
https://www.turbosquid.com/

https://www.cgtrader.com/free-3d-models

3.1.1 - Modeling preparation
Once the modeling is obtained, it is necessary the following three modifications need to be made
before rigging.

Add Texture
Generally all the models (free or paid) are contained in a “WinRAR”, separated between “mode-
ling” and “texture”. Therefore, once obtained, it is necessary to add this texture, because although
it is given with the model, it is located in a different folder so that there are no problems or errors
when loading the model in the desired 3D program (Blender, 3Ds Max, etc). These modifications
are necessary, since it is necessary to “link it” and then, when loading it into “Mixamo” the refe-
rence will not be lost.

1- Folder containing only modeling (Figures 5 and 6)

Figure 5: Folders containing the textures and 3D modeling

Figure 6: Modeling “.fbx” file

Page 14

Francisco Miguel Morales Sánchez Final Degree Project

2- Folder containing the texture of the modeling, normals map and emission maps (Figure 7)

Although these models contain all the different necessary maps to achieve a correct 3D visualiza-
tion, due to the nature of this project, only the texture is necessary (Figure 9).
This generates the first problem. There are many models without texture (Figure 8), this should be
taken into account when downloading models, there may be some that cannot be used because
of this, which eliminates many models that can be useful, but the textures of the maps must be
generated separately.

These Models must be saved as FBX, so all the information is saved avoiding future problems

Rig in Mixamo
www.mixamo.com

“Mixamo” is a public domain page used to obtain animations for modeling (Figure 10). It is also
possible to obtain some of the models shown as an example on this page, to see the result of the
animations. In addition, it is possible to rig characters on this page, allowing to add any animation
on the page. This is the main feature that interests us.

Figure 7: The different “texture maps” of 3D modeling

Figure 8: Blender modeling
without texture

Figure 9: Blender modeling
with texture

Figure 10: Rigging in
Mixamo

Page 15

Francisco Miguel Morales Sánchez Final Degree Project

Once rigged, It can be observed in real time the chosen animation merged with the modeling
in the form of “Preview” before downloading it (Figure 11), to use it in “Blender”. the download
will be done the first time with “with skin” so that the rigged modeling is downloaded and the fo-
llowing times “without skin” since having a rigged one, it is enough to substitute later in “Blender”
the animation of your “armature”.

The problem produced by this method: when downloading it again from “Mixamo”, if the format
is “.OBJ” it only saves the geometry, but references to texture and the geometry that were saved in
parts are lost. So it is necessary to do it in “.FBX” to save these references.

Re-add texture
Sometimes “Blender” can generate errors when adding the texture at this point, so it is necessary
to do step 2.1.1 again, this way it does not lose the references and it is easy to add the textures now
(Figure 12).
The same process is done, from the “Blender Shading”.

Figure 11: Add animation in Mixamo

Figure 12: Re-add 3D modeling in Blender with animations

Page 16

Francisco Miguel Morales Sánchez Final Degree Project

3.1.2 - Add Animations

Once the character has been rigged, the ani-
mation must be added (Figure 13), animation
that is achieved from the Mixamo itself (Figure
11). It must be in “.FBX” (to avoid loss of infor-
mation) and “without skin” (to obtain only the
animation)

Depending on the animation, the camera needs to be fixed or follow the character.
Generally the camera looks at a fixed site but there are animations with which this does not work
(Figure 15).

Figure 13: Select animation in Blender.

Figure 14: Download the animation in Mixamo

Figure 15: Camera that does not follow the character’s jump

Page 17

Francisco Miguel Morales Sánchez Final Degree Project

3.1.3 - 2D Sensation
Once the animation has been added to the 3D modeling (Fi-
gure 16), it is time to extract the spritesheets. To do it the first
thing is to place a camera perpendicular to the modeling, this
way when doing the animation it gives the 2D sensation

Next it is necessary to add the pixelation, there are 3 ways:

Compositing
“Compositing” is a tool that allows globally control the visual part of the “Blender” scene, adding
nodes that affect rendering (Figure 17).

For pixelation, two scale nodes and one pixelate node are needed:

 - First Scale: the global scene is scaled to a low resolution, achieving the visual pixelation

 - Pixelate: if then it is simply rescaled to the original resolution the pixelation is removed,
then it is necessary to save the information in this node

 - Second Scale: in this node is rescaled to the size it was originally but pixelated, because the
pixelated information was saved in the previous one

Figure 16: Example of character animation.

