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ABSTRACT 9 

Currently, there is a growing demand by our society, authorities and science to increase the 10 

knowledge about the quality of food and its relationship with health and disease. Untargeted 11 

metabolomics approaches are emerging as powerful tools for exploring metabolic changes in 12 

biological systems under different conditions with great potential in the food field. To this aim, it 13 

is necessary to apply advanced analytical techniques, such as chromatography hyphenated to high 14 

resolution mass spectrometry, which provides enough sensitivity and selectivity to cover a wide 15 

range of metabolites in complex samples, as food and biological samples. The objective of this 16 

work is to provide an overview of the most widely adopted strategies based on the use of high 17 

resolution mass spectrometry-based techniques for the identification of food (bio)markers through 18 

the untargeted metabolomics workflow. Detailed information is provided about the trends in each 19 

stage of the metabolomics process from updated literature with the objective to help researchers 20 

to select the most appropriate metabolic approaches.  21 
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Abbreviations 24 

APCI  atmospheric pressure chemical ionization   25 

BFI  biomarker of food intake 26 

CI  chemical ionization 27 

DDA  data dependent acquisition 28 

DIA  data independent acquisition 29 

EI  electron ionization 30 

ESI  electrospray ionization 31 

FS  full scan 32 

GC  gas chromatography 33 

HILIC  hydrophilic interaction chromatography 34 
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IMS  ion mobility spectrometry 35 

IT  ion trap mass analyser 36 

LC  liquid chromatography 37 

LR  low resolution 38 

MS  mass spectrometry 39 

HRMS  high-resolution mass spectrometry 40 

MS/MS tandem mass spectrometry 41 

MSn  sequential mass spectrometry 42 

NMR  nuclear magnetic resonance 43 

OT  Orbitrap mass analyser 44 

Q  quadrupole mass analyser 45 

RPLC  reversed phase liquid chromatography 46 

TOF  time-of-flight mass analyser 47 

xC-HRMS chromatographic techniques coupled to high resolution mass spectrometry 48 

49 
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1 INTRODUCTION 50 

Foodomics has been defined as a new discipline that studies food and nutrition domains 51 

combining the application of advanced analytical techniques (omics tools) and bioinformatics. The 52 

use of omics tools, such as genomics, transcriptomics, proteomics and/or metabolomics, is a 53 

requirement to address the challenges presented in emerging working areas included in foodomics 54 

studies [1]. Metabolomics can be defined as a non-selective, comprehensive analytical approach 55 

for the identification and quantification of metabolites in a biological system, typically those small 56 

molecules with a molecular weight below 1500 Da [2]. Metabolomics has become a powerful tool 57 

for the study of the complex interactions between diet and the human or animal organisms enabling 58 

to expand our knowledge of the subtle changes at metabolic level activated by foods, nutrients and 59 

disease. It has allowed significant improvements in the field of dietary assessment since it enables 60 

the identification of novel and robust biomarkers of food intake (BFIs) enhancing the accuracy 61 

and the objectivity in the measurement of dietary exposures and reducing the bias and errors 62 

associated with self-report methods [3]. On the other hand, the potential of metabolomics as a 63 

robust, efficient and sensitive analytical methodology in food safety, quality and traceability is 64 

widely recognized [4]. 65 

Metabolomic studies are challenging because of the aim to characterize complex and 66 

diverse biological matrices containing compounds with a wide range of polarities or volatilities.  67 

Carbohydrates, lipids, amino acids, amines, steroids, phenolic compounds, carotenoids, alkaloids 68 

or volatile compounds, are examples of compounds that constitute the metabolome [2]. This 69 

enormous diversity has led to the emergence of sub-areas within the metabolomics field to narrow 70 

down the search for compounds with similar physicochemical properties. As an example, 71 

lipidomics deals with the determination of lipid classes, subclasses and lipid signalling molecules, 72 

providing a tool for the assessment of changes in lipid metabolism [5]. On the other hand, 73 

volatolomics is the sub-unit of metabolomics responsible of the detection, characterization and 74 

quantification of volatile metabolites in a biological system [6]. 75 

In general, two complementary approaches are used in metabolic research: metabolic 76 

profiling (targeted metabolomics) and metabolic fingerprinting (untargeted metabolomics). 77 

Metabolite profiling focuses on the analysis of a group of metabolites such as those related to a 78 

specific metabolic pathway. In this approach, target metabolites are selected beforehand and they 79 



5 

 

are assessed using specific analytical methods. Technological advances have increased the number 80 

of metabolites that can be quantified simultaneously. Moreover, the results of metabolic profiling 81 

are independent of the technology used for data acquisition. Metabolic fingerprinting does not aim 82 

to identify the entire set of metabolites but rather to compare patterns or fingerprints of metabolites 83 

that change in response to an altered state promoted by endogenous (disease, genetics…) or 84 

exogenous (diet, environment…) conditions. It can be used as a tool to evaluate the state of a 85 

biological system by comparing, for example, control and disease subjects, or to assay the success 86 

of a particular treatment (prognosis/recovery). Once a differential pattern is discovered, further 87 

steps to identify the contributing compounds (qualitative) and to determine the absolute amounts 88 

of metabolites that participate in the processes studied (quantitative) must be followed. This issue 89 

is not trivial and prior to boarding on the task of discovering metabolic biomarkers, sufficiently 90 

sensitive and selective instruments and extensive compound libraries for metabolite identification 91 

must be available, while wide experience in data analysis and interpretation is also necessary [7]. 92 

Unlike the traditional analytical workflow, untargeted metabolomics is an hypothesis-driven 93 

methodology, that means that to address a biological question the experiment must be design with 94 

the broadest perspective as possible, and the hypothesis is generated from the result [5]. As large 95 

data sets are obtained from the results, potent statistical tools, as multivariate analysis, are 96 

necessary to reduce the data complexity and to reveal underlying trends from which it is hoped 97 

that hypothesis can be generated [8]. Figure 1 shows a typical workflow followed in metabolomics 98 

fingerprinting. Concerning the detection and identification of metabolites, high-resolution mass 99 

spectrometry (HRMS)-based techniques are, undoubtedly, the most suitable option to deal with 100 

the vast diversity of small molecules with distinct physicochemical properties in complex 101 

biological matrixes that constitute the metabolome. The main advantages of HRMS-based 102 

metabolomics are the high sensitivity and selectivity as well as the accurate-mass full-spectrum 103 

acquired data, together with possibility to be coupled on-line to a separation technique. The 104 

hyphenation of separation techniques, mainly gas chromatography (GC) and liquid 105 

chromatography (LC), with HRMS reduces the complexity of the mass spectral data, enhancing 106 

the sensitivity of the detection and providing additional information about the physicochemical 107 

characteristics of the analysed molecules. Moreover, HRMS analysers can be used as a hybrid 108 

instrument allowing acquisitions in tandem mass spectrometry mode (MS/MS or MSn) 109 
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incorporating fragmentation data of the metabolites and facilitating the confirmation of known, 110 

reported, compounds or assisting the elucidation of unknown metabolites. 111 

The starting point of this work was a comprehensive search in Scopus database using the 112 

following keywords: “precision foods”, “ functional foods”,  “precision nutrition”, “food intake”, 113 

“biomarkers of intake”, “nutritional assessment”, “dietary markers”, “nutrimetabolomics”, “food 114 

quality”, “food safety”, “food authenticity”, “food fraud” and “food traceability”; along with 115 

keywords related to the analytical technique and the methodology: “untargeted” (and synonyms 116 

“fingerprinting”, “untarget” and “non-target”), “metabolomics”, “mass spectrometry”, “HRMS” 117 

and “MS”; in papers published between 2017 and 2020. Reviews, trends, perspectives and book 118 

chapters were kept separately as a source of information. With the articles selected, a discussion 119 

of the trends in chromatography-HRMS-based metabolomics fingerprinting within in the context 120 

of foodomics is provided using as guideline the workflow shown in Figure 1. 121 

2 STUDY DESIGN 122 

Bearing in mind the objective of metabolomics fingerprinting, the experimental design 123 

requires careful consideration prior to laboratory work to ensure the quality and validity of the 124 

results. Within this approach, an appropriate experimental design must undertake the acquisition 125 

of data related to a specific biological question while ensuring that covariants or cofounders are 126 

not present or are well characterised [9]. 127 

A common feature in experimental design is that cohorts should be homogenous in those 128 

factors that are not included in the biological question, avoiding unnecessary errors, false leads 129 

and “statistical noise” [8]. For example, within the context of the discovery of fraudulent practices 130 

in the food industry, dead on arrival and regularly slaughtered chickens metabolite patterns were 131 

compared. All the chickens were grown on the same farm, were of the same age and were fed the 132 

same diet; moreover, the same tissues were analysed [10]. Sometimes, sample characterisation 133 

