
Developing a distributed, customizable
multiplayer card game

Jose Angel Buforn Tena

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 5, 2020

Supervised by: Manuel Francisco Dolz Zaragozá

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my parents who always had care of me.

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Manuel Francisco
Dolz Zaragozá, PhD, for his help and being there whenever I needed, even when outside
his working hours.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

To all the people in Unity and Bolt forums trying to help with all the things where
I got stuck.

Also, the ones in the Bolt’s discord server [10], including some of the authors of
the multiplayer system whose bugs reported were fixed or given workarounds for this
project.

I would like to thank all my classmates, this was the best class from all I was,
everybody helping others and no signs of belligerence in all the years. That was amazing.

I would also thank all my family for supporting me from the distance, these has been
hard days.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document is the technical proposal of the Bachelor’s Degree in Video Game Design
and Development Thesis. In the thesis, will be developed a video game that emulates a
real card game in most of its aspects, including different screens for each of the places
where the cards should be.

The application stands out for the interaction between them wirelessly in real time
emulating a realistic interaction between the players.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2
1.4 Related subjects . 2

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 9

3 System Analysis and Design 11
3.1 Requirement Analysis . 11
3.2 System Design . 16
3.3 System Architecture . 20
3.4 Interface Design . 21

4 Work Development and Results 23
4.1 Work Development . 23
4.2 Results . 36

5 Conclusions and Future Work 37
5.1 Conclusions . 37
5.2 Future work . 38

Bibliography 39

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2
1.4 Related subjects . 2

In this chapter we provide the motivation and the initial conditions taken to carry
out this project. Also, we enumerate some subjects of the Video Game Design and
Development degree which have been coursed and that are closely related to the project
topic.

1.1 Work Motivation

In the degree there are a lot of topics that have been covered, but there was an important
gap to fill: online multiplayer games. This project is intended to cover these gaps.

Also in the vast market of card games there cannot be found any online custom card
game, and almost all of them are role playing games, with predefined card positions and
with only one game supported. On the other hand, there are games where the players
can do anything and create their own games, but they are all offline.

With these objectives in mind this final degree work lies in to make a custom card
game where the players can see the same features, with the card movement synced in
real time, like if it was a real game.

1

2 Introduction

1.2 Objectives
The objectives fixed for this multiplayer card game are:

• To use and learn development techniques and game programming on connected
devices.

• Multiplayer support.

• To get two or more devices (PC, tablet, smartphone) communicate with each other
for the completion of the game.

• To create a new original way to play by using multiple synchronized screens to
enrich the game experience.

1.3 Environment and Initial State
The hardware used for this project is a computer with Microsoft Windows 7 and an
internet connection. We will also test the game with an Android device for having dif-
ferent devices to test it.

All the work is developed with the universal game engine Unity. As the internal
multiplayer API (UNET) is deprecated [8], the Photon Bolt [5] plugin will be used
instead.

The Photon Bolt is a framework for developing multiplayer games. It is prepared to
make games where there is an avatar controlled by the player [6], so it is needed to learn
it in depth and to adapt the mechanics to make a project like this.

For the art aspect, the program used to make and modify all the images is Gimp [11].

The project will be publicly available on Github [1] with a MIT License. The MIT
License can be described as: "A short and simple permissive license with conditions only
requiring preservation of copyright and license notices. Licensed works, modifications,
and larger works may be distributed under different terms and without source code".

1.4 Related subjects
This project covers some of the topics that have been learnt in the following list of
subjectes from the Video Game Design and Development degree:

• VJ1203 - Programming I (Computing)

• VJ1204 - Artistic Expression

• VJ1208 - Programming II (Computing)

1.4. Related subjects 3

• VJ1215 - Algorithms and Data Structures

• VJ1227 - Game Engines

• VJ1228 - Multiplayer Systems and Networks

• VJ1229 - Mobile Device Applications

• VJ1236 - Sound Production and Realization Techniques

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 9

In this chapter, we provide the initial planning of the project, i.e., before the start of
any project task along with the resources for starting this project. With this in mind,
we also perform an estimation of the project costs.

2.1 Planning
The estimating time of all the tasks and subtasks is made based on the projects done
during the degree. For the project planning, the tasks have been distributed in five big
parts:

• Designing the application(s).