Figure 17: Example of “composition”, performs the main pixelation

Page 18

Francisco Miguel Morales Sánchez Final Degree Project

Output properties
In the “output properties” (Figure 18) the resolution is lowered in

height and width so that it can be used as a sprite and that it also
serves for pixelating.

It also can specify in the “output” the destination of the containing
folder.

Object Data Properties (Shadows)
The “Object Data Properties” (Figure 19) appear when a light
is selected in “Blender”. There is a “shadow” check box which is
enabled by default and should be disabled.

This is because although the lights are placed in all directions to
illuminate the character, shadows are always generated (even if
there are few) and we are not interested in these shadows when
generating the “normal map” and removing this check box, these
shadows are not generate (Figure 20).

Figure 18: “Resolution” and “Output”
properties of the Output Properties

Figure 19: “Shadow” property of
the Object Data Properties

Figure 20: Shadow comparison by activating the “Shadow” option

Page 19

Francisco Miguel Morales Sánchez Final Degree Project

Render properties

It is possible to change the “filter size” (Figure 21).
The result of the render will be more accurate the
lower the number and the higher the more blurred it
is. Depending on the quality of the modeling, some
values or others will be necessary.

The “Transparent” check box must also be activated so that in the rendering it removes the back-
ground, creating the PNG (Figures 22 and 23).

Figure 21: “filter size” property of the Render Properties

Figure 23: 3D modeling character after applying
Blender properties

Figure 22: 3D modeling character before applying
Blender properties

Page 20

Francisco Miguel Morales Sánchez Final Degree Project

Each of these three pixelated shapes gives a different result, therefore, combining them gives a
very natural result (Figures 18, 19, 21 and 23)

Bordered (Shaded)
It is possible to create a border on the character (Figures 25 and 26). This technique was discove-
red in the pixelation documentation but in this project it has not been used, although it has been
considered important to document it.

Figure 24: 3D modeling character after applying Blender properties. Version 2

Figure 25: Character with shading Figure 26: Character without shading

Page 21

Francisco Miguel Morales Sánchez Final Degree Project

To do it, just activate the “freestyle” (Figure 27)

In “relative” it puts a border automatically, but in “absolute” it can be adjusted (Figure 28), 1px is
equivalent to the “relative” and then it is possible to adjust it by putting more or less.

It is interesting to know how this shading can be created since there are world famous games that
use this technique, such as “Megaman” (Figure 29).

Figure 28: “Freestyle” property of the Render
PropertiesFigure 27: “Freestyle” property of the Render

Properties

Figure 29: SpriteSheet with shading (Megaman)

Page 22

Francisco Miguel Morales Sánchez Final Degree Project

But it could also not be applied. There are other games that do not use it (Figure 30), like all video
game techniques depending on the artistic style, one or the other may be more useful.

3.1.4 - Illumination
Because “normal maps” will be generated later for real-time lighting, it is now necessary to illumi-
nate it from all angles (up, down, right, left, front and back) to avoid unwanted shadows (Figure
31) and then normal maps are generated without problems (Figure 32).

Figure 30: SpriteSheet without shading

Figure 31: Blender scene without lighting

Figure 32: Blender scene with lighting

Page 23

Francisco Miguel Morales Sánchez Final Degree Project

3.1.5 - Rendering
“Blender” provides an automated rendering, which allows to obtain all the “photos” of each mo-
vement (Figure 33). All these images need to be converted into spritesheets to be able to use them
in the video game engine.

Figure 33: Images generated by Blender (the SpriteSheet has not been generated yet)

Page 24

Francisco Miguel Morales Sánchez Final Degree Project

3.2 - Texture Packer GUI
This tool allows to create Spritesheets in a very automated way and adapted for
“Unity” (video game engine used for this project). Therefore, it is the tool that
has been decided to use.

Generate the SpriteSheet simply by “dragging” all the images into the program (Figure 35).

Depending on the amount of images obtained, some parameters or others will have to be configu-
red (Figure 36), which will then have to be reflected in “Unity”.

