

UNIVERSITAT JAUME I

ESCOLA SUPERIOR DE TECNOLOGIA I CIÈNCIES EXPERIMENTALS

MÁSTER UNIVERSITARIO EN EFICIENCIA ENERGÉTICA Y SOSTENIBILIDAD

"EVALUACIÓN TÉCNICO-ECONÓNICA DE UN SISTEMA DE PRODUCCIÓN DE ACS Y CLIMATIZACIÓN PARA UN EDIFICIO"

PROYECTO FINAL DE MÁSTER

AUTOR Vicente López Morte

DIRECTOR Ángel Barragán Cervera

> CODIRECTOR Adrián Mota Babiloni

Castellón, Noviembre de 2020

<u>CAPÍTULOS</u>

MEMORIA DESCRIPTIVA	4
CALCULOS JUSTIFICATIVOS	33
ANEXOS	97
PRESUPUESTO	103
PLANOS	108

EVALUACIÓN TÉCNICO-ECONÓNICA DE UN SISTEMA DE PRODUCCIÓN DE ACS Y CLIMATIZACIÓN PARA UN EDIFICIO

MEMORIA DESCRIPTIVA

MEMORIA DESCRIPTIVA

1. INTRODUCCION	5
2. OBJETO DEL PROYECTO	6
3. NORMAS Y REFERENCIAS	7
4. DESCRIPCIÓN DEL EDIFICIO	9
5. CAUDAL DE AIRE INTERIOR	16
6. RESULTADO DE CARGAS TÉRMICAS DE REFRIGERACIÓN	17
7. RESULTADO DE CARGAS TÉRMICAS DE CALEFACCIÓN	18
8. DESCRIPCIÓN DE LA INSTALACIÓN DE CLIMATIZACIÓN Y VENT	
	19
9. SISTEMA DE CLIMATIZACIÓN	21
10. SISTEMA DE VENTILACIÓN	28
11. SISTEMA DE ACS	30
12. PRESUPUESTO FINAL	31

1. INTRODUCCIÓN

Este trabajo final de máster consiste en el diseño y evaluación técnica entre varias propuestas de un sistema de producción de ACS y climatización para un edificio.

El Edificio de estudio tiene la característica de provenir de un uso industrial, el cual va a ser rehabilitado para destinarlo a uso de oficinas con vestuarios, por lo que se generarán varias opciones técnicas que cumplan con las necesidades mínimas del nuevo edificio.

Por lo tanto, le objetivo del proyecto será la generación de varias propuestas de producción de ACS y climatización evaluando cómo optima aquella más energéticamente sostenible para el nuevo uso de las instalaciones.

2. OBJETO DEL PROYECTO

El presente trabajo tiene como objetivo el cálculo de cargas y dar soluciones para la realización de las instalaciones del sistema de climatización y agua caliente sanitaria en unas oficinas ubicadas en Xirivella, Valencia.

Este sistema de climatización y agua caliente sanitaria debe ser capaz de conseguir las condiciones ambientales adecuadas para las oficinas cumpliendo con los requisitos legales que establece la normativa.

Para obtener los datos necesarios y escoger la mejor solución, se realiza el estudio de las cargas térmicas del edificio, distribuyendo este en los locales para las oficinas. Para ello se define las características presentes y futuras del edificio, su ubicación, distribución, cerramientos o actividad realizada en él.

En verano, los factores que alteran las condiciones de confort son la transmisión, la ocupación la iluminación, los equipos y la radiación que va en función de la orientación del edificio.

En invierno, las cargas térmicas solo son debidas a la trasmisión de los cerramientos.

En la actual memoria se presenta la descripción del edificio y los resultados obtenidos, junto con la metodología de cálculo, así como las soluciones presentadas al proyecto.

3. NORMAS Y REFERENCIAS

3.1 Legislación Aplicable

- + Reglamento de Instalaciones Térmicas en los Edificios (RITE) y sus Instrucciones
 - Técnicas Complementarias (ITC). (Real Decreto 1027/2007).
 - Modificaciones y correcciones de errores del RITE aprobadas hasta la publicación del Real Decreto RD 56/2016.
- + Normas UNE incluidas en el RITE.
- + Código Técnico de la Edificación (CTE), (Real Decreto 314/2006)
 - Modificaciones y correcciones de errores del Código Técnico de la Edificación (CTE) aprobadas hasta la publicación del Real Decreto RD 732/2019

3.2 Bibliografía y fuentes de información

- + Guías Técnicas de Ahorro y eficiencia Energética en Climatización, proporcionadas por el Instituto para la diversificación y Ahorro de Energía (IDAE).
- + Jordi Carbó Ballester, "Reglamento De Instalaciones Térmicas En Los Edificios", Marcombo.
- + Natural Resources Canada's Office of Energy Efficiency, "Heating and Cooling With a Heat Pump", EnerGuide.
- + Rodrigo Llopis Domenech, Ramon Cabello Lopez "Problemas resueltos de producción del frío y sicrometría: tablas y diagramas", A. Madrid Vicente Ediciones.

3.3 Bibliografía web

- + www.panasonic.com
- + www.masterzone.es
- + www.airlan.es
- + www.ovacen.com
- + www.instalacionesyeficienciaenergetica.com
- + www.lumelco.es
- + www.gasservei.es

+ www.idae.es

3.4 Programas Utilizados

- + VpClima
- + Psicro
- + Ducto
- + Panasonic VRF Designer
- + Autocad 2020

3.5 Catálogos

- + Panasonic Business, Soluciones Eficientes 2018/2019
- + URX-CF AIRLAN AERMEC Aire Acondicionado
- + Difusores TROX
- + Tablas Rejillas DH-DV MASTERZONE
- + Lista de Precios Airlan

4. DESCRIPCIÓN DEL EDIFICIO

4.1 Situación y emplazamiento

El edificio se sitúa en el polígono industrial de la Virgen de la Salud en Xirivella, provincia de Valencia.

1. Situación geográfica del edificio.

Se trata de un edificio situado en el polígono que cuanta con una nave de una sola altura que fue destinada a tienda de muebles. El edificio es rectangular y ocupa la práctica totalidad de la parcela. EL edificio cuenta con grandes ventanales que se provecharan para la futura construcción.

Entorno Físico

La zona en la que se ubica el edificio se encuentra al Sureste del término municipal de Xirivella. Rodeado de Naves de distinto carácter, comercial e industrial.

4.2 Usos de los edificios

El uso al que está sometido este edificio es de oficinas, por tanto, el horario del estará regido por el calendario laboral. Habitualmente se establece de 8 de la mañana hasta las 6 de la tarde, de lunes a viernes.

4.3 Distribución de los locales a climatizar

Según la instrucción técnica ITE 02.4.3 del RITE, los locales que no estén normalmente habitados, tales como garajes, trasteros, huecos de escaleras, rellanos de ascensores, cuartos de servido (contadores, limpieza etc.), salas de

máquinas y locales similares no deben climatizarse, salvo cuando se empleen fuentes de energía renovables a gratuitas o, mando se produzca un consumo de energía convencional y quede justificado su tratamiento en la memoria del proyecto.

Los locales están situados en una primera planta. Consta de 7 locales que se reparten entre oficinas, sola de almacenaje, vestuarios y baños. El uso de algunas de estas estancias no está definido al 100%, por lo que se realiza el cálculo como si fuera uso de oficina.

Las características de cada uno de los locales del Edificio 1 son las siguientes:

Nombre	Superficie [m²]	Volumen [m³]
E1	296.88	920.33
E3	35.08	108.75
E4	39.53	122.54
E5	67.28	208.57
E6	70.05	217.16
E7	69.87	216.60
E2	34.68	107.51

Tabla 1. Locales del edificio

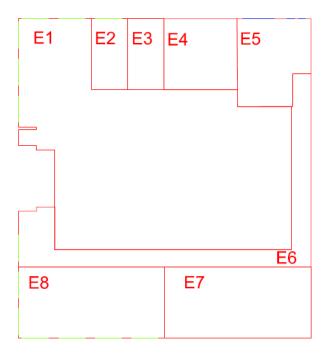


Ilustración 2. Distribuciones locales en edificio

4.4 Descripción de los cerramientos arquitectónicos

Los cerramientos de los edificios se pueden agrupar en los siguientes tipos: fachada exterior, pared interior entre locales, cubierta exterior y suelo exterior.

Fachada Exterior

Para los cerramientos exteriores se ha elegido la siguiente composición:

Ilustración 3. Cerramiento exterior

Nombre	Capas	Transmitancia [W/m²K]	Peso [kg/m²]	He [W/m²K]	Hi [W/m²K]
Cerramiento exterior	Mortero de cemento (1.5cm) Ladrillo perforado (11.5cm) Aislante (2.7cm) Ladrillo hueco (4.0cm) Enlucido de yeso (1.5cm)	0.83	186.110	25.00	7.69

Tabla 2. Cerramiento exterior

Pared Interior entre locales

Para los cerramientos interiores se ha elegido la siguiente composición:

Ilustración 4. Cerramiento Interior

Nombre	Capas	Transmitancia [W/m²K]		He [W/m²K]	Hi [W/m²K]
Cerramiento interior	Enlucido de yeso 1000 < d < 1300 (1.5cm) Tabicón de LH doble [60 mm < E < 90 mm] (7.0cm) Enlucido de yeso 1000 < d < 1300 (1.5cm)	2.11	99.600	7.69	7.69

Tabla 3. Cerramiento interior

Cubierta Exterior

Para las cubiertas exteriores se ha elegido la siguiente composición:

Ilustración 5. Cubierta exterior

Nombre	Capas	Transmitancia [W/m²K]	Peso [kg/m²]	He [W/m²K]	Hi [W/m²K]
Cubierta Exterior	Plaqueta o baldosa cerámica (1.5cm) Mortero de cemento (1.5cm) Aislante (7.3cm) Hormigón con áridos ligeros (7.0cm) Forjado cerámico (25.0cm)	0.45	587.690	25.00	10.00

Tabla 4.Cubierta Exterior

Suelo Exterior

Debido a que el edificio 1 se encuentra sobre un porche, el suelo de estas aulas no está en contacto con el terreno. La composición de este cerramiento es la siguiente:

Ilustración 6.Suelo Exterior

Nombre	Capas	Transmitancia [W/m²K]	Peso [kg/m²]	He [W/m²K]	Hi [W/m²K]
Suelo exterior	Plaqueta o baldosa cerámica (1.5cm) Mortero de cemento (1.5cm) Aislante (6.6cm) Solera de hormigón armado (20.0cm)	0.51	560.480	5.88	25.00

Tabla 5. Suelo exterior

4.5 Descripción de los huecos

Los diferentes huecos que podemos encontrar en el edificio son los ventanales principales, las ventanas de los locales destinados a baños y vestuarios y el lucernario central.

Ventanales Exteriores

Las fachadas principales están compuestas por varios ventanales de grandes dimensiones para aportar luz a las oficinas, estas están compuestas por perfilería en PVC con acristalamiento doble, tipo compuesto por vidrio de seguridad de tipo Stadip 4 mm en el interior, cámara de aire de 12 mm y vidrio de tipo Stadip 6 mm en el exterior.

Ilustración 7. Cerramiento Exterior Acristalado

Ventanas baño

Para las ventanas del baño, de menor tamaño que las principales, se ha seguido con la misma dinámica reduciendo las exigencias, por ello se ha elegido una perfilería en PVC con acristalamiento doble, tipo compuesto por vidrio de seguridad de tipo Stadip 4 mm en el interior, cámara de aire de 12 mm y vidrio de tipo Stadip 6 mm en el exterior

Claraboya / lucernario

Para las claraboyas se ha elegido una perfilería en PVC con acristalamiento triple, tipo compuesto por vidrio de seguridad de tipo Stadip 4 mm en el interior, cámara de aire de 20 mm y vidrio de tipo Stadip 6 mm en el exterior

Nombre	Transmitancia [W/m²K]	Factor solar	Vidrio	Marco	Fracción marco
Ventanas Principales	2.76	0.675	4-12-6	PVC DOS cámaras	10.00
Claraboya	1.81	0.630	4-20-6	PVC TRES cámaras	10.00
Ventanas Principales baño	2.74	0.675	4-12-6	PVC DOS cámaras	10.00

4.6 Ocupación Máxima

El cálculo de la ocupación máxima de cada local está basado en las "densidades de ocupación" dependiendo de la actividad. Las densidades de aplicación vienen recogidas en el Código Técnico de la Edificación (CTE).

Uso previsto	Zona, tipo de actividad	Ocupación (m²/persona)
Administrativo	Plantas y zonas de oficinas	10
Administrativo	Vestíbulos generales y zonas de uso público	2
	Conjunto de la planta o del edificio	10
-	Locales distintos al aula, laboratorios, talleres, gimnasios, salas de dibujo, etc.	5
Docente	Aulas (excepto aulas de escuelas infantiles)	1,5
	Aulas de escuelas infantiles y salas de lectura de bibliotecas	2

Tabla 6.Densidad de ocupación

A continuación, se muestra el número máximo de ocupantes para cada local:

Nombre	Numero personas	Distribución personas	Actividad
E1	21	Oficinas personas	Sentado trabajo ligero
E3	3	Oficinas personas	Sentado trabajo ligero
E4	3	Oficinas personas	Sentado trabajo ligero
E5	5	Oficinas personas	Sentado trabajo ligero
E6	5	Oficinas personas	Sentado trabajo ligero
E7	5	Oficinas personas	Sentado trabajo ligero
E2	2	Oficinas personas	Sentado trabajo ligero

Tabla 7. Ocupación máxima Edificio

4.7 Iluminación

La iluminación de los edificios está constituida por Leds de 10 W cada uno. En las siguientes tablas se muestran el número de tubos que hay en cada local, y por lo consiguiente la potencia total de éstos.

Edificio oficinas

Nombre	Pot. luces [W/m²]	Tipo luces
Oficinas 1E1	10.00	Led
Oficinas 1E3	10.00	Led
Oficinas 1E4	10.00	Led
Oficinas 1E5	10.00	Led
Oficinas 1E6	10.00	Led
Oficinas 1E7	10.00	Led
Oficinas 1E2	10.00	Led

Tabla 8. Potencia Iluminación

4.8 Equipos electrónicos

El valor de las cargas por aparatos electrónicos que hay en cada local es de 12W/m²:

Nombre	Distribución	Pot. sensible	Distribución	m2	Pot. Sensible
Nombre	luces	equipos [W/m²]	equipos	1112	equipos [W]
Oficinas 1E1	Oficinas luces	12	Oficinas equipos	296,88	3562,56
Oficinas 1E3	Oficinas luces	12	Oficinas equipos	35,08	420,96
Oficinas 1E4	Oficinas luces	12	Oficinas equipos	39,53	474,36
Oficinas 1E5	Oficinas luces	12	Oficinas equipos	67,28	807,36
Oficinas 1E6	Oficinas luces	12	Oficinas equipos	70,05	840,6
Oficinas 1E7	Oficinas luces	12	Oficinas equipos	69,87	838,44
Oficinas 1E2	Oficinas luces	12	Oficinas equipos	34,68	416,16

Tabla 9.Potencia sensible

5. CAUDAL DE AIRE INTERIOR

5.1 Caudales mínimos de ventilación

El caudal mínimo de aire exterior de ventilación necesario se calcula según el método indirecto de caudal de aire exterior por persona y superficie (Método A), especificados en la instrucción técnica I.T.1.1.4.2.3 del RITE.