• Creating the art involved in the game.

• Creating the audio for the game.

• Programming the whole application.

• Preparing the documentation.

As can be seen in Figure 2.1, there is not a section for preparing the documentation
because that is done simultaneously with other project tasks.

5

6 Planning and resources evaluation

The project tasks have been distributed in the following way:

• Art: The first week is dedicated to make and gather the game arts. Regarding the
menu, some icons and backgrounds are made with Gimp.
With respect to the card art, the Spanish variant for the front cards is taken
from the GNU operating system given that the arts have enough quality for the
game and they can be freely used due to its GPL license. They have been slightly
retouched for matching the game sizes via Gimp.

• Design: The applications were designed as two different ones in the beginning
(client and server), but this is very unpractical for the users and it was changed
for being only one.
Also, the design of the applications should be almost identical for the user, and it
will take two weeks for all the design to be finished.

• Audio: This is planned to do in one whole week, make a pair of simple seamless
pieces can be easily done in this period of time.

• Programming: This is the most time and resources consuming for this project tak-
ing 3 months to complete it. It alone takes double time than the rest of the parts.
So it is divided in more task and sub-task than the others.

Programming an online multiplayer game is divided in the server application and
the client application. In this project there is no online server, the server is one
of the applications connected. Because of this, the server and the client must be
done in parallel, this should take two and a half months for this.
In the programming part, there will be three days to make the software design,
and two weeks for the game base code, this will be made for the server application
and for the client at a time.
One month and one week for the game rules with the player turns, deck and game
zones. This will be done only with the server part, the client will obey this rules
because the authorization movement of the cards.
Ten days for creating the network and to implement the communication protocol
among applications. It will also be needed two more weeks to make the application
handle the network events that allow the applications to synchronize.
Finally, the remaining two weeks will be dedicated to create all the animations and
effects needed for the game.

These tasks have been accordingly described in a Gantt chart (made via GanttPro-
ject) that shapes the schedule (see Figure 2.2). In it, it can be seen four big sections:
design, art, programming and audio. The programming part is done simultaneously on
both parts, the server and the client. There is no sense to make only one part and expect
it will work with the other tasks pending to be done.

2.1. Planning 7

Figure 2.1: Planning table

8 Planning and resources evaluation

Figure 2.2: Gantt chart.

2.2. Resource Evaluation 9

2.2 Resource Evaluation
The costs of the work that is going to be undertaken must be estimated in advance. The
human and equipment costs must be quantified so that the work can be assessed and so
that, in a real case, the economic viability of the work could be evaluated.

The average salary of a junior programmer in different companies in the industry is
23.480¤/year [7], so this project made in 300 hours should cost 3.355¤ plus taxes in
salaries.

Also there are some hardware and software to consider:

• Hardware:
One computer, it does not need to be especially powerful, the app’s graphical part
is rather simple. The computer can be used for other projects too, but it is needed.
Despite this, a computer is needed and it would cost 600¤.

• Software:
Unity is free if the company’s revenue in the last 12 months are $100k or less, if
the revenue is between $100k and $200k it costs $40 per month (+177¤ for this
project), and if the revenue is greater than $200k the price is $150 per month
(+664¤ for this project).
The IDE used is Rider, it costs $349 the first year (310¤ for this project), but
Microsoft’s Visual Studio can be used too and it is free.

The total amount for this project will be 4.442¤ including all the software, hardware
and salary.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 11
3.2 System Design . 16
3.3 System Architecture . 20
3.4 Interface Design . 21

In this chapter we provide the requirements analysis, the system design and archi-
tecture of the proposed game, as well as, its interface design.

3.1 Requirement Analysis

3.1.1 Functional Requirements

A functional requirement defines a function of the system that is going to be developed.
This function is described as a set of inputs, its behavior, and its outputs. The functional
requirements can be: calculations, technical details, data manipulations and processes,
and any other specific functionality that defines what a system is supposed to achieve.

The functional requirements are:

• When the user requests information about the assets available, all the assets must
be returned divided into four categories: States, Objects, Commands and Events
(see Table 3.1).

• When the user right-clicks on an empty zone in the bolt assets window and selects
new asset’s type, a new one of that category with the default name will be created
(see Table 3.2).