after sample collection is necessary to define in which cohort the sample belongs; for example, 134 

testing panels made up of professional tasters were used to assess quality in olive oil samples [11] 135 

and green tea samples [12]. In other study, the quality in berries of sea buckthorn was defined 136 

using a colorimeter [13]. In some occasions, when the objective is to look for the variability 137 

between geographic origin or variety, the characterisation is provided by the supplier [14].  138 
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Regardless the aim of the study, the collection of metadata during sample collection is 139 

crucial to avoid bias and the incorporation of data related to confounding factors into the statistical 140 

analysis [9]. In studies involving humans it is imperative to collect 141 

demographic/physiological/lifestyle metadata since such factors are difficult to control and inter-142 

subject metabolic variation could be hiding the metabolic changes produced by the food or diet to 143 

be assessed. In animal or cellular assays, where there is commonly an extensive control over these 144 

factors, the inter-subject variation is usually negligible. Inclusion and exclusion criteria are 145 

commonly established in human studies to avoid incorporating subjects whose 146 

demographic/physiological/lifestyle characteristics can produce undesirable results in a specific 147 

study. For example, smokers used to be excluded due to the potential exposure to polycyclic 148 

aromatic hydrocarbons [15].  149 

Two approaches can be considered when designing foodomics studies: intervention studies 150 

and observational studies. Dietary intervention study designs generally involve participants 151 

consuming a specific standardised diet or food product over a defined time. In this way, the 152 

variation introduced by food storage, preparation process, as well as the type of food and the 153 

nutritional value, is in usually controlled. Biofluids, urine or blood, are collected at specific time-154 

points depending on the research interest. For example, blood samples were collected at baseline 155 

and after three and six weeks of treatment with the aim to compare the metabolite fingerprints at 156 

different levels of red-meat consumption [15]. On the other hand, twenty-four-hour urine samples 157 

were collected in a four-way cross-over intervention for the investigation of biomarkers in different 158 

kinds of meat consumed in a restricted diet during 48 h [16]. Within a cross-over design, such as 159 

the previous example, the participants receive all treatments reducing the inter-subject variation. 160 

When a succession of treatments is applied to the same participants is necessary to include 161 

washouts in the study design, which can consist in returning to the habitual diet or in excluding 162 

the food of interest for the study. The importance of washouts lies in returning to the basal 163 

metabolic levels avoiding carryover. Besides, in such studies that include blood collection, the 164 

washout duration must be longer to ensure the recovery of red blood cells and platelets [17]. Other 165 

elements to highlight are the randomisation of subjects and the nutritional and isocaloric 166 

equivalence between treatments. Generally, dietary intervention studies are expensive and 167 

laborious to conduct and some methodological compromises are required, such as limiting the 168 

sample size or reducing the time of study [3]. 169 
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In observational studies, two groups, generally low and high consumers of the food(s) or 170 

diet of interest, are selected from food intake data collected by traditional dietary assessment 171 

methods such as food frequency questionnaires (FFQ), dietary diaries or other dietary assessment 172 

tools. Broadly, participants are selected from large cohorts to perform a cross-sectional study; in 173 

other words, groups of participants are compared at a single time point. For example, a cross-174 

sectional design was applied to a subgroup of the SU.VI.MAX cohort, funded by the French 175 

National Cancer Institute. All participants were invited to complete a 24-h dietary record every 176 

two months up to a total of 10, covering all days of the week and all seasons of the year to assess 177 

their adherence to the French dietary recommendation [18]. A meticulous exclusion process was 178 

applied in the previous example, for selecting a limited number of participants from a large cohort. 179 

A stratified randomisation was performed to ensure that experimental groups are balanced 180 

concerning the confounding variables [19]. Observational work usually involves studies with a 181 

large number of samples and long study time; however, the limitations of traditional dietary 182 

assessment in providing reliable information could be a source of bias. Sometimes, cross-sectional 183 

studies in large cohorts are used to validate biomarkers identified by interventional designs [20].  184 

3 SAMPLING AND SAMPLE PREPARATION 185 

Once the experimental design is established, the next steps in the analytical process involve 186 

sample collection and sample preparation in the laboratory, including the shipping and storage of 187 

samples. It is essential to minimize sources of confounding factors, random or systematic errors 188 

during these stages to ensure the generation of robust and reproducible data, which only result in 189 

the variation between the different classes defined in the study design. Samples should be 190 

representative in terms of the biological question, defining factors such as the type and amount of 191 

sample, time of collection, and ensuring proper randomisation and group balancing within the 192 

sampling plan [21]. After collection of the sample, the metabolome may change because of many 193 

factors such as enzymatic activities, exposure to oxygen, UV light and temperature; so, optimum 194 

transport and storage conditions must be established to avoid sample losses, transformations, or 195 

contamination. Sample preparation in untargeted metabolomics aims transforming the 196 

physiochemical properties of the sample in a reproducible way to make it compatible with the 197 

analytical method. It should be as less selective as possible, maintaining the most the metabolomic 198 

composition of the sample, covering a wide range of compounds. Minimising the steps in sample 199 



9 

 

preparation avoids losses of metabolites and facilitates a high sample throughput [22]. In most 200 

cases, sample preparation is reduced to a straightforward solvent-extraction [4] or even a simple 201 

“dilute and shoot” in the case of less complex matrices when using LC separation [22]. 202 

Before the extraction, it is necessary to homogenise the sample and reduce its size, together 203 

with metabolism quenching. In solid samples (e.g. food, human and animal tissues), freeze-dried 204 

powder sample or frozen samples are commonly used; the sample can also be ground in a mortar 205 

with liquid nitrogen [23]. Vortex and ultrasounds sonication can be used to perform a more 206 

exhaustive extraction of metabolites during solvent-extraction in solid matrices [24–26], while in 207 

liquid samples (e.g. beverages and bio-fluids), stirring and aliquots are usually applied for 208 

homogenization and size reduction. 209 

Hydro-organic mixtures containing water, methanol, acetonitrile and/or formic acid are a 210 

common choice for extraction since such versatile solvent systems provide enough solubility for 211 

covering polar and semipolar metabolites [21]. Hydrophobic extraction mixtures using organic 212 

solvents, such as chloroform or dichloromethane, are appropriate for the extraction of the non-213 

polar fraction of the metabolome, as for example lipids or volatile compounds. Double extractions 214 

are sometimes applied to cover both polar and non-polar metabolites [10,27]. For example, 215 

chloroform, water and methanol was applied for freeze-dried carrot samples; after centrifugation, 216 

the aqueous phase (water/methanol) was used for analysing polar compounds, and the chloroform 217 

phase was evaporated and reconstituted with methanol for lipids analysis [28].  218 

Cold extraction is recommended to avoid enzymatic activity. Some compounds can be used 219 

to stop the metabolomic activity, as long as global extraction is not compromised; for example, O-220 

(carboxymethyl) hydroxylamine hemihydrochloride (OCMHA) was added to inhibit enzyme 221 

alliinases in garlic samples [14]. After extraction, centrifugation is applied to eliminate the solid 222 

residues and the proteins precipitated by the organic solvent.  223 

In GC-based methods, the non-volatile compounds should be carefully removed or being 224 

chemically derivatized, which increases the complexity of the sample treatment adding time-225 

consuming steps. A typical derivatization consist on two-steps process: methoxymation for ketone 226 

functional groups protection with methoxyamine, followed by silylation with reagents as BSTFA 227 

[27], MSTFA [29] and MTBSTFA [19], to reduce the polarity of the molecule by reacting with 228 

the active hydrogen of polar functional groups(-OH , -COOH, -NH2, -SH and –PO4
-3). In this way, 229 
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it was possible to detect simultaneously chemical families like amino acids, sugars, organic acids 230 

and some fatty acids, among other metabolites, in vegetable matrices [30] or human biofluids [31]. 231 