Figure 34: TexturePackerGUI icon

Figure 35: SpriteSheet generated in the TexturePackerGUI

Figure 36: TexturePackerGUI Properties

Page 25

Francisco Miguel Morales Sánchez Final Degree Project

3.3 - Useful frames
At first several intermediate frames were going to be eliminated to generate the feeling of “hand
drawn SpriteSheets” (Figure 37).

All the selected images were to be deleted, leaving only the unselected ones, which would make up
the animation, leaving a result like this:

Visually approaches the traditional SpriteSheet style:

But after several tests the decision taken was to use all the frames, because that desired feeling of
“hand drawn SpriteSheets” is achieved in the same way, and leaving all the frames gives a more
natural animation for the human eye.

Figure 37: All images generated from an animation. The images selected at the beginning were not necessary for the final result.

Figure 38: Sequence of images after deleting selected images

Figure 39: Example of a classic SpriteSheet

Page 26

Francisco Miguel Morales Sánchez Final Degree Project

3.4 - Image Magick
Once the images have been obtained to create the sprite sheets, it is necessary to make a copy and
flip them vertically to have the “right” and “left” direction because when putting negative values
on the X scale in “Unity” to flip the character disappears . (Figure 41)

Figure 40: Character in Unity3D on positive X axis

Figure 41: Character in Unity3D on negative X axis

Page 27

Francisco Miguel Morales Sánchez Final Degree Project

It would be possible to easily do it in programs like Photoshop, but if this were done with each
image generated, it will take too long. So this process must be automated. In Photoshop it cannot
be done, so it is necessary to find another method.

The program found which is going to help us in this process is the “Image Magick” program which
has several functions, including the option to flip the image vertically, this program also allows us
to do it with the cmd with the command “flop”. Then came the idea of creating an automated “.bat”
program with this command.

The program has these four lines of code (Figure 42):

For example, having a folder with the program (Figure 43), executing it for each image will do
the following:

Figure 42: Lines of code from the “.bat” program created

Figure 43: Before running the program

Page 28

Francisco Miguel Morales Sánchez Final Degree Project

1- For each object in this folder which ends in “.png” it flips vertically and receives the same name
as the original image, but ends in “_left.png”

2- For each existing object in this folder ending in “_left.png” it is renamed by taking the name it
had before and putting the “Left_” first

3- Another folder is created in the current folder taking the name of the current folder, adding
“_flip” at the end

4- All items starting with “left” are moved to the newly created folder.

Figure 44: Create a copy of the (flipped) image

Figure 45: Rename the flipped image

Figure 46: Create a folder to save all flipped images

Figure 47: Move all images to created folder

Page 29

Francisco Miguel Morales Sánchez Final Degree Project

4 - Work Development and Results
4.1 - Work Development

4.1.1 - Demo1
The first demo created was “Demo1”. In this Demo it was wanted to test the normal maps applied
to the 2D spritesheet character and see how light can affected it in real time. To do this, a 3D cha-
racter has been downloaded, converted to 2D, the sprite sheets and normal maps required have
been generated.
A 2D scenario from the Asset Store has also been used to see if there is any visual problem when
putting together a real 2D element and a 2D element created with these characteristics.

Main character
This is the main character used for this demo:

The idea was to use this character in the downloaded “.blend” format, but when animations had to
be created in “Blender”, the clothes that the character has as his front and back cape need the use
of “physics”, which due to the current lack of knowledge about the physics applied to “Blender”, it
was decided to remove this clothing and give the character another visual appearance to make it
more pleasing to the eye.

After removing these clothes and several tests in the Blender “Shading” to modify their color, this
was the result:

Figure 48: Demo1 main character without modifications.

Figure 49: Character modifications in “Shading”

Page 30

Francisco Miguel Morales Sánchez Final Degree Project

The result obtained has been:

Figure 50: It is the character of Blender after applying the visual changes
Figure 51: It is the character when 2D transformation techniques have been applied.

SpriteSheets:
Now it was necessary to create the animations. These animations have been downloaded from

“Mixamo” and applied to the character in “Blender”. In “renders” the animation is generated. The
problem with this method is that for each movement of the animation it creates a “photo” but not
a “spriteSheet”. To create it we need to use the “TexturePackerGUI” program that does it automa-
tically.

Jump: Simple jumps are the best visually in 2D games, because making complex jump animation
attractive takes a lot of work, so the choice has been the “classic solution”, a fixed jump.

Figure 50: Main character after applying the
visual changes.