11

12 System Analysis and Design

• When the user holds down the Ctrl+button, a little red “x” will pop up next to
all assets and properties allowing to delete them (see Table 3.3).

• The system will compile the assets when the user clicks the little green arrow icon
in the Bolt Assets window or through the Bolt/Compile Assembly menu option
(see Table 3.4).

• When the user clicks the “Server” button and starts a new game being the server,
a new game room will be created and the player joins in automatically. The scene
changes to the defined game (see Table 3.5).

• When the user request information about the game rooms available, they will be
returned (see Table 3.6).

• When the user clicks on the button of the game room ID, the player will join that
game room and the scene changes automatically where the server is (see Table 3.7).

• When the player drags a card across the board, the system will make the card
move equally in all devices (see Table 3.8).

• When the player double taps where a card is, the card will change from face down
to face up or vice versa (see Table 3.9).

• When the user requests the options available, they will be presented to them (see
Table 3.10).

• The user can select the style of the buttons used in the menu (see Table 3.11).

• The user can select the back face of the cards used in the game (see Table 3.12).

• The user can change the volume of the music used in the game (see Table 3.13).

• The system will save automatically the options selected by the user (see Table 3.14).

• The system will load automatically the options saved, if they do not exist, a random
ones will be used (see Table 3.15).

Input: Available assets query

Output: Available assets

The user requests the bolt assets available. When the user requests information
about the assets available, all the assets must be returned divided in into four
categories: States, Objects, Commands and Events.

Table 3.1: Functional requirement «Bolt assets query»

3.1. Requirement Analysis 13

Input: The user add a new bolt asset.

Output: New asset created.

The user right click on an empty zone in the bolt assets window and select
new asset’s type and a new one of that category with the default name will be
created.

Table 3.2: Functional requirement «New bolt asset»

Input: Remove bolt asset.

Output: Selected asset deleted.

If the user holds down the Ctrl button, a little red x will pop up next to all
assets and properties allowing to delete them.

Table 3.3: Functional requirement «The user deletes a bolt asset»

Input: The user compiles all the assets.

Output: A bolt.dll file will be created with all the assets compiled.

To make Bolt aware of the assets it is needed to compile them, this can be done
either through the Bolt/Compile Assembly menu option or with the little green
arrow icon in the Bolt Assets window. They both do the exact same thing.

Table 3.4: Functional requirement «Compile assets»

Input: In the game, the user creates a game server.

Output: A game room is created and the user joins in.

In the game, the player clicks the "Server" button and starts a new game being
the server, a new game room will be created and the player joins in. The scene
changes to the defined game. Then they wait for start the game while other
players can join in.

Table 3.5: Functional requirement «Create game server»

Input: Available game servers.

Output: Game rooms for this game.

Each game has its own game rooms, when the player requests information about
the game rooms available, this will be returned.

Table 3.6: Functional requirement «Game server query»

14 System Analysis and Design

Input: In the game, the user joins a created game.

Output: The user joins a game room.

In the game, the player clicks the button with the room id and joins in, the
scene changes to the same where the server is.

Table 3.7: Functional requirement «Join game»

Input: In the game, the player drags a card.

Output: The selected card moves in all devices.

In the game, the player can drag a card across the board and the card moves
equally in all devices.

Table 3.8: Functional requirement «Card movement»

Input: In the game, the player double taps a card.

Output: The selected card rotates face down or face up.

In the game, the player can turn down or up the cards by double tapping them.
If it is face down it will turn face up, and if it is face up it will turn face down

Table 3.9: Functional requirement «Card rotation»

Input: In the game, available options.

Output: The options available.

In the game, the player can request the options available and they will be
presented to them

Table 3.10: Functional requirement «Game options»

Input: In the game, button background selection.

Output: Button background selected.

In the game, the player can change the buttons style used

Table 3.11: Functional requirement «Game buttons»

3.1. Requirement Analysis 15

Input: In the game, card game back.

Output: Back card selected.

In the game, the player can replace the design on the reverse of the cards with
alternate designs

Table 3.12: Functional requirement «Game cards back»

Input: In the game, volume.

Output: Music volume changed.

In the game, the player has a slider for change the music volume or deactivate
it completely. The volume changes in real time

Table 3.13: Functional requirement «Game music volume»

Input: None.

