
1

DMRlib: Easy-coding and Efficient Resource
Management for Job Malleability

Sergio Iserte, Rafael Mayo, Enrique S. Quintana-Ortí and Antonio J. Peña

Abstract—Process malleability has proved to have a highly positive impact on the resource utilization and global productivity in data
centers compared with the conventional static resource allocation policy. However, the non-negligible additional development effort this
solution imposes has constrained its adoption by the scientific programming community. In this work, we present DMRlib, a library
designed to offer the global advantages of process malleability while providing a minimalist MPI-like syntax. The library includes a
series of predefined communication patterns that greatly ease the development of malleable applications. In addition, we deploy
several scenarios to demonstrate the positive impact of process malleability featuring different scalability patterns. Concretely, we study
two job submission modes (rigid and moldable) in order to identify the best-case scenarios for malleability using metrics such as
resource allocation rate, completed jobs per second, and energy consumption. The experiments prove that our elastic approach may
improve global throughput by a factor higher than 3x compared to the traditional workloads of non-malleable jobs.

Index Terms—Processes Reconfiguration, MPI Malleability, Job Elastic Resize, Dynamic Reallocation of Resources,
Productivity-Aware Computation

F

1 INTRODUCTION

Traditionally, parallel applications running in high-
performance computing (HPC) facilities allocate all re-
sources during their entire execution period. That would
not be a remarkable issue if scaling up a job reduced its
completion time, enabling those resources to become avail-
able earlier for other jobs. In practice, however, the purpose
of scaling up a job is very likely to compute over a larger
problem, which will need a longer time to terminate [1] and,
consequently, take longer to release its resources. Hence, far
from solving the problem earlier (strong scaling), the job will
need additional resources during a longer time in order to
solve the new problem size (weak scaling). In this scenario, a
few jobs may monopolize a large number of resources most
of the time, preventing other jobs from being initiated.

In this work, malleability refers to the specific case of
elasticity in the number of workers. In this regard, malleable
workloads take care of checking the status of the HPC
facility in terms of available resources. Malleable workloads
are defined as a combination of the following four actors
working together: i) user applications with support for on-
the-fly scale-up/down (process malleability); ii) a parallel
distributed runtime (PDR) responsible for re-scaling the
jobs; iii) a resource management system (RMS) with the nec-
essary logic to reallocate resources considering the cluster
status; and iv) a communication mechanism that allows i)-
iii) to interact in order to perform the job reconfiguration
actions.

The main target of process malleability is iterative appli-
cations since they present clear processes synchronization

• S. Iserte is with the Dept. of Mechanical and Engineering Construction at
Universitat Jaume I (UJI), Spain.

• R. Mayo is with the Dept. of Computer Science and Engineering at UJI.
• E. S. Quintana-Ortí is with Dept. of Computing Engineering at Univer-

sitat Politècnica de València (UPV), Spain.
• A. J. Peña is with the Barcelona Supercomputing Center (BSC).

points where resizes can be easily triggered. Nevertheless,
we can find resizing in different types of applications, such
as master/worker schemes in [2] and [3]. Malleable jobs
can re-scale themselves at execution time by expansion or
shrinkage. Moreover, a system-aware job scheduler handles
workload information, including, among others, resource
utilization or job status. Hence, readjusting the workload
taking into account the cluster status benefits not only the
HPC facility—which may experience an increase in the
number of completed jobs per second (global throughput)
and a higher utilization of resources—but also the end-
users, who may enjoy shorter response (waiting plus exe-
cution) times for their jobs.

However, despite the advantages of job malleability and
a variety of existing tools for this purpose (see Section 2), ap-
plication developers are still reluctant to integrate malleabil-
ity in their codes, mainly because those solutions require
a considerable re-coding effort which may even include
changing the programming paradigm.

This paper presents the dynamic management of re-
sources library (DMRlib), an effort to promote and publicize
the benefits of malleability in production environments (see
Section 3). DMRlib exposes a minimalist set of semantics in
an MPI-like syntax (see Appendix A), which ease malleabil-
ity adoption. Specifically, DMRlib enables those developers
familiar with the MPI programming model to easily inte-
grate malleability mechanisms in their applications by using
the standard MPI communication routines and a reconfig-
uration trigger, which will determine the synchronization
point for malleability actions.

DMRlib improves the state-of-the-art in programming
models and runtimes as detailed in Section 4, which
presents a thorough study of the available malleability
solutions. The analysis there compares the semantics of-
fered by different solutions under fair conditions. For this
purpose, the study is opened with the implementation of a

2

generic migration of processes. Then, the characteristics of
the frameworks are evaluated and compared, highlighting
their strengths and flaws. The section ends showcasing the
practical experience of how to adopt malleability with DM-
Rlib in a set of applications, further evaluated in Section 5.

In this work, a job reconfiguration is encapsulated in
a single call to DMRlib that abstracts the resource real-
location in Slurm, the process management (spawns and
terminations), and the data redistribution among processes.
In those cases where our library does not support the data
redistribution, users can provide their own redistribution
functions using any function implemented in the underlying
MPI library. We consider our solution as “MPI-friendly”
since it does not include new functions or wrappers to the
MPI standard, unlike other approaches.

Using DMRlib, we have developed four malleable appli-
cations, which are then leveraged to assess the behavior of
moldable and malleable jobs within a workload. Section 5
proves that, at the cost of a small extra coding effort, it is
possible to obtain malleable workloads that yield: i) sig-
nificantly higher system throughput than their traditional
counterpart; ii) reduction in the completion time of each
particular application; and iii) lower energy consumption
to process the workload (see Appendix B). We conclude this
analysis with a study on the impact of malleability when
not all the jobs in the workload can be resized.

In summary, the main contributions of this paper are:

• A minimalist set of semantics following an MPI-like
syntax, which eases malleability.

• A usability-based study of the available malleability
solutions, highlighting their strengths and weaknesses
via a simple showcase.

• A practical proof that DMRlib enables obtaining mal-
leable workloads that increase system productivity.

Finally, the paper ends in Section 6 with the most rele-
vant conclusions extracted from this work.

2 RELATED WORK

In this section, we briefly review several related approaches,
categorized as on-disk and in-memory data redistributions,
and system-aware reconfigurations.

2.1 On-Disk Reconfiguration

On-disk reconfiguration stores/loads the state of a job
in/from non-volatile memory. The checkpoint/restart (C/R)
mechanism is the most famous instance of this strategy.
C/R stores the state of an application at a given point of
its execution and recovers it at a later time. Traditionally, it
is used for preventing data loss in case of a system fault.
However, C/R has also been leveraged in job malleability
as a means of halting the execution and resuming it with
a different number of processes. Examples: the malleabil-
ity extensions of the MPI libraries Process Checkpointing
and Migration (PCM) [4], and Scalable Checkpoint/Restart
(SCR) [5]; CHARM++ with its migratable objects called
chares [6], and Adaptive MPI (AMPI) [7] that implements
MPI on top of CHARM++’s adaptive runtime system.

2.2 In-Memory Reconfiguration
Traditional on-disk C/R solutions attain low performance
because of the cost of disk. In-memory C/R solutions pal-
liate this undesirable overhead [8], transferring the data
among processes, point–to–point or collectively, without
accessing the disk. The overhead of the reconfiguration
provided by traditional C/R mechanisms compared with
a dynamic redistribution of data is discussed in [5], [9]. Ex-
amples of in-memory reconfiguration are: EasyGrid Appli-
cation Management System (AMS) [10]; Flex-MPI [11]; and
the User Level Failure Migration (ULFM) MPI malleability
extension [5].

2.3 System-Aware Reconfiguration
The previous two subsections list a collection of libraries and
runtimes capable of reconfiguring applications using differ-
ent approaches. Those solutions are not focused on system-
aware reconfiguration and do not make an effort to work
side by side with the RMS. Instead, the previous solutions
implement a simple ad-hoc scheduler, which triggers the
reconfiguration actions when necessary. In this section, we
present the most relevant efforts in job malleability aimed
at adaptive workloads, ready to be adopted in production
environments. These integrate reconfiguration capabilities
with an RMS which is aware of the cluster status.

ReSHAPE [12] is a coupled solution for adaptive work-
loads that includes its specific reconfiguration libraries,
scheduler, and runtime system. This strong integration
forces ReSHAPE users to develop applications that are
compatible with this system.

The power-aware resource manager (PARM) [13] uses
over-provisioning, power capping, and job malleability to
maximize job throughput under a strict power budget in
over-provisioned facilities. Regarding the malleability, it re-
lies on the CHARM++ runtime support, which dynamically
redistributes compute objects to processors.

The work developed in [14] combines AMPI with the
job scheduler Torque/Maui to tackle malleable jobs. In
this regard, this solution establishes a communication layer
between the CHARM++ runtime and Torque/Maui.

Elastic MPI [2] is an infrastructure and a set of API ex-
tensions for malleable execution of MPI applications based
on Slurm and MPICH. Using the functions provided by this
API, an application is declared as malleable and, periodi-
cally, the processes of the application checks whether Slurm
has initiated a reconfiguration. MPICH has been enhanced
with a new set of functions that replace and complement
the standard implementation. In addition to being MPICH-
dependent (support for other MPI implementations is not
presented), this approach does not assist in data redistribu-
tion.

The Dynamic Management of Resources (DMR) API [15]
implements a communication layer between the OmpSs
runtime (Nanos++) and Slurm that allows MPI applications
to be resized. The DMR API relies on the off-load seman-
tics of OmpSs [16] for automatically handling processes
and data redistribution, and on Slurm for managing and
reallocating resources. Although the DMR API provides a
highly usable interface, irregular applications (e.g., applica-
tions implementing a consumer–producer scheme) require

3

a special effort to integrate the reconfiguration capabilities
because not every process features the same data structures.
An additional disadvantage appears for object-oriented ap-
plications, such as those leveraging C++ classes, whose code
has to be refactored. Concretely, the data utilized in the
functions cannot be conveyed to them as class members,
but have to be passed as parameters of the functions.

Thanks to these efforts, malleability is becoming an
easily accessible technology. As it could be expected, the
solutions incur overhead when redistributing data among
processes by loading data from disk or transferring it
through the network interconnect. However, regarding the
scheduling overhead of solutions that establish communica-
tion with an RMS, it has been reported as virtually null.