Figure 51: Main character after applying 2D trans-
formation techniques

Figure 52: Jump of the main character

Page 31

Francisco Miguel Morales Sánchez Final Degree Project

Idle: A long animation for this state was sought.

Fight: Although there are no enemies for this demo, an animation with a certain visual dynamism
was sought

Run: Character movement

Figure 53: Idle of the main character

Figure 54: Fight of the main character

Figure 55: Run of the main character

Page 32

Francisco Miguel Morales Sánchez Final Degree Project

Background
The chosen background for this Demo has been the “GothicVania Town” of the “AssetStore”, a 2D
background.

Tile Map:
Unity has a function called “Tile Map” (Figure 59), it allows creating 2D scenes in “Unity” with
an elements palette.

The chosen Asset has elements to fill the scene, these elements have been used in the “Tile Map”

Figure 56: Background1 of Demo1 Figure 57: Background2 of Demo1

Figure 58: Image containing elements of the scene in Unity3D

Figure 59: Scene elements placed in the TileMap

Page 33

Francisco Miguel Morales Sánchez Final Degree Project

Normal Map
Normal maps need to be created for real time light to work in Unity, to do this, the
“SpriteIlluminator” has been used

The creators of “TexturePackerGUI” have more programs, among them the “SpriteIlluminator”,
which in a similar way to “TexturePackerGUI”, generates normal maps in an automated way.

It is possible to modify the three parameters that control the quality of the normal map (Figure
61).
Although it is also possible to manually make the normals map, painting them individually.

Scenario: SpriteIlluminator allows to create the normal maps automatically (objects to the right of
Figure 62) or manually (objects to the left of Figure 62), houses give better results with flat colors,
that’s why it has been done manually.

Figure 60: SpriteIlluminator Icon

Figure 61: Example of using SpriteIlluminator

Figure 62: Normal map results in the scene elements

Page 34

Francisco Miguel Morales Sánchez Final Degree Project

Main Character: When creating a normal map of a character, all the images are together (although
there are some that appear mixed, it does not matter, Unity detects which animation it belongs to),
unlike the “spriteSheets” that need a “strip” for each animation

Figure 63: Results of the “normal map” in the main character

Page 35

Francisco Miguel Morales Sánchez Final Degree Project

Emmision map:
To put points of light it is necessary to use “emission maps”, which allows creating them in diffe-
rent places (Figure 65):

If the next two figures were aligned, the light spots could be seen in the windows:

Figures 66 and 67 have a saturated brightness because it seemed too dark for this document. In the
Demo it is not really like that, but in this way we can appreciate the change.

Figure 64: Image containing elements of the scene
Figure 65: Emission map to put points in houses

Figure 66: House in Unity3D with scene lighting
but without the emissions map.

Figure 67: House in Unity3D with scene lighting
and emission map.

Page 36

Francisco Miguel Morales Sánchez Final Degree Project

Scripts:

The camera follows the player

Detects the surface of the character’s feet to see if the player can jump

In addition to “Player_GroundCheck” it detects the character jump, but this Script is used in “In-
teractableObjects” to allow sliding vertically with the “S”

This Script aside from the basic movement controls the animator and the references to the other
scripts to control the functionalities of these scripts (such as the jump or the interactions with the
environment)

Page 37

Francisco Miguel Morales Sánchez Final Degree Project

This Script works as a platform detector to know if the player are in the cart or not and to get off
with “S” as in traditional platform games.

Detects if the player is on the cart, as long as the player does not get out
of the cart, the player can use it as a “means of transport” with greater
speed.

Detects if the player is within range of the box, if he is in range and the key
“Q” is pressed, the box will be picked up and transported with the player,
matching the speed of the box to transport with the player, walking or get-
ting on the cart.

Figure 68: Objects in unity with the script “InteractableObjects”

Figure 69: Character on the cart

Figure 70: Character picking up a box

Page 38

Francisco Miguel Morales Sánchez Final Degree Project

4.1.2 - Demo2
For Demo2 a “Space Shooter” has been created. This demo is the most similar to a video game.
While the other demos have been created with the purpose of showing the objective that was
sought, in this demo, in addition to that, we wanted to show something more like a video game.
For this demo we have explored more changes that could be made in “Blender” before importing
it into “Unity”.