In volatolomics studies, GC analysis is the natural selection. Dynamic headspace purge 232 

and trap (DHS-P&T) has been used to extract the volatile fraction in olive oil samples. Volatiles 233 

were released from the sample by the use of a nitrogen stream and then retained on a reversed-234 

phase sorbent cartridge [11]. In some cases, a solvent extraction from the trap cartridge is applied 235 

with a GC-suitable solvent such as n-hexane. Another alternative for volatile extraction is to 236 

establish an equilibrium between the vapour phase and the adsorbent in a closed space. Thus, 237 

headspace solid-phase microextraction (HS-SPME) has been satisfactorily used in seeds and 238 

whisky analysis [32,33]. The volume of sample, temperature, equilibrium time, the necessity of 239 

stirring, salting-out and the type of fibre are parameters commonly optimised in SPME analysis, 240 

and PDMS/DVB coating is suitable for volatile global screening [34]. Parallel to the SPME 241 

analysis, a more extensive range of compounds, including volatiles and semi-volatiles, could be 242 

extracted with ethyl acetate in whiskey samples [33].  243 

Blood plasma, serum and urine are the common biofluids studied. The extraction of 244 

metabolites from urine is usually made by dilution with water and centrifugation followed by 245 

filtration for removal urine proteins or particulates. The dilution can be done before or after the 246 

centrifugation, and the degree of dilution uses to be in the range 1:1 to 1:3 V/V [35]. An attempt 247 

to normalise the dilution factor was carried out by the measuring of specific gravity by 248 

refractometry before the analysis [36]. Regarding serum and plasma, due to their high protein 249 

content, the sample preparation scheme involves a simple protein precipitation followed by 250 

centrifugation and reconstitution [37–39]. It is also possible to extract exogenous metabolites by 251 

using acidified methanol [18]. 252 

4 INSTRUMENTAL ANALYSIS 253 

There is no universal analytical technique in untargeted metabolomics. The analysis of 254 

complex samples and the vast diversity of small molecules with diverse physico-chemical 255 

properties that constitute the metabolome entails the need to use a wide variety of analytical 256 

techniques. It is highly recommended to run more than one platform to enhance the compound 257 

coverage and to obtain comprehensive information. The two major analytical platforms to perform 258 
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untargeted metabolomics are nuclear magnetic resonance (NMR) spectroscopy and HRMS-based 259 

techniques. NMR advantages are the robust structural elucidation capabilities, the non-destruction 260 

of the sample and the detection of non-ionizable compounds, among others [40]. However, it is 261 

not capable of reaching the sensitivity of HRMS-based techniques and is less suitable to be coupled 262 

on-line to separation techniques. The hyphenation of separation techniques with HRMS reduces 263 

the complexity of the mass spectral data, enhancing the sensitivity of the detection, providing 264 

useful information about the physicochemical characteristics of the analysed compounds. In 265 

untargeted metabolomics, GC and LC are the most used separation techniques and both can be 266 

easily coupled to HRMS. The accurate-mass full-spectrum information provided by HRMS is 267 

essential for the reliable identification of the compounds previously separated by chromatography. 268 

From the 79 articles reviewed in this paper that perform untargeted metabolomics for food 269 

related biomarkers, 68 used LC-HRMS, 7 GC-HRMS and only 4 a combination of both techniques. 270 

In other cases, one of these platforms is complementary to other techniques as capillary 271 

electrophoresis-HRMS, NMR o GC-MS (nominal mass analysers). This review focuses on the 272 

combination of chromatography with HRMS. 273 

4.1 High Resolution Mass Spectrometry (HRMS)  274 

The progress in untargeted metabolomics has been mainly driven by the improvements of 275 

the analytical techniques; the most important being MS technological innovations [41]. The 276 

improvements have been mainly focused on the increase of mass resolving power and sensitivity, 277 

as well as broadening the dynamic range and enhancing the acquisition rate [4,42]. Among the 278 

HRMS analysers, time-of-flight (TOF) and the Orbitrap (OT) are the most used, while Fourier 279 

transform ion cyclotron resonance (FT-ICR) is less applied due to its low acquisition rate, which 280 

makes difficult the coupling with fast chromatographic separations, as well as to its higher 281 

maintenance costs, making it a less affordable analyser. 282 

HRMS can be also used as hybrid instruments combined with low resolution (LR) mass 283 

analysers, such as ion trap (IT) or quadrupole (Q), allowing to work  not only under full scan (FS) 284 

mode but also under tandem mass mode (MS/MS or MSn), improving the identification based on 285 

the fragmentation patterns. TOF and hybrid Q-TOF instruments are the most used in untargeted 286 

metabolomics applied to food related sciences (applied in 11 % and 68 % of the reviewed research 287 

articles, respectively); followed by hybrid OT analysers (13 % using Q-OT, and 8 % using IT-288 
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OT). These mass analyzers can achieve mass accuracy below 2 ppm (with internal calibration). 289 

Mass resolution expressed as full width at half maximum (FWHM) can reach values up to 80,000 290 

and 1,000,000 for TOF-based and last generation OT-based instruments, respectively. However, 291 

the resolving power is dependent on the duty cycle for OT-based instruments while Q-TOF 292 

analyzers are able to acquire at a scan rate up to 100 Hz independently of the resolving power. 293 

This fact has made Q-TOFs better suited when the chromatographic peaks are narrow as in GC or 294 

fast LC separations [43]. Nevertheless, the innovation on OT instruments has allowed the recent 295 

introduction of GC-OT instruments into the market with an interesting potential in future 296 

untargeted metabolomics applications [44]. Hybrid MS analysers allow the simultaneous MS 297 

acquisition and MS/MS or MSn in a single injection (i.e. FS and target MSn analysis). Under these 298 

acquisition modes, one can obtain both (semi)-quantitative (from the FS) and structural (from the 299 

MSn) information in a single injection. Data dependent and data independent acquisitions modes 300 

can be applied in analysis (DDA and DIA, respectively).  301 

Under DDA, the instrument automatically switches from FS to MS/MS or MSn of the 302 

preselected ions detected in the FS spectrum. This preselection is intensity dependent along with 303 

other predefined parameters and may negatively affect the DDA coverage specially for low 304 

abundance features [45]. Licha et al. satisfactorily applied Q-OT under DDA for analysis of mice 305 

plasma samples after application of ketogenic diet to study the metabolic profile and its 306 

relationship with tumour growth inhibition [46]. In the DDA, MS2 criteria specified that the five 307 

most abundant ions from every scan cycle were isolated in the Q in a window of 0.8 m/z and 308 

subsequently fragmented. Tovar et al. implemented a DDA acquisition method in a Q-TOF 309 

instrument to study the effect of multifunctional diet in human metabolism where only the 4 most 310 

abundant ions from every precursor scan cycle were selected for fragmentation [47]. Nevertheless, 311 

there was the need to perform additional target MS/MS measurements for those potential markers 312 

that failed to be included in the previous DDA method. 313 

DIA systematically performs the fragmentation of all precursor ions along the full m/z 314 

range (also called all-ion fragmentation (AIF) or MSE among other commercial names) or within 315 

a selection of sequential mass windows (like SONAR or sequential window acquisition for all 316 

theoretical spectra (SWATH)). Although DIA covers the DDA limitation for low abundance ions, 317 

the resulting MS/MS spectra is a composite of fragment ions generated from all precursor ions. 318 
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Thus, it is required the aid of powerful algorithms to stablish the link between the precursor ion 319 

and the fragmentation pattern [45]. Hoyos Ossa et al. applied MSE acquisition method for the 320 

origin discrimination of Colombian green coffee [48]. The fragmentation spectra obtained under 321 

MSE were not enough informative to allow the identity of the markers. Therefore, additional target 322 

MS/MS analysis was made to confirm the structure of the compounds used in the model of 323 

discrimination by origin. More information about data acquisition in untargeted metabolomics can 324 

be found in the extensive review of Fenaille et al. [42]. 325 

It is worth noting the difficulties to optimize a methodology in untargeted metabolomics 326 

when the compounds that may be relevant are unknown, contrary to targeted approaches, such as 327 

profiling metabolomics, where they are known, and reference standards are commonly available. 328 

Therefore, the choice is usually based on the possibility of fragmenting the maximum number of 329 

ions as possible and thus being able to cover a wider range of compounds that could be potential 330 

markers. Guo et al. made a comparative study of FS, DDA and DIA (AIF mode) in LC-QTOF 331 

untargeted metabolomics with different LC separations using spiked human urine samples. The 332 

best results where for FS in terms of sensitivity and quantitative precision, higher quality of MS2 333 

spectra with DDA but better MS2 spectral coverage with DIA [45]. 334 

4.2 Gas chromatography-high resolution mass spectrometry (GC-HRMS) 335 

GC is ideal for the separation of thermally stable and volatile compounds (or volatile 336 

derivatives previous chemical derivatization).  Capillary columns from non-polar stationary phases 337 

as 100 % dimethylpolisiloxane [31], to polar as 100 % polyethylenglicol [33] may be used. One 338 

of the most applied in untargeted metabolomics is the non-polar stationary phase 5 % dimethyl-95 339 

% dimethylpolysiloxane [27,29,30,49,50] or similar [11,19,32]. GC-MS is well established in 340 

metabolomics [41] because of its advantages of high chromatographic resolution, sensitivity and 341 

separation reproducibility [51]. However, aqueous samples must be dried or subjected to solvent 342 

exchange before GC-MS analysis (which can entail volatile losses). As mentioned above, those 343 

compounds that are not naturally volatile must be carefully removed or being chemically 344 

derivatized.  345 

Electron ionization (EI), a robust and hard-ionization technique, is the most commonly 346 

used in GC-based metabolomic studies [52] where useful spectral databases have been built over 347 

the years, such as NIST. The availability of these databases facilitates the rapid identification of 348 
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the markers by mass spectral matching, which makes it the main attractiveness of the GC-EI-MS, 349 

especially compared to the LC-MS based metabolomics [51]. 350 

The ionization source has notable impact on the mass analyser selected. Indeed, the 351 

significant in-source fragmentation makes a hybrid analyser less useful, and so GC-EI is 352 

commonly coupled to a single mass analyser as TOF working in FS acquisition. As illustrative 353 

example, the plasma metabolic profiles associated with meat and seafood consumption in Asian 354 

population [19] were studied by LC-QTOF and GC-EI-QTOF analysis (previous derivatization). 355 