Despite the wide variety of reconfiguration frameworks,
none of them combines all the features that should have a
ubiquitous solution:
• Avoid disk reads/writes for redistributing user data

among processes.
• Offer an API familiar to the vast majority of HPC

developers, such as MPI.
• Be compatible with any MPI standard implementation.
• Be integrated with well-accepted RMS in HPC.

In order to address this situation, in this paper we present
DMRlib, a novel framework that addresses malleabilty
adoption from a different perspective. In detail, Section 4
studies and evaluates these frameworks, demonstrating
that, before DMRlib, the most practical approaches were
based on the semantics of CHARM++ or OmpSs. In those
approaches, the code-writing process requires less effort;
however, prior to adopting any of these solutions, the users
are expected to learn the specifics of each programming
model and their particular syntax. In summary, the hand-
icaps of adopting malleability remain in that the described
frameworks are firmly bound to specific programming mod-
els, or require considerable efforts from application develop-
ers. DMRlib aims to overcome those limitations providing a
minimal set of powerful tools, which facilitate the adoption
of a useful and interesting mechanism such is malleability.

3 DMRLIB

Our library for dynamic management of resources (DMRlib)
is designed to facilitate the adoption of malleability to
application developers. Based on the DMR API [17], DMRlib
provides a higher-level abstraction layer that orchestrates
the interactions between application, runtime, and RMS.
Figure 1 depicts those interactions and shows how are
communicated the different modules with the original MPI
user application. Thus, DMRlib initiates the reconfigura-
tion, honoring the malleability parameters provided by the
user, by communicating with Slurm. Then, DMRlib cre-
ates the new processes, using the standard MPI function
MPI_Comm_spawn, and redistributes the data among them,
using for example point-to-point MPI functions such as
MPI_Send or MPI Recv; collectives such as MPI_Scatter
or MPI_Gather; or the predefined redistribution functions
provided by DMRlib (see Section 3.4). Finally, Nanos++
(the OmpSs runtime) takes control of the reconfiguration,
handling the termination of the initial processes, reallocating
resources, and resuming the execution on the new processes,

Fig. 1. Execution environment of a malleable application using DMRlib.

Fig. 2. Example of an expansion from 5 to 10 processes.

at the same point where the malleability action was trig-
gered. This feature is regarded as one of the most distinctive
features of the family of DMR solutions.

Later in the paper, in Section 5.1, we describe the uti-
lized malleability criteria, which determines the job recon-
figuration action. With this policy, aimed to improve the
global system productivity, jobs are expanded or shrunk
to improve resource utilization or reduce the pending jobs’
waiting time. Figure 2 illustrates an example with an ex-
pansion from 5 to 10 processes. Henceforth we call parents
to the processes in the initial state of a malleable operation
and child to each of the final spawned processes. The
figure shows five parent processes that are expanded to 10
child processes. When a malleable operation is scheduled, it
creates a new communicator (“Comm 2” in the figure) that
will be used by the child processes. Once the latter has been
created, communication occurs between parent and child
processes through the corresponding intercommunicator.
This communication poses a robust restart where the user
data, as well as the reconfiguration information, is sent from
parents to children (as the arrows represent in the figure.)

DMRlib performs communication with Nanos++ and the
RMS. This work adopts a version of Slurm with support for
malleability, also used by the DMR API.

3.1 Main Procedure
DMRlib’s main procedure triggers and subsequently han-
dles the complete reconfiguration process. Listing 1 shows
the usage of this procedure, which receives five arguments
corresponding to function names:
compute: the function that will be executed when the re-

configuration procedure ends and the child processes
resume the execution of the application. Typically, in
an iterative application, this function is the same that
invokes the reconfiguration.

4

def ine DMR_RECONFIG(compute , send_expand ,
recv_expand , send_shrink , recv_shr ink)

Listing 1. Reconfiguration macro definition in DMRlib.

Algorithm 1 Reconfiguration Procedure
1: parentComm← MPI_Comm_get_parent()
2: if parentComm 6= MPI_COMM_NULL then
3: if commWorldSize > parentCommSize then
4: recv_expand()
5: else
6: recv_shrink()
7: MPI_Comm_disconnect(parentComm)
8: else
9: action← DMR_Reconfiguration(&newComm)

10: if action = expand then
11: factor ← newComm_size/comm_size
12: for i← 1, factor do
13: dstRank ← myRank × factor + i
14: #pragma omp task onto(newComm, dstRank)
15: compute()
16: send_expand()
17: DMR_Detach()
18: else
19: if action = shrink then
20: factor ← commSize/newCommSize
21: dstRank ← myRank/factor
22: #pragma omp task onto(newComm, dstRank)
23: compute()
24: send_shrink()
25: DMR_Detach()
26: else
27: pass . No action has been scheduled.

send_expand: the function executed by the parent pro-
cesses in Comm 1 when performing an expansion. This
function implements the algorithm for sending data
from the parent processes to the child processes.

recv_expand: the function executed by the child pro-
cesses in Comm 2 when performing an expansion. This
function implements the algorithm for receiving data in
the child processes sent from the parent processes.

send_shrink: similar to send_expand but for shrinking.
recv_shrink: similar to recv_expand but for shrinking.

Algorithm 1 details the reconfiguration procedure. First,
the current stage of the reconfiguration is checked (line 1)
to determine the role (parents or children) of the invoking
processes. For this purpose, the library tries to retrieve the
parent communicator. If there is one (line 2), it will be used
to handle the data redistribution. Line 3 determines whether
the resize action is an expansion or a shrinkage by compar-
ing the number of processes in both communicators. Thus, if
the current global communicator (MPI_COMM_WORLD) con-
tains a higher number of processes than the parent commu-
nicator, the library invokes the user function for receiving
data in an expansion (line 4); otherwise, it calls the receiving
data function for a shrinkage (line 6).

In line 1, no reconfiguration is ongoing if
MPI_Comm_get_parent returns MPI_COMM_NULL,
since the current communicator has no parent. In other
words, a new resize may be performed. For this reason, the
application, in line 9, communicates its readiness for being
resized to the runtime. At this point, action may receive
three values: “expand”, “shrink” or “none”. In the latter
case, the program execution continues normally (line 27);
otherwise, the macro performs the job re-scaling.

In the case of an expansion the scalability factor is
calculated (line 11) to determine the number of links to
be established by each initial process. With this factor, each

process calculates the ranks of its peer processes in the new
communicator (line 13) and establishes the communication
to identify the function where the execution will be resumed
after the reconfiguration (lines 14 and 15). In line 16, the
data is sent utilizing the function provided by the user:
send_expand. Finally, the new processes are disconnected
from Comm 1 and can continue the execution of the appli-
cation in a new computational step. Moreover, the initial
processes terminate their execution (line 17).

In the case of a shrinkage (line 19), the procedure is
similar to an expansion. DMRlib calculates the communica-
tion factor (line 20), establishes the communication channels
among the processes in the different communicators, and
sets the resuming point for the execution (line 23). Finally,
the data is sent using the function send_shrink, and
the processes are detached from the initial communicator
(line 25).

3.2 Parametrization

DMRlib includes routines (see Appendix A) to customize
job malleability fully. For instance, a user can utilize the
function DMR_Set_parameters to define the boundaries
of malleability in terms of the number of processes. The
arguments passed to this function are:
• min: minimum number of processes to run the job—the

lower limit for malleability.
• max: maximum number of processes to run the job—the

upper limit for malleability.
• pref: preferred number of processes to run the job.

Although optional, it allows the reconfiguration policy
in Slurm to take more convenient actions.

The overhead of malleability frameworks usually has
two different sources: reconfiguration scheduling and data
transfer. In previous work, we already demonstrated that
the overhead introduced by the DMR API was low [17].
Our conclusions indicated that:
• Overhead is dominated by the data size to transfer.
• Malleability scheduling time is negligible.
• MPI process spawn and destroy operation time de-

pends on the number of processes and the MPI library.
• Interconnection network bandwidth is crucial.
Moreover, in applications that perform short-step

executions—that is, computational steps that only take a
few milliseconds—triggering a reconfiguration at every step
may generate a substantial overhead, since the time taken by
the computational step may be in the same order of magni-
tude as the time needed for the reconfiguration scheduling.
For this reason, DMRlib implements two mechanisms for
ignoring scheduling reconfigurations: during a given period
(DMR_Set_sched_period) and for a determined number
of steps (DMR_Set_sched_iteration).

3.3 Usage

In order to turn an application into malleable, a user has
to include the macro DMR_RECONFIG in the code, as illus-
trated in Listing 2. This excerpt of code shows the function
containing the main loop (line 1) and hence specifies the
point where malleability will occur. This function has three

5

1 void compute (double *data , i n t data_size , i n t step) {
2 DMR_Set_parameters (min , max , pref) ;
3 f o r (i n t i = step ; i < TOTAL_STEPS ; i++) {
4 DMR_RECONFIG (compute (data , data_size , i) ,

send_expand (data , data_size) ,
recv_expand(&data , &data_size) ,
send_shrink (data , data_size) ,
recv_shrink(&data , &data_size)) ;

5 /* Computation */
6 }
7 }

Listing 2. Enabling malleability using DMRlib in a user code.

parameters: the data structure pointer, its size, and the cur-
rent iteration. Initially, the malleability limits are configured
(line 2). They can be modified at any time to meet the
requirements of different computational stages.

At the beginning of each iteration of the main loop
(line 3), DMR_RECONFIG checks whether a reconfiguration
is ongoing or if the RMS can improve the system status by
resizing the job via DMRlib (line 4). The macro must specify
the appropriate functions for the reconfiguration: the first
is the invoking function itself, while the remaining four
arguments are user-defined redistribution function calls.
The “receiving” functions in the macro (recv_expand and
recv_shrink) operate with the memory address instead of the
pointer (or the value itself for the data_size variable). The
reason is that these functions are invoked just after the new
processes have been spawned, and they have to allocate new
memory to accommodate the data. The rest of the functions
remain unaltered (line 5).

Listing 3 shows an example of the redistribution func-
tions used in the previous macro for an expansion action
(send_expand and recv_expand). Here we describe a
case similar to that shown in Figure 2; that is, data transfers
due to an expansion to an integer multiple of the initial
number of processes.