Se adoptará una ventilación por medios mecánicos, de acuerdo con el punto 3.3 (ITE 1.1.4.2 Calidad del aire interior y ventilación). Tal como se indica en el apartado correspondiente de la memoria los caudales de aire para cada dependencia se calculan según el método indirecto de caudal de aire exterior por persona.

Los resultados se reflejan en las siguientes tablas:

Tipo de ventilación	Superficie [m²]	Volumen [m³]
Directa local	613.37	1901.46
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. impulsión [ºC]
30.82	40.48	•
Tipo recuperador	Rendimiento	Rendimiento Humectador
Entalpico	67.00	-

Tabla 10. Valores ventilación y recuperación

5.2 Recuperación de calor

Según el punto IT 1.2.4.5.2 Recuperación del aire de extracción del RITE, en los sistemas de climatización de los edificios en los que el caudal de aire expulsado al exterior, por medios mecánicos, sea superior a 0,5 m3/s (1800 m³/h), se recuperará la energía del aire expulsado.

En la tabla anterior se pueden ver los valores de recuperación.

6. RESULTADO DE CARGAS TÉRMICAS DE REFRIGERACIÓN

Para realizar el cálculo de cargas térmicas en el edifico de oficinas, se utilizará el programa de cálculo VpClima.

Para realizar de forma más precisa el cálculo de cargas térmicas de los edificios, se utilizará el programa informático VpClima, creado en la Universidad Politécnica de Valencia.

Esta herramienta requiere la introducción de condiciones internas del local, las condiciones exteriores, la composición de los cerramientos del edificio, cargas de los equipos que hay cada local, la iluminación, la ocupación, etc. Y con todos estos datos se hallarán las cargas térmicas totales. Los resultados de las cargas térmicas de refrigeración son los siguientes:

Elemento	Potencia total [kW]	Potencia sensible [kW]	Ratio total [W/m²]	Ventilación [m³/hora]
Edificio	39.03	35.41	64	1971.55
E1	17.88	16.13	60	954.26
E3	1.71	1.51	49	112.76
E4	2.31	2.08	59	127.06
E5	4.38	3.99	65	216.26
E6	3.36	2.95	48	225.16
E7	8.19	7.99	117	224.58
E2	2.28	2.07	66	111.47

Tabla 11.Resultados cargas térmicas

7. RESULTADO DE CARGAS TÉRMICAS DE CALEFACCIÓN

Los resultados de las cargas térmicas de calefacción son los siguientes:

Elemento	Potencia total [kW]	Potencia sensible [kW]	Ratio total [W/m²]	Ventilación [m³/hora]
Edificio	-26.23	-24.51	-43	1971.55
Zona_dem_1	-26.23	-24.51	-43	1971.55
E1	-10.76	-9.93	-36	954.26
E3	-1.55	-1.45	-44	112.76
E4	-2.14	-2.02	-54	127.06
E5	-3.17	-2.98	-47	216.26
E6	-2.80	-2.60	-40	225.16
E7	-4.17	-3.97	-60	224.58
E2	-1.70	-1.60	-49	111.47

Tabla 12.Resultados cargas térmicas calefacción

8. DESCRIPCIÓN DE LA INSTALACIÓN DE CLIMATIZACIÓN Y VENTILACIÓN

La instalación de climatización y ventilación se trata de un sistema mixto independiente, donde la climatización y la ventilación se realizarán en dos circuitos independientes. Como el que se muestra en la figura siguiente:

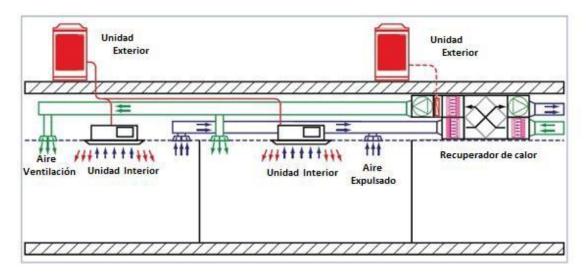


Ilustración 8. Instalación de climatización y ventilación

Como sistema para refrigerar y calefactar cada sala se ha elegido las opciones del llamado sistema de caudal de refrigerante variable (VRV). El nombre es debido a que tiene la capacidad de variar el caudal de refrigerante aportado a las baterías de evaporación-condensación, controlando así más eficazmente las condiciones de temperatura de los locales a climatizar.

La red de tuberías irá desde la cubierta, donde se encuentran las unidades de enfriamiento o calentamiento de aire, hasta cada uno de los locales donde se sitúan los equipos terminales, encargados de impulsar el aire. Esta distribución se realiza para cada uno de los edificios.

El refrigerante con el que trabajará el sistema será R-410, por su gran implantación a nivel comercial, su bondad como refrigerante y su bajo impacto medioambiental.

En cuanto a la ventilación, se realizará de forma independiente a la climatización. Se utilizarán recuperadores de calor, ya que así lo exige el RITE para edificios de características como el que se proyecta.

Con este sistema se consigue un importante ahorro de energía. Debido a que el aire exterior intercambia calor con el aire retornado del local, alcanzando unas propiedades más semejantes a las de impulsión. Por lo que la potencia de la batería para adecuar el aire será menor.

Se instalará las unidades exteriores en las cubiertas y los recuperadores de calor en cada una planta de los edificios del instituto.

9. SISTEMA DE CLIMATIZACIÓN

El sistema de climatización tiene como objetivo eliminar las cargas del local excepto la de ventilación. Para ello, tal y como se ha comentado, se implanta un sistema de producción de frio y calor basado en la tecnología VRV.

La principal razón por la que se ha elegido este sistema de climatización es por el poco espacio que requieren sus tuberías. Esto es esencial para esta instalación, ya que no hay falso techo para salvaguardar grandes conductos.

Este sistema es singular por tener una unidad exterior a la que se conectan un número variable de unidades interiores, con este sistema se puede gozar de una independencia climática en cada sala climatizada.

El sistema VRV acepta una gran distancia frigorífica tanto en vertical como en horizontal, lo que permite trazados muy flexibles, que se pueden adaptar en muchas situaciones.

La principal desventaja de este sistema de climatización es su elevada inversión.

En este sistema los equipos productores, ubicados en la azotea, partirán una red de tuberías de cobre para el transporte de refrigerante en forma ramificada hasta las distintas unidades interiores. Una válvula de expansión electrónica dejará pasar la cantidad justa de fluido refrigerante que deberá entrar en la batería.

El funcionamiento del sistema de climatización con VRV es el siguiente:

La unidad exterior compresora del refrigerante, y a su vez condensadora (en verano) y evaporadora (en invierno), tiene la función de comprimir el refrigerante y hacerlo circular por toda la instalación, el funcionamiento de esta unidad depende directamente de las unidades interiores. Tanto en la cantidad de caudal de refringente necesario para el funcionamiento del sistema, como en el control de toda la instalación del edificio.

El refrigerante es una mezcla de fluorocarbonos, son uno productos químicos que tienen la capacidad de absorber grandes cantidades de calor a una baja presión y baja temperatura y cederlo a alta presión y alta temperatura.

Funcionamiento en verano

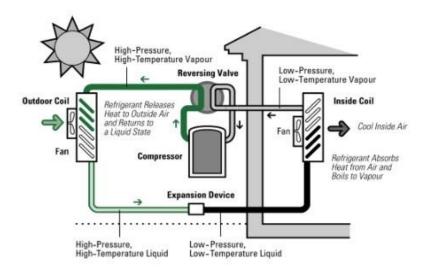


Ilustración 9. Funcionamiento ciclo enfriamiento VRV

En verano, el refrigerante encerado en el circuito de tuberías, se pone en contacto con el ambiente que se quiere enfriar. A medida que refrigerante atraviesa el evaporador (unidad interior) se transformará en gas, absorbiendo el calor del ambiente interior. Con lo cual el ambiente interior del local, estará en contacto con esa parte del circuito, y se enfriará.

A continuación, se ha de ceder el calor absorbido por el refrigerante. Para ello, del evaporador sale el gas a baja presión. Se necesita que la presión y la temperatura del gas sean altas para el cambio de estado a líquido, para ello se emplea el compresor.

Una vez se consigue elevar la presión y la temperatura, el refrigerante se transformará en líquido. Este cambio de estado, viene de la mano del condensador (unidad exterior), a medida que refrigerante pasa por él, se transforma en líquido, cediendo el calor absorbido al ambiente exterior. Para poder reiniciar el ciclo, es necesario que el refrigerante en estado líquido a alta presión, la disminuya. Para ello, previo al evaporador, se intercala una válvula de expansión.

Funcionamiento en invierno

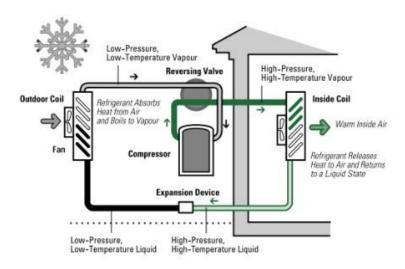


Ilustración 10. Funcionamiento ciclo calefacción VRV

En invierno el ciclo se ocurre a la inversa, el refrigerante encerado en el circuito de tuberías, se pone en contacto con el ambiente exterior. A medida que refrigerante atraviesa el evaporador (unidad exterior) se transformará en gas, absorbiendo el calor del exterior.

A continuación, se ha de ceder el calor absorbido por el refrigerante. Para ello, del evaporador sale el gas a baja presión. Se necesita que la presión y la temperatura del gas sean altas para el cambio de estado a líquido, para ello se emplea el compresor.

Una vez se consigue elevar la presión y la temperatura, el refrigerante se transformará en líquido. Este cambio de estado, viene de la mano del condensador (unidad interior), a medida que refrigerante pasa por el condensador se transforma en líquido, cediendo el calor absorbido al ambiente del local, ya que éste se encuentra a una temperatura mucho más baja que la que lleva el refrigerante. Y el calor siempre va del foco caliente al foco frio.

Para poder reiniciar el ciclo, es necesario que el refrigerante en estado líquido a alta presión, la disminuya. Para ello, previo al evaporador, se intercala una válvula de expansión.

Para facilitar el proceso de evaporación y condensación, se utilizan corrientes de aire mediante ventiladores, que son los que realmente aceleran la evaporación

aportando el caudal de aire necesario. De igual forma, se incluye un ventilador en el condensador para liberar el calor.

9.1 Cálculos previos al dimensionado de los equipos

En el capítulo de *cálculos justificativos* de este trabajo se exponen todos los cálculos y criterios seguidos para dimensionar toda la instalación y para la selección de las unidades necesarias.

9.1.1 Potencia requerida de las unidades interiores y exteriores

En la siguiente tabla se muestra la potencia mínima para eliminar las cargas de refrigeración en cada edificio y en cada local. En consecuencia, éstas serán las potencias requeridas para las unidades interiores, y la suma de ellas será la necesaria para las unidades exteriores de cada edificio.

Elemento	Potencia total [kW]
E1	17.88
E3	1.71
E4	2.31
E5	4.38
E6	3.36
E7	8.19
E2	2.28
TOTAL	39.03

Tabla 13. Potencias requeridas de las unidades interiores y de las unidades exteriores

9.1.2 Caudal impulsión

En la siguiente tabla se muestra el caudal de impulsión que deben proporcionar las unidades interiores, para contrarrestar las cargas térmicas de refrigeración que aparecen en cada local y conseguir una temperatura de 25 °C en verano, considerando que la temperatura de impulsión es de 17 °C.

Elemento	Ventilación [m³/hora]
E1	954.26
E3	112.76
E4	127.06
E5	216.26
E6	225.16
E7	224.58

E2	111.47
TOTAL	1971.55

Tabla 14.Caudal impulsión unidades interiores

9.2 Selección de las unidades interiores

En la selección de las unidades interiores se ha elegido en la gama de productos de Panasonic. Se ha comprobado que sean capaces de suplir las cargas de refrigeración de las aulas, ya que éstas son las más desfavorables.

El número de unidades interiores depende de las dimensiones del aula, el caudal necesario de impulsión y la carga que se haya de contrarrestar.

Los equipos escogidos se encargarán de adecuar las condiciones del aire para conseguir el estado de bienestar deseado son los siguientes:

Edificio 1

Local	Unidades	Descripción	Modelo
E1	1	Cassette de 4 vías 90x90 tipo U2	S-90MU2E5A
E3	1	Cassette de 4 vías 90x90 tipo U2	S-22MU2E5A
E4	1	Cassette de 4 vías 90x90 tipo U2	S-28MU2E5A
E5	1	Cassette de 4 vías 90x90 tipo U2	S-60MU2E5A
E6	1	Cassette de 4 vías 90x90 tipo U2	S-45MU2E5A
E7	1	Cassette de 4 vías 90x90 tipo U2	S-140MU2E5A
E2	1	Cassette de 4 vías 90x90 tipo U2	S-28MU2E5A

Tabla 15. Unidades Interiores Edificio

9.3 Selección de las unidades exteriores

Para la elección de las unidades exteriores también se ha elegido la gama de productos ofrecida por Panasonic. Se instalarán dos unidades exteriores tipo Serie ECOi 2 tubos 6N, Modelo U-14ME1E81 que se encargará de suplirlas cargas térmicas producidas las estancias que lo integran.

9.4 Diseño de la instalación de climatización

El diseño de la instalación se ha elaborado con el programa PANASONIC VRF Designer. Con este programa se obtienen los diámetros de las tuberías, las derivaciones y la cantidad de refrigerante, al introducir los datos de los modelos de los equipos seleccionados y las longitudes estimadas de las tuberías.

Con todos los resultados anteriores se puede realizar un croquis de la instalación de climatización que se instalará en el edificio de oficinas.

A continuación, se expone el diseño introducido en el programa; las unidades interiores, exteriores y las longitudes estimadas. Y posteriormente los resultados numéricos de la instalación de climatización proporcionados por el programa PANASONIC VRF Designer.

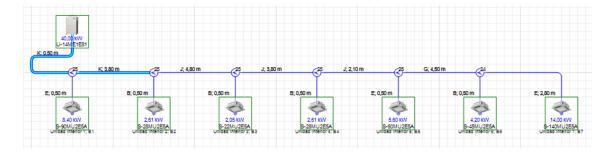


Ilustración 11. Diseño introducido en el programa PANASONIC VRF Designer

Modelo	Tipo / Nombre de unidad interior	Código	Cantidad
U-14ME1E81	Unidad exterior		1
S-90MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 1)		1
S-28MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 2, Unidad interior 4)		2
S-22MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 3)		1
S-60MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 5)		1
S-45MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 6)		1
S-140MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 7)		1
CZ-RWS3	Control remoto inalámbrico		7
CZ-RWRU3	Receptor inalámbrico		7
CZ-RE2C2	Control remoto simplificado		7
CZ-KPU3	Panel		7
CZ-P680BK2BM	Derivación	25	5
CZ-P224BK2BM	Derivación	24	1
1/2" x 1 1/8"	Tuberías	К	4,3
3/8" x 7/8"	Tuberías	J	10,7
3/8" x 3/4"	Tuberías	G	4,5
3/8" x 5/8"	Tuberías	Е	3,8
1/4" x 1/2"	Tuberías	В	2
	Cableado de control		0
	Carga adicional R410A (kg)		9,47
	Densidad límite (kg/m3)		0,1671
	Cantidad total de refrigerante R410A (kg)		17,97

Tabla 16. Resultado de los elementos de la instalación de climatización

10. SISTEMA DE VENTILACIÓN

En el interior de los edificios, se necesita renovar el aire mediante la inyección de aire limpio del exterior y la extracción de parte del aire viciado del interior. Con ello, se consigue que la calidad del aire ambiente en los locales en los que se realiza alguna actividad humana, sea la adecuada, tal y como exige la normativa.