Output: Saved options.

In the game, the system will save the options selected by the user automatically
whenever they are set.

Table 3.14: Functional requirement «Game save user options»

3.1.2 Non-functional Requirements

Non-functional requirements express how the system should be in overall, not what will
be capable of. Some of them are:

• The system needs to be able to connect to the matchmaking server and the other
devices.

• The network entities will be controlled only by the user who has authority over
them.

• The network entities need to be updated in real time.

Input: In the game, volume.

Output: Music volume changed.

In the game, the options saved will be loaded automatically every time the
application starts without the interaction of the user.

Table 3.15: Functional requirement «Game load user options»

16 System Analysis and Design

Figure 3.1: Bolt assets window

• If the network is unreliable, the system has to predict the entities movement
smoothly.

• The application has to run in multiple operating systems: Linux, Windows, Mac
OS X and Android.

3.2 System Design
The interaction with the system, activity diagram and class structure are represented
with UML diagrams. These diagrams are made using the Dia application [2]. The system
can be represented in different ways depending its behaviour, because of that there are
different diagrams for each kind of representation:

• The application flowchart represents how the game is conducted (see Figure 3.2
and Figure 3.3). Two different flowcharts are made because there are two sides,
the server and the client. They differ in the create the game or join a game part.

3.2. System Design 17

When the application starts, it shows the main menu. From the menu, the user
can choose to go to the options or start a game (for the server) or join a game (for
the client). In the options, it is possible to choose the sound volume, card back
faces and the button style in the menu. When starting a game as a server, it is
needed to select the game you want to play, and then, the client can join the game
created. After that, the game can start. The client can not select the game to
play, when joining a game it is selected the one the server player selected.

Figure 3.2: Server flowchart.

• The use case diagram (see Figure 3.4) represents in a UML diagram how the user
interacts with the game.

The user can select to create a game room for playing, this implies other users can
join your game. Creating a game room also implies a game start. Starting a game
creates the cards and moves them to form a pile of cards. The player can also
move any card on their own. It is possible for the player to rotate the cards.

The user can join a game room instead of creating one, this will make the user
wait for the server player to start the game.

• The class structure diagram (see Figure 3.5) represents in a UML diagram how
the internal structure is made and its inner relationships.

18 System Analysis and Design

Figure 3.3: Client flowchart.

Figure 3.4: UML case diagram.

3.2. System Design 19

Figure 3.5: Class diagram.

20 System Analysis and Design

• The activity UML diagram describes how the objects are used and the relationship
between the different activities. In the diagram (see Figure 3.6), we can see the
flow in the application since it starts. In the beginning, there is the main menu
where the user can select to be a server for starting a new game, being a client to
join a created game or to go to the options page.

In the options page, the user can select the menu buttons style, the music volume
and the card back faces in game. From the menu, it is possible to create a game,
after this a new game room is created and joined. Now is possible to start a game.
While joining a game as a client, a network search is performed to find the game
rooms available. The client user joins a game room they found and the game starts.

Figure 3.6: Activity Diagram.

3.3 System Architecture

The aspects of the system needed to run this game are:

• A system with a pointing device like a mouse or a touch screen. This is needed to
interact with the menu buttons and with the cards for moving them.

3.4. Interface Design 21

• Internet connection. Be able to connect to the server and preferably be able to do
p2p connections. The connection between the devices is done through internet via
a server, and then via p2p or with the server if it is not possible to be established
via p2p.

• The minimum OS requirements for playing any Unity application are Android 4.3
or up, Windows 7 SP1 or up, macOS Sierra 10.12.6+, almost all Linux distributions
with kernel 4.4+ (like Ubuntu 16.04) [14].

3.4 Interface Design
The game has a rather simple interface, the graphical elements do not have to interfere
with the gameplay. There are tree main interface designs:

The main menu has the game logo on top and three buttons for accessing the different
sections (see Figure 3.7).

Figure 3.7: Main Menu Design

In the options section (see Figure 3.8), on the top we can see the different button
styles to select the one that has to be used, a preview of each one available are displayed
there.

In the middle, there is a slider controlling the volume of the music. On the left it
will be muted and on the right it will be loud. The regulation is almost continuous.