The first function (line 1) will be executed by the parent
processes, which are in charge of sending the data. Dividing
the number of child processes by the number of parent pro-
cesses returns the scalability factor of this expansion (line 2).
With this value, we calculate the size of the data chunks
(line 3). Furthermore, factor is used to determine the number
of send operations to be performed by each original process
(line 4) and the rank in the new communicator that identifies
the destination of each chunk of data (line 5). In line 6,
we use the standard MPI_Send function, passing the buffer
pointer to the appropriate data chunk (argument 1), its size
(argument 2), its destination rank (argument 4), and the new
communicator (argument 6). DMRlib provides the variable
DMR_INTERCOMM to represent the inter-communicator.

The child processes invoke the second function in the
listing (line 9). These are responsible for receiving the data
and continuing with the execution. The scalability factor
is again calculated using the same operation as in the
former case (line 10). However, since the child processes
executed this, the variable names are swapped. With this
factor, we obtain the source rank of the data in the parent
communicator (line 11). The chunk size is calculated (line
12) to allocate memory for the data structure (line 13). In
this procedure, variables data_size and data are overwritten;
the data array (data) is a null pointer in the memory of the
child processes, and hence we have to allocate the necessary

1 void send_expand (double *data , i n t data_size) {
2 factor = dmr_intercomm_nprocs / comm_world_nprocs ;
3 new_data_size = data_size / factor ;
4 f o r (i = 0 ; i < factor ; i++) {
5 dst_rank = my_rank * factor + i ;
6 MPI_Send (data + new_data_size * i , new_data_size ,

MPI_DOUBLE , dst_rank , tag , DMR_INTERCOMM) ;
7 }
8 }
9 void recv_expand (double * *data , i n t *data_size) {

10 factor = comm_world_nprocs / dmr_intercomm_nprocs ;
11 src_rank = my_rank / factor ;
12 *data_size = (*data_size) / factor ;
13 *data = malloc ((* data_size) * s i z e o f (double)) ;
14 MPI_Recv (*data , *data_size , MPI_DOUBLE , src_rank ,

tag , DMR_INTERCOMM , MPI_STATUS_IGNORE) ;
15 }

Listing 3. User data redistribution functions for an expansion.

TABLE 1
Predefined Redistribution Headers in DMRlib

Default Redistribution
void DMR_Send_expand_default(void *data, MPI_Datatype type, int size);
void DMR_Recv_expand_default(void **data, MPI_Datatype type, int *size);
void DMR_Send_shrink_default(void *data, MPI_Datatype type, int size);
void DMR_Recv_shrink_default(void **data, MPI_Datatype type, int *size);

Block Cyclic Redistribution

void DMR_Send_expand_blockcyclic(void *data, MPI_Datatype type, int n, int size);
void DMR_Recv_expand_blockcyclic(void **data, MPI_Datatype type, int *n, int *size);
void DMR_Send_shrink_blockcyclic(void *data, MPI_Datatype type, int n, int size);
void DMR_Recv_shrink_blockcyclic(void **data, MPI_Datatype type, int *n, int *size);

memory. Eventually, the MPI_Recv operation is invoked to
retrieve the memory pointer to store the data (argument 1);
the number of received elements (argument 2); the source
rank in the initial communicator (argument 4); and the
initial communicator itself (argument 6).

3.4 Predefined Redistribution Patterns

Although the data redistribution can be performed via stan-
dard MPI clauses, in an effort to ease the coding of that
procedure, we provide two sets of predefined functions that
accommodate some common communication patterns:
• Default Redistribution: classic 1D uniform distribution

to a number of processes multiple of or divisible by the
original number (e.g., Figure 2).

• Block Cyclic Redistribution: implements the data
transfers necessary when 1D data is block-cyclically
distributed over the processes1.

DMRlib can be expanded with other communication pat-
terns depending on the application necessities.

Table 1 shows the headers of the redistribution functions.
All of them receive the same two initial arguments: the
pointer to the data (when receiving, a pointer address) and
the MPI datatype. For the default redistribution, they also
receive the number of elements of the data array; while for
the block-cyclic pattern, the functions receive the number of
blocks and their size.

In the example in Listing 2, we could have implemented
the same functionality using the default redistribution pat-
tern as presented in Listing 4, hence saving the user from
implementing the data redistribution presented in Listing 3.
Further details about more complex data redistribution us-
ing DMRlib can be found in [18], and [3]

1. https://computing.llnl.gov/tutorials/parallel_comp/
#distributions

6

1 void compute (double *data , i n t data_size , i n t step) {
2 DMR_Set_parameters (min , max , pref) ;
3 f o r (i n t i = step ; i < TOTAL_STEPS ; i++) {
4 DMR_RECONFIG (compute (data , data_size , i) ,

DMR_Send_expand_default (data , MPI_DOUBLE ,
data_size) , DMR_Recv_expand_default(&data ,
MPI_DOUBLE , &data_size) ,
DMR_Send_shrink_default (data , MPI_DOUBLE ,
data_size) , DMR_Recv_shrink_default(&data ,
MPI_DOUBLE , &data_size)) ;

5 /* Computation */
6 }
7 }

Listing 4. DMRlib malleability with the default redistribution functions.

4 USABILITY STUDY

This section studies the usability of the frameworks intro-
duced in Section 2, from the point of view of their semantics
and characteristics. This study aims to compare how the dif-
ferent malleability solutions implement the same minimal
use case. The comparison continues with an evaluation of
their features, and a discussion of their potential adoption
in production environments. The section is closed with a de-
scription of how malleability is implemented with DMRlib
in a set of applications, executed afterward, in Section 5.

As the works based on SCR extensions [5], EasyGrid
AMS [10], ULFM [5], and ReSHAPE [12], do not publicly
provide any example on how to implement malleability, we
limit the study to PCM [4], AMPI [7], Flex-MPI [11], Elastic
MPI [2] and DMR [15].

4.1 Usability Analysis

Malleability usually targets iterative applications, which
contain a main loop representing an ideal synchronization
point (or malleability point) in the code for re-scaling. In
order to showcase malleability using the different frame-
works, we consider a prototype iterative application that
performs calculations over a single data array called data,
of size determined by a dataSize variable. Using this generic
application, we perform a migration using pseudo–MPI code
and the tools offered by each malleability solution. We
note that migration is the simplest case of reconfiguration
because the number of processes does not change. In this
regard, a migration will suffice to illustrate and compare the
main features of the different tools. In a practical scenario,
reconfigurations would mainly involve job expansions or
shrinkages. Subsection 4.3 describes how expansions are
implemented with DMRlib.

Listing 5 contains the skeleton of the application men-
tioned above using a pure MPI approach. All the examples
in this section share the same skeleton: the main function
initializes the data and then calls the compute function.
This function contains the main loop, where the actual
computation occurs and where the malleability is realized.
Specifically, in this code, we check whether there is a parent
communicator (line 4), which would indicate that the pro-
cesses are in the middle of a reconfiguration. If that is not the
case, the execution continues with the computation (line 12).
In case there is a parent communicator, the processes have
to receive the data from their counterparts in the initial
communicator (lines 8–10).

In the computation stage (line 16), for each step, we use
a function that represents a call to a scheduler that returns

1 void main (i n t argc , char * *argv) {
2 MPI_Init(&argc , &argv) ;
3 MPI_Comm_get_parent(&parentComm) ;
4 i f (parentComm == MPI_COMM_NULL) {
5 step = 0 ;
6 /* Initialization */
7 } e l s e {
8 MPI_Recv(&dataSize , myRank , parentComm) ;
9 MPI_Recv (data , myRank , parentComm) ;

10 MPI_Recv(&step , myRank , parentComm) ;
11 }
12 compute (data , dataSize , step) ;
13 MPI_Finalize () ;
14 }
15 void compute (double *data , i n t dataSize , i n t step) {
16 f o r (t = step ; t < TIMESTEPS ; t++) {
17 nodeList = get_new_nodelist_somehow () ;
18 i f (nodelist != NULL) {
19 MPI_Comm_spawn (myapp .bin , nodeList , &newComm) ;
20 MPI_Send (dataSize , myRank , newComm) ;
21 MPI_Send (data , myRank , newComm) ;
22 MPI_Send (t , myRank , newComm) ;
23 MPI_Finalize () ;
24 exit (0) ;
25 }
26 /* Computation */
27 }
28 }

Listing 5. Pseudo-code of a migration using bare MPI.

1 void main (i n t argc , char * *argv) {
2 PCM_MPI_Init(&argc , &argv) ;
3 PCM_COMM_WORLD = MPI_COMM_WORLD ;
4 PCM_Init (PCM_COMM_WORLD) ;
5 PCM_Status status = PCM_Process_status ;
6 i f (status == PCM_STARTED) {
7 step = 0 ;
8 /* Initialization */
9 } e l s e {

10 PCM_Load (myRank , " s tep " , &step) ;
11 PCM_Load (myRank , " dataS ize " , &dataSize) ;
12 PCM_Load (myRank , " data " , data) ;
13 }
14 compute (data , dataSize , step) ;
15 }
16 void compute (double *data , i n t dataSize , i n t step) {
17 f o r (t = step ; t < TIMESTEPS ; t++) {
18 pcm_status = PCM_Status (PCM_COMM_WORLD) ;
19 i f (pcm_status == PCM_MIGRATE) {
20 PCM_Store (myRank , " s tep " , &t , PCM_INT , 1) ;
21 PCM_Store (myRank , " dataS ize " , &dataSize ,

PCM_INT , 1) ;
22 PCM_Store (myRank , " data " , data , PCM_DOUBLE ,

dataSize) ;
23 PCM_COMM_WORLD = PCM_Reconfigure (PCM_COMM_WORLD ,

argv [0]) ;
24 } e l s e i f (pcm_status == PCM_RECONFIGURE) {
25 PCM_Reconfigure(&PCM_COMM_WORLD ,argv [0]) ;
26 MPI_Comm_rank (PCM_COMM_WORLD , &rank) ;
27 }
28 /* Computation */
29 }
30 }

Listing 6. Pseudo-code of a migration using the PCM API.

a list of nodes (line 17). If the list is void, the computation
continues normally (line 26). Otherwise, a reconfiguration
has to be performed. In such a case, the new processes are
spawned (line 19), and the data is sent to them (lines 20–
22). Once the data is received, the initial processes terminate
their execution (line 24), and their recently-created counter-
parts continue with the execution.