While for highlighted markers from LC analysis, additional MS/MS acquisition were needed for 356 

structural elucidation, GC-EI-MS analysis was performed only in FS and markers were annotated 357 

by fragmentation spectra matching with NIST library, with final identity confirmation with 358 

reference standards. The use of GC-EI-MS with LR analysers (e.g. Q) under FS mode continues 359 

to be widespread, since the structural identification power of the fragmentation spectrum together 360 

with the libraries make the exact mass acquisition of HRMS less necessary, in addition to being 361 

clearly more economical and accessible instrument for most laboratories.  362 

Chemical ionization (CI) is less applied compared to EI. CI is a soft-ionization technique 363 

able to preserve the precursor ion, limited commonly to targeted analysis, as it is strongly 364 

dependent on the reagent gas and pressure used for the ionization [53]. Stupak et al. performed 365 

additional target MS/MS analysis with positive CI where the precursor ion was not found for those 366 

potential markers of quality and authenticity of Scotch whiskey with excessive fragmentation in 367 

EI [33].  368 

4.3 Liquid chromatography-high resolution mass spectrometry (LC-HRMS) 369 

LC is the most employed separation technique especially for aqueous samples as biofluids 370 

or some food matrices. Furthermore, it does not usually require complex sample preparations and 371 

involves short run times compared to GC. Due to the diversity of stationary phases and the different 372 

mobile phases that can be used, versatility is one of the main advantages of this technique, allowing 373 

its applicability to the analysis from medium to highly polar, low volatility and/or thermolabile 374 

compounds. If the interest is to reach the maximum coverage, as in untargeted metabolomics, more 375 

than one separation mechanisms should be assayed. 376 

Reversed phase LC (RPLC) and hydrophilic interaction chromatography (HILIC) are the 377 

most used stationary phases in untargeted metabolomics. Among RPLC, ideally suited for the 378 
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analysis of semi-polar/nonpolar analytes, C18 stationary phase is the most commonly used due to 379 

its well-known behaviour, good robustness and its ability to cover a wide range of compounds. It 380 

has been applied in the identification of biomarkers of intake [54,55], designation/geographical of 381 

origin [56,57], and the study of the effect of functional food in health [58,59], among others. Two 382 

complementary C18 RPLC strategies have been used to assess the changes in plasma metabolome 383 

by the consumption of an herbal supplement, one more geared towards the lipidic metabolome 384 

(lipidomics) and the other to general metabolome (metabolomics) [60].  C18 columns modified 385 

with polar endcapping (e.g. as HSS T3 from Waters) are becoming more popular, as they are able 386 

to support highly aqueous mobile phases (even 100 % water) expanding their applicability to more 387 

polar compounds compared to the traditional C18. Kozlowska et al. detected with this stationary 388 

phase some nitrogenous bases as tryptophan metabolites, organic acid and phase II metabolites in 389 

urine, usually difficult retain in conventional C18 [61]. 390 

HILIC seems to be the choice for polar to highly polar compounds, but insufficiently 391 

charged for ion-exchange chromatography. The stationary phase is a highly hydrophilic, such as 392 

silica or chemically modified silica (as amide) and the mobile phase is an organic solvent 393 

containing a small amount of water (at least 5 %) [62]. HILIC separations were applied for the 394 

analysis of polar lipids, in different life stages, of one of the most consumed seaweed for sushi 395 

(Porphyra dioica) [63] as well as for the assessment of garlic authenticity, detecting polar 396 

metabolites as phospholipids and small peptides and aminoacids [14]. This separation mode is 397 

more affected by the chromatographic conditions and matrix effects, and it is known to be less 398 

reproducible than RPLC regarding retention time. HILIC is commonly used simultaneously with 399 

RPLC to obtain a complementary information on those polar compounds that RPLC cannot 400 

separate. As example, this combination has been applied for discovery of consumption biomarkers 401 

[36,64]. and to study the effects of different diets on health [65,66]. Pérez-Miguez et al. highlighted 402 

the advantages of combining HILIC with RPLC (and even capillary electrophoresis) for the study 403 

of coffee roasting process showing a comparative of the metabolites identified by each strategy 404 

[67]. 405 

Electrospray ionization (ESI) is clearly the preferred approach in untargeted metabolomics 406 

based on LC-MS analysis. Indeed, all the LC-HRMS studies reviewed made use of ESI, and 77 % 407 

of them used both positive and negative ionization modes. In comparison with GC-EI-MS, LC-408 
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ESI-MS is more affected by the instrument-to-instrument differences which makes troublesome 409 

the matching with mass spectral databases. This fact and the high quantity of non-reported 410 

compounds in LC databases may hamper the identification of the (bio)markers, being the main 411 

bottleneck of untargeted metabolomics studies based on LC-ESI-HRMS. 412 

5 DATA PROCESSING 413 

Huge amounts of data are generated in untargeted metabolomics using chromatographic 414 

techniques coupled to HRMS (xC-HRMS). The objective of the data processing is to extract the 415 

information of the detected features from the xC-HRMS raw 3D data and obtain a 2D data matrix 416 

where they are characterized by m/z ratio, retention time (RT) and their relative intensities across 417 

the samples, which will be used for statistical analysis. The main steps are (i) Peak picking and 418 

deconvolution. It consists on the detection of each measured ion in a sample and the assignation to 419 

a feature (m/z and RT). The peak picking algorithm and deconvolution works with the extracted 420 

ion chromatograms attending to some parameter of maximum m/z error, interval of time (minimum 421 

and maximum time width to be considered a chromatographic peak) and the minimum height or 422 

intensity, signal to noise ratio (S/N), among other parameters. (ii) Retention time alignment. The 423 

matched peaks with similar retention times and m/z ratio across multiple samples are grouped in 424 

accordance to a window of m/z and RT, to be assigned as the same feature and subsequently 425 

aligned. This parameter is especially important in LC, as it tends to present more drift that can 426 

cause slights differences in retention times along the run. The grouped peaks are then integrated 427 

and a peak height or peak area is assigned to the feature in each sample. (iii) Gap filling: It is 428 

applied to correct and fill in the missing peaks (0 signal) or peaks not detected due to the 429 

restrictions of the first two steps (lower intensities or bad peak shape in some of the samples), but 430 

actually may be present, that can affect the power of subsequent statistical analysis. 431 

At this point, a first data table is obtained and the quality of the features data have to be 432 

assured in order to refine the data matrix. Some methodologies as normalization, scaling and data 433 

transformation allow the removal of unwanted variabilities that occur due to both experimental 434 

(systematic human and instrumental errors during the analytical process) and biological (e.g. 435 

number and size of cells, concentration of biofluids…). These corrections can be grouped as 436 

method-driven (normalization based on internal/external standards and/or quality control samples) 437 

and data-driven (scaling and data transformation) [68]. The different approaches that can be 438 
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applied depending on the source of variability will not be discussed here. As a reference, the 439 

reviews from Dudzik et al., describing strategies for quality assurance in the hole untargeted 440 

metabolomic process [69], and from Li et al. about different refining methodologies [70] can be 441 

consulted. Nevertheless, it is worth noticing the need to include quality control samples (QCs, 442 

representative average sample formed by a pool of all samples analysed) in the metabolomic run 443 

(e.g. every 5 or 10 samples), to monitor the instrumental analysis, and for validating the features 444 

in the data matrix [71]. This surveillance could be applied for example: 1) to filter those features 445 

absent in a certain number of QC samples [39,72]; 2) correct intensity drifts caused by variations 446 

during the analysis, a common method is to apply the locally estimated smoothing function 447 

(LOESS) [26,73]; and 3) to determine the repeatability of each feature along the QCs, removing 448 

from the data matrix those with high relative standard deviation (% RSD) [31,74].  449 

There is a wide range of informatics tools to perform this important part of the untargeted 450 

metabolomic process for xC-HRMS data. Whether they are free or commercial tools, the 451 

processing is mainly the same, although it may differ in how the steps are carried out, some of 452 

them working with in-house made algorithms. In the literature reviewed, the most employed tools 453 

were open-source software as XCMS (R package or Online) [17,18,75,76], MZmine [16,77] and 454 