Para ello, es necesario instalar equipos de recuperación de calor que permitan el intercambio de energía entre el aire extraído y el renovado. Los recuperadores de calor, son equipos cuya función es aprovechar las propiedades psicométricas (temperatura y humedad) del aire que extraemos del local, e intercambiarlas con el aire de ventilación que impulsamos desde el exterior.

Ilustración 12. Equipo de recuperación de calor

Con ello, se consigue pretratar (precalentar o preenfriar) el aire exterior, y, por lo tanto, reducir el consumo energético de la instalación, ya que las potencias necesarias para acondicionar el aire a las propiedades del local serán mucho menores que si no existiera ese pretratamiento.

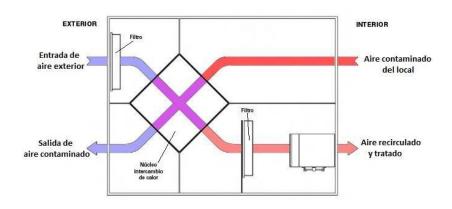


Ilustración 13. Etapas recuperación de calor

La función de la batería es de acondicionar el aire hasta llegar a tener las condiciones correctas para impulsarlo al local, después de haber sido pretratado y teniendo ya unas condiciones más semejantes que el aire exterior.

Desde el recuperador de calor saldrá una red de conductos de fibra de vidrio que irá sobre el pasillo hasta cada una de las aulas. Irán dos conductos en paralelo, uno de impulsión y otro de retorno. El aire de extracción del local se recoge en el conducto de retorno.

10.1 Potencia requerida de las baterías

La potencia mínima requerida para acondicionar el aire pretratado a las condiciones de local en el edificio es una batería de 5,7 kW para un caudal 1.971.55 m³/h

10.2 Selección del recuperador de calor

Para la selección de los recuperadores de calor de cada edificio se ha encomendado la elección a los productos ofrecidos por Panasonic. Se ha comprobado que sean capaces de suministrar el caudal mínimo de ventilación y que la batería que integran sea capaz de aportar la potencia necesaria para acondicionar el aire a las condiciones de confort establecidas.

El equipo escogido es el modelo PAW-01KZDX3N de la gama Recuperación de calor con batería DX con dos unidades.

10.3 Selección de las unidades exteriores

Para la elección de las unidades exteriores también se ha confiado en la gama de productos ofrecida por Panasonic. Para cada recuperador de calor seleccionado lo abastecerá una unidad exterior serie Mini ECOi 2 Tubos modelo U-4LE2E5.

11. SISTEMA DE ACS

Para la elección del ACS se ha elegido de la gama que ofrece Panasonic para el uso combinado sobre elementos compatibles con los equipos de refrigeración, dicho sistema exige la colocación de acumuladores de capacidad elevada (más de 150 litros) con destinos de mayor uso, se elige el de menos tamaño, un termo externo con depósito de inercia para combinarlo con el sistema de refrigeración, el modelo elegido es el PAW-TD20B8E3-1.

Para ello la necesidad de carga de la instalación será la siguiente:

Consumo ACS.

Uso: Oficinas con Vestuarios

Ta Acumulación (°C): 50

Mes	Demanda máx. diaria (I/día a 60 °C)	Demanda mensual (I/mes a 60 °C)	Demanda mensual (I/mes a 50 °C)	T ^a agua fría red (ºC)	Energía calor. mens. (MJ/mes)
Enero	112	3472	4340	10	726.69
Febrero	112	3136	3940.1	11	643.24
Marzo	112	3472	4385.68	12	697.62
Abril	112	3360	4268.11	13	661.05
Mayo	112	3472	4464	15	654.02
Junio	112	3360	4378.18	17	604.79
Julio	112	3472	4592	19	595.89
Agosto	112	3472	4629.33	20	581.35
Septiembre	112	3360	4410	18	590.73
Octubre	112	3472	4493.18	16	639.49
Noviembre	112	3360	4268.11	13	661.05
Diciembre	112	3472	4362.26	11	712.16
		40880	52530.95		7768.08

Tabla 17. Demanda ACS

12. PRESUPUESTO FINAL

El presupuesto desglosado se muestra en el capítulo pertinente para ello. En este apartado se expone la suma total de los costes de la instalación de climatización, ventilación y ACS.

TOTAL	
CONCEPTO	PRECIO TOTAL €
SISTEMA DE CLIMATIZACION	62.397,69 €
SISTEMA DE VENTILACION	55.126,20 €
SISTEMA DE ACS	10.402,00 €
тот	AL 127.925,89 €

EVALUACIÓN TÉCNICO-ECONÓNICA DE UN SISTEMA DE PRODUCCIÓN DE ACS Y CLIMATIZACIÓN PARA UN EDIFICIO

CÁLCULOS JUSTIFICATIVOS

CALCULOS JUSTIFICATIVOS

1. IN	TRODUCCIÓN	34
2. CC	ONDICIONES EXTERIORES DE CÁLCULO	35
3. CC	ONDICIONES INTERIORES DE CÁLCULO	40
4. CÁ	ALCULO DE CARGAS TÉRMICAS	44
	OEFICIENTES DE TRANSMISIÓN DE CALOR DE LOS ELEMENTO	
6. OC	CUPACIÓN MÁXIMA DE CADA LOCAL	50
7. ILU	JMINACIÓN	51
8. EG	QUIPOS ELECTRÓNICOS	51
9. CA	AUDAL DE AIRE INTERIOR	53
10.	RESULTADO DE CARGAS TÉRMICAS DE REFRIGERACIÓN	54
11.	RESULTADO DE CARGAS TÉRMICAS DE CALEFACCIÓN	67
12. Y VE	DESCRIPCIÓN GENERAL DE LA INSTALACIÓN DE CLIMATIZACION NTILACIÓN	
13.	SISTEMA DE CLIMATIZACIÓN	80
14.	SISTEMA DE VENTILACIÓN	89
15.	CONCLUSIÓN DEL TRABAJO	95

1. INTRODUCCIÓN

En el presente capítulo se describirá el proceso seguido para el cálculo de cargas térmicas, y así determinar las necesidades de climatización de los locales en sus componentes de refrigeración, calefacción y ventilación, en un edifio, situado en la localidad de Xirivella, en la provincia de Valencia.

También se seleccionarán los equipos apropiados para cubrir esas necesidades. Con la voluntad de conseguir un sistema de climatización óptimo para el edificio, buscando un compromiso entre estética, técnica y coste.

Para realizar de forma más precisa el cálculo de cargas térmicas de los edificios, se utilizará el programa informático VpClima, creado en la Universidad Politécnica de Valencia. Esta herramienta requiere la introducción de condiciones internas del local, condiciones exteriores, composición de los cerramientos del edificio, etc. con todos estos datos se hallarán las cargas térmicas totales.

2. CONDICIONES EXTERIORES DE CÁLCULO

Según el apartado ITE 02.3 Condiciones Exteriores del Reglamento de Instalaciones Térmicas en los Edificios. La elección de las condiciones exteriores de temperatura seca y de temperatura húmeda se hará en base al criterio de niveles percentiles. Para su selección se tendrán en cuenta las indicaciones de la norma UNE 100014 IN.

Se deberán tener en cuenta también la altitud sobre el nivel del mar y, la latitud del lugar de emplazamiento del instituto.

Para el cálculo del consumo energético del instituto a lo largo de una temporada se tendrán en cuenta los datos del año típico del lugar (temperatura seca, temperatura húmeda coincidente y radiación solar) o, en su defecto, limitado al cálculo del consumo en régimen de calefacción.

2.1 Latitud y Altitud

Como ya se ha mencionado, el edifico se encuentra en la localidad de Xirivella, en la provincia de Valencia.

Este instituto se sitúa a una latitud de 39,49º y a una altitud sobre el nivel del mar de 57 m.

2.2 Zona Climática

La zona climática de la localidad en la que se ubica la instalación se obtiene de la Tabla D.1 – Zonas Climáticas del Apéndice D Zonas climáticas del Documento Básico HE Ahorro de Energía.

Debido a que la localidad se encuentra en la provincia de Valencia, y su desnivel entre la localidad y la capital de su provincia es menor a 50 m, se trata de la Zona Climática C3.

2.3 Nivel Percentil

Para fijar las condiciones exteriores de temperatura y humedad en proyectos de climatización, primero se ha de elegir el valor del percentil, para ello se utiliza la norma UNE 100014 IN.

Condiciones Exteriores de Cálculo para Invierno:

Como condiciones extremas del proyecto para el invierno se utilizan aquellas que están basadas sobre el nivele percentil de la temperatura seca en el total de las horas de los tres meses de diciembre, enero y febrero (90 días – 2160 h).

Para el cálculo de cargas térmicas máximas de invierno, la temperatura seca a considerar es la correspondiente a los siguientes niveles:

- Nivel 99% para hospitales, clínicas y residencias de ancianos.
- Nivel del 97,5% para todos los tipos de edificios y espacios no mencionados anteriormente.

Por lo tanto, en el proyecto se ha escogido el nivel percentil del 97,5%, éste dato se interpreta de la siguiente manera:

Los valores de temperatura seca y húmeda exterior probablemente se cumplirán en el 97,5% de las horas de los meses de diciembre, enero y febrero. En esos días la instalación resultará insuficiente, pero en el posterior cálculo se incluirán factores y coeficientes que podrán compensarlo.

Condiciones Exteriores de Cálculo para Verano:

Como condiciones extremas del proyecto para el verano se deben tomar aquellas que están basadas sobre los niveles percentiles de temperatura seca y húmeda en el total de las horas de los cuatro meses de junio, julio, agosto y septiembre (122 días – 2928 h).

Para el cálculo de cargas térmicas máximas de verano, la temperatura seca y húmeda a considerar es la correspondiente a los siguientes niveles:

- Nivel del 1% para hospitales, clínicas y residencias de ancianos.
- Nivel del 2,5% para edificios y espacios que sean de especial consideración.
- Nivel del 5% como condiciones generales de diseño para cualquier tipo de espacio climatizado.

Por lo tanto, en el presente trabajo se adoptará el nivel percentil del 5%, éste dato se interpreta de la siguiente manera:

El valor de temperatura seca y húmeda exterior probablemente sólo se rebasará en el 5% de las horas de los meses de junio, julio, agosto y septiembre. En esos

CALCULOS JUSTIFICATIVOS

días la instalación resultará insuficiente, pero en el posterior cálculo se incluirán factores y coeficientes que podrán compensarlo.

2.4 Temperatura Seca y Húmeda

Paras fijar las condiciones exteriores de temperatura, se utiliza la norma UNE 100001, la cual establece las condiciones termo higrométricas exteriores de proyecto para diferentes localidades de la geografía española.

Para el proyecto se toman los datos del observatorio de Valencia, que se muestran a continuación:

Temperatura Mínima Seca (NPE 97,5%)	1,5 °C
Temperatura Máxima Seca (NPE 5%)	29,8 °C
Temperatura Máxima Húmeda (NPE 5%)	23,8 °C

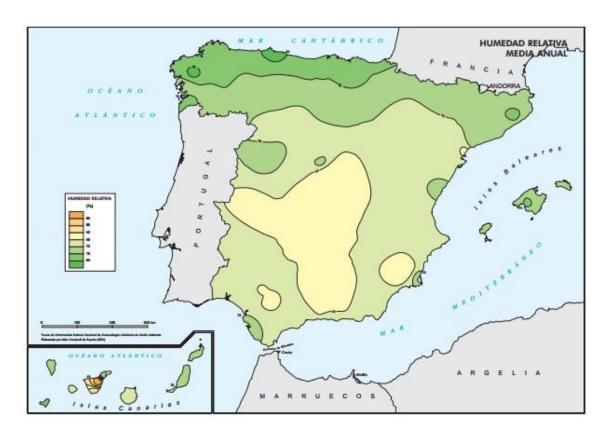
Tabla 18. Temperatura seca y húmeda

2.5 Oscilaciones Máximas OMD y OMA

Las oscilaciones máximas tanto para invierno como para verano son las siguientes:

	OMD	OMA
INVIERNO	5	
VERANO	10	32

Tabla 19. Oscilaciones Medias Diarias y Oscilaciones Medias Anuales


Donde

OMD es la Oscilación Media Diaria.

OMA es la Oscilación Media Anual.

2.6 Humedad Relativa media anual

Según el mapa que se muestra, proporcionado por el ministerio de fomento, se observa la humedad relativa media anual en las diferentes regiones de España, valor que se obtiene a partir del promedio de la humedad registrada en los doce meses del año.

En base a estos datos, el valor de la humedad relativa adoptado en los meses de invierno es de 70%, y para los meses de verano de 55%.

3. CONDICIONES INTERIORES DE CÁLCULO

3.1 Temperatura y Humedad Relativa

De acuerdo con el punto IT 1.1.4.1.2 Temperatura operativa y humedad relativa del RITE. Las condiciones interiores de diseño se fijarán en función de la actividad metabólica de las personas y su grado de vestimenta.

Para personas con actividad metabólica sedentaria de 1,2 met, con grado de vestimenta de 0,5 clo en verano y 1 clo en invierno y un PPD entre el 10 y el 15%, estas características son las que encontramos en unas oficinas los valores de la temperatura

operativa y de la humedad relativa están comprendidos en los siguientes valores:

Estación	T ^a interior	Humedad Relativa (%)
Invierno	21 – 23	40 -50
Verano	23 – 25	45-60

Tabla 20.Temperatura y Humedad Relativa interior

Las condiciones interiores de confort se establecen en 21° C y 40% de humedad relativa en invierno para los locales y 25° C y 50% de humedad relativa en verano.

3.2 Velocidad media del aire

Tal y como indica el apartado IT 1.1.4.1.3 Velocidad media del aire del RITE, la velocidad media admisible del aire en los conductos se encuentra entre los siguientes valores:

Estación	Velocidad media aire (m/s)
Invierno	0,15 - 0,20
Verano	0,18 – 0,24

Tabla 21. Velocidad media del aire

3.3 Calidad del aire interior

Conforme dicta el punto IT 1.1.4.2 Exigencia de calidad del aire interior del RITE. Los edificios dispondrán de un sistema de ventilación para el aporte del suficiente caudal de aire exterior que evite, en los distintos locales en los que se realice alguna actividad humana, la formación de elevadas concentraciones de contaminantes.

La normativa proporciona una clasificación de la calidad del aire interior en función de la actividad que se vaya a desarrollar en el edificio. En el siguiente listado se muestra la categoría de calidad de aire interior (IDA) que se deberá alcanzar:

IDA 1 (Aire de óptima calidad): hospitales, clínicas, laboratorios y guarderías.

IDA 2 (Aire de buena calidad): Residencias, salas de lectura, aulas de enseñanza y piscinas.

IDA 3 (Aire de calidad media): Salones de actos, cafeterías, gimnasios y salas de ordenadores.