4.1.1 PCM
Following the example presented in [19], we have adopted
malleability in our skeleton code using the PCM API (List-
ing 6). PCM wraps many of the MPI functions/variables,
but the workflow mimics that presented in Listing 5. In
line 6, we check the status, and provided there is a migration

7

1 void main (i n t argc , char * *argv) {
2 step = 0 ;
3 /* Initialization */
4 compute (data , dataSize , step) ;
5 }
6 void compute (double *data , i n t dataSize , i n t step) {
7 MPI_Info_create(&hints) ;
8 MPI_Info_set (hints , " ampi_load_balance " , " sync ") ;
9 f o r (t = step ; t < TIMESTEPS ; t++) {

10 /* Computation */
11 AMPI_Migrate (hints) ;
12 }
13 }

Listing 7. Pseudo-code of a migration using AMPI.

in progress, the data is loaded in lines 10–12. The compute
function (line 16) also presents many similarities with the
pure MPI implementation. The function “PCM_Status”, in
line 18, assesses which reconfiguration action has been
scheduled. Although we only consider migration, the PCM
API provides further reconfiguration actions. As the new
processes have to load the previous user data, initial pro-
cesses must keep the data (lines 20–22). Finally, the recon-
figuration is concluded with a call to PCM_Reconfigure. This
is a collective function that needs to be called by both the
migrating (line 23) and non-migrating processes (line 25).

4.1.2 AMPI
AMPI provides automated support, via CHARM++, for
migrating MPI ranks among nodes. CHARM++ is based
on migratable objects called chares, which are virtualized
processes associated with user-level threads. For this reason,
these virtualized objects are easy to send/receive from one
host to another. In the example shown in Listing 7, we have
used “isomalloc”2, which allows other worker threads in
the system to allocate slices of virtual memory for all user-
level threads, enabling transparent migration of memory
pointers. AMPI also provides data registration mechanisms
as alternate allocation procedures as well as tools for data
pack/unpack in order to perform data redistribution.

Since we assume implicit registration of data provided
by “isomalloc” during initialization (line 3), the main func-
tion initiates the computation in line 4. The reconfigura-
tion is set using an “MPI_Info” object (lines 7–8), and the
iterations are initiated. The hint ampi_load_balance==sync
reports to CHARM++ that the application is already at a
synchronization point, and the data redistribution will be
performed synchronously. For each iteration, the data is
computed (line 10), and the migration is invoked (line 11).

4.1.3 Flex-MPI
Flex-MPI is not only a malleability solution but also a
performance-aware framework to monitor the execution
performance in each iteration. Flex-MPI can schedule the
most appropriate reconfiguration action, which leads to a
resultant code presenting a higher level of instrumentation.

Based on [20], we have tailored Listing 8 to show the
malleable implementation of our sample code using Flex-
MPI. At the beginning of the program, data is initialized
and registered prior to the computation stage (lines 4–9).
Then, in each computational step (line 13), the performance

2. https://charm.readthedocs.io/en/latest/tcharm/manual.html#
migration-based-load-balancing

1 void main (i n t argc , char * *argv) {
2 MPI_Init(&argc , &argv) ;
3 step = 0 ;
4 /* Initialization */
5 XMPI_Get_wsize () ;
6 XMPI_Register (dataSize) ;
7 XMPI_Register (data) ;
8 XMPI_Register (step) ;
9 XMPI_Get_Shared_data () ;

10 compute (data , dataSize , step) ;
11 }
12 void compute (double *data , i n t dataSize , i n t step) {
13 f o r (t = step ; t < TIMESTEPS ; t++) {
14 XMPI_Monitor_init () ;
15 /* Computation */
16 XMPI_Eval_reconfiguration () ;
17 status = XMPI_Get_process_status () ;
18 i f (status == XMPI_REMOVED)
19 break ;
20 }
21 }

Listing 8. Pseudo-code of a migration using Flex-MPI.

1 void main (i n t argc , char * *argv) {
2 MPI_Init_adapt(&argc , &argv , &status) ;
3 i f (status == JOINING) {
4 MPI_Probe_adapt(&adapt) ;
5 i f (adapt == ADAPT_TRUE) {
6 MPI_Comm_adapt_begin () ;
7 /* Data redistribution code */
8 MPI_Comm_adapt_commit () ;
9 }

10 } e l s e {
11 i f (status == NEW) {
12 step = 0 ;
13 /* Initialization */
14 }
15 }
16 compute (data , dataSize , step , status) ;
17 }
18 void compute (double *data , i n t dataSize , i n t step , i n t

status) {
19 f o r (t = step ; t < TIMESTEPS ; t++) {
20 MPI_Probe_adapt(&adapt) ;
21 i f ((status == JOINING) || (adapt == ADAPT_TRUE)) {
22 MPI_Comm_adapt_begin () ;
23 /* Data redistribution code */
24 MPI_Comm_adapt_commit () ;
25 }
26 /* Computation */
27 }
28 }

Listing 9. Pseudo-code of a migration using Elastic MPI.

monitor is initiated, and the computation is performed
(lines 14–15). A reconfiguration action is executed with the
gathered information during the step execution (line 16).
After a reconfiguration, unlike the previous malleability
solutions, the execution flow does not return to the main
function, but remains in compute for the remainder of the
run. Although this study is focused on the migration action,
Flex-MPI implements a simple procedure for removing pro-
cesses in case of shrinkage. Lines 18–19 check each process
and terminate those processes selected by the runtime.

4.1.4 Elastic MPI
Listing 9 shows a tentative implementation of a migration
using Elastic MPI, following the malleable implementation
of a producer–consumer scheme in [2].

The program starts with a tuned version of MPI_Init,
which accepts a new parameter for malleability (line 2).
This new parameter specifies whether the process has been
created by Slurm (line 3). If this is the case, the process tests
whether it has to be adapted to a new process layout (line 4)
in order to perform reconfiguration and data redistribution

8

1 void main (i n t argc , char * *argv) {
2 MPI_Init(&argc , &argv) ;
3 step = 0 ;
4 /* Initialization */
5 compute (data , dataSize , step) ;
6 }
7 void compute (double *data , i n t dataSize , i n t step) {
8 f o r (t = step ; t < TIMESTEPS ; t++) {
9 action = dmr_check_status(&handler) ;

10 i f (action == MIGRATION) {
11 #pragma omp task in (data) onto (handler , myRank)
12 compute (data , dataSize , step) ;
13 } e l s e {
14 /* Computation */
15 }
16 }
17 }

Listing 10. Pseudo-code of a migration using the DMR API.

(lines 6–8). The authors of this work do not provide suf-
ficient information on how to perform data redistribution;
however, they do specify where it occurs (lines 7 and 23).
If the process is created by the launcher (line 11), the
application performs the original initialization of variables.

Once the program is initialized, the execution continues
in the compute function (line 18). For each iteration, the
processes probe if an adaption is ongoing (line 20). If so,
reconfiguration and redistribution are performed (lines 22–
24). Last, the processes execute their operations in line 26.

4.1.5 DMR API
This project leverages the off-loading semantics of the
OmpSs programming model [16], and hence the reconfig-
uration is driven by #pragma directives.

Listing 10 presents an implementation of malleability
with the DMR API. The original main function is unaltered,
initializing the data and invoking the compute function.
Once the iterations start (line 8), a call to the DMR API
is performed (line 9). This call returns the reconfiguration
action scheduled by the RMS and the MPI communicator
where the new processes are spawned. The #pragma in
line 11 conducts the reconfiguration. At this point, the user
specifies the data dependencies and the communication
pattern among the processes between communicators. This
directive explicitly states that data is an input dependency
for the new processes in the handler MPI communicator.
Since the goal is to implement a migration, the commu-
nication among ranks is one–to–one. Furthermore, in order
to continue the program in the same function, instead of
returning to the main function after the #pragma, the user
indicates the resuming point for the execution (line 12).
The initial processes are automatically terminated by the
runtime after the task is successfully off-loaded to the new
processes.

4.2 Usability Evaluation
Notwithstanding the variety of methods to adopt malleabil-
ity in parallel scientific applications, none of them combines
all the features that we consider crucial in order to gain
popularity among developers: i) automatic support for data
transfers in job reconfiguration; and ii) MPI-like syntax
based on the MPI standard without dependencies on any
particular MPI library.

Compared with the reviewed approaches, the solution
presented in this paper, DMRlib, improves the appeal and

TABLE 2
Malleability solutions usability features comparison

SLOC Data transfer Standard MPI Paradigm RMS

Bare MPI 28 Manual Yes MPI -
PCM API 30 Manual No/MPICH MPI -

AMPI 13 Auto* Yes CHARM++ Torque/Maui
Flex-MPI 21 Auto No/MPICH MPI -

Elastic MPI 26* Manual No/MPICH MPI Slurm
DMR API 17 Auto Yes OmpSs Slurm

DMRlib 13 Auto* Yes MPI Slurm

the state-of-the-art of process malleability, by providing a
simple trigger mechanism for reconfiguration that hides all
the reconfiguration internals and performs the data redistri-
bution among the processes through standard MPI routines.
This section evaluates the usability of DMRlib compared to
the previously studied malleability solutions.

Table 2 compares the usability features of the bare MPI
with the malleability frameworks studied in Section (first
column). The second column corresponds to the Source
Lines of Code (SLOC) metric. The values of SLOC for each
framework in Section 4 correlates respectively to Listings 5–
10, and Listing 2 for DMRlib (adding the lines correspond-
ing to the main function). For Elastic MPI, the number of
lines does not include the data redistribution code.

The reduction of the SLOC is closely related to the
type of data transfers (third column). We conclude that
solutions with any type of automatic data transfers (AMPI,
Flex-MPI, DMR API, DMRlib) drastically reduce the coding
effort since the task is off-loaded to the runtime. Notably,
we catalog AMPI and DMRlib as auto*, since the provided
mechanisms (“isomalloc” in AMPI and the predefined redis-
tribution patterns in DMRlib), which can be used to perform
automatic data redistributions in many cases. In contrast,
Flex-MPI and the DMR API, employing data structure reg-
isters and data dependencies respectively, provide automatic
data redistributions among processes in every case.