MetAlign [78]; and commercial software as Mass Profiler Pro (Agilent Technologies Inc.) [79,80] 455 

, Progenesis QI (Non Linear Dynamics, Waters) [15,25,72], MarkerLynx (Waters) [81,82], SIEVE 456 

(Thermo Scientific) [37] and Compound Discoverer (Thermo Scientific) [83]. Some of them, as 457 

the open source MS-DIAL [84] or Compound Discoverer (Thermo Scientific) among others 458 

commercial tools, not only perform the abovementioned processes, but also the extraction and 459 

deconvolution of DDA and DIA spectral data and annotation by comparison of the deconvoluted 460 

MS/MS spectra with in house and/or public data bases, which is especially important for 461 

conventional DIA spectral data interpretation [49,85,86]. Because the GC-HRMS technique is less 462 

used in this area, most of the listed tools were developed for LC-HRMS data. However, their 463 

application to the GC-HRMS data appears to be equally powerful. The tools used were basically 464 

proprietary software as Chroma TOF (LECO) [27] or MetaboScape (Bruker Daltonik) [50], and 465 

freeware as MzMine [11,19] or MS-DIAL [29]. There are other tools that are gathering strength 466 

due to the good results obtained in this type of data, such as PARAFAC2 based Deconvolution 467 

and Identification System (PARADISe) [87]. 468 
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6 STATISTICAL ANALYSIS 469 

Although the aim when analysing data from foodomics studies seems quite simple: find the 470 

differences in the metabolite profiles related to the experimental design, the complexity and size 471 

of the data, the elevated number of metabolites and the natural biological variation of individuals 472 

make challenging this exploration. Multivariate data analysis is a powerful tool to explore 473 

correlations or co-variations in such datasets. This can be done with (supervised) or without 474 

(unsupervised) a priori knowledge about the experimental design [88]. Different tools have 475 

evolved during the past few years, but the most often used chemometric method in unsupervised 476 

analysis includes principal component analysis (PCA).  477 

Many software options, free and commercial, are available for univariate and/or 478 

multivariate statistical tests. Among commercial software, SIMCA P+ (Soft independent 479 

modelling by class analogy) (Umetrics, Sweden) [12,23,25,28,47,89–91] is one of the most used, 480 

as well as its light version EzInfo, (U-Metrics, Sweden) [11,92]. Regarding the free software, 481 

MetaboAnalyst, which also provides a companion R package (MetaboAnalystR) to complement 482 

the web‐based application, is a suitable option [57,86]. 483 

There are several aspects to consider before facing the modelling of metabolomics data 484 

where the number of variables largely exceeds the number of objects. Data cleaning by one or 485 

successive pre-filtration steps should be able to reduce the number of features and eliminate 486 

irrelevant signals while avoiding or minimizing relevant chemical information loss. The most 487 

commonly used are: i) removal of variables that exhibit a poor stability, meaning relative standard 488 

deviation (%RSD or CV%) on peak area across the QCs [91]; ii) removal of variables not present 489 

in a minimum number of the samples in one group; iii) removal of those variables that have zeros 490 

in a determined number of the samples (if it applies) (retain features with “nonzero values”) [93]; 491 

iv) removal of variables that show a low fold change or no significant difference among sample 492 

groups or among blank runs and any of the sample groups [75,78,94]. Multiple univariate analysis 493 

tools as pairwise t-test, ANOVA, etc are available at this point to determine significant differences. 494 

With one or more of these pre-filtration steps, a more robust dataset is obtained with still sufficient 495 

markers to enable a meaningful analysis. An improvement in the clusterization of the samples is 496 

also observed, with a tight clustering of the QC samples and an increase in the explained variance 497 

[10,83]. 498 
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Once dataset is pre-filtered, PCA can be applied as a first step for interrogating the data in 499 

order to observe trends, grouping and/or outliers. PCA obtains new uncorrelated variables 500 

preforming linear combinations of the original ones, called principal components (PCs), according 501 

to common patterns and maximizing the variance in data. In this way, the dimensionality of the 502 

data is reduced while still preserving information from the original data set. The first PC represents 503 

the largest variation in the data set. The second PC, orthogonal to the first, covers as much of the 504 

residual variation as possible, and so on. Objects far apart in the score plot are different with respect 505 

to what patterns the model describes and objects in close proximity exhibit similar variations (see 506 

Figure 2A) [95]. 507 

In some cases, PCA is enough to determine if the classes can be predicted from the 508 

variables (discriminatory PCA) and to identify which ones are important in predicting class 509 

membership. PCA allowed the identification of markers potentially useful for the detection 510 

fraudulent use of chicken “dead on arrival” instead of normally slaughtered ones [10]. It was also 511 

successfully applied when discriminating between three different studied legumes in order to fight 512 

against food fraud [26]. PCA has also been used as exploratory tool previous to supervised analysis 513 

for gaining an in-depth understanding of the inherent differences among samples. In this line, PCA 514 

was able to suggest that metabolomic changes during milk fermentation by L. helveticus H9 were 515 

more obvious at the fermentation phases (0–8 h), as PCA scores of earlier time points scattered 516 

away from those of the later time points (beyond 10 h) and this information was useful for further 517 

supervised analysis [92]. 518 

Unsupervised hierarchical cluster analysis (HCA), with a heatmap plot, can be used also 519 

as exploratory method to observe clusters, analyse and visualize the metabolome differences 520 

and/or to confirm the classification performed by PCA [26,56,78]. As an example, HCA could 521 

distinguish 5 main groups of metabolites among the 282 serum metabolites after the intake of milk 522 

and yogurt; 236 metabolites increased postprandially and 46 features decreased postprandially 523 

[72]. 524 

Supervised techniques can be very helpful for highlighting sample/group differences when 525 

PCA results are masked by high levels of spectral noise, strong batch effects, or high within group 526 

variation among other reasons. Partial least squares-discriminant analysis (PLS-DA) is a 527 

supervised method that uses multiple linear regression to find the direction of maximum 528 
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covariance between a data set and class labels. PLS-DA highlights the separation between groups 529 

of observations and identifies variables that have most of the class separating information. As an 530 

example, the clustering of malt and blended whiskies previously observed in PCA was 531 

subsequently highlighted by the PLS-DA indicating that highly significant differences exist among 532 

the two Scotch Whisky categories [33]. A variant of PLS-DA is orthogonal partial least squares-533 

discriminant analysis (OPLS-DA), where the variation in the data is divided in between-classes 534 

and within-classes (predictive and non-predictive) that are forced to be described, by the first and 535 

second OPLS-DA component. Although it does not alter the performance of the classification 536 

model of a PLS-DA, it has an easier interpretation [96]. As an example, OPLS-DA was used to 537 

develop a model enable to differentiate between no red meat intake and high red meat intake, in 538 

serum samples [15]. 539 

However, there is no guarantee that the main variation extracted by the PCA is reflecting 540 

the hypothesis put forward. PCA analysis failed to separate samples based on the production 541 

system but highlighted the potential effect of the production year on a carrot metabolome study 542 

(Figure 2A). The data was then subjected to OPLS-DA and the model was refined (Figure 2B). 543 

Variables that contributed to the classification of samples based on production year were 544 

investigated and removed from the datasets. This was crucial to improve predictive ability, 545 

specificity and sensitivity values of the models [28]. 546 

Different methods exist to perform the selection of markers. From the PCA it can be done 547 

using loading plot, the backbone of the PCA model. From the loading plot of PCA it was possible 548 

to find out which metabolites mainly contribute to the separation of licorice samples from three 549 

different origins and species [78]. From PLS-DA, Variable Influence on the Projection (VIP) 550 

values > 1-2 generally represent those metabolites carrying the most relevant information for class 551 

discrimination. From the OPLS-DA, a combination of VIP and p(corr) derived from the S-plot, is 552 

a good strategy to identify metabolites with the highest influence on the group separation. VIP > 553 

1.0 and p(corr) > 0.5 cut-off allowed the selection of most relevant metabolites detected in liver of 554 

Wistar rats for the separation of the high-cholesterol (HC) and high-cholesterol enriched with 555 

onion (HCO) feeding groups [90]. 556 

There are still few studies that only use univariate analysis for discrimination where a wide 557 

number of different tests can be found [10]. However, a combination of outputs coming from 558 
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univariate and multivariate analysis is the most satisfactory and complete strategy for selection of 559 

markers [29,97]. Regarding univariate analysis normally used, they can be divided among pair 560 

tests (one-way ANOVA, Student’s t-test, etc) and non-pair tests (Kruskal-Wallis, the Mann-561 

Whitney U-test, Welch t test, etc) depending on the normality of the data [29,36,57,79]. These 562 

tests should be followed by a False Discovery Rate calculation p-FDR < 0.05 (q value set at 0.01) 563 

normally applying Benjamini-Hochberg procedure to rectify p-values in order to correct for 564 

multiple hypothesis testing and reduce the false positives than are susceptible to occurred when 565 

the number of variables largely exceeds de number of objects [36,47,91]. 566 

As an example, combination of VIP>1, p(corr)≥0.5, with fold-change≥1.5 and p-value 567 