Instead of adding an animation to the characters, creating the animation by positioning the came-
ra in different ways in Blender. Also, use simple elements that Blender can offer and polish them
until satisfactory results are obtained, for example, the “bullet” that the characters are going to
shoot.

Main character:
The character in figure 71 is the given asset and the one in figure 72 is the character with all the
pixelation effects previously discussed

One of the capabilities of having a modeling in Blender is that the camera can be placed at any
angle of the scene, which can generate different animations, in the case of Figure 73 the movement
of the character.

Figure 71: Demo2 main character
without modifications.

Figure 72: Main character after applying
2D transformation techniques

Figure 73: Movement of the character using the turns of the Blender camera

Page 39

Francisco Miguel Morales Sánchez Final Degree Project

Bullet of the Main Character: At first the bullet was going to be a sphere

There are two cones placed in mirror mode, with some modifiers to obtain a cartoon color

Result:

Figure 74: “Shading” of the main character’s bullet

Page 40

Francisco Miguel Morales Sánchez Final Degree Project

The enemy:

The enemy bullet:

Result:

Figure 75: Enemy without modifications. Figure 76: Enemy after applying 2D
transformation techniques

Figure 77: “Shading” of the enemy’s bullet

Page 41

Francisco Miguel Morales Sánchez Final Degree Project

Enemy explosion: Asset taken from “opengameart” to give feedback to the player when
an enemy has been eliminated

Background: Asset taken from “opengameart”, this demo is a space Shooter, so we have sear-
ched for a background that would give a feeling of space

Figure 78: Enemy explosion

Figure 79: Demo2 background

Page 42

Francisco Miguel Morales Sánchez Final Degree Project

Scripts:

This script saves the minimum and maximum values of the vertical and horizontal position to
prevent the player from leaving the scene and control that the enemies are born and disappear out
of scene so that it is natural visually

This script generates a visual movement on the scene, makes the background texture scroll infini-
tely horizontally by repetition even though the object does not physically move

Script that will be in the prefab of the player’s bullet, its speed will be controlled, where it is instan-
tiated and when it disappears (when it collides with an enemy or leaves the scene)

It acts similarly to the “BulletPlayer” script, but changes its speed to be negative (so the bullet will
go towards the player) and collisions (to affect the player).

This script controls the enemy speed, creates a different “zig zag” pattern for each one using ran-
dom and the sound and animation of its destruction.

Page 43

Francisco Miguel Morales Sánchez Final Degree Project

This script has two functions:

MovePlayer (): Movement of the character, is performed using the “Input.GetAxis ()” to compare
vertical and horizontal movement. The “BackGround_Script” is also used to obtain the limits of
the screen and that the character does not visually leave the scene

Attack(): A bullet is instantiated and the delay between shots is controlled by a “timer”

Through the prefab of the enemy, it generates them with a “timer” that acts as a delay

Each enemy eliminated will add 10 points to the total score

The game starts with level 1, and every X number of enemies eliminated adds 1 level, this number
of enemies is decided by a minimum and maximum Random, level 10 is the maximum level, with
each level the difficulty will be greater.

When the player dies the death screen comes out, putting the score and level in the center of the
screen and a button to restart the level.

It restart the level, it is connected with the script “EndGame”

Page 44

Francisco Miguel Morales Sánchez Final Degree Project

4.1.3 - Demo3
For Demo3, 3 different types of enemies have been created, a “golem”, “human” and “wolf ”. It has
been wanted to do in this way, to work with the interaction of a human, a non-human and an
animal. The interesting about this demo is to observe the interaction with the enemies, this is the
reason why the protagonist has been created not to die and different attack patterns have been
given to the enemies.

The first thing that was needed for this Demo was the protagonist and an attack to defeat the ene-
mies that would be added. The choice was to reuse the character from demo1, but without appl-
ying the normal maps (figure 80).

The attack that has been added is a slash, to give visual feedback

Figure 80: Demo3 main character

Figure 81: Slash of the main character

Page 45

Francisco Miguel Morales Sánchez Final Degree Project

Enemies:
After searching for several enemies 3 have been selected

 - Soldier
 - Golem
 - Wolf

Soldier: Modeling in human form, this character, in addition to being human, was the first op-
tion because it had many polygons, it was interesting to observate if Blender could support expen-
sive modeling and make the corresponding sprite sheets. This character attacks closely (figure 82).