IDA 4 (Aire de baja calidad).

En el caso edifico de oficinas se ha de asegurar que la calidad del aire es buena (IDA2) en las aulas de enseñanza y los locales de administración.

3.4 Filtración del aire exterior

El aire exterior de ventilación, antes de cualquier tratamiento. Se introducirá debidamente filtrado en los edificios. La calidad del aire exterior se clasificará de acuerdo a los siguientes niveles exigidos en la *IT 1.1.4.2.4 Filtración del aire exterior mínimo de ventilación*

ODA 1: aire puro que se ensucia solo temporalmente (pe. polen).

ODA 2: aire con altas concentraciones de partículas y/o de gases contaminantes.

ODA 3: aire con concentraciones muy altas de gases contaminantes (ODA 3G) y/o de partículas (ODA 3P).

El aire exterior de ventilación, se introducirá debidamente filtrado en el edificio. Las clases de filtración mínima a emplear, en función de la calidad del aire exterior (ODA) y la calidad del aire interior requerida (IDA), serán las indicadas en la siguiente tabla:

	CALIDAD DEL AIRE INTERIOR				
CALIDAD DEL AIRE	IDA 1	IDA 2	IDA 3	IDA 4	
EXTERIOR					
ODA 1	F9	F8	F7	F5	
ODA 2	F7 + F9	F6 + F8	F5 + F7	F5 + F6	
ODA 3	F7 + GF* + F9	F7 + GF + F9	F5 + F7	F5 + F6	
(*) GE - Filtro de gas	(filtro de carbor	o) v/o filtro quí	mico o físico-c	uímico (foto	

^(*) GF = Filtro de gas (filtro de carbono) y/o filtro químico o físico-químico (foto catalítico) y solo serán necesario en caso de que la ODA 3 se alcance por

Tabla 22. Tipos de filtros dependiendo del IDA y del ODA

Por lo tanto, se instalarán filtros de calidad F6 + F8 a la entrada de aire exterior de los conductos.

3.5 Ruidos y vibraciones

Según el apartado ITE 2.2.3.1 del RITE, los ruidos generados por los componentes de las instalaciones térmicas pueden afectar al bienestar y confort de los ocupantes de los locales del edificio, así como las vibraciones al ajuste de las máquinas, a la estanqueidad de los conductos y a la estructura del edificio.

En este sentido, en el diseño de la instalación se deberán tener en cuenta aquellas técnicas o sistemas que garantizan la atenuación de ruidos y vibraciones a los valores especificados a continuación.

3.5.1 Ruidos

Se tomarán las medidas adecuadas para que como consecuencia del funcionamiento de las instalaciones en las zonas de normal ocupación de locales habitables los niveles sonoros en el ambiente interior no sean superiores a los valores máximos admisibles que figuran en la Tabla3 de este reglamento para cada tipo de local.

Según dicha tabla el valor máximo admisible de nivel sonoro para el ambiente interior de locales de tipo docente es de 45 dBA.

La velocidad del aire percibido por las personas no superara los valores establecidos en el apartado 3.2 del presente trabajo (IT1.1.4.1.3. del RITE), y en los conductos no superará los 6 m/s.

3.5.2 Vibraciones

Para mantener los niveles de vibración por debajo de un nivel aceptable, los equipos y las conducciones deben aislarse de los elementos estructurales del edificio según se indica en la instrucción UNE 100153 IN.

Esta norma tiene por objeto establecer los criterios a seguir para la elección de los soportes elásticos a instalar entre equipos y conducciones con movimientos vibratorios, de un lado, y, de otro lado, la estructura del edificio, a fin de reducir la transmisión de vibraciones y ruidos.

Los equipos y las conducciones deben, alejarse de los locales, dentro de lo posible, y las entradas de las conducciones en los locales deben diseñarse de manera que no constituyan un puente acústico.

Las vibraciones de las piezas en movimiento generan ruidos que se transmiten a través de los soportes de los equipos y de los conductos a la estructura del edificio.

Se optará por amortiguar las vibraciones intercalando entre las piezas en movimiento y las piezas fijas unas juntas o piezas elásticas (silent-blocks). Los silent-blocks o soportes antivibratorios, pueden ser de caucho o de muelle y pueden trabajar a compresión o a tracción.

Los conductos deberán conectarse a los ventiladores de aire promedio de conexiones flexibles de tejido y/o goma.

4. CÁLCULO DE CARGAS TÉRMICAS

Como se ha mencionado al principio del capítulo, para calcular el valor de las cargas térmicas que hay en el instituto de secundaria se ha utilizado el programa VpClima.

Este software requiere la introducción de todas las variables descritas anteriormente. Las condiciones internas del local, las exteriores, a composición de los cerramientos del edificio, el número de ocupantes, etc.

Además, el programa permite incluir los horarios del centro cuando se introducen las cargas de ocupación, iluminación y equipo, para solo tener en cuenta las horas en que los locales están ocupados, las horas de iluminación o de utilización de los equipos de cada local.

El proyecto se organiza en forma de árbol, de tal forma que cada edificio forma un árbol diferente. Cada uno con sus locales, y sus correspondientes cerramientos y huecos.

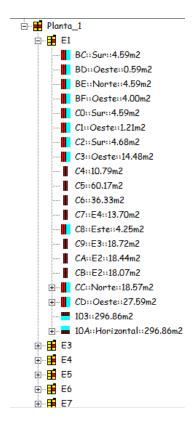


Ilustración 14. Ejemplo de la estructura organizativa del VPClima

4.1 Carga de transmisión por los cerramientos

Esta carga de transmisión es la perdida de calor sensible hacia los locales en contacto no climatizados, o hacia el exterior.

El programa de cálculo permite al usuario elegir los distintos tipos de cerramientos que limitan cada uno de los locales.

Ilustración 15. Opciones a elegir para los cerramientos en el VPClima

De forma que las paredes de los locales pueden ser; muro al exterior, partición interior (pared a otro local), partición interior a local de contorno o muro al terreno.

Los techos de los locales pueden representarse como forjado exterior, techo/suelo interior, techo a local de contorno o techo ajardinado. Y, por último, los suelos pueden ser de 4 tipos, Suelo/techo exterior, suelo interior, suelo interior a local de contorno o suelo al terreno.

El VpClima cuenta con una base de datos de los materiales de los cerramientos extraídos del catálogo de elementos constructivos del Código Técnico de la Edificación. Con los cuales el usuario puede crear sus propios cerramientos.

La composición de los cerramientos se ha descrito en el apartado 5 de este capítulo.

4.2 Carga de transmisión por los huecos

Esta carga es la conductividad térmica a través de una superficie acristalada, es el resultado de la acción conjunta de los fenómenos de conducción y convección entre el ambiente externo e interno que separa el cristal y la incidencia de la radiación solar sobre esta superficie. La cagas de transmisión por los huecos son únicamente sensibles.

Al igual que para el caso de los cerramientos, el programa cuenta con una base de datos con distintos modelos de vidrios y marcos a elegir. Además de los elementos de sombra asignados a la composición del hueco y el factor solar de éste.

Ilustración 16. Puesta de dimensiones para el hueco en el VPClima

4.3 Cargas por ocupación

Son las cargas aportadas por los ocupantes del local, pueden ser sensibles y latentes. Para determinar esta carga es necesario introducir el número de personas que pueden estar ocupando el local, en las condiciones máximas, además de las actividades que se realizan dentro de él.

El número de ocupantes de cada local está expuesto en el punto 5 del presente capítulo.

Además, el programa sugiere siete diferentes tipos de actividades que realiza el ocupante en el local:

- Sentado trabajo muy ligero.
- Sentado trabajo ligero.
- De pie trabajo muy ligero.
- De pie trabajo ligero.
- De pie trabajo moderado.
- De pie trabajo pesado.
- De pie trabajo muy pesado.

En este estudio, se trata de oficinas por lo tanto la actividad desarrollada en ellos se considera como *sentado trabajo muy ligero*.

4.4 Carga por iluminación

Éstas cargas son las que se producen por el calor que desprenden las luminarias de los locales, únicamente son cargas sensibles. La herramienta de cálculo siguiere cuatro tipos principales de las mismas:

- Iluminación incandescente.
- Fluorescente con reactancias.
- Fluorescente sin reactancia.

- Led.

En el caso del presente trabajo se ha seleccionado, *Led*, ya que la iluminación de las oficinas se compone por tubos de led de 10 W cada uno. En el apartado siete se muestran las potencias de iluminación de cada local.

4.5 Carga por equipos

Las cargas por equipos, son las debidas a los equipos o instalaciones incluidas en los locales, tales como ordenadores, proyectores, fotocopiadoras, entre otros.

A continuación, se muestra los valores de las cargas de los equipos que se pueden encontrar en el instituto de educación secundaria, en este caso solo serán cargas sensibles, por el tipo de aparatos electrónicos que se presentan.

Equipos	Cargas Sensibles (W)
Ordenador	250
Altavoz	200
Equipo de Música	150
TV	100
Fotocopiadora Pequeña	1760
Fotocopiadora Grande	3515
Frigorífico	300

Tabla 23. Cargas producidas por equipos

4.6 Carga por ventilación

Para el cálculo de la carga por ventilación solamente es necesario el caudal de ventilación por persona en m³/h·persona. Además, en el mismo software se asigna por defecto las renovaciones por hora de cada local.

El caudal asignado en cada local es el mencionado en el apartado 9 del presente trabajo.

4.7 Carga por mayoración

Para que la instalación de climatización y ventilación no quede infra dimensionada, por cualquier error de cálculo, se aplicara un coeficiente de mayoración del 5%, este coeficiente también es un parámetro a introducir en el programa. Así se crea una carga extra del 5% de la carga total del local.

5. COEFICIENTES DE TRANSMISIÓN DE CALOR DE LOS ELEMENTOS CONSTRUCTIVOS

5.1 Cerramientos

Los diferentes cerramientos son:

- Fachada exterior.
- Pared interior
- Cubierta exterior.
- Suelo exterior.

Fachada Exterior

Para los cerramientos exteriores se ha elegido la composición que se recoge en la siguiente tabla:

Nombre	Capas	Transmitancia [W/m²K]	Peso [kg/m²]	He [W/m ² K]	Hi [W/m²K]
	Mortero de cemento (1.5cm) Ladrillo perforado (11.5cm) Aislante (2.7cm) Ladrillo hueco (4.0cm) Enlucido de yeso (1.5cm)	0.83	186.110	25.00	7.69

Tabla 24. Composición material de la fachada exterior

Pared interior

Para los cerramientos interiores entre dos aulas se ha elegido la siguiente composición:

Nombre	Capas	Transmitancia [W/m²K]		He [W/m²K]	Hi [W/m²K]
Pared interior	Plaqueta o baldosa cerámica (1.5cm) Mortero de cemento (1.5cm) Aislante (6.6cm) Solera de hormigón armado (20.0cm)	0.51	560.480	5.88	25.00

Tabla 25.composición material de la pared interior

Cubierta exterior.

Para los cerramientos interiores ente las aulas y el pasillo se ha elegido la siguiente composición:

Nombre	Capas	Transmitancia [W/m²K]		He [W/m²K]	Hi [W/m²K]
Cublerta	Plaqueta o baldosa cerámica (1.5cm) Mortero de cemento (1.5cm)	0.45	587.690	25.00	10.00

Aislante (7.3cm)	
Hormigón con áridos lige	eros
(7.0cm)	
Forjado cerámico (25.0c	m)

Tabla 26.composición material de la cubierta exterior

Suelo exterior

Para los cerramientos interiores ente el aula y el baño se ha elegido la siguiente composición:

Nombre	Capas	Transmitancia [W/m²K]		He [W/m²K]	Hi [W/m²K]
Suelo exterior	Plaqueta o baldosa cerámica (1.5cm) Mortero de cemento (1.5cm) Aislante (6.6cm) Solera de hormigón armado (20.0cm)	0.51	560.480	5.88	25.00

Tabla 27.composición material del suelo exterior

5.2 Huecos

Los diferentes huecos son:

- Ventanales principales.
- Claraboya
- Ventanas baño

Nombre	Transmitancia [W/m²K]	Factor solar	Vidrio	Marco	Fracción marco
Ventanas Principales	2.76	0 675		PVC DOS cámaras	10.00
Claraboya	1.81	0 630		PVC TRES cámaras	10.00
Ventanas Principales baño	2.74	06/5		PVC DOS cámaras	10.00

Tabla 28. Composición de los huecos

6. OCUPACIÓN MÁXIMA DE CADA LOCAL

El cálculo de la ocupación máxima de cada local está basado en las "densidades de ocupación" dependiendo de la actividad. Las densidades de aplicación vienen recogidas en el Código Técnico de la Edificación (CTE).

Uso previsto	Zona, tipo de actividad	Ocupación (m²/persona)
Administrativo	Plantas y zonas de oficinas	10
Administrativo	Vestíbulos generales y zonas de uso público	2

Tabla 29. Densidad de ocupación

A continuación, se muestra el número máximo de ocupantes para cada oficina:

Nombre	Numero personas	Actividad	Pot. sen. [W/pers]	Pot. lat. [W/pers]
E1	21	Sentado trabajo ligero	82.00	62.00
E3	3	Sentado trabajo ligero	82.00	62.00
E4	3	Sentado trabajo ligero	82.00	62.00
E5	5	Sentado trabajo ligero	82.00	62.00
E6	5	Sentado trabajo ligero	82.00	62.00
E7	5	Sentado trabajo ligero	82.00	62.00
E2	2	Sentado trabajo ligero	82.00	62.00

Tabla 30. Numero de ocupantes máximos por oficina

7. ILUMINACIÓN

La iluminación de los edificios está realizada con tubos de led de 10 W cada uno. A continuación, en las siguientes talas se muestran el número de tubos que hay en cada local, y por lo consiguiente la potencia total de éstos.

Nombre	Actividad	Nº de tubos	Potencia (w)
E1	Sentado trabajo ligero	30	300
E3	Sentado trabajo ligero	3	30
E4	Sentado trabajo ligero	4	40
E5	Sentado trabajo ligero	6	60
E6	Sentado trabajo ligero	7	60
E7	Sentado trabajo ligero	7	70
E2	Sentado trabajo ligero	3	30

Tabla 31. Potencia Iluminación

8. EQUIPOS ELECTRÓNICOS

En este punto, se muestra el valor de todas las cargas de cada uno de los equipos que se pueden encontrar en un edificio de oficinas:

Equipos	Cargas Sensibles
Ordenador	250
Proyector	200
Altavoz	200
TV	100
Fotocopiadora	1760

Tabla 32. Cargas producidas por equipos

En las siguientes tablas se refleja las cargas producidas por los equipos en cada local:

Nombre	Numero personas	Actividad	Carga. [W]
E1	21	Sentado trabajo ligero	7010
E3	3	Sentado trabajo ligero	750
E4	3	Sentado trabajo ligero	750
E5	5	Sentado trabajo ligero	1250
E6	5	Sentado trabajo ligero	1250
E7	5	Sentado trabajo ligero	1250
E2	2	Sentado trabajo ligero	500

Tabla 33. Cargas Equipos Electrónicos

9. CAUDAL DE AIRE INTERIOR

9.1 Caudales de aire mínimo de ventilación

El caudal mínimo de aire exterior de ventilación necesario se calcula según el método indirecto de caudal de aire exterior por persona y superficie (Método A), especificados en la instrucción técnica I.T.1.1.4.2.3 del RITE.