An important additional issue is the solution depen-
dency on the underlying MPI library. The fourth column
of Table 2 indicates whether the frameworks can operate
over any MPI-2 Standard library or if they are based on
a specific MPI implementation. Honoring the standard is
relevant because those solutions can be expected to be more
reliable, portable, and long-lasting.

In terms of usability, we consider the most relevant:
(i) a lower number of lines, (ii) automatic data transfers,
(iii) support for any MPI standard implementation, (iv) the
fact that the framework does not modify the MPI standard,
and (v) its integration in an RMS. Although AMPI and the
DMR API meet all those requirements, we also consider
crucial that the solution relies on the MPI paradigm instead
of CHARM++ or OmpSs. The majority of solutions adhere
to the MPI programming paradigm (fifth column) as it is
widely accepted in HPC. Finally, the last column specifies
whether the solution is integrated into an RMS.

All in all, we can establish DMRlib as the solution to the
highest appeal for malleability.

4.3 DMRlib Hands-on Experience

We have leveraged DMRlib to develop malleable imple-
mentations of the Conjugate Gradient (CG) solver [21],

9

the Jacobi method [22], the N-body problem [23], and the
bioinformatics HPG-aligner tool [24].

For CG and Jacobi, the coding process for malleability is
quite similar, although these two methods do not feature
the same number/type of data structures. In particular,
Jacobi operates a flat-stored square matrix plus two ar-
rays, while CG handles two additional arrays. For CG, the
DMR_RECONFIG call may be invoked as follows:
DMR_RECONFIG(CG(m, a1, a2, a3, a4, size, step),

send_expand(m, a1, a2, a3, a4, size),
recv_expand(&m, &a1, &a2, &a3, &a4, &size),
send_shrink(m, a1, a2, a3, a4, size),
recv_shrink(&m, &a1, &a2, &a3, &a4, &size));

For instance, the sending function for an expansion may
include the following calls to the redistribution functions:
void send_expand(double *m, double *a1, ..., int size){
DMR_Send_expand_default(m, MPI_DOUBLE, size * size);
DMR_Send_expand_default(a1, MPI_DOUBLE, size);
...}

N-body only handles an array in the redistribution.
However, this structure is composed of particles, which is
a non-standard data type. For this reason, we created a
new MPI datatype (named MPI_PARTICLE) composed of
two 3D vectors, one for the particle position and the other
velocity, and two floats for the mass and weight. With
this datatype, we leverage the predefined redistribution
functions as follows:
DMR_RECONFIG(N-body(particles, size, step),

DMR_Send_expand_default(particles, MPI_PARTICLE, size),
DMR_Recv_expand_default(&particles, MPI_PARTICLE, &size),
DMR_Send_shrink_default(particles, MPI_PARTICLE, size),
DMR_Recv_shrink_default(&particles, MPI_PARTICLE, &size));

Finally, for HPG-aligner, we developed ad-hoc redistri-
bution functions, since it does not present a regular commu-
nication pattern [3]. Also, HPG-aligner features a producer–
consumer architecture, where two processes are in charge of
reading/writing data while the remaining processes act as
workers. For this reason, the minimum number of processes
required to run this application is three (at least it needs one
worker plus reader and writer processes).

The processes in applications such as CG, Jacobi, or N-
body work over data subsets exchanged at each iteration.
However, the ranks in HPG-aligner work-on independent
chunks of data, writing the results to disk after computing
each chunk. This behavior makes HPG-aligner an I/O in-
tensive application with limited scalability.

This set of applications is designed to cover different
scalability behaviors and to be representative of a large
variety of applications.

5 PERFORMANCE EVALUATION

In this section, we evaluate the benefits of malleable work-
loads composed of the previously described applications in
a production environment. Our evaluation was performed
using 129 nodes of the Marenostrum IV supercomputer at
the Barcelona Supercomputing Center (BSC). Each node in
this facility is equipped with 2 Intel Xeon Platinum 8160
sockets (24 cores at 2.10 GHz each) for a total of 48 cores
with 96 GB of RAM. The nodes are interconnected through a
100 Gbit/s Intel Omni-Path network. For the software stack,
we used MPICH 3.2, OmpSs 15.06, and Slurm 15.08. Slurm
was configured with the following plug-ins:
• Job scheduling: sched/backfill with a 10-second

interval time among scheduling attempts.

TABLE 3
Job classification depending how it can be resized

Job Malleable? Rigid submission Moldable submission

No Fixed Pure Moldable
Yes Pure Malleable Flexible

• Job priority: priority/multifactor without defin-
ing a wall time request for jobs.

• Resource selection: select/linear.
One of the nodes hosted the Slurm management daemon,
while the remaining ones were used as compute nodes.

5.1 Job Malleability Scheduling Policy

Applications are submitted as jobs to the workload manager.
In [1], the authors categorize jobs depending on the user
participation when determining the number of processes on
initialization or during the execution. The most interesting
job categories for system-aware reconfiguration are:
• Rigid job: initiated with a static number of processes

defined by the user.
• Moldable job: the RMS decides the number of processes

on initialization.
• Malleable job: the number of processes can be changed

during the execution without user intervention.
On this basis, we have classified jobs combining moldability
and malleability. Table 3 shows this new classification, dis-
tinguishing whether jobs can be resized on initialization or
during the execution. For example, if a non-malleable job is
rigid, the job will be referred to as “fixed”. In contrast, if a
malleable job is moldable, we consider it to be “flexible”.

In this work, we rely on Slurm to schedule the jobs and
manage the resources. Apart from the rigid job submission,
where jobs request a fixed number of resources, Slurm
provides a moldable submission mechanism where a job
may request a range of resources.

We have implemented the reconfiguration policy for
Slurm outlined in Algorithm 2. This policy implements
actions depending on the following malleability parameters:

• Lower limit: the minimum number of processes.
• Upper limit: the maximum number of processes.
• Preferred: the number of processes determined by the

user (usually based on a heuristic metric.)
When a job triggers a reconfiguration, Slurm first checks

if the job is running with a number of resources lower than
its preferred configuration (line 1)—this can only happen
in moldable submissions. If this is the case, and there are
available resources, the job is expanded (line 2) without
exceeding the upper limit.

The policy is designed to improve the throughput of
the system. Therefore, if there exist pending jobs in the
queue (line 4), the policy checks if by shrinking a running
job (but never with fewer processes than preferred) and
deallocating part of its resources (line 6), an additional job
could be initiated. When this action is scheduled for the
first job, the additional one, responsible for the shrinking,
is assigned the highest priority to run. A job may only be
shrunk if the number of resources allocated to it is higher

10

Algorithm 2 Taking resize actions algorithm
1: if current < preferred then
2: if avail_resources then return expand
3: else
4: if pending_jobs then
5: if current > preferred then
6: if an additional job can be initiated then return shrink
7: else
8: if avail_resources then return expand
9: if avail_resources then return expand

10: else
11: if avail_resources then return expand

TABLE 4
Applications configuration

Application Input Data Iterations

CG A square matrix and 4 arrays of 32,768 elements 10,000
Jacobi A square matrix and 2 arrays of 16,384 elements 10,000

N-body 6,553,600 particles 50
HPG-aligner 40 millions 100-nucleotides reads #workers× 4

than its preferred value, and a pending job could benefit
from the released resources; otherwise, if no pending job
can be initiated, and there are available resources, the job is
expanded (line 9). Finally, if the job is running with fewer
processes than preferred, and there are available resources,
the job is expanded (line 11).

5.2 Applications Configuration
The experiments in this paper involve the four applications
used before. Table 4 shows the problem size and configura-
tion of each application. The application execution time is
varied by adjusting the number of iterations instead of the
problem size. In order to evaluate the effect of malleability,
we prioritize the number of iterations over the problem
size to attain a reasonable execution time for a highly-
utilized production supercomputer. Increasing the number
of iterations accelerates the reaction time of the malleability
system. The results could be extrapolated to larger problem
sizes, where the iterations take longer. All the jobs in this
evaluation are executed with a single process per node and
48 threads per process.

5.3 Applications Malleability Configuration
In order to configure the malleability parameters of the
applications (lower limit, preferred configuration, and up-
per limit), we performed a strong scalability test. For this
purpose, all the applications were executed with one pro-
cess (except HPG-aligner, which was executed with three
processes), and we doubled the number of processes in-
crementally at each step. With those results, we obtain a
relative factor of execution time decrease, referred to as gain
difference. The choice of the gain difference is justified by its
capacity to provide a fair balance between the number of
resources allocated and the speedup obtained, as proven in
several publications [15], [3], [9]. The value of this heuristic
decreases rapidly as the number of required nodes increases
if there is not remarkable performance gain in between con-
figurations. This heuristic rewards highly scalable applica-
tions with more resources for their malleability parameters.
The gain difference is calculated as:

scurrent =
tprevious − tcurrent

tmin_procs
× 100,

Fig. 3. Gain difference of each application and a 10% threshold (thick
line) to determine the limits of malleability.

TABLE 5
Malleability parameters for the applications

Application Lower Limit Upper Limit Preferred Scheduling Period

CG 2 32 16 10 seconds
Jacobi 2 32 4 10 seconds

N-body 1 32 1 -
HPG-aligner 6 12 6 -

where tcurrent is the completion time using the current
number of processes; tprevious is the completion time of the
previous number of processes configuration; and tmin_procs
is the completion time of the minimum number of processes
configuration. For example, to calculate the gain difference
for HPG-aligner executed with 12 processes (s(12)), we
subtract its time (t(12)) from the previous configuration
completion time (t(6)). This is divided by the reference com-
pletion time of the configuration with the lowest number of
processes, in this case, t(3) (the reference of the rest of the
applications is t(1)). The result is finally multiplied by 100.

Figure 3 depicts the gain difference for each configura-
tion of all four applications. With the gain difference heuristic,
enabling a 10% threshold, the malleability parameters are
defined as follows:

• Lower limit: first configuration exceeding the threshold.
• Preferred: last configuration before dropping below the

10% threshold. In other words, the configuration that
delivers the fairest user-defined balance between per-
formance and resources.