Idle: Character’s resting state, does not chase the player

Attack: When the player approaches, an attack is made at close range.

Figure 82: Demo3 Enemy Soldier

Figure 83: Idle of the Soldier

Figure 84: Attack of the Soldier

Page 46

Francisco Miguel Morales Sánchez Final Degree Project

Walk: Chase the player when he enters his search range.

Death: Death of the character

Golem: Modeling in non-human form, this character was interesting to test with non-human
characters, for example, the “Death” spriteSheet where only uses his head to create the animation
or his “Attack” where instances of the hands are created. This character attacks from afar (figure
87).

Walk: Chase the player when he enters his search range.

Figure 85: Walk of the Soldier

Figure 86: Death of the Soldier

Figure 87: Demo3 Enemy Golem

Figure 88: Walk of the Golem

Page 47

Francisco Miguel Morales Sánchez Final Degree Project

Idle: Character’s resting state, does not chase the player

Attack: When the player enters his attack range, he makes a long distance attack

Death: Death of the character, this animation has been created manually, using the character’s
head from the IDLE state

In Photoshop, using the first image from the IDLE spriteSheet, the body was removed, using only
the head that has been manually placed in different positions, creating the animation.

This animation could also have been created in Blender, removing the body and creating the ani-
mation frames. However, because it was a simple animation, Photoshop was preferred.

A problem found when implementing this character in Unity, is that in Blender when extracting
the images (spriteSheets), the animation of “attack” and “walk” were made at different resolutions
as can be seen in figure 93, although this has been tried to fix through scripts when doing the
change between these two animations, for one second it makes a visual failure, noting that bug.

Figure 89: Idle of the Golem

Figure 90: Attack of the Golem

Figure 92: Death of the Golem

Figure 93: Visual frame error with Golem between “attack” and “walk” animation

Figure 91: Golem head (first frame of the IDLE animation)

Page 48

Francisco Miguel Morales Sánchez Final Degree Project

This same error occurred to the character when changing from “idle” to “walk”, but in this case it
was fixed. It is easy to fix, just have to do the pixelation process taking care that it is at the same
resolution.
Instead, this bug has been left to be seen in the demo.

Wolf: Modeling in animal form, an animal character was sought to use a non-biped character
and observate if this could create problems. According to the obtained result, it does not give pro-
blems, but Mixamo does not work for these characters, to animate a non-biped character, the
animation must be created manually. This character uses his “Run” animation as attack (figure 94).

Walk: Rest state of the character, unlike the other two characters, this one does not have IDLE, it
is walking between two zones established by code, in this state it does not chase the player

Run: Stop patrolling the assigned zones and start chasing the player. This state will also be used to
attack the player, being a wolf does not have an “attack” animation, it will be physical contact with
the player.

Death: Death of the character

Figure 94: Demo3 Enemy Wolf

Figure 95: Walk of the Wolf

Figure 96: Run of the Wolf

Figure 97: Death of the Wolf

Page 49

Francisco Miguel Morales Sánchez Final Degree Project

Background: The added Asset has been “free pixel art forest” from the assetStore. After see-
ing the characters used in this Demo, it was thought that the setting that could best be left would
be one of the “forest”, so we looked for one that would give those sensations.

Scripts:

In the same way that Demo1’s “Player_GroundCheck” script worked, it will control if the player
can jump, it was necessary to create another similar script instead of reusing the one that already
existed because it uses references to other different scripts and therefore a different one was ne-
cessary

This script controls the player’s attack that can be done to the enemies, it has a timer that controls
the time between each attack

The same way Demo1’s “movement” script worked, it will control the basic movement, character
animator and references to the other scripts to control the functionality of these scripts.

Figure 98: Demo3 background

Page 50

Francisco Miguel Morales Sánchez Final Degree Project

This Script controls the movement and death of the Soldier and has two defined ranges:

The first range: If the player enters, the Soldier will start chasing him and the second rank that is
closer

The second range: If the player enters he will start attacking, also has a timer that will act between
each attack

This Script has the same components as the Soldier Script but its two ranges have different values.