Se emplearán los valores de la siguiente tabla cuando las personas tengan una actividad metabólica de alrededor 1,2 met cuando sea baja la producción de sustancias contaminantes por fuentes diferentes del ser humano.

Categoría	Caudal	Caudal
IDA 1	20	72
IDA 2	12,50	45
IDA 3	8	28,80
IDA 4	5	18

Tabla 34.Caudal de aire mínimo en función del IDA

Se adoptará una ventilación por medios mecánicos, de acuerdo con el punto 3.3 (ITE 1.1.4.2Calidad del aire interior y ventilación). Tal como se indica en el apartado correspondiente de la memoria los caudales de aire para cada dependencia se calculan según el método indirecto de caudal de aire exterior por persona.

9.2 Recuperación del aire

Según el punto IT 1.2.4.5.2 Recuperación del aire de extracción del RITE, en los sistemas de climatización de los edificios en los que el caudal de aire expulsado al exterior, por medios mecánicos, sea superior a 0,5 m3/s (1800 m³/h), se recuperará la energía del aire expulsado.

10. RESULTADO DE CARGAS TÉRMICAS DE REFRIGERACIÓN

Una vez introducidos todos los valores anteriores en el programa de cálculo VpClima, los resultados obtenidos son los que se muestran éste punto.

Los resultados de las cargas térmicas están organizados de la siguiente forma, primero que todo se expone la carga térmica total del edificio y posteriormente se encuentran los subpuntos de las de cada local que integran el edificio.

CÁLCULOS DE CARGAS TÉRMICAS

Resumen de cargas térmicas en refrigeración

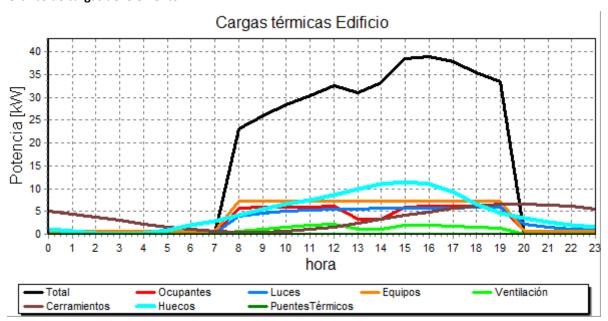
Elemento	Fecha máxima	Potencia total [kW]	Potencia sensible [kW]	Ratio total [W/m²]	Ventilación [m³/hora]	Potencia total climatizador [kW]	Potencia sensible climatizador [kW]	lmpulsión [m³/hora]
Edificio	Hora: 16; Mes: Julio	39.03	35.41	64	1971.55	-	-	-
Zona dem 1	Hora: 16; Mes: Julio	39.03	35.41	64	1971.55	-	-	-
E1	Hora: 16; Mes: Julio	17.88	16.13	60	954.26	-	-	-
E3	Hora: 19; Mes: Julio	1.71	1.51	49	112.76	-	-	-
E4	Hora: 17; Mes: Julio	2.31	2.08	59	127.06	-	-	-
E5	Hora: 16; Mes: Julio	4.38	3.99	65	216.26	-	_	-
E6	Hora: 18; Mes: Agosto		2.95	48	225.16	-	-	-
E7	Hora: 14; Mes: Septiembre	8.19	7.99	117	224.58	-	-	-

CALCULOS JUSTIFICATIVOS

E2	Hora: 15; Mes: Julio	, ,,	2.07	66	111.47	-	-	-

CALCULOS DETALLADOS POR ELEMENTO

Elemento: Proyecto


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 16.

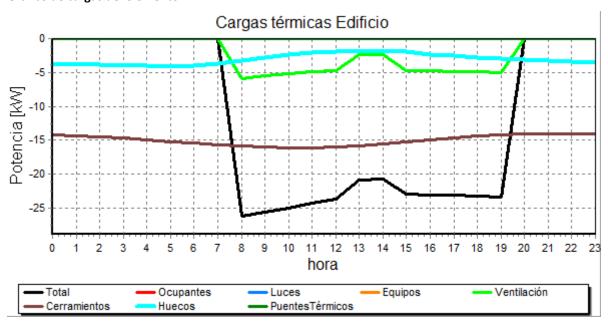
Datos del proyecto

Superficie [m²]	Volumen [m³]	Zonas demanda	Plantas
613.37	1901.46	1	1
Núm. personas	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
44	6.13 ; 10.00	7.36 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Caudal ventilación [m³/h]	Zonas ventilación
30.82	40.48	1971.55	1

Resultados

	Total	Sensible
Total Cargas [kW]	39.03	35.41
Ratio [W/m2]	63.63	57.74
Ocupantes[kW]	6.10	3.39
Luces[kW]	5.77	5.77
Equipos[kW]	7.36	7.36
Ventilación[kW]	1.94	1.21
Cerramientos[kW]	4.95	4.95
Huecos[kW]	11.05	11.05
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	1.86	1.69

Elemento: Proyecto


Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.

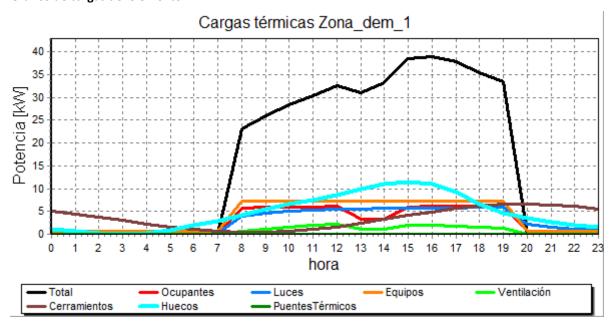
Datos del proyecto

Supeficie [m ²]	Volumen [m³]	Zonas demanda	Plantas
613.37	1901.46	1	1
Núm. personas	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	0.00 ; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Caudal ventilación [m³/h]	Zonas ventilación
2.72	73.12	1971.55	1

Resultados

	Total	Sensible
Total Cargas [kW]	-26.23	-24.51
Ratio [W/m2]	-42.76	-39.95
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-5.85	-4.22
Cerramientos[kW]	-15.87	-15.87
Huecos[kW]	-3.25	-3.25
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-1.25	-1.17

Elemento: Zona_dem_1


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 16.

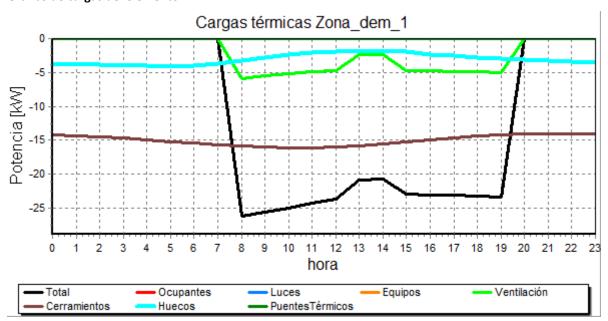
Datos de la zona

Supeficie [m²]	Volumen [m³]	Num. personas
613.37	1901.46	44
Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
6.13 ; 10.00	7.36 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Caudal ventilación [m³/h]
30.82	40.48	1971.55

Resultados

	Total	Sensible
Total Cargas [kW]	39.03	35.41
Ratio [W/m²]	63.63	57.74
Ocupantes[kW]	6.10	3.39
Luces[kW]	5.77	5.77
Equipos[kW]	7.36	7.36
Ventilación[kW]	1.94	1.21
Cerramientos[kW]	4.95	4.95
Huecos[kW]	11.05	11.05
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	1.86	1.69

Elemento: Zona_dem_1


Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.

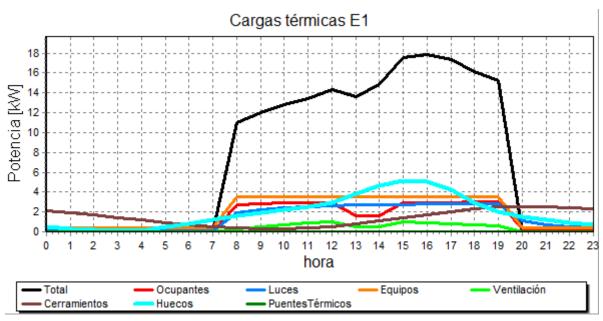
Datos de la zona

Supeficie [m²]	Volumen [m³]	Num. personas
613.37	1901.46	0
Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0.00 ; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Caudal ventilación [m³/h]
2.72	73.12	1971.55

Resultados

	Total	Sensible
Total Cargas [kW]	-26.23	-24.51
Ratio [W/m²]	-42.76	-39.95
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-5.85	-4.22
Cerramientos[kW]	-15.87	-15.87
Huecos[kW]	-3.25	-3.25
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-1.25	-1.17

Elemento: E1


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 16.

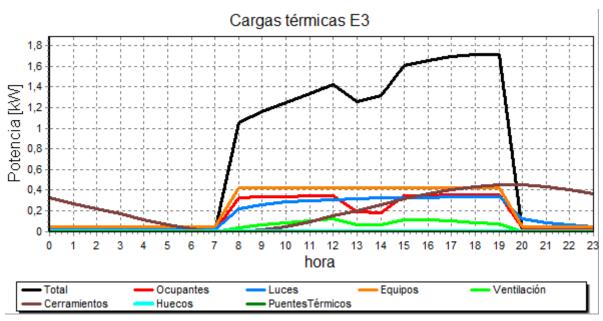
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
296.88	920.33	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
21	Led	2.97 ; 10.00	3.56 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
30.82	40.48	25.00	50.00	954.26

Resultados

	Total	Sensible
Total Cargas [kW]	17.88	16.13
Ratio [W/m2]	60.22	54.33
Ocupantes[kW]	2.95	1.64
Luces[kW]	2.79	2.79
Equipos[kW]	3.56	3.56
Ventilación[kW]	0.94	0.59
Cerramientos[kW]	1.74	1.74
Huecos[kW]	5.04	5.04
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.85	0.77

Elemento: E3


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 19.

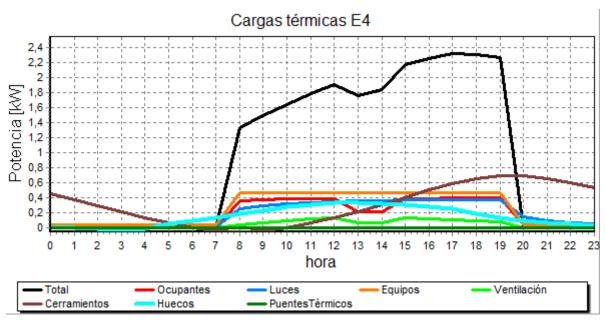
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
35.08	108.75	Planta_1	Zona_ventilación	Directa local
Núm. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
3	Led	0.35 ; 10.00	0.42 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
27.51	49.01	25.00	50.00	112.76

Resultados

	Total	Sensible
Total Cargas [kW]	1.71	1.51
Ratio [W/m2]	48.88	42.98
Ocupantes[kW]	0.35	0.20
Luces[kW]	0.34	0.34
Equipos[kW]	0.42	0.42
Ventilación[kW]	0.07	0.03
Cerramientos[kW]	0.45	0.45
Huecos[kW]	0.00	0.00
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.08	0.07

Elemento: E4


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 17.

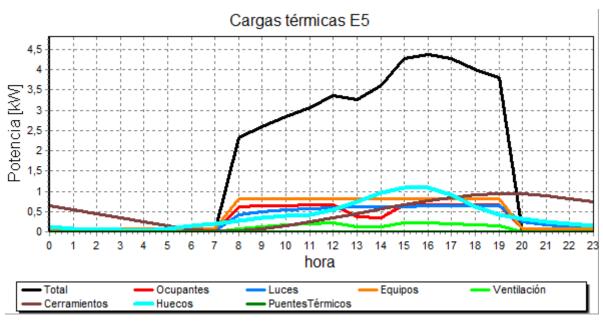
Datos del local

Supeficie [m ²]	Volumen [m³]	Planta	Zona demanda	Climatizador
39.53	122.54	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
3	Led	0.40 ; 10.00	0.47 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
29.89	42.69	25.00	50.00	127.06

Resultados

	Total	Sensible
Total Cargas [kW]	2.31	2.08
Ratio [W/m2]	58.50	52.61
Ocupantes[kW]	0.40	0.22
Luces[kW]	0.37	0.37
Equipos[kW]	0.47	0.47
Ventilación[kW]	0.11	0.07
Cerramientos[kW]	0.59	0.59
Huecos[kW]	0.26	0.26
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.11	0.10

Elemento: E5


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 16.

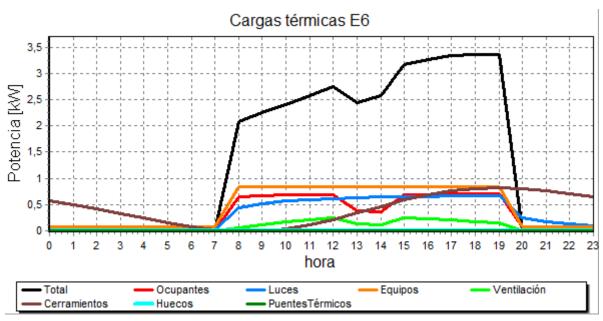
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
67.28	208.57	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
5	Led	0.67 ; 10.00	0.81 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
30.82	40.48	25.00	50.00	216.26

Resultados

	Total	Sensible
Total Cargas [kW]	4.38	3.99
Ratio [W/m2]	65.17	59.28
Ocupantes[kW]	0.67	0.37
Luces[kW]	0.63	0.63
Equipos[kW]	0.81	0.81
Ventilación[kW]	0.21	0.13
Cerramientos[kW]	0.76	0.76
Huecos[kW]	1.09	1.09
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.21	0.19

Elemento: E6


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Agosto. Hora: 18.

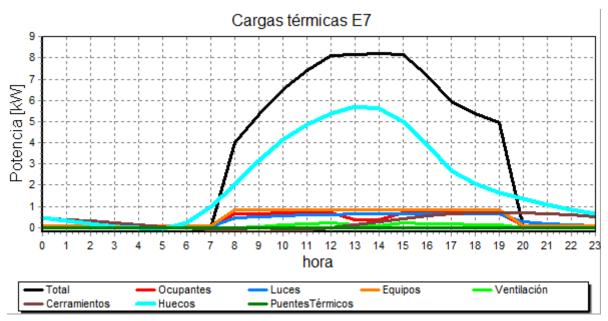
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
70.05	217.16	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
5	Led	0.70 ; 10.00	0.84 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
29.11	44.84	25.00	50.00	225.16

Resultados

	Total	Sensible
Total Cargas [kW]	3.36	2.95
Ratio [W/m2]	48.03	42.10
Ocupantes[kW]	0.71	0.40
Luces[kW]	0.67	0.67
Equipos[kW]	0.84	0.84
Ventilación[kW]	0.18	0.10
Cerramientos[kW]	0.81	0.81
Huecos[kW]	0.00	0.00
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.16	0.14

Elemento: E7


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Septiembre. Hora: 14.