<0.05 (one-way ANOVA) was used for biomarkers selection of discriminant macrophages 568 

metabolites between control and high-dose group of Panax ginseng group [97]. Two-way ANOVA 569 

analysis is a potent approach that can be added to discover the metabolites affected by two factors. 570 

As an example, the level of Lonicerae Japonicae Flos and the administration days (time) were the 571 

two factors that affected the metabolism of the rat [74]. The quality of the models is generally 572 

evaluated by the goodness-of-fit parameter (R2X), the proportion of the variance of the response 573 

variable that is explained by the model (R2Y) and the predictive ability parameter Q2. R2X, R2Y 574 

and Q2 values close to 1 indicate an excellent model, and thus values higher than 0.5 indicate good 575 

quality of PLS-DA and OPLS-DA models. However, it is remarkable that, contrary to PCA, these 576 

supervised methods tend to overfit models and can generate excellent class separation even with 577 

random data. For this reason, results of these types of tests should be critically checked and 578 

properly cross-validated using procedures in which some of the samples are left out and their 579 

classification have to be predicted. In order to test for possible overfitting and to confirm that Q2 580 

values are stable and relevant, permutation tests are used. As an example, 7-fold full cross-581 

validation and permutation test on the responses (500 random permutations) were performed, in 582 

order to avoid over-fitting and prove the robustness of the obtained models [81]. Some authors 583 

works claim that findings need to be further verified using a higher number of samples, other 584 

statistical tools and/or other analytical tools [56]. Apart from the classification rates obtained by 585 

internal cross-validation (automatically performed by software like SIMCA P+), external 586 

validations using samples that had not been used for the construction of the models is not such a 587 

frequent practice but definitely adds value to the developed model [25,28]. Sales et al even 588 

performed a reduction of variables until 15 to create and validate a model that could be used as 589 
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starting point for classification of future olive oil samples by quality following a simpler targeted 590 

analysis [11]. Chatterjee et al developed an LC-MS/MS assay with the set of 34 markers identified 591 

for rapid authentication of shrimps species and it was tested with unknown shrimp samples from 592 

the market [25]. In the field of biomarkers of food intake (BFI), an independent separate controlled, 593 

single-blinded, cross-over meal study was carried out to validate the candidate biomarkers of meat 594 

intake identified in a previous study resulting in a set of six better validated candidate markers that 595 

were further used to predict beef intake [16]. 596 

Another important aspect of the validation of biomarkers is the biological plausibility of 597 

such identified makers. Additionally, in the field of BFIs, examination of dose-response has 598 

become an essential prerequisite to demonstrate the use of biomarkers in dietary assessment for 599 

further applications in nutritional epidemiology. Subsequent confirmation and validation of 600 

biomarkers in intervention, independent studies, other cohorts, less-controlled, also adds evidence 601 

to the output [16,36,54]. 602 

7 (BIO)MARKERS IDENTIFICATION 603 

Structural characterization and elucidation of potential markers highlighted in the statistical 604 

data analysis is commonly a challenge in metabolomics and can become the bottleneck of the 605 

overall metabolomics process. In HRMS, accurate mass measurement is the gold-standard for 606 

identification procedure and it is essential for facing this process. Q-TOF and OT-based HRMS 607 

analysers are more and more popular because of their high specificity, high resolution and low 608 

exact mass deviation [57]. The current methods and tools available for annotation of metabolites 609 

in untargeted metabolomics studies applying LC-MS platforms have been recently reviewed [98].  610 

Chemical Analysis Working Group, within Metabolomics Standards Initiative (MSI), 611 

proposed four levels of confidence in metabolite identification: Level I is for identified/confirmed 612 

compounds, when their identity is validated using authentic standards and subsequent MS analysis; 613 

Level II is for putatively annotated compounds (e.g. without chemical reference standards, based 614 

upon physicochemical properties and/or spectral similarity with public/commercial spectral 615 

libraries)); Level III is for putatively characterized compound classes (e.g. based upon 616 

characteristic physicochemical properties of a chemical class of compounds, or by spectral 617 

similarity to known compounds of a chemical class); Level IV is for unknown compounds —618 
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although unidentified or unclassified, these metabolites can still be differentiated and quantified 619 

based upon spectral data [99]. More recently Schymanski et al. have reported a similar system but 620 

including five-levels of confidence [100]. It has been updated including ion mobility separation as 621 

an additional parameter for more reliable identifications [101]. 622 

The first step in the identification workflow is to recognise the (quasi-)molecular ion in the 623 

accurate mass spectrum (typically, protonated or deprotonated molecule in LC-MS), where the 624 

presence of adducts must be also taken into account. Some tools, like CAMERA for XCMS or 625 

Progenesis QI, allow componentization, which means that different signals from the same 626 

metabolite are grouped together offering greater confidence to the annotation. Then, the most 627 

likely elemental composition is calculated according to the mass error and isotope pattern. After 628 

that, fragment ion information based on MS/MS or DIA experiments is used to establish the 629 

fragmentation pathways and discard possible chemical structures. To this aim, the use of 630 

offline/online and commercially/freely/in-house available spectral databases, are of great help 631 

[102]. The most used databases in the reviewed literature are: METLIN repository database 632 

(https://metlin.scripps.edu), Human Metabolome Database (HMDB) (http://www.hmdb.ca), 633 

Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/), FooDB 634 

(https://foodb.ca), Chemspider (http://www.chemspider.com/), PubChem Compound database, 635 

LIPID Metabolites and Pathways Strategy LIPID MAPS (https://www.lipidmaps.org/), Chemical 636 

Entities of Biological Interest (ChEBI), SIRIUS, CSI:Finger ID. In-silico fragmentation tools are 637 

also useful in this process, emphasizing MetFrag (https://msbi.ipb-halle.de/MetFrag/), MetFusion, 638 

MassBank (http://www.massbank.jp), FooDB (http://foodb.ca) and Competitive Fragmentation 639 

Modeling for metabolite identification (CFM-ID) (http://cfmid.wishartlab.com/), among others. 640 

Several software programs are available to automatize and simplify this challenging 641 

process: Progenesis QI, Compound Discoverer, MS-DIAL, CSI: FingerID, and MyCompoundID. 642 

However, the expertise and knowledge of the analyst on mass spectrometry and fragmentation 643 

rules is crucial to avoid false identifications. The injection of a reference standard, if commercially 644 

available, is the last step to assure the identity of the marker. When not available, the synthesis of 645 

the candidate compound may be required for full confirmation of the identity. Once the markers 646 

are identified, quantitative methods using standard substances can be developed to confirm that 647 

the specific markers do accurately reflect the differences between the classes. As an example of 648 

this identification workflow, chlorogenic acid was highlighted as potential biomarker for 649 

https://metlin.scripps.edu/
http://www.hmdb.ca/
https://www.genome.jp/kegg/
https://foodb.ca/
http://www.chemspider.com/
https://www.lipidmaps.org/
https://msbi.ipb-halle.de/MetFrag/
http://www.massbank.jp/
http://foodb.ca/
http://cfmid.wishartlab.com/
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Colombian coffees discrimination [48] according with the annotation performed after comparison 650 

with Metlin. Additional MS/MS experiments allowed the fragmentation evaluation for structure 651 

confirmation with the aid of in silico tools like Mefrag (Figure 3). 652 

The availability of NIST library is a clear advantage for marker identification in 653 

metabolomics studies based on GC-EI-MS analysis. Although this library works mainly in nominal 654 

mass, a first step in the identification of metabolites is possible. It can be supported by the isotopic 655 

pattern, exact mass for parent ion (if exists) and fragments, and Kovats retention index. Soft 656 

ionization sources as positive chemical ionization (PCI) or atmospheric pressure chemical 657 

ionization (APCI) enable obtaining highly diagnostic molecular ions and/or protonated molecules 658 

of compounds which are extensively fragmented under EI conditions [11,33]. Compound 659 

identification by GC−MS can also be complemented using FiehnLib library and the Golm 660 

Metabolome Database. 661 

Unfortunately, despite the efforts invested in biomarker identification, this final goal is not 662 

always achieved. However, the minimal requirements of reporting for unknown metabolites 663 

(retention time, prominent ion and fragment ion) can still be fulfilled [99]. This was the case of 664 

the study by Chatterjee et al., in which some markers only yielded one fragment ion, thus 665 

decreasing the reliability of the identification [25]. 666 

8 APPLICATIONS 667 

In this section, we outline a selection of untargeted metabolomic studies that made use of 668 