This enemy does not wait statically. It has two points that it patrols constantly walking and it has
only one range, where the wolf will stop patrolling and will start chasing the player changing from
“walk” to “run” (its speed will be increased too)

4.1.4 - Demo4
This Demo is focused on observing the pixelation techniques that are in the AssetStore and why
these techniques are not valid. All the options offered by the assetStore are similar, The so-called
“pixelation” has been chosen. It only has a Script that added to the camera, it is possible to control
the pixelation.

Scene:
For this Demo a 3D environment has been applied, the Asset “Voxel Functional Furniture FREE”
from the AssetStore

Figure 99: Demo4 scene

Page 51

Francisco Miguel Morales Sánchez Final Degree Project

Once we have the environment and the pixelation script added to the camera, when using them,
we observe that the level of pixelation can be very large (figure 100) or practically non-existent
(figure 101). In addition to visually, this will be shown to the user through the “Slider” of the in-
terface located in the upper left.

This is a great advantage because it is possible to change the grade of pixelation that interests us
through the editor or the Script itself. However, it is not a pixelation of the object, it is a pixelation
of the camera, this means that with movement, the pixelation of the scene also changes, a visual
change can be seen in Figures 102 and 103.

Scripts:

This script is a modification of the “Pixelation” Asset. A pixelation has been added that is activated
or deactivated with the “Q” key, increases the pixelation with the “E” key and decreases with the
“R” key.

This script creates the basic movement of the character (W, A, S, D)

Figure 100: Scene with pixelation at 64 (minimum) Figure 101: Scene with pixelation at 512 (maxi-

Figure 103: Pixelation example 2Figure 102: Pixelation example 1

Page 52

Francisco Miguel Morales Sánchez Final Degree Project

4.1.5 - Menu
Once the demos are finished, in order to access the demos in a simple way, a “menu” Scene has
been created to quickly access the different Demos.

4.2 Results
The results observed in the “playable demos” have been very satisfactory. Applying the techniques
in an adequate way leaves very good results.

Example Demo1:

Figure 104: Menu

Figure 105: Demo1 scene

Page 53

Francisco Miguel Morales Sánchez Final Degree Project

Example Demo2:

Example Demo3:

However, there have been two problems that must be taken into account when performing this
technique.

Figure 106: Demo2 scene

Figure 107: Demo3 scene

Page 54

Francisco Miguel Morales Sánchez Final Degree Project

4.2.1- Scenarios
In this project we wanted to make a transformation from 3D to 2D, which has been achieved with
characters but has not been achieved with scenarios, this is because 2D backgrounds are essentia-
lly different from 3D backgrounds. for example:

2D Background

3D Background

The problem encountered is that a 2D background (Figure 108) is prepared to move on the X and
Y axes, while 3D background (Figure 109) have depth, being able to move on the Z axis, this im-
plies that a 2D background cannot be created from a 3D background.

Figure 108: 2D Background Example

Figure 109: 3D Background Example

Page 55

Francisco Miguel Morales Sánchez Final Degree Project

4.2.2- Non-human characters
An idea thought for a demo of this project was to make a level only of non-human enemies, but
the rigging problem was found, because Mixamo only admits human characters.

The points that can be placed in Mixamo to rigge the character are designed for biped characters
(figure 110).

So the only thing that can be done to animate this, is to obtain a modeling on the internet already
rigged or do it ourselves in 3D modeling programs (such as Blender or 3ds Max).

Figure 110: An example to observe that Mixamo’s articulation points are only for humans

Page 56

Francisco Miguel Morales Sánchez Final Degree Project

5 - Conclusions and future work
5.1 - Conclusions
The best part of doing this project has been being able to learn this transformation, it is a skill
that if it had not been for the TFG, surely I would never have studied on my own, that’s why I am
grateful to have done it for this TFG

It is a very powerful technique. Using practically any “human” modeling we can create any pers-
pective or angle that we want, so if we want to make a 2D video game and our skills specialize in
3D, it is a powerful technique. This was one of the reasons why the idea about this project started.
Also, with enough imagination, you can apply different uses that are probably not explored in this
TFG.

It is also applicable to 3D games that are created to be 3D, but you want to remake it (re-create
the game) in 2D, in this way you can reuse what has already been created to give another gaming
experience.

It is true that it is not a technique that will be used in all the games that a video game developer
will create, but as we have seen in this project, it is possible to create a video game based on this
technique, as did “Dead cells” (game visually based on this technique).
It is also possible that if a 2D video game is being developed, even if spriteSheets are used, some
objects or enemies will be easier to do with this technique and with the same result.