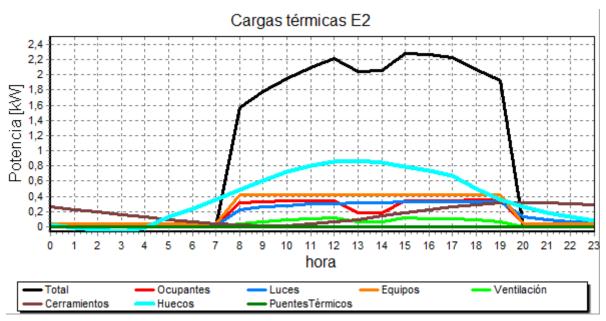
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
69.87	216.60	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
5	Led	0.70 ; 10.00	0.84 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
31.17	38.53	25.00	50.00	224.58

Resultados

	Total	Sensible
Total Cargas [kW]	8.19	7.99
Ratio [W/m2]	117.22	114.42
Ocupantes[kW]	0.37	0.22
Luces[kW]	0.64	0.64
Equipos[kW]	0.84	0.84
Ventilación[kW]	0.10	0.07
Cerramientos[kW]	0.26	0.26
Huecos[kW]	5.59	5.59
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.39	0.38

Elemento: E2


Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 15.

Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
34.68	107.51	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
2	Led	0.35 ; 10.00	0.42 ; 12.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
31.52	38.91	25.00	50.00	111.47

Resultados

	Total	Sensible
Total Cargas [kW]	2.28	2.07
Ratio [W/m2]	65.68	59.80
Ocupantes[kW]	0.34	0.19
Luces[kW]	0.32	0.32
Equipos[kW]	0.42	0.42
Ventilación[kW]	0.12	0.08
Cerramientos[kW]	0.18	0.18
Huecos[kW]	0.79	0.79
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	0.11	0.10

11. RESULTADO DE CARGAS TÉRMICAS DE CALEFACCIÓN

Una vez introducidos todos los valores anteriores en el programa de cálculo VpClima, los resultados obtenidos son los siguientes:

Resumen de cargas térmicas en calefacción

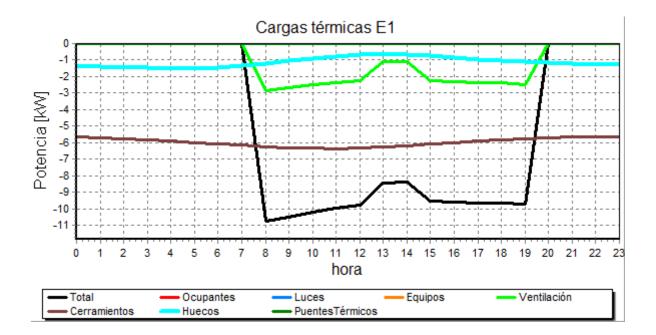
Elemento	Fecha máximo	Potencia total [kW]	Potencia sensible [kW]	Ratio total [W/m²]	[m3/hara]	Potencia total climatizador [kW]	Potencia sensible climatizador [kW]	Impulsión [m³/hora]
Edificio	Hora: 8; Mes: Febrero	-26.23	-24.51	-43	1971.55	-	-	-
Zona_dem_1	Hora: 8; Mes: Febrero	-26.23	-24.51	-43	1971.55	-	-	-
E1	Hora: 8; Mes: Febrero	-10.76	-9.93	-36	954.26		-	-
E3	Hora: 8; Mes: Febrero	-1.55	-1.45	-44	112.76		-	-
E4	Hora: 8; Mes: Febrero	-2.14	-2.02	-54	127.06	-	-	-
E5	Hora: 8; Mes: Febrero	-3.17	-2.98	-47	216.26	-	-	-
E6	Hora: 8; Mes: Febrero	-2.80	-2.60	-40	225.16	-	-	-
E7	Hora: 8; Mes: Enero	-4.17	-3.97	-60	224.58		-	-

CALCULOS JUSTIFICATIVOS

-

Elemento: E1

Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.


Datos del local

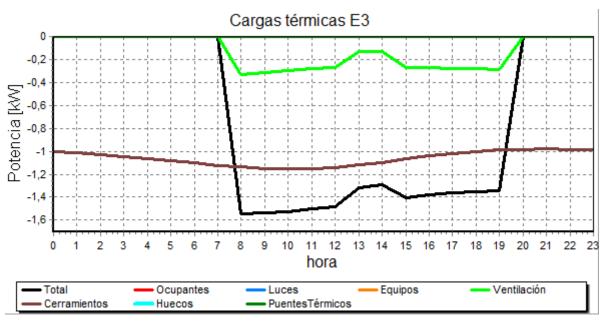
Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
296.88	920.33	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.72	73.12	21.00	40.00	954.26

Resultados

	Total	Sensible
Total Cargas [kW]	-10.76	-9.93
Ratio [W/m2]	-36.26	-33.45
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-2.83	-2.04
Cerramientos[kW]	-6.23	-6.23
Huecos[kW]	-1.19	-1.19
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.51	-0.47

CALCULOS JUSTIFICATIVOS

Elemento: E3


Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.

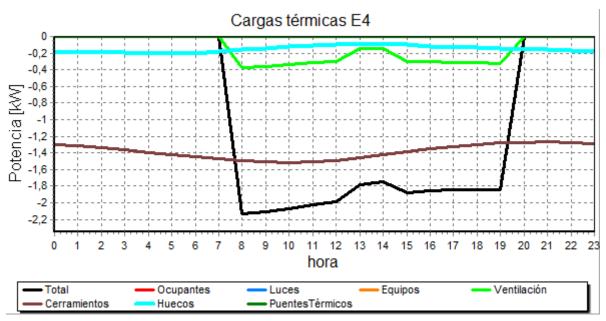
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
35.08	108.75	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.72	73.12	21.00	40.00	112.76

Resultados

	Total	Sensible
Total Cargas [kW]	-1.55	-1.45
Ratio [W/m2]	-44.10	-41.29
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-0.33	-0.24
Cerramientos[kW]	-1.14	-1.14
Huecos[kW]	0.00	0.00
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.07	-0.07

Elemento: E4


Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.

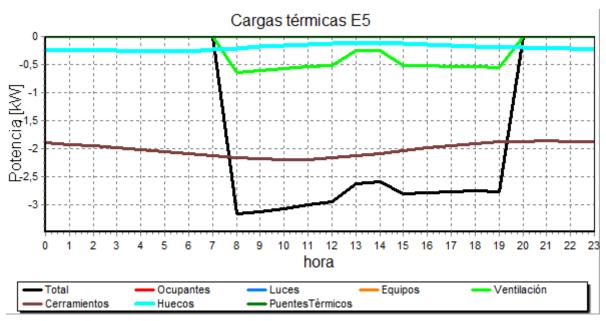
Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
39.53	122.54	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.72	73.12	21.00	40.00	127.06

Resultados

	Total	Sensible
Total Cargas [kW]	-2.14	-2.02
Ratio [W/m2]	-54.03	-51.22
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-0.38	-0.27
Cerramientos[kW]	-1.50	-1.50
Huecos[kW]	-0.16	-0.16
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.10	-0.10

Elemento: E5


Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.

Datos del local

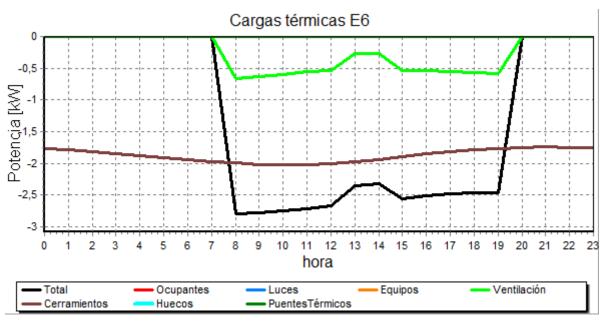
Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
67.28	208.57	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.72	73.12	21.00	40.00	216.26

Resultados

	Total	Sensible
Total Cargas [kW]	-3.17	-2.98
Ratio [W/m2]	-47.08	-44.27
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-0.64	-0.46
Cerramientos[kW]	-2.16	-2.16
Huecos[kW]	-0.21	-0.21
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.15	-0.14

Elemento: E6

Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.


Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
70.05	217.16	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.72	73.12	21.00	40.00	225.16

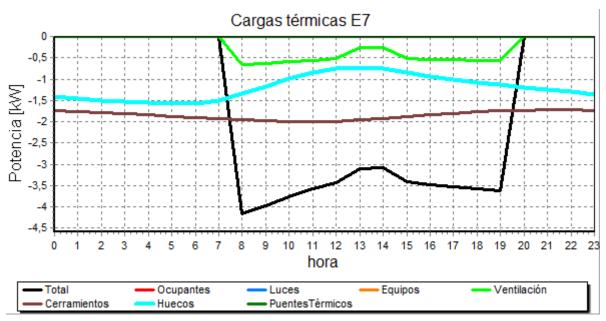
Resultados

	Total	Sensible
Total Cargas [kW]	-2.80	-2.60
Ratio [W/m2]	-39.97	-37.16
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-0.67	-0.48
Cerramientos[kW]	-2.00	-2.00
Huecos[kW]	0.00	0.00
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.13	-0.12

Gráfico de cargas del elemento

Elemento: E7

Tipo de cálculo: Calefacción. Fecha de máxima carga: Enero. Hora: 8.


Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
69.87	216.60	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.53	74.95	21.00	40.00	224.58

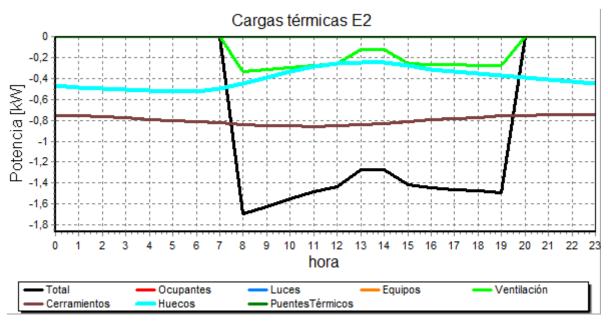
Resultados

	Total	Sensible
Total Cargas [kW]	-4.17	-3.97
Ratio [W/m2]	-59.64	-56.88
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-0.67	-0.49
Cerramientos[kW]	-1.96	-1.96
Huecos[kW]	-1.34	-1.34
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.20	-0.19

Gráfico de cargas del elemento

Elemento: E2

Tipo de cálculo: Calefacción. Fecha de máxima carga: Enero. Hora: 8.


Datos del local

Supeficie [m²]	Volumen [m³]	Planta	Zona demanda	Climatizador
34.68	107.51	Planta_1	Zona_ventilación	Directa local
Num. personas	Tipo de luces	Pot. luces [kW] ; [W/m²]	Pot. sensible equipos [kW] ; [W/m²]	Pot. latente equipos [kW] ; [W/m²]
0	Led	0.00; 0.00	0.00 ; 0.00	0.00 ; 0.00
Temp. exterior [ºC]	Hum. relativa ext[%]	Temp. interior [ºC]	Hum. relativa int[%]	Caudal ventilación [m³/h]
2.53	74.95	21.00	40.00	111.47

Resultados

	Total	Sensible
Total Cargas [kW]	-1.70	-1.60
Ratio [W/m2]	-48.89	-46.12
Ocupantes[kW]	0.00	0.00
Luces[kW]	0.00	0.00
Equipos[kW]	0.00	0.00
Ventilación[kW]	-0.33	-0.24
Cerramientos[kW]	-0.84	-0.84
Huecos[kW]	-0.44	-0.44
Puentes térmicos[kW]	0.00	0.00
Mayoración[kW]	-0.08	-0.08

Gráfico de cargas del elemento

12. DESCRIPCIÓN GENERAL DE LA INSTALACIÓN DE CLIMATIZACIÓN Y VENTILACIÓN

La instalación de climatización y ventilación se trata de un sistema mixto independiente, como el que se muestra en la figura siguiente.

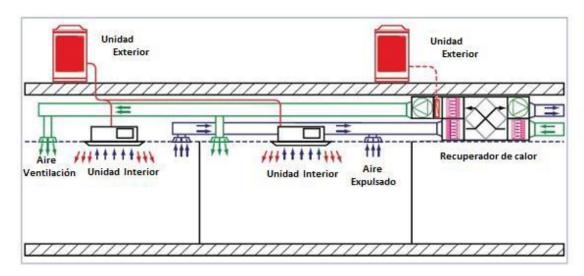


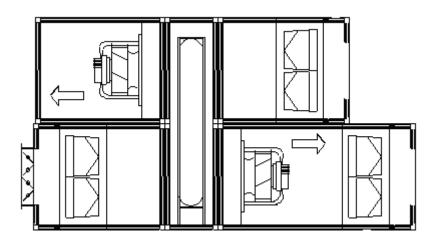
Ilustración 17.Instalación de climatización y ventilación

Por una parte, la instalación de climatización se ha previsto de forma individual mediante un sistema de caudal de refrigerante variable (VRV). Se dimensionará para contrarrestar las cargas térmicas que surgen en el local.

Este sistema tiene la ventaja de poder variar el caudal de refrigerante aportado a las baterías de evaporación-condensación que se sitúan en la unidad interior, pudiendo controlar mejor las condiciones de temperatura de los locales climatizados.

El refrigerante utilizado en el sistema será el R-410A, por su gran implantación a nivel comercial, su bondad como refrigerante y su bajo impacto medioambiental. Además, el refrigerante R-410A tiene una presión de trabajo mayor con unas pérdidas de presión menores que los refrigerantes anteriores. Esto permite la utilización de diámetros de tubería menores.

En lo que respecta a la ventilación del edificio, de acuerdo con las exigencias que dicta el RITE, se instalará un recuperador de calor dotado con una batería. Para que la recuperación de calor se obtenga de forma "gratuita". Con la implantación de este sistema se consigue una importante disminución de consumo de energía.


El sistema de recuperación de calor impulsa aire de ventilación de forma totalmente independiente al aporte de potencia por parte de las unidades de climatización.

Elemento: Zona_ventilación

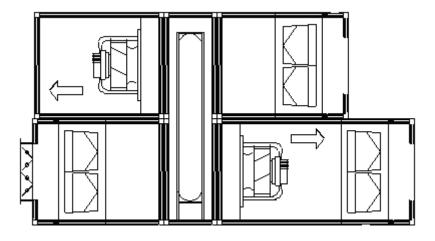
Tipo de cálculo: Refrigeración. Fecha de máxima carga: Julio. Hora: 16.

Datos de la zona ventilación

Tipo de ventilación	Supeficie [m²]	Volumen [m³]
Directa local	613.37	1901.46
Temp. exterior [°C]	Hum. relativa ext[%]	Temp. impulsión [ºC]
30.82	40.48	-
Tipo recuperador	Rendimiento	Rendimiento Humectador
Entalpico	67.00	-

Resultados

	Total	Sensible
Potencia del climatizador[kW]	0.00	0.00
Caudal impulsión [m³/h]	-	
Caudal ventilación [m³/h]	1971.55	


CALCULOS JUSTIFICATIVOS

Elemento: Zona_ventilación

Tipo de cálculo: Calefacción. Fecha de máxima carga: Febrero. Hora: 8.