• Upper limit: last configuration before dropping below
zero (negative performance). In other words, the con-
figuration that delivers the highest performance.

Note that applications that do not reach the threshold, such
as N-body, have their lower limit and preferred value set to
one process.

Although our cluster is composed of 128 compute nodes
(plus one additional controller node), we restricted the jobs
to request a maximum of 32 nodes, enforcing that a job does
not monopolize more than a quarter of the cluster.

Table 5 summarizes the results of the experiments with
the malleable configurations. The last column includes the
scheduling inhibitor periods for CG and Jacobi. A 10-second
period minimizes the number of reconfiguration requests
reducing the overhead without a significant impact on the
scheduling. The remaining two applications do not need this
inhibitor because their iterations are coarse-grained.

11

TABLE 6
Job submission in Slurm using sbatch

Application Rigid Submission Moldable Submission

CG -N32 ./cg -N2-32 ./cg
Jacobi -N32 ./jacobi -N2-32 ./jacobi

N-body -N32 ./nbody -N1-32 ./nbody
HPG-aligner -N12 ./hpgaligner -N6-12 ./hpgaligner

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 250 500 1000 2000

S
p

ee
d

u
p

 (
x
)

Workload size

Waiting Execution Completion

Waiting Execution Completion

Rigid submission

Moldable submission

Fig. 4. Comparison of the four types of workloads. The lines show the
speedup attained thanks to the malleability for the average job waiting,
execution, and completion time, grouped by submission mode.

5.4 Job Submission
In Section 5.1, we introduced several job working modes,
which distinguish whether the number of processes
spawned by a job is determined before or during the exe-
cution. For this purpose, the baseline of the following ex-
periments is established by the results of the fixed workload
that submits rigid non-malleable jobs. Furthermore, it is
common that users submit their jobs with the configuration
that provides the maximum performance (the upper limit).

The moldable submission defines its range between lower
and upper limits. Table 6 describes how the jobs are submit-
ted in both modes using the performance analysis of Table 5.

For all the tests, we have generated several workloads
with jobs randomly corresponding to one of the four ap-
plications. The workloads are composed of 100, 250, 500,
1,000, and 2,000 jobs, and feature the four different job
versions: fixed, pure moldable, pure malleable, and flexible
(see Table 3). With these sizes, the study aims to cover
from small workloads, with hardly any pending job, to large
workloads where the queue of pending jobs is significant.

The Feitelson model [25] determines the job inter-arrival
time with a factor of 1, which represents a highly stressed
scenario where jobs are massively submitted with a short
delay that fits the Poisson distribution of the model.

5.5 Experimental Results
Figure 4 depicts the average job waiting, execution, and
completion (waiting plus execution) times for each work-
load size. The chart represents the speedup for the malleable
workloads compared with their non-malleable counterparts.
Lines are grouped by submission mode: the dotted lines
correspond to rigid submissions, while the thicker lines
represent moldable submissions.

First, we analyze the rigid case (dotted lines). Although
the average job execution time increases for the malleable

Fig. 5. Comparison of the evolution in time of a 1,000-job workload
for the pure moldable and flexible cases. The top chart represents the
allocated resources (shapes) and the number of running jobs (lines).
In the bottom chart, the shapes show the number of completed jobs in
each second of the execution.

jobs (speedup < 1), the completion time benefits from the
reduction in the waiting time (speedup ' 3.25×). The chart
also shows a strong correlation between the completion time
and the waiting time. This leads to malleable jobs finalizing
over 3x earlier than their non-malleable counterparts in a
workload composed of jobs submitted in rigid mode.

In the case of moldable submissions (dashed lines), the
speedup is more homogeneous once the workload reaches
a minimum size. We can observe the relevance of the
waiting time for the job completion cost since the speedup
lines almost overlap. When the workload size increases,
the queued jobs reach a saturation level where the waiting
time cannot be improved further, and the speedup remains
constant around 1.5x. Apart from the waiting time, flexible
jobs (moldable and malleable) show a higher speedup. In a
workload of pure moldable jobs (non-malleable submitted
moldable), the execution time increases because jobs are
likely to be initiated with fewer resources (it is easier to
find a slot of 2 nodes rather than one of 32), and they have
to finish their execution with their initial allocation.

We next discuss in further detail the 1,000-job workload
experiment with moldable submission. Figure 5 illustrates
the behavior via the representation of the workload evolu-
tion over time. In the top chart, the shapes report the evo-
lution of the resource allocation over time, demonstrating
that the flexible jobs can reallocate their resources to benefit
from virtually all the nodes during the whole execution. On
the other hand, the pure moldable jobs maintain their initial
allocation, resulting in a decrease in resource allocation near
the second 10,000. The lines in the top chart depict the
evolution of the number of running jobs over time. The pure
moldable workload (red line) shows a regular evolution and
a higher average number of running jobs since more jobs
are running for a long time. However, the flexible workload
(blue line) redistributes the resources prioritizing the execu-
tion of a higher number of jobs, though with an allocation of
nodes below the preferred values. The reconfiguration policy
in Slurm always tries to avoid scenarios with a reduced load,
as occurs at the beginning of the workload, initiating earlier
new jobs.

The bottom chart in Figure 5 represents the number of

12

●●

●

●

●●●●●●

●

●

●●

●

●●

●●●

●

●●

●

●●

●

●

●

●

●●●●●

●●●●

●

●

●●●

●●

●●●

●●

●

●

●

●

●

●

●●●●

●●●

●

●●

●●

●●●●

●●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●

●●●

●●

●●●

●

●●●●●

●

●

●●

●
●●
●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●●

●

●

●●●●●

●●●●●

●

●●●

●

●

●

●●

●

●

●

●●

●●●●●

●

●

●

●

●●

●●

●●●●●●●

●●●

●●

●●●

●

●

●

●

●

●●●

●●●

●

●●

●

●●

●●

●
●
●

●●

●

●●●●●
●●●
●●●●

●

●

●

●

●

●
●●●●
●
●●●
●
●●●●

●

●●

●

●

●

●●

●

●

●●

●●●
●●●
●

●●

●

●

●

●
●

●

●
●●●

●●

●
●

●

●●
●
●●

●
●●●
●
●●●
●

●

●●●●
●
●

●●●●
●

●

●

●

●

●
●●

●

●

●●●●
●
●●●●●●●
●●

●●●

●
●
●

●

●●
●
●●●●
●●

●

●
●

●●

●

●

●●

●
●
●
●

●

●

●●
●
●●●

●

●

●

●

●

●

●

●
●●
●●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●●
●●
●

●
●●●●●

●●

●●●

●

●

●

●
●
●●●
●
●●●

●

●
●●

●
●
●

●
●●

●

●

●

●●

●

●

●

●
●
●
●

●●●

●●●
●●●●●
●
●●●
●●●
●●●●●●●

●●●
●
●●●
●
●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●
●●

●

●

●

●

●

●

●●

●●●●●

●

●

●●

●●●●●●●●

●●●●●

●●

●

●

●●

●●●

●●●

●●●●●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●●

●

●●

●

●●●

●●●●●

●

●

●

●●

●

●

●●●●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●●●

●●●●

●
●
●●
●

●

●

●

●●●

●

●
●
●

●

●
●●
●
●●
●
●●

●●

●
●
●●●

●●●

●●●

●

●●●●

●●●

●●●

●●●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●●●

●●●●●

●

●●●●

●

●

●●

●●

●

●

●●

●●

●

●

●●●●●●

●

●

●●●

●

●●

●

●●●●

●●●

●

●●●●●●●●●●
●●●
●
●●●●●●●●●

●●●●
●
●
●●●●●
●
●●
●
●
●●●●
●

●●
●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●
●
●
●●●
●
●
●
●●●●●●●●

●

●●

●

●●
●●
●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●●●●●●●●●

●
●●●
●
●●●●●●●●●●●●

●●●●
●
●●●●●●●●

●

●

●

●
●●
●
●●●●
●
●
●
●●●●●●●●●●●

●●

●

●

●●●

●

●
●
●
●

●●●●
●●●●●●●

●●
●●●●●●●●●●●●●●

●●●

●●

●●●
●●●
●●●●
●
●●●
●
●●●
●●
●●
●●●●
●
●
●●●●●●●●●●●●●

●●
●●●

●
●●

CG HPG−Aligner Jacobi N−body
0

50
0

10
00

15
00

E
xe

cu
tio

n
tim

e
(s

) Workload
●

●

Pure moldable
Flexible

●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●

●●●●
●●●●
●●●●●
●●●●●●●●●●

●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●

●●●●●
●●●●
●●
●●●●●●●
●●●●●●

●●●●●●●●
●●●●
●●●●●

●●

●
●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●
●●
●●●●●●●●●

●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●●●
●●●
●●●●●●
●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●
●●●●●

●●●●●
●●●
●●●

●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●

●●●●●
●●●●●●●●●

●●●●
●●●●●●

●●●
●

●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●
●●●●

●●●●●●
●●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●
●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●

●●●●
●●●●●

●●●●●●
●●
●●●

●●●●●●●
●●●●●●●●●
●●●●●●●

●●●●●●
●●●●
●●●●●●
●●●●
●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●

●●●●●
●●●●
●●●●●●●●

●●●●●●●●
●●

●●●
●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●

●●●●●
●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●●●

●●●
●●●●●
●●●●

●●●●●●
●●●●●●●●
●●

●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●

●●●●●●●●
●●●●●●
●●●●
●●●
●●●●●

●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●

●●●
●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0
25

00
50

00
75

00
10

00
0

Job Id.

W
ai

tin
g

tim
e

(s
)

Fig. 6. Execution and waiting times per job in the 1,000-job workload
with moldable submission, grouped per application.