The different card back faces are on the bottom, there is possible to select the art
that will be used in the game.

The in-game interface (see Figure 3.9) has to be the most simple and bare possible,
but there are some elements that need to be there, like a gear on the top right corner

22 System Analysis and Design

Figure 3.8: Options Menu Design

to accessing the options in the game. Also, there is a button to move the camera and
change the view from the player’s cards to the cards in common or in the table, this
button will be on the top left corner. On the top mid will be the score if the game has
one.

Figure 3.9: Game Interface Design

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 23
4.2 Results . 36

In this chapter is where all the developed work is explained. The work in a video
game has different aspects to cover, these aspects are described below. Also, there is an
explanation of the result achieved in this project.

4.1 Work Development

4.1.1 Art

Here we can distinguish two parts, the menu and the Heads Up Display (HUD [15])
icons, and the card frames:

• Icons: The icons in the menu must be simple and easily understandable by anyone
just by looking at them. A simple cross says the same than "click here for close
this" and does not overload the screen (see Figure 4.1). Familiar icons are used to
accomplish common tasks.

Figure 4.1: Icons.

23

24 Work Development and Results

The buttons have a selectable style, all of them not too dark so the black characters
on the buttons are easily read.

• Card faces: The cards have two sides; on the front we have the art, and it can
be the spanish style with 4 suits and 10-12 cards per suit, or the french style with
4 suits and 10-13 cards per suit (see Figure 4.2).

Figure 4.2: Different front faces.

On the back face there are some different card frames (see Figure 4.3), the one
desired can be selected in the options menu.

Figure 4.3: Different back faces.

4.1.2 Design

The application needs a design, it was made following the flowcharts shown in the last
chapter (see Figure 3.2, figure 3.3 and figure 3.9).

The menu has the aspect planned, the logo on top and three buttons for each one of
the operations (see Figure 4.4).

4.1. Work Development 25

Figure 4.4: Final version of the main menu.

The options menu has three different zones: on the top is where the button style is
selected, in the mid there is a slider for control the music volume, and on the bottom is
the back card image selection (see Figure 4.5).

Figure 4.5: Final version of the options menu.

26 Work Development and Results

4.1.3 User Experience

As Celia Hodent says in her study [9], the user experience (UX) entails a person’s per-
ceptions and interactions with a product or software (such as a video game) and the
satisfaction and emotions elicited via this interaction. UX overall refers to an overarch-
ing discipline focused on the evaluation and improvement of users’ experience of a given
product or software in development.

The user interface and the user experience are closely linked. This game is a puzzle-
like kind of game, the user interface needs to be simple for the user being focused in the
game.

This game tries to emulate a real-life game. The most important aspect of the
emotional game design is the "game feel", the tactile sensation of interacting with the
virtual cards. The feeling of moving the cards is smooth and natural while dragging
them (see Figure 4.6).

The heuristics developed in this game take into account the limitations of the human
brain in perception, attention, and memory, being the interface and the controls the
most simple possible, or if it has some doubt on how to do anything, the first guess from
the user is the right one.

Figure 4.6: Game feel. Moving a card.

4.1. Work Development 27

4.1.4 Programming

This is the part what took the most of the work, and the most extensive one. For
convenience, it is going to be split into parts below.

Menu

The menu part is done with the GUILayout class in Unity as it is a very efficient way
to implement this feature [12].

Indeed, this feature permits us to use the application as a server or as a client by
doing the right button labelling (see Figure 4.7). In the server part, there is a selection
of games available, and after choosing one, a game room is created and the game waits
for the clients to connect (see Figure 4.8). In the client part, there is a list of games
created where the player can join the room to play in it (see Figure 4.9).

Figure 4.7: Main menu.

In both parts, server and client, there will be a temporal information box that tells
how many people is connected, including some information about the last connected or
disconnected client (see Figure 4.8).

It is also implemented a section for the options where the user can set the dif-
ferent customizations, like the button style, card backfaces or the music volume (see

28 Work Development and Results

Figure 4.8: Server connecting.

Figure 4.9: Client connecting.

4.1. Work Development 29

Figure 4.10). These options are locally saved when the user goes back to the main menu
and loaded when the application starts (if they exist). This is done using the Unity
PlayerPrefs [13] because it has support for multiple platforms in an easy way to add the
saved options for all the players in the games.