A problem found has been time, there are 4 demos, the most developed has been Demo2 (and still
wanted to expand more), this is because with this technique, different uses can be investigated and
created. The idea of this project was to test some of these. This is a problem considering the time,
because you cannot create an entire video game for everything you want to try. However, this
same reason has served to use this TFG as an instrument to learn these different options

5.2 - Future Work
As the project progressed, new ideas emerged to do in each “Demo” and how to apply it to com-
plete video games. It is exciting to think about this and want to apply it. In the future, video games
with these polished characteristics will undoubtedly be created, to give the best possible game
feeling.

Page 57

Francisco Miguel Morales Sánchez Final Degree Project

Bibliography:
Normal maps light
https://www.youtube.com/watch?v=VDcWSEs856k
https://www.youtube.com/watch?v=mcTnoGTWkm4

Rig models with Mixamo
https://www.youtube.com/watch?v=0N4gtmDANKo

Import in Blender the Mixamo animation
https://www.youtube.com/watch?v=3ZeoZl5pvq0

Multiple animations from Mixamo
https://www.youtube.com/watch?v=sFkGcHxRsqg

TILEMAPS in Unity
https://www.youtube.com/watch?v=ryISV_nH8qw

ColorMap in Shading
https://www.youtube.com/watch?v=semEVhy5t6U

Use compositing
https://www.youtube.com/watch?v=cLnyKRfBFsQ

3D to 2D pixel in-depth Blender Tutorial
https://www.youtube.com/watch?v=vIKJ1AqfI0Q

Lighting in Blender
https://www.youtube.com/watch?v=Ycz1wQY_7KI

Use of TexturePacker
https://www.youtube.com/watch?v=5cP91980VEE

Shake Effect in Unity
https://www.youtube.com/watch?v=kzHHAdvVkto

Page 58

Francisco Miguel Morales Sánchez Final Degree Project

Modeling Pages:
https://clara.io/
https://free3d.com/
https://sketchfab.com/feed
https://www.turbosquid.com/
https://www.cgtrader.com/free-3d-models

DEMO1:
Character asset:
https://free3d.com/3d-model/martial-arts-man-34523.html

Background asset:
https://assetstore.unity.com/packages/2d/characters/gothicvania-town-101407

DEMO2:
Character asset:
https://www.turbosquid.com/es/3d-models/free-sample-fighter-3d-model/798902

Enemy asset:
https://www.turbosquid.com/es/3d-models/free-fa-59a-mako-3d-model/1078468

Explosion asset:
https://opengameart.org/content/2d-explosion-animations-frame-by-frame

Background asset:
https://opengameart.org/content/space-backgrounds-0

Músic asset:
https://assetstore.unity.com/packages/audio/music/loop-music-free-111896

Explosions sound enemy
https://assetstore.unity.com/packages/audio/sound-fx/retro-sound-effects-22153
Enemy sound: “explosion_05”

Page 59

Francisco Miguel Morales Sánchez Final Degree Project

Shoot player sound
https://assetstore.unity.com/packages/audio/sound-fx/weapons/ultra-sci-fi-game-
audio-weapons-pack-vol-1-113047
“WPN_SCI-FI_FIRE_06.wav”

Shoot enemy sound:
https://www.freesfx.co.uk/sfx/-space-sci-fi-science-fiction-ship-craft-vessel-figh-
ter-weapons-lasers-laser-shooting-fire-firing-battle-war-ambience-background

DEMO3:

The asset:
https://assetstore.unity.com/packages/2d/textures-materials/free-pixel-art-fo-
rest-133112

Golem asset:
https://www.turbosquid.com/es/3d-models/rigged-animation-3d-1488804

Soldier asset:
https://www.turbosquid.com/es/3d-models/free-3ds-model-rigged/1087579

wolf asset:
https://free3d.com/3d-model/wolf-rigged-and-game-ready-42808.html

DEMO4:

Camera pixelation:
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/pixelation-65554

Scene:
https://assetstore.unity.com/packages/3d/props/furniture/voxel-functional-furnitu-
re-free-134903

Results - Scenarios:
Background 2D
https://www.gameart2d.com/platformer-game-tileset-9.html

Background 3D
https://www.artstation.com/artwork/ZZg20