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●
●●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●
●
●
●
●

●●●
●●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●●

●●
●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●
●

●

●
●

●

●●

●
●

●●●

●
●

●●

●

●

●●●●
●●

●

●

●●

●

●●

●
●●

●

●●

●

●●

●

●

●

●

●
●

●
●●

●
●
●
●

●

●

●●
●

●●

●●●

●●

●

●

●

●

●

●

●●
●●

●●●

●

●●

●
●

●●

●●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●
●

●●

●●

●●●●●●
●
●●●
●●●●●
●●
●
●●●
●●
●●
●●●

●●●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●

●
●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●●●

●●●
●
●●
●●●
●●●●●●●●

●●●
●●●
●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●
●●●●

●●●

●
●●

●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●●

●
●●●
●

●

●●●●●

●

●●●

●

●●●●●●
●●
●

●
●

●●●
●●

●●
●

●●
●

●

●●●
●

●●●

●●
●

●
●●

●●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●●

●●
●

●
●●●●

●

●●●●

●

●

●●

●
●

●

●

●●

●●

●

●

●●
●●
●●

●

●

●●●

●

●●

●

●●●●

●●●

●

●●●

●

●

●

●

●

●●

●●●●●

●

●

●●

●
●●●
●●●●

●●●●●

●●

●

●

●●

●●●

●●●

●●●●●●

●●

●

●

●
●

●●●●●

●

●

●

●

●

●●

●●

●

●●

●

●●●
●●
●●
●
●

●

●

●
●

●

●

●●●
●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●●

●●
●●●●
●●●
●
●●●
●●●●●●
●●●
●●●●●●
●●●●
●●●●●
●●●●●●

●●●
●●
●●●

●●●
●●●●●
●●
●●
●●●●●●●

●●
●●●●●●●

●
●●●●●●
●●●●●●●●●

●●●●●●●
●●●
●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●●
●●●
●●
●●●●●●

●●●●
●●
●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●
●●●
●
●●●●

●●
●●●●●●

●●
●●●●●●●

●

CG HPG−Aligner Jacobi N−body

0 250 500 750 10000 250 500 750 10000 250 500 750 10000 250 500 750 1000

0
10

00
20

00
30

00
40

00

Job Id

T
im

e
di

ffe
re

nc
e

(s
)

Job time of: ● Completion Execution Waiting

Fig. 7. Time difference between the 1,000-job pure moldable and the
flexible workloads, grouped per application

completed jobs across the timeline. The green shape unveils
a sharper increase in the throughput in terms of completed
jobs per unit of time. Accordingly to the speedup chart
(Figure 4), the flexible jobs (malleable submitted moldable)
complete their execution on average 1.5x faster than the non-
malleable jobs when submitted as moldable (pure mold-
able). This produces a 1.5x speedup of the global throughput
when using malleability. In the 100-job workload, the com-
pletion time speedup is 2.2x, and the workload is processed
3x faster than the pure moldable counterpart.

Continuing with the same example, Figure 6 depicts
the waiting and the execution times of each job comparing
the pure moldable and the flexible versions. In the top
chart, the poorly-scalable applications (HPG-aligner and
N-body) show virtually the same execution time in both
versions. However, applications like CG or Jacobi show
higher variability in the execution time. In the flexible case,
expanding the jobs visibly tends to reduce the execution
time. Pure moldable jobs cannot be resized during their
execution. As we have noted earlier, these are very likely
to use a reduced set of resources, stretching their execution.
The bottom chart shows a regular behavior in the waiting
time for all applications, showing an increase of more than
3,000 seconds for the last queued jobs.

Figure 7 gathers the waiting, execution, and completion
times in the same chart and groups the time difference per
application type for each job in both versions. This chart
reveals the strong correlation of the waiting time with the
job completion time.

Figure 8a compares the workload completion time when
the malleability is active in both submission modes: rigid
and moldable. The vertical bars represent the total comple-

tion time for each configuration. Bars are grouped according
to the workload size. We have analyzed in detail the rigid
submission (first and second bar of each group) and how
the malleability improves it with speedups around 3x (blue
line). However, this chart also reveals the performance
benefits of the moldable submission of non-malleable jobs
(third bars). We observe that, with the moldable submission,
we obtain a similar completion time to that attained by a
malleable workload with the traditional rigid submission.

0

0.5

1

1.5

2

2.5

3

3.5

0

10000

20000

30000

40000

50000

60000

70000

100 250 500 1000 2000

S
p

ee
d

u
p

 (
x

)

T
im

e
(s

.)

Fixed Pure malleable Pure moldable Flexible Rigid Moldable

Workload version time Submission speedup

(a) Workload completion time.

0

0.5

1

1.5

2

2.5

0

50

100

150

200

250

300

350

400

450

500

100 250 500 1000 2000

S
p
ee

d
u
p
 (

x
)

T
im

e
(s

.)

Workload size

(b) Average job execution time.
Fig. 8. Workload type comparison and speedup of submission modes.

These results suggest that the moldable submission may
offer an easy–to–adopt high-throughput solution. However,
Figure 8b shows one of the most critical drawbacks for
its adoption in production environments: the increase in
job execution time. While the individual average execution
time for the rigid submission (first and second bars of
each workload size) and flexible jobs (fourth bar) remain
unaltered, in the pure moldable workloads (third bar), the
jobs experience a notable growth of this metric. To address
this problem, we propose to leverage DMRlib to introduce
job malleability. Thanks to this, flexible workloads maintain
the same time regardless of the workload size, unlike the
pure moldable workload, yielding speedups of up to 2x in
the average job execution time.

An additional drawback of adopting the moldable sub-
mission without malleability is exposed in Figure 9, which
shows that the resource allocation rate drops for small
workload sizes (third bar of each group). In this case, the
pure moldable workload under-utilizes the resources when
the number of jobs in the queue is moderate.

We can consider flexible jobs, which solve these issues,
as a remarkable technique for high-throughput computing
(HTC). At the same time, DMRlib provides an easy–to–use
approach.

5.6 Impact of Malleability on the System
In this section, we study heterogeneous workloads, where
not all their jobs can be resized. For this purpose, we

13

50%

60%

70%

80%

90%

100%

100 250 500 1000 2000R
es

o
u

rc
e

al
lo

ca
ti

o
n

Workload size

Fixed Pure malleable Pure moldable Flexible

Fig. 9. Workload type resource allocation comparison.

have designed two types of experiments using the 1,000-job
workload. On the one hand, we have generated workloads
with different percentages of malleable jobs, specifically:
25%, 50% and 75%. On the other hand, we have created
workloads where only one application is malleable. In other
words, workloads where only one job type can be resized
while the others remain fixed. All the workloads feature two
instances using either the rigid or the moldable submission.

Table 7 contains the resource allocation rate and the
percentage of time to execute the workload concerning the
reference fixed workloads executions. The reference values
are placed in the yellow cells of the column labeled as
“None”. In addition, we have also defined the results when
all jobs are malleable (gray column labeled as “All”) as a
target reference.

In order to identify which kind of application has a
greater impact on the results, the most interesting cells have
been highlighted as follows:
• Yellow is the reference when jobs are entirely static.
• Gray is the reference when all the jobs are malleable.
• Blue shows an allocation almost as the best case.
• Green highlights important reductions in the comple-

tion time when not all the jobs are malleable.
For the rigid submissions (third and fourth rows), the

heterogeneous workloads cannot beat the reference fixed
workload resource allocation rate (96.37%). Nevertheless,
those workloads where CG or HPG-aligner are malleable
show quite a similar allocation rate.

Regarding the completion time, we have colored in green
the 75%-flexible and N-body-only workloads, which run
in about half of the reference time (53.77% and 56.39%,
respectively). While the workloads with a 25-50-75% mal-
leable jobs define a progression where the execution time
is inversely proportional to the rate of malleable jobs when
only the N-body is malleable, the completion time is almost
reduced to half (still far from the target reference (36.12%)).

In the moldable submission case (fifth and sixth rows),
the resource allocation rates are similar, since the mold-
able jobs can leverage the resources when launched. How-
ever, the workload comprising malleable CG jobs can only
achieve almost the same completion time (25.51%) as that
attained by the flexible workload (25.15%).

From these results, we conclude that there is no cor-
relation between resource allocation and execution time.
Besides, the resources are not wasted because the percent-
ages fluctuate inside the reference rates. In this study, we
have also discovered that the rigid submissions profit more
from poorly-scalable applications like our N-body. For the
moldable submissions, the resource manager can execute
more efficiently those highly scalable applications such as

our CG. As shown in Figure 3, CG increases the gain in
performance up to 16 processes, being able to be shrunk up
to two processes when needed. Our malleability solution
exploits this behavior efficiently.

6 CONCLUSIONS

In this paper, we have analyzed the process malleability
state-of-the-art and how different frameworks offer distinct
tools to accommodate malleability in the user codes. Re-
garding the usability, we have postulated that a reduced
number of lines, automatic data transfers, standard MPI-
based, and the integration in a well-established HPC RMS,
are the most desirable characteristics of an ideal malleability
solution.

We have also presented a minimalist, MPI standard,
data-transfer-aware malleability framework, named DMR-
lib, with support for the Slurm workload manager, This
easy-to-adopt solution intends to facilitate turning a signifi-
cant number of parallel scientific applications into malleable
codes by setting reconfiguration points.

Using DMRlib, we have developed four malleable appli-
cations with different scalability patterns. With these appli-
cations, we have generated fixed, pure moldable, pure mal-
leable, and flexible workloads in order to assess the gains of
malleability in terms of throughput, resource allocation, and
energy consumption.

DMRlib has proven to reduce energy consumption while
increasing the global throughput of HPC facilities. In addi-
tion, our studies have demonstrated that it is not necessary
to convert all the system applications into malleable; in-
stead, by just adapting the right type of applications, the
throughput can be dramatically boosted, and the energy
consumption reduced more than 75% (see Appendix B).

DMRlib may implement arbitrary resize of processes
(from any to any number of processes). However, in this
paper, we have limited the reconfigurations to values mul-
tiple or divisible of the number of parent processes.

The next natural step corresponds to the integration of
DMRlib in intra-node malleability tools, such as dynamic
load balancing (DLB) [26].

ACKNOWLEDGMENT

This work was supported by projects TIN2014-53495-R,
TIN2015-65316-P, and TIN2017-82972-R from MINECO and
FEDER. This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska Curie grant agree-
ment No. 749516. Sergio Iserte was supported by a postdoc-
toral fellowship from Generalitat Valenciana and European
Social Fund APOSTD/2020/026. Finally, the authors want
to thank the anonymous reviewers whose suggestions sig-
nificantly improved the quality of this manuscript.