Figure 4.10: Options.

Network

When an object is needed to be replicated over the network, we need something called
assets. The assets are pre-compiled in the editor and, after doing it, that network entity
can be added to the game objects.

When compiling, Bolt will go through all of the prefabs and other Bolt-related assets
and compile a very efficient network protocol for them, which is then stored inside of
the bolt.user.dll assembly which you can find in Assets/Photon/PhotonBolt/assemblies
folder.

Assets are broken down into four categories:

• States: these are the meat of most games built, they allow the programmer to
define features like the player name, health, transform, animation parameters, etc.
(see Figure 4.11).

30 Work Development and Results

Figure 4.11: State window.

• Objects: objects are a way of logically grouping several properties in the same
way a programmer does with a C# class. As an example, if an inventory has to be
implemented for a player in an RPG game, an Object called Item can be created
and assign it properties like ItemId, Durability, etc. Then, the State creates an
array of Item objects (see Figure 4.12).

• Commands: these are used exclusively for the authoritative features and are used
to encapsulate user input and the result of applying the input to a character in
the game (see Figure 4.13).

• Events: these are simply messages. Events allow the programmer to much easier
decouple the different parts of the game from each other, as it can have several
listeners to a single event active at the same time (see Figure 4.14).

4.1. Work Development 31

Figure 4.12: Object window.

Figure 4.13: Commands window.

32 Work Development and Results

Figure 4.14: Events window.

There is another particular kind of script, the NetworkCallbacks, it inherits from
GlobalEventListener, and it is not attached to any game object. It is used to handle
events over the network like when someone is connected or when the scene is fully
loaded in all the clients. It can be accessed only from the server or from a client, this is
the only script that specifies the behaviour from the server or the client differently.

Server callbacks in C#

1 using UnityEngine;

2 using System.Collections;

3
4 [BoltGlobalBehaviour(BoltNetworkModes.Server)]

5 public class NetworkCallbacksServer : Bolt.GlobalEventListener

6 {

7 private int numeroConexiones = 0;

8
9 public override void SceneLoadLocalDone(string scene)

10 {

11 if (scene == "Juego Libre")

12 GameObject.FindGameObjectWithTag("CreaCartas").GetComponent<CreaCartas>().CrearCartas();

13
14 if (scene == "Menu")

15 BoltNetwork.Shutdown();

16 }

17
18 public override void Connected(BoltConnection connection)

19 {

20 var log = ConexionesEvent.Create();

21 log.Mensaje = string.Format("Conectado {0}", connection.RemoteEndPoint);

22 log.NumeroConexiones = ++numeroConexiones;

23 Debug.LogFormat("Nueva conexión desde {0}, ahora hay {1} conexiones", connection.RemoteEndPoint,

24 numeroConexiones);

25 log.Send();

26
27 if (FindObjectOfType<GuiIngame>().estado != GuiIngame.Estado.ServidorEsperandoEmpezar)

28 connection.Disconnect();

29 }

30 }

4.1. Work Development 33

The cards have almost all kind of assets included:

• They have States. A state is needed to keep the position and other parameters
like the suit, value... synced.

• They have Events. We need an event to send the card to another place, or to flip
it. A simple message to all the other clients will do this, we do not need to waste
network bandwidth for this.

• In the events, we can choose two kinds of senders, global sender or entity sender.
The global senders are received by all the listeners, and the entity sender is received
only by the synced entity on the network. Also, in this kind of senders, it is possible
to choose who can do the event: the controller, the owner, nobody or everyone.

• The events in the cards trigger a coroutine for doing the animation. This is done
like that so it does not interfere with other actions done by the local player.