Datos de la zona ventilación

Tipo de ventilación	Supeficie [m²]	Volumen [m³]
Directa local	613.37	1901.46
Temp. exterior [°C]	Hum. relativa ext[%]	Temp. impulsión [ºC]
2.72	73.12	-
Tipo recuperador	Rendimiento	Rendimiento Humectador
Entalpico	67.00	-

Resultados

	Total	Sensible
Potencia del climatizador[kW]	0.00	0.00
Caudal impulsión [m³/h]	-	
Caudal ventilación [m³/h]	1971.55	

13. SISTEMA DE CLIMATIZACIÓN

Para el funcionamiento de los climatizadores y VRV, es necesaria una alimentación con circuitos de líquido-gas. Se ha diseñado una red de tuberías que van desde la cubierta, donde se encuentran las unidades de enfriamiento o calentamiento de aire, hasta cada uno de los locales donde se sitúan las unidades interiores, haciendo todo el recorrido a lo largo del pasillo. Esta distribución se realiza para cada uno de los edificios.

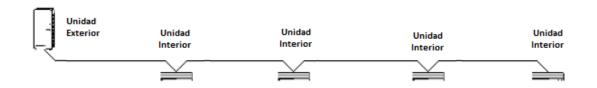


Ilustración 18. Ejemplo del sistema de climatización

En cada dependencia se instalará las unidades interiores que sean necesarias para cumplir con las exigencias de confort impuestas. Además, estas unidades se han instalado con un termostato de pared en cada local para ajustar mejor las condiciones de bienestar.

Las unidades interiores, son del tipo cassette y van provistas de una válvula de expansión electrónica de doble dirección que adapta la entrada de refrigerante a la demanda térmica.

Estas unidades incluyen la función de barrido de aire, que mueve los deflectores arriba y abajo en la salida de aire, dirigiéndolo en un movimiento de "barrido" alrededor de la sala y proporcionando confort en todas la estancia

El caudal de aire que se impulsa varía en función de la carga que hay que contrarrestar.

Las unidades exteriores VRV soportan las inclemencias de la intemperie y deben contener los registros de acceso a los circuitos frigoríficos y cuadro eléctrico por medio de paneles fácilmente desmontables.

También se han colocado válvulas de control electrónico, los avisos se almacenan y pueden verificarse en la pantalla LCD que incorpora cada unidad. Esto facilita el diagnóstico de fallos y reduce en gran medida el trabajo de mantenimiento y, en consecuencia, los costes.

CALCULOS JUSTIFICATIVOS

La selección de los diferentes equipos ha sido a través de catálogos de diferentes fabricantes, en función de las necesidades y procurando garantizar la mejor relación calidad-precio.

13.1 Cálculos previos al dimensionado de la instalación de climatización

Todos los cálculos del dimensionado se han realizado con las cargas de refrigeración, ya que son las más desfavorables.

En primer lugar, con los datos obtenidos del análisis de cargas realizado por el programa VpClima se han expuesto las potencias necesarias pare eliminar estas cargas y seguidamente se calculará el caudal que deben impulsar las unidades interiores para conseguir la temperatura de confort deseada.

13.1.1 Potencia requerida de las unidades interiores y exteriores

La potencia requerida para unidades interiores, es la potencia necesaria para eliminar las cargas térmicas de cada uno de los locales, proporcionadas por el software informático VpClima.y la potencia de la unidad exterior del sistema de climatización, simplemente es la suma de las potencias demandadas de las unidades interiores:

$$\dot{Q}_{\textit{Edificio,j}} = \sum \dot{Q}_{\textit{unidades interiores,i}}$$

Elemento	Potencia total [kW]
Edificio	39.03
E1	17.88
E3	1.71
E4	2.31
E5	4.38
E6	3.36
E7	8.19
E2	2.28

Ilustración 19. Potencias requeridas de las unidades interiores y de las unidades exteriores

13.1.2 Caudal impulsión

Con la siguiente expresión, y conociendo la carga sensible de cada uno de los locales, las propiedades del aire y además considerando la temperatura de impulsión en 17 °C, se ha determinado el caudal de impulsión de la unidad interior para conseguir en el local una temperatura de 25 °C en verano.

Como ya se ha repetido en reiteradas ocasiones, los cálculos se realizan con los datos de refrigeración porque son lo más desfavorables.

$$\dot{Q}s_{Local,i} = \dot{V}_{I,i} \cdot \rho \cdot c_p \cdot \Delta T$$

Q'sLocal,i: Carga térmica sensible de cada local (kW).

 $V_{I,i}$: Caudal de impulsión de cada local (m³/h).

ρ: Densidad del aire (1,22 kg/ m³).

C_p: Capacidad calorífica del aire (1,007 kJ/kg-°C).

ΔT: Incremento entre la temperatura de impulsión y la del local (°C)

Elemento	Ventilación [m³/hora]
Edificio	1971.55
E1	954.26
E3	112.76
E4	127.06
E5	216.26
E6	225.16
E7	224.58
E2	111.47

Tabla 35. Caudal impulsión unidades interiores

13.2 Selección de las unidades interiores

La mayoría de las unidades interiores que se han instalado son del tipo cassette, el motivo principal de esta elección es la disposición de falso techo registrable de yeso, sumado al no tener planta superior y disponer de un techo transitables donde poder instalar los equipos externos.

En los locales de grandes dimensiones se ha valorado la opción instalar más de una unidad interior para que el flujo de aire acondicionado se distribuya mejor por todo el local.

El principal criterio para la elección del equipo adecuado es que sea capaza de eliminar las cargas térmicas, pero también debe ser capaz de impulsar el caudal calculado.

13.2.1 Elección de las unidades interiores.

Para la elección de los equipos se ha elegido la gama Split Pared Tipo K1/K2 de Panasonic. Para conocer más detalles acerca de estos equipos, en el siguiente punto se muestran sus características principales y la ficha técnica de los equipos se encuentra en el capítulo de *Anexos*.

La selección de las unidades interiores para suplir las cargas de las aulas, es la siguiente:

Local	Unidades	Descripción	Modelo
E1	1	Cassette de 4 vías 90x90 tipo U2	S-90MU2E5A
E3	1	Cassette de 4 vías 90x90 tipo U2	S-22MU2E5A
E4	1	Cassette de 4 vías 90x90 tipo U2	S-28MU2E5A
E5	1	Cassette de 4 vías 90x90 tipo U2	S-60MU2E5A
E6	1	Cassette de 4 vías 90x90 tipo U2	S-45MU2E5A
E7	1	Cassette de 4 vías 90x90 tipo U2	S-140MU2E5A
E2	1	Cassette de 4 vías 90x90 tipo U2	S-28MU2E5A

Tabla 36. Unidades Interiores Edificio

13.2.2 Comprobación de las cargas

Para garantizar que la selección de unidades en cada local es la correcta se comprobará si las potencias en las máquinas son superiores a las necesarias en cada local.

Elemento	Potencia requerida [kW]	Potencia total [kW]
E1	17.88	14
E3	1.71	2,2
E4	2.31	2,8
E5	4.38	6

E6	3.36	4,5
E7	8.19	9
E2	2.28	2,8
TOTAL	39.03	40

Tabla 37. Comprobación de las cargas de los locales

13.2.3 Comprobación de los caudales

Para garantizar que la selección de unidades en cada local es la correcta se comprobará si el caudal que aporta la unidad interior es el adecuado:

Elemento	Ventilación [m³/hora]	Modelo	Ventilación [m³/hora]
E1	954.26	S-140MU2E5A	2160
E3	112.76	S-22MU2E5A	870
E4	127.06	S-28MU2E5A	870
E5	216.26	S-60MU2E5A	1260
E6	225.16	S-45MU2E5A	870
E7	224.58	S-90MU2E5A	1380
E2	111.47	S-28MU2E5A	870
TOTAL	1971.55		-

Tabla 38. Comprobación del caudal

13.2.4 Comprobación del nivel sonoro

A continuación, se calculará el nivel sonoro de las situaciones más desfavorables, para determinar si las unidades interiores pueden ocasionar alguna molestia y si es necesario emprender alguna modificación.

Para calcular el nivel de presión acústica total que producen más de un equipo se utilizará la siguiente expresión

$$L_T = 10 \cdot \log \sum_{i}^{m} 10^{(\frac{L_{pi}}{10})}$$

L⊤: Nivel de presión acústica total (dB(A)).

Lpi: Fuente de ruido i (dB(A)).

Elemento	Modelo	Presión sonora [dB(A)]
E1	S-140MU2E5A	39
E3	S-22MU2E5A	29
E4	S-28MU2E5A	29
E5	S-60MU2E5A	32

E6	S-45MU2E5A	29
E7	S-90MU2E5A	35
E2	S-28MU2E5A	29
TOTAL		

Los casos más desfavorables son en el local E1 (hall principal con el espacio más grande). Cada local está dispuesto de una sola unidad. Por lo tanto, cumple así con la normativa del RITE (ITE 2.2.3.1) que admite como máximo un nivel sonoro para el ambiente interior de este tipo de locales es 45 dBA.

13.3 Selección de las unidades exteriores

Las unidades exteriores seleccionadas son equipos de producción de frio y calor basado en la tecnología VRV de tipo Inverter. A sí, se proporciona una mayor eficiencia, mayor confort, y un control de temperatura más preciso, sin altibajos. Y se consigue mantener una temperatura ambiente constante con un menor consumo de energía y una reducción significativa del ruido y de las vibraciones.

Son los sistemas ECOi de Panasonic se encuentran entre los sistemas VRV más eficientes del mercado, ofreciendo COPs de más de 4,0 en condiciones de carga total. La unidad elegida es la ECOi 2 Tubos 6N U-14ME1E81

La principal razón por la que se ha elegido este sistema de climatización es por el poco espacio que requieren sus tuberías.

13.3.2 Comprobación de las cargas

Para garantizar que la selección de unidades en cada edificio es la correcta se comprobará si las potencias en las máquinas son superiores a las necesarias en el edificio. Así obtenemos una potencia requerida del edificio de 39.09 KW frente a una potencia desarrollada por el equipo de 40KW (en punta puede alcanzar 45)

13.4 Dimensionado y diseño de la instalación de climatización

Para realizar el diseño de la instalación se ha realizado con el programa PANASONIC VRF Designer, en el cual se ha introducido el tipo y modelo de las unidades elegidas, y las longitudes de las tuberías.

Y así se obtienen los elementos necesarios: los diámetros de las tuberías, las derivaciones oportunas y la cantidad de refrigerante.

A continuación, se exponen los diseños introducidos en el programa para la instalación, y seguidamente se muestra una tabla con los elementos calculados por el programa para realizar el diseño previo.

Posteriormente se ha realizado un boceto con de la instalación de climatización en cada uno de los edificios con las longitudes que se han planteado.

Edificio 1

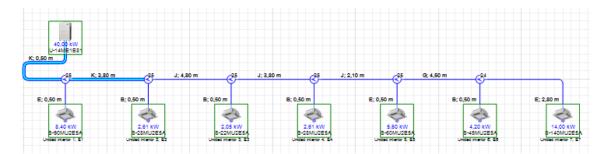


Ilustración 20. Diseño de la instalación se ha realizado con el programa PANASONIC VRF Designer

Modelo	Tipo / Nombre de unidad interior	Código	Cantidad
U-14ME1E81	Unidad exterior		1
S-90MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 1)		1
S-28MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 2, Unidad interior 4)		2
S-22MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 3)		1
S-60MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 5)		1
S-45MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 6)		1
S-140MU2E5A	Cassette 4 Vías 90x90 (MU2) (Unidad interior 7)		1
CZ-RWS3	Control remoto inalámbrico		7
CZ-RWRU3	Receptor inalámbrico		7
CZ-RE2C2	Control remoto simplificado		7
CZ-KPU3	Panel		7
CZ-P680BK2BM	Derivación	25	5
CZ-P224BK2BM	Derivación	24	1
1/2" x 1 1/8"	Tuberías	К	4,3
3/8" x 7/8"	Tuberías	J	10,7
3/8" x 3/4"	Tuberías	G	4,5
3/8" x 5/8"	Tuberías	Е	3,8
1/4" x 1/2"	Tuberías	В	2
	Cableado de control		0
	Carga adicional R410A (kg)		9,47
	Densidad límite (kg/m3)		0,1671
	Cantidad total de refrigerante R410A (kg)		17,97

Ilustración 21.Resultado de los elementos de la instalación se ha realizado por el programa PANASONIC VRF Designer

13.5 Cantidad de Refrigerante

El refrigerante recomendado para los productos de climatización de Panasonic es el R410A. Es un producto químicamente estable, con baja toxicidad e inflamabilidad. En el caso de alguna fuga, los gases se concentran a nivel de suelo.

La ficha técnica del refrigerante se puede consultar en el capítulo de *Anexos*.

Según el programa de diseño de la instalación la cantidad total de refrigerante que se debe utilizar en el sistema de climatización es de 17,97 kg.

14. SISTEMA DE VENTILACIÓN

Tal y como se ha explicado anteriormente, para tratar el aire de ventilación de cada edificio se utilizarán recuperadores estáticos de volumen de aire constante de tipo horizontal y de ejecución normal.

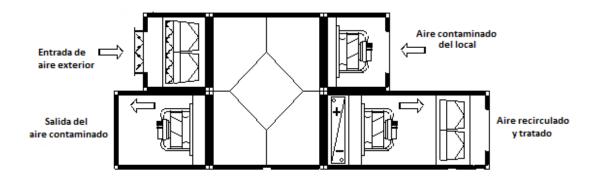


Ilustración 22. Recuperador de calor

Se precisa un circuito de aire independiente al de climatización. Todo circuito consta de una impulsión y un su retorno. El caudal que se hace llegar al aparato es el caudal especificado en la instrucción técnica I.T.1.1.4.2.3 del RITE.

Las dimensiones de los conductos, vienen determinados por el caudal de aire que se debe impulsar desde el recuperador y que debe llegar a cada uno de los locales. Se deben utilizar abrazaderas, manguitos y suspensiones elásticas, como sistema antivibratorio para así evitar el paso de las vibraciones de los conductos a los elementos constructivos.

Los conductos de gas van desde la unidad exterior, bajando por los patinillos habilitados hasta la batería del recuperador de calor. Y por otro lado el conducto del aire de ventilación, tanto la impulsión como el retorno de aire, se encuentra de la habitación central (E1)

El aire se impulsará al local y se retornará al conducto de extracción mediante unidades terminales del tipo rejilla. Las dimensiones de estas unidades vendrán determinadas por la cantidad de caudal y la velocidad que se debe circular en su través.

El material elegido para los conductos es de fibra de vidrio por su gran absorción al ruido.

La eficiencia del recuperador recomendado por el fabricante es del 50%, el motivo de esta decisión es para evitar que el equipo de recuperación sea demasiado grande. Ya que para aumentar la eficiencia se deberá aumentar el tamaño del equipo por la mala trasferencia de calor del aire.

14.1 Cálculos previos al dimensionado de los elementos de la instalación de ventilación.

Para seleccionar los equipos de ventilación es necesario conocer la potencia que deben aportar la batería al aire de recuperación para enfriarlo a las condiciones de local.

Para ello, se debe determinar la entalpia de recuperación y la entalpia de impulsión. En los siguientes apartados se detalla este cálculo, y posteriormente calcula la potencia de la batería.

Otra vez más los cálculos están realizados en los datos de refrigeración, ya que son los más desfavorables.