LC and/or GC coupled to HRMS in the field of food processing, including authenticity, quality 669 

and safety[4,103]; the discovery of biomarkers of food intake [104–106];  and  assessment of 670 

effects of food and diet on health [107–109]. 671 

8.1 Food Processing 672 

The growing demands by our society, authorities and scientists to advance knowledge 673 

about the food consumed has led to the development of robust analytical methodologies to improve 674 

the quality and safety of food products and prevent food frauds. Several applications have been 675 

developed in the last years related to food authenticity. Some works were directed towards the 676 

identification of markers for characterization of food samples by its geographical origin in honey 677 

[57],  garlic [14] or Adzuki Bean [30]; and for authentication of Protected Designation of Origin 678 

(PDO) of Grana Padano cheeses [56] and Colombian coffees [48]. Moreover, patterns of different 679 
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agricultural practices were assessed in carrots [28], different varieties of legumes [26], potato 680 

[110], Vaccinium fruits [94] and almonds [111], as well as different species identity, geographical 681 

origin and production method of commercially prawn and shrimps [25]. The characterization of 682 

food products by untargeted approach was also determinant to prevent fraudulent practices, such 683 

as the production of adulterated fruit juices in citrus [89], the production of counterfeited Scotch 684 

Whisky [33], and dead on arrival instead of the typical slathered poultry meat  [10]. The 685 

characterization of organic culture practices against traditional cropping systems in wheat grains 686 

[23] has been also evaluated. 687 

The characteristics of food appreciated by customers, including appearance, texture, 688 

flavour, aroma and nutritional composition, are also crucial in food quality, and are often 689 

dependent on subtle changes in the food's metabolome [4]. Regarding the appearance of food, it 690 

was established a relation between the colour of sea buckthorn and its chemical properties, having 691 

the red ones a better quality [13]. In other experience, the aim was to discover biomarkers related 692 

to the taste of food as it was the case with quality assessment of green tea [12] and olive oil [11].  693 

Another important factor of food quality is to find markers related to storage time since the food 694 

quality worsens. Thus, significant differences in the metabolites composition of chilled chicken 695 

meat were found in accordance with conservation period [24].  696 

Regarding food safety, there is a demand of robust markers for prevention of bad practices 697 

and possible errors in the food supply chain. [4]. In this line, new markers of egg ageing were 698 

found by an untargeted metabolic approach [83]. Regarding bad agricultural practices, a strategy 699 

was developed to discriminate green tea samples in concerning their contamination levels [75]. To 700 

ensure food safety and quality, it is important food traceability, which means continuous 701 

monitoring of the foods products through the entire supply chain, enabling the correction of 702 

mistakes. The role of HRMS-untargeted metabolomics in this context is the identification of 703 

characteristics markers of each stage of the process. In this way, metabolomics was found a 704 

powerful tool to identify different patterns between fresh tiger nut milk and milk processed by 705 

ultra-high temperature treatment [91]. It was also employed for the investigation of potential 706 

markers of three different species of licore plants (Glycyrrhiza species), which are sweetening and 707 

flavouring agents in food and beer industries [78]. 708 
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8.2 Food Intake   709 

A significant challenge in nutritional research is the measurement of dietary intake, which 710 

must be both accurate and applied to large numbers of people [112]. Traditionally, FFQ, 24 h recall 711 

or other dietary assessment tools, have been the standard tools for dietary assessment. 712 

Unfortunately, these approaches are subjected to errors such as underreporting, recall errors and 713 

difficulty in assessment of portion sizes, which generate biased and inaccurate results and 714 

associations. The scenery in nutritional epidemiology changed with the emergence of high-715 

throughput metabolomics techniques enabling the discovery of novel biomarkers of food intake 716 

(BFIs) that represent objective measures of dietary and specific food intake.  717 

In the literature, several examples can be found on intervention studies that employ 718 

untargeted chromatography coupled to HRMS-based metabolomics for the discovery of food-719 

derived metabolites in banana [55], pea [54], fermented dairy products [72], different varieties of 720 

tomatoes [79] and tomato juice [77]. Biomarkers related to coffee consumption habits in various 721 

European countries were researched in a cross-sectional study within the European Prospective 722 

Investigation on Cancer and Nutrition (EPIC) [113]. In another observational study within the 723 

Singapore Prospective Study Program (SP2), patterns of meat and seafood consumption were 724 

assessed based on plasma metabolic profiles [19]. Regarding meat consumption, a great interest 725 

exists in finding indicators of red and processed meat intake since its consumption is associated 726 

with the development of chronic diseases [15,16,20,36].  727 

The identification of biomarkers related to the intake of supplements suspected of having 728 

a benefit for human health is also another field of recent research. Several interventional studies 729 

with different bioactive foods and supplements have been performed:  bioactive garlic [38], kiwi 730 

wine [27], beetroot juice [61], angelica keiskei [60], green coffee bean extract (GCBE) [81] and 731 

amalaki rasayana [39]. The metabolic patterns related with food enriched with some bioactive 732 

compound have been also investigated, as for example, flavan-3-ol-enriched dark chocolate, 733 

compared with standard dark chocolate and white chocolate [17] and apple juice enriched with 734 

four groups of polyphenols [37]. 735 

A better understanding of the relation between dietary patterns and metabolic profiles is 736 

crucial for improving the recommendations of health authorities about what diet is better for a 737 

better quality of life. New Nordic diet (NDD), which was designed to be balanced and healthy, 738 



27 

 

was compared to average Danish diet (ADD) in a long intervention study, identifying potential 739 

metabolic patterns that indicate potential health benefits of the NDD [114]. On the other hand, a 740 

detailed dietary assessed method was employed in the Supplémentation en Vitamines et Minéraux 741 

AntioXidants  (SU.VI.MAX) cohort with the aim of performing a cross-sectional study and look 742 

at the difference in the plasma metabolic profiles according to their adherence to the French dietary 743 

recommendations [18]. 744 

As supported by several studies, HRMS-based untargeted metabolomics is a powerful 745 

approach in the discovery of new BIFs. Per definition, metabolomics fingerprinting is a data-driven 746 

approach, what means that a new hypothesis is forged from the biomarkers discovered. Therefore, 747 

all BIFs discovered by untargeted approach are tagged as “putative” since its necessary a proper 748 

validation process to confirm the association of robust BIFs to a specific food or diet. BIFs 749 

discovered in intervention studies used to be confirmed by the use of independent cohort studies 750 

(cross-sectional), as for example, Karlsruhe Metabolomics and Nutrition (KarMeN) [55] and EPIC 751 

study cohorts [20,36]. Other strategies include the use of dose-response for validation and 752 

independent study for confirmation [54]. In the case of potential BIFs identified only in cohort 753 

studies, these do not assess a correlation with the food consumed but rather an association and 754 

should be confirmed with an interventional study to validate them [112].  Nevertheless, as there is 755 

not an established standard methodology for validation of BFIs, L.O. Dragsted et al. proposed 756 

validation criteria based on analytical and biological aspects [115].     757 

8.3 Food and Health Effects 758 

Since metabolomics can provide a complete picture of the general dietary intake and reflect 759 

the current biological status of an individual, another goal of untargeted metabolomics in the 760 

nutrition field is to study the complex relationships between nutritional exposure and the positives 761 

or negatives effects on health/disease state [105,116]. The information obtained not only allows 762 

an accurate monitoring of a diet and lifestyle but may also help to design strategies to manipulate 763 

the physiological state with the ultimate goal to improve the individual health thought personalized 764 

dietary interventions [108,109].  765 

Untargeted metabolomics approaches based on chromatography-HRMS have been applied 766 

to determine how a whole diet can affect the health state and to identify the molecular mechanism 767 

involved [41].  To this aim, both interventional, with human or mice/rat models, and observational 768 
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studies have been carried out. The objective was to determine the changes occurred in the 769 

metabolism under a specific diet [66] or the differences obtained between 5 diets in different mice 770 

tissues [117]. Showalter et al. performed a multiplatform untargeted metabolomics study [49], 771 

finding significant metabolic alterations that suggest that the physiology of lungs can be altered by 772 

obesity. In other studies, the goal was to determine the relationship between the diet and a specific 773 

disease. For example, the use of multifunctional diet in order to reduce cardiometabolic risk factors 774 

[47], the adherence to a healthy Nordic diet of a Swedish prospective cohort and the risk of future 775 

type 2 diabetes [65]; the potential of ketogenic diet as an auxiliary cancer therapy with tumor 776 

Xenograft mouse models [46]; and the correlation of diet with microbiota and metabolism of 777 

inflammatory bowel disease human patients [118]. Given the diversity and complexity of diet 778 

constituents, some studies were focused on one diet constituent and the effects on health, as fish 779 

or coffee intake  and type 2 diabetes risk  [119,120]; or the health detriment due to the consumption 780 

of heated soybean oil [121] or sweetened beverages [73]. 781 

There is a growing interest in nutraceuticals or diet supplements, especially in the so called 782 