Coroutine for moving cards in C#

1 /* Coroutine in C# */

2
3 IEnumerator Moviendome() {

4 trasladando = true;

5 Vector3 v3inicio = transform.position;

6 float TiempoInicio = Time.time;

7 float tiempoRelativo = Time.time - TiempoInicio;

8
9 while (tiempoRelativo <= tiempoTranslacion) {

10 tiempoRelativo = Time.time - TiempoInicio;

11 transform.position =

12 Vector3.Lerp (v3inicio, posicionAMover, tiempoRelativo/tiempoTranslacion);

13 yield return 1;

14 }

15 trasladando = false;

16 }

On the other hand, we also work with commands. The commands are meant to
handle inputs from the user and the result of that input. However, this only works for
the server or for the client that controls that entity and we want to make everyone be
able to move all the cards, so we need to request the authority of the entity every time
we are going to do a command and we do not have it [3]. This can be done with an entity
event sender to the server. Having the authority, the server accepts the server simulation
for this entity. See Figure 4.15 for a visual flow of what happens when someone tries to
move a card.

While having control of the entity it is possible to drag the card across the board
and replicate the movement in all the other devices like magic. With commands, we
implement client-side prediction and correction of the wrong prediction.

34 Work Development and Results

Figure 4.15: Card movement request flow.

Since the movement does not have to be abrupt and we are facing the asynchronous
network, also there is a smoothing algorithm made by interpolating the initial position
given and the final one.

The network callbacks are used in this game for keeping a record of connected de-
vices. When someone connects or disconnects, it is sent an event to this class, it sends
an event over the network informing the connection and shows a temporal message on
the screen stating the new connection or disconnection [4]. This mechanism is also used
for spawning local-only entities, like the camera or the player object.

The local camera and the player object are special game objects, there is only one
at each client and it is not synced with the other clients. By having a different one
for each game, we can not just throw the game object to the scene, it will be all the
same in all the devices. The game object needs to have a script which inherits from
BoltSingletonPrefab, so the network callback can know what game object to instantiate
(remember it is not attached to any game object and it is not possible to a serialize field

4.1. Work Development 35

or public variable here).

The options in-game are accessed via a button in the top right corner, it is shaped
like a gear, a universally understandable icon for options. Here we have the same options
that are shown in the main menu: change button style, card back faces, and the volume
of the music.

There is only one difference here, the button for going back to the main menu is
replaced by one to exit the current game (see Figure 4.16).

Figure 4.16: Ingame game options.

4.1.5 Audio

The music in video games does not have the same structure as the ones in the movies or
the usual songs we listen to. Usually, in the music, there is a beginning or introduction,
something in the middle like the theme and maybe repeated once with a different tone,
and the end or coda where there is a conclusion.

In video games the beginning is the same, it is started playing when the game starts
or when the user does something, but there is not an end, the game can take longer or
shorter depending the actions taken by the user so it is needed to loop the middle part
indefinitely till the game finishes. The middle part needs to fit seamlessly from the end
to the beginning so there is not any gap or cut while playing (see Figure 4.17).

36 Work Development and Results

Figure 4.17: Music basic structure.

If there is a need for changing the music for something more exciting or relaxed, it
is needed to do the music in layers and only activate the needed ones.

4.2 Results
The initial schedule was quite inaccurate, as the implementation of the network protocol
and the objects’ synchronization were very time-consuming tasks, which mostly took the
same time as the implementation of all the remaining features of the game.

The menu (the first module it was made) is a great work of customization with the
different styles of the buttons, card faces, auto-save and load feature for the user options,
etc. However, in the end, it was possible to finish a playable multiplayer game, not just
a proof of concept. There is some future work to extend this game with new features,
such as a custom real game (see Figure 4.18).

Figure 4.18: Game while playing.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 37
5.2 Future work . 38

5.1 Conclusions

We chose to create this video game as we wanted to learn how online multiplayer games
work, not only by following a tutorial or by recycling code done by others, as all the
multiplayer examples found have an avatar for the local player, that only the local player
can control. Making this game means it is needed to understand how the inner network
works and adapt it to the peculiarities of this card game.

At first the implementation of the game features were coded quite flawlessly, till the
networking part appeared. A simple movement did not work on all devices and the
documentation available on the internet was not sufficient to debug the game each time
a problem appeared, also learning curve was very steep at the beginning. Indeed this
task was very frustrating, and it took lots of days trying to implement a feature that at
first seemed much simpler. Also when we did some progress, we were unable to show
the advances to the tutor because they were closely related to the code, and did no show
anything visible.

The most important thing we learned through this project is: online multiplayer is
not easy to implement and it takes the same time than programming all the rest, so if
it is needed to add online multiplayer to a game, it will take double time to develop.