REFERENCES

[1] U. Lublin and D. G. Feitelson, “The workload on parallel su-
percomputers: Modeling the characteristics of rigid jobs,” JPDC,
vol. 63, no. 11, pp. 1105–1122, Nov 2003.

[2] I. Comprés, A. Mo-Hellenbrand, M. Gerndt, and H.-J. Bungartz,
“Infrastructure and API extensions for elastic execution of MPI
applications,” in 23rd EuroMPI, 2016, pp. 82–97.

14

TABLE 7
Resource allocation and completion time of a 1,000-job workload with different rates of malleable jobs

Malleable Jobs

Submission Percentage None 25% 50% 75% All CG Only Jacobi
Only

N-body
Only

HPG-aligner
Only

Rigid Res. Alloc. 96.37% 87.43% 87.07% 88.50% 87.29% 94.75% 88.34% 84.36% 93.06%
Comp. Time 100.00% 92.52% 73.49% 53.77% 36.12% 89.00% 105.67% 56.39% 101.77%

Moldable Res. Alloc. 91.23% 89.92% 88.97% 86.92% 94.57% 95.51% 92.81% 90.62% 91.80%
Comp. Time 38.82% 37.29% 33.55% 30.09% 25.15% 25.51% 43.44% 33.88% 38.40%

[3] S. Iserte, H. Martínez, S. Barrachina, M. Castillo, R. Mayo, and
A. J. Peña, “Dynamic reconfiguration of noniterative scientific
applications,” IJHPCA, Sep 2018.

[4] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
“Dynamic malleability in iterative MPI applications,” in 7th IEEE
CCGrid, May 2007, pp. 591–598.

[5] P. Lemarinier, K. Hasanov, S. Venugopal, and K. Katrinis, “Ar-
chitecting malleable MPI applications for priority-driven adaptive
scheduling,” in 23rd EuroMPI, 2016, pp. 74–81.

[6] B. Acun et al., “Parallel programming with migratable objects:
CHARM++ in practice,” in SC14. IEEE, Nov 2014, pp. 647–658.

[7] A. Gupta, B. Acun, O. Sarood, and L. V. Kalé, “Towards realizing
the potential of malleable jobs,” in 21st HiPC, 2014.

[8] G. Zheng, Xiang Ni, and L. V. Kale, “A scalable double in-memory
checkpoint and restart scheme towards exascale,” in IEEE/IFIP
DSN, Jun. 2012.

[9] S. Iserte, “High-throughput computation through efficient re-
source management,” Ph.D. dissertation, UJI, Nov 2018.

[10] F. S. Ribeiro, A. P. Nascimento, C. Boeres, V. E. F. Rebello, and A. C.
Sena, “Autonomic malleability in iterative MPI applications,” in
SBAC-PAD, 2013, pp. 192–199.

[11] G. Martín, M.-C. Marinescu, D. E. Singh, and J. Carretero, “FLEX-
MPI: An MPI extension for supporting dynamic load balancing
on heterogeneous non-dedicated systems,” in Euro-Par Parallel
Processing, Aug. 2013, pp. 138–149.

[12] R. Sudarsan and C. J. Ribbens, “Reshape: A framework for dy-
namic resizing and scheduling of homogeneous applications in a
parallel environment,” in ICPP, 2007.

[13] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing
throughput of overprovisioned HPC data centers under a strict
power budget,” in SC14. IEEE, Nov 2014, pp. 807–818.

[14] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and
L. V. Kale, “A batch system with efficient adaptive scheduling for
malleable and evolving applications,” in IPDPS, May 2015.

[15] S. Iserte, R. Mayo, E. S. Quintana-Ortí, V. Beltran, and A. J. Peña,
“Efficient scalable computing through flexible applications and
adaptive workloads,” in 46th ICPPW, Aug. 2017, pp. 180–189.

[16] F. Sainz, J. Bellon, V. Beltran, and J. Labarta, “Collective offload for
heterogeneous clusters,” in 22nd HiPC, 2015.

[17] S. Iserte, R. Mayo, E. S. Quintana-Ortí, V. Beltran, and A. J. Peña,
“DMR API: Improving cluster productivity by turning applica-
tions into malleable,” Parallel Computing, Oct 2018.

[18] S. Iserte and K. Rojek, “An study of the effect of process malleabil-
ity in the energy efficiency on GPU-based clusters,” The Journal of
Supercomputing, pp. 1–20, oct 2019.

[19] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
“Malleable iterative MPI applications,” Concurrency and Computa-
tion: Practice and Experience, vol. 21, no. 3, Mar. 2009.

[20] G. Martín, D. E. Singh, M.-C. Marinescu, and J. Carretero, “En-
hancing the performance of malleable MPI applications by using
performance-aware dynamic reconfiguration,” Parallel Computing,
vol. 46, pp. 60–77, Jul. 2015.

[21] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 6, p. 409, Dec 1952.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Jan 2003.

[23] S. J. Aarseth, Gravitational N-body simulations: tools and algorithms.
Cambridge University Press, 2009.

[24] I. Medina et al., “Highly sensitive and ultrafast read mapping for
RNA-seq analysis,” DNA Research, vol. 23, no. 2, Apr 2016.

[25] D. G. Feitelson and L. Rudolph, “Toward convergence in job
schedulers for parallel supercomputers,” in Job Scheduling Strate-
gies for Parallel Processing, vol. 1162, no. 5, 1996, pp. 1–26.

[26] M. Garcia-Gasulla, “Dynamic load balancing for hybrid applica-
tions,” Ph.D. dissertation, UPC, 2017.

Sergio Iserte holds the degrees of BS in Com-
puter Engineering (2011), MS in Intelligent Sys-
tems (2014), and PhD in Computer Science
(2018) from Universitat Jaume I, Spain. He is
currently postdoc researcher (APOSTD20) in the
Mechanical and Engineering Construction Dept.
at the same University. He is currently involved
in HPC projects related to parallel distributed
computing, cloud computing, resource manage-
ment, workload modeling, and deep learning for
industrial applications.

Rafael Mayo received the BS degree from Poly-
technic Valencia University in 1991. He obtained
his PhD in Computer Science in 2001 at the
same University. Since October 2002 he has
been an Associate Professor in the Dept. of
Computer Science and Engineering in the Uni-
versity Jaume I. His research interests include
the optimization of numerical algorithms for gen-
eral processors as well as for specific hard-
ware, and their parallelization on both message-
passing parallel systems (mainly clusters) and

shared-memory multiprocessors. Nowadays he is involved in several
research efforts on HPC energy-aware systems, cloud computing and
HPC system and development tools.

Enrique S. Quintana-Ortí received the bach-
elor’s and PhD degrees in computer sciences
from the Universitat Politecnica de Valencia
(UPV), Spain, in 1992 and 1996, respectively.
After spending the last 23 years as Assistant, As-
sociate and Full Professor at Universidad Jaume
I, also in Spain, he recently came back to UPV as
Full Professor in Computer Architecture. He has
published 350+ papers in international confer-
ences and journals, and has contributed to soft-
ware libraries such as PLiC/SLICOT, MAGMA,

FLARE, BLIS, and libflame for control theory and parallel linear alge-
bra. He has been awarded by NVIDIA and the USA NASA for this
development on high performance computing and fault tolerance. His
current research interests include parallel programming, linear algebra,
energy consumption, transprecision computing and bioinformatics, and
advanced architectures and hardware accelerators, and deep learning
technologies.

Antonio J. Peña holds a BS+MS degree in
Computer Engineering (2006), and MS and PhD
degrees in Advanced Computer Systems (2010,
2013), from Universitat Jaume I, Spain. He is
currently a Sr. Researcher at Barcelona Super-
computing Center (BSC), Computer Sciences
Dept. Antonio works within the Programming
Models group where he is Activity Leader for
“Accelerators and Communications for HPC”.
Dr. Peña is also the Manager of the BSC/UPC
NVIDIA GPU Center of Excellence.

15

APPENDIX A
API DEFINITIONS

A.1 DMRlib
Currently, DMRlib is composed of the following interfaces:
• Macro

– DMR_RECONFIG
• Core functions

– DMR_Set_paramenters
– DMR_Set_sched_period
– DMR_Set_sched_itertions

• Data transfer functions
– DMR_Send_expand_default
– DMR_Recv_expand_default
– DMR_Send_shrink_default
– DMR_Recv_shrink_default
– DMR_Send_expand_blockcyclic
– DMR_Recv_expand_blockcyclic
– DMR_Send_shrin_blockcyclic
– DMR_Recv_shrink_blockcyclic

• Variables
– DMR_INTERCOMM

A.2 DMR API
The DMR API is defined by:
• Functions

– DMR_Reconfiguration
– DMR_Detach

• Compiler directive:
– #pragma omp task onto

APPENDIX B
ENERGY CONSUMPTION

The reduction in time and the level of resource utilization
derived from the adoption of DMRlib yield a strong posi-
tive impact on energy consumption. Figure 10 depicts the
energy usage of each configuration grouped by workload
size. For clarity, we have skipped the 2,000-job workload
because it does not provide additional information. In this
figure, the top bar of each size is the reference consumption
representing the KW/h of a non-malleable workload with
a rigid submission of jobs. The remaining bars in the group
display a label with the relative consumption with respect
to the reference value.

From these results we observe that DMRlib can reduce
the energy consumption by up to 70% (second bar of each
group). Furthermore, by changing the submission and using
the moldable method, the consumption already decreases to
40–50% (third bar) of the original level. Last, the largest re-
duction is given by combining malleable jobs with moldable
submissions, showing that workloads can be then processed
with a reduction in the consumption of almost 80%.

29.72%

32.22%

30.92%

32.51%

47.32%

45.56%

38.00%

37.38%

20.65%

25.80%

22.73%

24.83%

0 50 100 150 200 250 300 350

100

250

500

1000

Energy consumption (kW/h)

W
o

rk
lo

ad
 s

iz
e

Fixed Pure malleable Pure moldable Flexible

Fig. 10. Energy needed to complete a workload compared to the fixed
mode.

The energy was estimated using the consumption infor-
mation provided by the technical support of Marenostrum
IV: idle nodes consume 100 Wh, while loaded nodes con-
sume 340 Wh. Energy is then simply calculated by taking
into account the time each node is idle/loaded.