‘functional foods’, food products to which a health benefit is attributed (naturally or artificially 783 

added) besides its own nutritional contribution [122,123]. Nevertheless, a wide variety of food 784 

products are potentially beneficial for health and it might be difficult to determine if they can be 785 

classified as ‘functional’. For this reason, a notable number of untargeted metabolomic approaches 786 

have been performed to determine the impact on health or disease of specific products considered 787 

as functional foods:  ginseng [82,97], herbal traditional medicines [59,74],wholegrain rye bread 788 

[80], walnuts [85], lettuce [58] and onion [90]. The controlled trial study of fish oil 789 

supplementation during pregnancy, ended in the detection of several altered metabolic pathways 790 

significantly associated with a reduced risk of asthma by age 5 [124]. Likewise, the effects of diets 791 

supplements was assessed, as selenium impact on metabolic disorders [93] or the use of 792 

xenoestrogens in combination with cancer therapy [76].  793 

Moreover, it is important the characterization of food products for their validation as 794 

functional food and in order to enhance their potential.  An untargeted lipidomic approach was 795 

applied for the discovery of potentially high valuable polar lipids of Porphyra dioica, algae 796 

commonly used for sushi preparation [63]. HRMS-based metabolomics was also used to study the 797 

process of probiotic food product process as the dynamics of skim milk fermentation by L. 798 
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helveticus H9 strain [92] and the distinction between the biofilm and planktonic state B. bifidum 799 

strain [29]. 800 

It is worth noticing that the term functional food is usually applied to food products that 801 

have naturally or artificially substances known for their benefits on health, such as essential fatty 802 

acids, flavonoids, vitamins, polyphenols, etc. [122]. For this reason, determining whether a food 803 

is a functional product is often carried out through target analysis of the compounds that are known 804 

to have a beneficial effect. There is abundant bibliography available on targeted metabolomics in 805 

this field, which however does not fall within the scope of this review. It should be noted that 806 

target and untargeted metabolomics approaches can be combined, as for example to study the 807 

effects of white-blue light and dark in growth of cacao cell suspensions [86]. 808 

9 FUTURE PROSPECTS AND CONCLUSIONS 809 

The use of MS-based approaches for untargeted metabolomics for investigation of food 810 

(bio)markers is still far from reaching its maximum potential. HRMS will surely be dominant in 811 

the near future, and the continuous improvements in instrumentation will be translated to enhanced 812 

capabilities of the developed strategies. For example, to maximize the metabolome coverage, it is 813 

necessary to acquire MS data in complementary chromatographic and ionization modes, but also 814 

MS/MS data, which can be acquired under DDA and/or DIA modes with sequential mass windows 815 

(e.g., SWATH, SONAR). 816 

Regarding DDA, however, the metabolite coverage is not usually enough, and many 817 

features may lack MS/MS data. Technological evolution has allowed improvements in this 818 

acquisition mode and increasing the acquisition speed, which together with new software 819 

developments make possible to perform automated and iterative DDA in the newest instruments 820 

[125]. This strategy automates iterative exclusion and inclusion lists to reduce the fragmentation 821 

of redundant features coming from the background and allows performing exhaustive precursor 822 

selection obtaining more relevant MS2 spectra. Such lists are automatically imported into the DDA 823 

method before the first ddMS2 acquisition of the sample and are updated prior the next ddMS2 run, 824 

bypassing precursors already fragmented to the exclusion list. MS2 spectra are acquired for 825 

compounds remaining on the inclusion list. This approach enables to cover a wider range of 826 

compounds (including the lower-abundance ones) that were lost by the traditional DDA methods. 827 
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However, in order to not increase significantly the acquisition time, such strategy is only applied 828 

to the QC samples, as it requires multiple reinjection until reaching the complete coverage of the 829 

compounds. In this way, the samples are acquired in FS mode, and the iterative DDA is only 830 

applied to a reduced number of QC samples for future compound characterization. 831 

In relation to DIA, the incorporation of ion mobility spectrometry (IMS) to HRMS has 832 

allowed a new DIA mode. An example is High Definition MSE (HDMSE). As occurs in 833 

conventional MSE, two functions are acquired at low and high collision energy, but after ion 834 

mobility separation. In this way, the precursor and the product ions are recorded with the same 835 

drift time (translated into CCS, Å2). This opens the possibility to filter the fragmentation spectra 836 

(obtained from all the ions fragmented in the scan cycle) by the drift time of a target ion and to 837 

obtain cleaner spectra without interfering fragments of co-eluting ions. Thus, the visualization of 838 

only the products ions from a specific precursor is feasible, enhancing the purity of the MS2 839 

spectrum with the inherent benefits of DIA acquisitions regarding available MS/MS data for all 840 

future biomarkers. The potential of this technique has been recently evaluated for orange dietary 841 

biomarkers discovery [64] and implemented for comparison of different polar lipids extraction 842 

methods to be used in evaluation of botanical origin, with potatoes as a case of study [110]. In both 843 

studies, data processing was performed using Progenesis QI (Waters), a unique software, able of 844 

performing the processing of 4D data obtained with xC-IMS-HRMS instruments. 845 

In terms of ionization techniques, the recent atmospheric pressure CI source (APCI) is an 846 

attractive alternative to EI in GC-HRMS analysis. APCI enables a soft ionization ensuring the 847 

preservation of the (pseudo)-molecular ion, which is of great interest when the molecular ion is 848 

absent from the highly fragmented EI spectrum, which would imply a reduction in the selectivity 849 

and sensitivity. As APCI works under atmospheric pressure, the same mass analyser can be shared 850 

by both LC and GC instruments, since the vacuum does not need to be broken as occurs with EI 851 

and CI sources [126]. However, due to the novelty of this technique, there is a lack of spectral 852 

databases under this ionization source in comparison with EI. Only two articles using GC-APCI-853 

HRMS have been found, both related to olive oil. Sales et al. studied the volatile composition of 854 

olive oil to develop a classification model for quality assessment [11], and Olmo-García et al. 855 

applied this technique for olive oil origin discrimination [50]. 856 
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All in all, the combination of gas and liquid chromatography with high-resolution mass 857 

spectrometry, together with technological advances in instrumentation, both in chromatography 858 

(e.g. new stationary phases, format and particle size) and HRMS (e.g. resolution power, acquisition 859 

speed, MS2 acquisition modes) have been crucial to explain the impulse of untargeted 860 

metabolomics in the last few years. In particular, this approach has driven the expansion of 861 

knowledge on food processing, intake and the effects of food in health. The hyphenation of modern 862 

chromatography and HRMS allows a highly efficient separation combined with the acquisition of 863 

sensitive and high-quality structural compound information, facilitating the detection and 864 

identification of metabolites in complex biological samples, such as food matrices or biofluids. 865 

For this reason, this hyphenation has become one of the most used techniques in untargeted 866 

metabolomics studies in the field of food and nutrition. The implementation of chromatography-867 

HRMS techniques, together with correct study designs and appropriate sample treatments, as well 868 

as the use of upgraded data treatment programs and powerful statistical tools, has notably enhanced 869 

the capabilities of untargeted metabolomics in the food field. 870 

The increasing demand for more exhaustive control over food processing, in terms of 871 

authenticity, quality and safety, can be met, addressing needs such as the characterization of food 872 

products by geographical origin or production method, and the detection of adulteration or bad 873 

practices. Regarding nutrition, the application of untargeted metabolomics using chromatography-874 

HRMS has revealed potential biomarkers related to the intake of food products and diets.  875 

Moreover, this approach can help to understand the complex relationships between nutritional 876 

exposure and physiological state, by the study of the effects of diet, or potentially beneficial food 877 

products, on the metabolism, as well as to evaluate the benefits to health. 878 
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 888 

FIGURE CAPTIONS 889 

Figure 1. General overview and schematic content of the untargeted metabolomics workflow 890 

based on xC-HRMS analysis  891 

Figure 2. Figure constructed from Cubero-Leon et al. [28]. (A) PCA score plot where the first and 892 

the second principal components (t1 and t2) are shown. Each harvested year is represented with a 893 

different symbol. In picture legend 1: year 2005; 2: year 2006; 3: year 2007; 4: year 2008. (B) 894 

Score plot of OPLS-DA of model 10. The first predictive component (t1) and the first orthogonal 895 

component (to1) are shown. R2Y: explained variation. Ellipse Hotelling’s T2 (95%). Organic 896 

samples (filled circles), conventional samples (filled squares). 897 

Figure 3. Figure from Hoyos-Ossa et al. [48]. MS/MS spectra at different collision energies of 898 

tentative marker chlorogenic acid and fragmentation explanation obtained with the aid of in 899 

silico fragmentation tool (MetFrag).900 
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