37

38 Conclusions and Future Work

The code is hosted on github [1] publicly available. Everybody can check it and see
how it is made.

5.2 Future work
This project can be extended in the following ways, for example:

• New games can be added as modules, each one with its own rules.

• Voice chat, so the players can communicate just talking.

• Server migration. If the server disconnects, another client assumes the server role
and the game does not need to finish.

Bibliography

[1] Jose Angel Buforn. Project repository. https://github.com/JoseAngelB/TFG2020.
Accessed: 2020-02-28.

[2] Svitozar Cherepii. Dia programm. http://live.gnome.org/Dia. Accessed: 2020-02-
28.

[3] Exit Games. Bolt entity ownership. https://doc.photonengine.com/en-us/bolt/

current/in-depth/entity-ownership. Accessed: 2020-02-28.

[4] Exit Games. Bolt network callbacks. https://doc.photonengine.com/en-us/bolt/

current/reference/state-callbacks. Accessed: 2020-02-28.

[5] Exit Games. Photon engine. https://www.photonengine.com/en-us/Photon. Ac-
cessed: 2020-02-28.

[6] Exit Games. Photon engine, creating a game. https://doc.photonengine.

com/en-us/bolt/current/demos-and-tutorials/advanced-tutorial/chapter-1. Ac-
cessed: 2020-02-28.

[7] Inc. Glassdoor. Average junior programmer salaries. https://www.glassdoor.com/

Salaries/junior-programmer-salary-SRCH_KO0,17.htm. Accessed: 2020-02-28.

[8] Don Glover. Unet deprecation faq. https://support.unity3d.com/hc/en-us/

articles/360001252086-UNet-Deprecation-FAQ. Accessed: 2020-02-28.

[9] Celia Hodent. Cognitive Psychology Applied to User Experience in Video Games,
pages 1–6. Springer International Publishing, Cham, 2016.

[10] Discord Inc. Bolt discord server. https://discord.gg/0ya6ZpOvnShSCtbb. Accessed:
2020-02-28.

[11] The GIMP Team. Gimp homepage. https://www.gimp.org/. Accessed: 2020-02-28.

[12] Unity Technologies. Guilayout reference. https : / / docs . unity3d . com /

ScriptReference/GUILayout.html. Accessed: 2020-02-28.

[13] Unity Technologies. Playerprefs reference. https : / / docs . unity3d . com /

ScriptReference/PlayerPrefs.html. Accessed: 2020-02-28.

39

https://github.com/JoseAngelB/TFG2020
http://live.gnome.org/Dia
https://doc.photonengine.com/en-us/bolt/current/in-depth/entity-ownership
https://doc.photonengine.com/en-us/bolt/current/in-depth/entity-ownership
https://doc.photonengine.com/en-us/bolt/current/reference/state-callbacks
https://doc.photonengine.com/en-us/bolt/current/reference/state-callbacks
https://www.photonengine.com/en-us/Photon
https://doc.photonengine.com/en-us/bolt/current/demos-and-tutorials/advanced-tutorial/chapter-1
https://doc.photonengine.com/en-us/bolt/current/demos-and-tutorials/advanced-tutorial/chapter-1
https://www.glassdoor.com/Salaries/junior-programmer-salary-SRCH_KO0,17.htm
https://www.glassdoor.com/Salaries/junior-programmer-salary-SRCH_KO0,17.htm
https://support.unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ
https://support.unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ
https://discord.gg/0ya6ZpOvnShSCtbb
https://www.gimp.org/
https://docs.unity3d.com/ScriptReference/GUILayout.html
https://docs.unity3d.com/ScriptReference/GUILayout.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html

40 Bibliography

[14] Unity Technologies. Unity requirements. https://docs.unity3d.com/Manual/

system-requirements.html. Accessed: 2020-02-28.

[15] Wikipedia. Heads-up display (video games). https://en.wikipedia.org/wiki/HUD_
(video_gaming). Accessed: 2020-02-28.

https://docs.unity3d.com/Manual/system-requirements.html
https://docs.unity3d.com/Manual/system-requirements.html
https://en.wikipedia.org/wiki/HUD_(video_gaming)
https://en.wikipedia.org/wiki/HUD_(video_gaming)

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State
	Related subjects

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