14.1.1 Entalpía del aire de recuperación

Para determinar la entalpia del aire de recuperación se han de seguir los siguientes pasos:

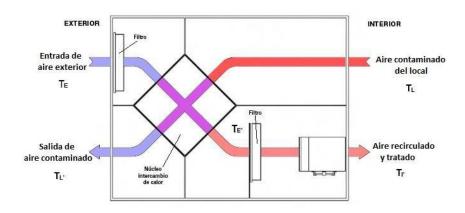


Ilustración 23. Puntos de la recuperación de calor

La eficiencia es la relación entre el flujo de fluido de menor capacidad térmica y la máxima diferencia de temperatura posible. La eficiencia estimada del recuperador es del 50%. Para calcula la eficiencia la ecuación es:

$$\varepsilon = \frac{\dot{Q}_{min}}{\dot{Q}_{max}} = \frac{C_{min} \cdot (T_{sal} - T_{ent})}{C_{c} \cdot (T_{c.ent} - T_{f.ent})}$$

Para determinar el fluido con menor capacidad térmica se ha comparado la conductividad térmica del aire a 25 °C y a 29 °C, los datos son extraídos de la tabla A-9 del libro Yunnus Cengel y Cimbala. Mecánica de fluidos: Fundamentos y aplicaciones. 1 era edición. Mc Graw Hill, 2006.

Temperatura (°C)	Conductividad térmica
	(W/m⋅K)
25	0,02551
30	0,02588

Tabla 39. Conductividad Térmica del aire en función de la temperatura

Siendo el fluido con menor capacidad térmica es el de 25 °C. la expresión de la eficiencia, quedará de la siguiente forma:

$$\varepsilon = \frac{T_{L\prime} - T_L}{T_E - T_L}$$

T_L' = 27'45 °C

Te: Temperatura del aire que sale del recuperador hacía el exterior (°C)

T_L: Temperatura del aire del local (°C).

T_E: temperatura del aire exterior (°C).

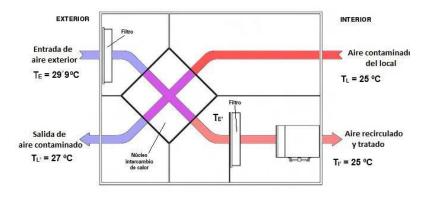


Ilustración 24. Puntos con la temperatura de la recuperación de calor

Con la ayuda del diagrama psicométrico y las condiciones de los puntos de la temperatura exterior y la de local, se determinarán sus correspondientes entalpias, necesarias para determinar la entalpia del aire que sale al exterior. Para

posteriormente realizar un balance de energías en el intercambio y calcular la entalpia del aire de recuperación.

	Exterior	Local	Salida
Entalpia (kJ/kg)	67,37	50,32	58,84

Tabla 40. Resultado de las entalpias por medio del diagrama psicométrico

Con el balance de energía se extrae la entalpía del aire de recuperación.

$$h_{L\prime} - h_L = h_E - h_{E\prime}$$

 $h_{E'} = 58,85 \text{ kJ/kg}$

h_□: Temperatura del aire que sale del recuperador hacía el exterior (kJ/kg).

h_E: Entalpia del aire de recuperación (kJ/kg).

h_E: Entalpia del aire exterior (kJ/kg). h_L: Entalpia del aire del local (kJ/kg).

14.1.2 Potencia requerida para acondicionar el aire

Las condiciones de impulsión del aire son las mismas que deben encontrarse en el local. La temperatura seca 25 °C y la humedad relativa al 50%.

Una vez se conoce la entalpia del aire recirculado al local, se calculará la potencia mínima que se requiere para que la batería para que sea capaz de aclimatar el aire recuperado a las condiciones de local.

$$\dot{Q}_{Bateria,i} = \dot{V}_{Ventilación,i} \cdot \rho \cdot (h_{E'} - h_{I'})$$

 $Q^{\cdot}_{Bateria,i}$: Potencia mínima necesaria que debe aportar la batería en el edificio i (kW).

 $V^{\cdot}_{Ventilación,i}$: Caudal de aire mínimo de ventilación en el edificio i (m³/s).

ρ: Densidad del aire (1,22 kg/ m³)

h_E: Entalpia del aire de recuperación (kJ/kg). h_E: Entalpia del aire de impulsión⁷ (kJ/kg).

Por lo tanto, la potencia necesaria para adecuar el aire de recuperación a las condiciones de confort establecidas en el edificio es de 5,7 kw para un caudal 1.971.55 m3/h

14.2 Selección del recuperador de calor

Para la selección del recuperador de calor del edificio se ha seleccionado de la gama productos ofrecidos por Panasonic. El número de recuperadores depende del caudal que debe impulsar y la potencia necesaria de enfriamiento.

El equipo escogido es el modelo PAW-01KZDX3N de la gama Recuperación de calor con batería DX con la instalación de 2 undides. En el capítulo de *Anexos*, se encuentra la ficha técnica del equipo.

14.2.2 Comprobación del caudal

Para garantizar que la selección de unidades en cada edificio es la correcta se comprobará si el caudal de impulsión del recuperador es superior al caudal requerido en cada edificio.

El caudal requerido por el edificio es de 1971,55 es de 2000,4 m³/h

14.2.3 Comprobación de la potencia de la batería

Para garantizar que la selección de del equipo es la correcta se comprobará si las potencias de las baterías son superiores a las necesarias para adaptar el aire a las condiciones de local. La potencia requerida es de 11.4 kw frente a los 12.1 kw que ofrecen las baterías.

14.3 Selección de las unidades exteriores

Las unidades exteriores seleccionadas son equipos de producción de frio y calor basado en la tecnología VRV de tipo Inverter.

Son los sistemas Mini ECOi de Panasonic, estos equipos se encuentran entre los sistemas VRV más eficientes del mercado, ofreciendo COPs de más de 4,0 en condiciones de carga total.

Se han elegido 2 unidades exteriores como recuperadores de calor, por lo tanto cada unidad exterior abastece a un equipo de recuperación. El motivo de esta elección, es económico. Si se aumentaba la capacidad de potencia del aparato exterior para abastecer más de una recuperador aumentaba el precio del equipo exterior.

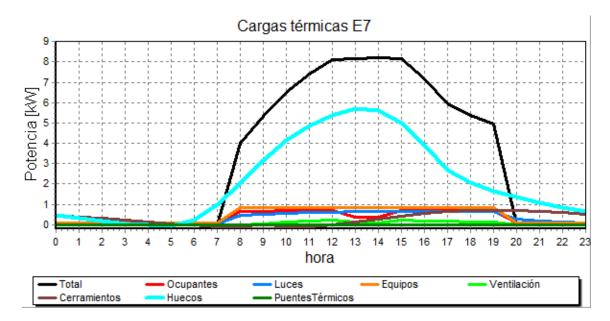
Las unidades elegidas han sido el modelo U-4LE2E5 de la gama Mini ECOi 2 Tubos

14.3.2 Comprobación de las cargas

Para garantizar que la selección de unidades en cada edificio es la correcta se comprobará si las potencias en las máquinas son superiores a las necesarias en cada local.

Para abastecer el edificio es necesario una carga de 11.4 kW frente a los12.1 kW

15. CONCLUSIÓN DEL TRABAJO


Cumplir con los requisitos de buena calidad ambiental en los edificios destinados realizar una actividad laboral es una parte esencial del diseño de cualquier espacio. Son lugares en los que nos pasamos una gran parte del tiempo de nuestra vida, en repetidas ocasiones, el lugar donde más tiempo pasmos del día por ello cabe esperar que cualquier sistema cubra las necesidades del local además de otorgar seguridad ambiental al mismo. Hoy en día, en los tiempos que nos situamos, cabe más esperar que la seguridad se premie frente a la economía sin condiciones, pero, desgraciadamente, las inversiones en equipos a veces no se realizan desde este punto de vista y se intenta suplir las mínimas necesidades con la mínima inversión.

Además de los requisitos sanitarios que harán evolucionar en un futuro los sistemas de ventilación y climatización, se deben sumar las inclemencias meteorológicas cada vez más extremas, aumentando la exigencia de los equipos de las instalaciones con el paso del tiempo.

Las ideas expuestas se reflejan en el resultado del cálculo de cargas del trabajo. A continuación, se muestra un ejemplo de un local al azar y del edificio en particular.

En grafica se observan las cargas producidas en el Local E7 a lo largo de un día. Es evidente que contra la carga de la ocupación en función del tiempo no se puede hacer nada al respecto. Pero en cuanto a los ventanales que ocupan casi toda la pared no ayudan, dado la climatología de la zona a reducir la cargas en el local. Es cinco veces más elevado que la carga en los cerramientos, y la superficie total de los cerramientos es ocho veces mayor que la del acristalamiento.

Sucederá lo mismo con las cargas de calefacción, las pérdidas de calor por los huecos son elevadas, este efecto es menos notorio dado las temperaturas que se dan en la zona, siendo moderadas en invierno, pero no deja de ser un punto crítico de eficiencia si no se instalan los elementos necesarios y se ejecutan de la manera correcta (posibles deficiencias de instalación que puedan crear puentes térmicos).

La finalidad de este trabajo de fin de master ha sido aplicar una solución a esta problemática, intentando suplir las cargas de los locales con el aporte de potencia de las unidades sugeridas, eligiendo materiales que redujeran dicha problemática y generar un ambiente de confort en el interior de un edificio de oficinas.

Otro punto que tratar, sería la incorporación de ventanales que se pudieran abrir para la generación de sensación de frescura y confort en las estaciones intermedias del año, climatológicamente hablando. Climatológicamente, reduciría el consumo y supliría el sistema de renovación del aire en las estaciones citadas. Además de cumplir con las recomendaciones sanitarias desgraciadamente vigentes en estos tiempos.

ANEXOS

Características principales de los cassette

Cassette d	le 4 vía	ıs 90x90	tipo U2								D	atos prov	isionales
Modelo			S-22MU2E5A	S-28MU2E5A	S-36MU2E5A	S-45MU2E5A	S-56MU2E5A	S-60MU2E5A	S-73MU2E5A	S-90MU2E5A	S-106MU2E5A	S-140MU2E5A	S-160MU2E5A
Capacidad frigori	lfica	kW	2,2	2,8	3,6	4,5	5,6	6,0	7,3	9,0	10,6	14,0	16,0
Consumo eléctrio	co en frío	W	20,00	20,00	20,00	20,00	25,00	35,00	40,00	40,00	95,00	100,00	115,00
Intensidad (frlo)		A	0,19	0,19	0,19	0,19	0,22	0,31	0,33	0,36	0,71	0,76	0,89
Capacidad calori	fica	kW	2,5	3,2	4,2	5,0	6,3	7,1	8,0	10,0	11,4	16,0	18,0
Consumo eléctrio	co en calor	W	20,00	20,00	20,00	20,00	25,00	35,00	40,00	40,00	85,00	100,00	105,00
Intensidad (calor)	A	0,17	0,17	0,17	0,17	0,20	0,30	0,32	0,34	0,65	0,73	0,80
Tipo de ventilado	г		Turboventilador										
Volumen de aire	Al/ Med/ Ba	m³/min	14,50/ 13,00/ 11,50	14,50/ 13,00/ 11,50	14,50/ 13,00/ 11,50	15,50/ 13,00/ 11,50	17,00/ 13,50/ 11,50	21,00/ 16,00/ 13,00	22,50/ 16,00/ 13,00	23,00/ 18,50/ 14,00	35,00/ 26,00/ 20,00	36,00/ 27,00/ 21,50	37,00/ 29,00/ 25,00
Presión sonora	Al/ Med/ Ba	dB(A)	30/ 29/ 28	30/ 29/ 28	30/ 29/ 28	31/ 29/ 28	33/ 30/ 28	36/ 32/ 29	37/ 32/ 29	38/ 35/ 32	44/ 38/ 34	45/ 39/ 35	46/ 40/ 38
Potencia sonora	Al/ Med/ Ba	dB	45/ 44/ 43	45/ 44/ 43	45/ 44/ 43	46/ 44/ 43	48/ 45/ 43	51/ 47/ 44	52/ 47/ 44	53/ 50/ 47	59/ 53/ 49	60/ 54/ 50	61/ 55/ 53
Dimensiones	Interior	mm	256x 840 x 840	256x 840 x 840	256x 840 x 840	256 x 840 x 840	256x840 x840	256 x 840 x 840	256x840 x840	256 x 840 x 840	319x 840 x 840	319x 840 x 840	319x840 x840
(Alx Anx Pr)	Panel	mm	33,5 x 950 x 950	33,5x 950 x 950	33,5x 950 x 950	33,5x 950 x 950	33,5x950 x950	33,5x950 x950	33,5 x 950 x 950	33,5 x 950 x 950	33,5 x 950 x 950	33,5x 950 x 950	33,5x 950 x 950
Peso neto (panel)	kg	19(5)	19 (5)	19(5)	19(5)	19 (5)	20 (5)	20 (5)	20(5)	25(5)	25 (5)	25(5)
Conexiones de	Líquido	Pulg. (mm)	1/4(6,35)	1/4 (6,35)	1/4(6,35)	1/4(6,35)	1/4 (6,35)	3/8 (9,52)	3/8 (9,52)	3/8(9,52)	3/8(9,52)	3/8 (9,52)	3/8(9,52)
tuberlas	Gas	Pulg. (mm)	1/2(12,70)	1/2(12,70)	1/2 (12,70)	1/2(12,70)	1/2(12,70)	5/8 (15,88)	5/8(15,88)	5/8 (15,88)	5/8(15,88)	5/8(15,88)	5/8 (15,88)
PVPR unidad i	nterior	€	1.136	1.146	1.153	1.325	1.353	1.444	1.520	1.710	2.030	2.236	2.421
PVPR panel		€	307	307	307	307	307	307	307	307	307	307	307

Características principales del equipo de climatización

			8HP	10HP	12HP	14HP	16HP	18HP	20HP
Unidades exterio	res		U-8ME2E8	U-10ME2E8	U-12ME2E8	U-14ME2E8	U-16ME2E8	U-18ME2E8	U-20ME2E8
	Tensión	٧	380-400-415	380-400-415	380-400-415	380 - 400 - 415	380-400-415	380-400-415	380 - 400 - 415
Suministro eléctrico	Fase		Trifásica	Trifásica	Tritásica	Tritásica	Tritásica	Trifásica	Trifásica
electrico	Frecuencia	Hz	50	50	50	50	50	50	50
Capacidad frigorft	lica	kW	22,4	28,0	33,5	40,0	45,0	50,0	56,0
EER 1		W/W	4,70	4,37	3,96	3,88	3,52	3,52	3,35
ESEER		W/W	9,33	8,67	7,94	7,73	7,19	6,95	6,18
SEER 21			7,4	6,8	6,7	7,2	6,4	7,6	7,0
Intensidad en frío		A	7,40/7,14	10,20/9,80	13,00/12,50	16,50/15,90	20,10/19,40	22,00/21,20	25,40/24,50
Consumo eléctric	o en frío	kW	4,77	6,41	8,47	10,30	12,80	14,20	16,70
Capacidad calorff	ca	kW	25,0	31,5	37,5	45,0	50,0	56,0	63,0
COP 1)		W/W	5,13	4,76	4,73	4,56	4,42	4,38	3,94
SCOP ²			4,8	4,3	4,7	4,3	4,1	4,3	4,1
Intensidad en cald	or .	A	7,56/7,29	10,50/11,10	12,30/11,80	15,80/15,20	17,90/17,30	20,10/19,40	24,60/23,70
Consumo eléctric	o en calor	kW	4,87	6,62	7,92	9,86	11,30	12,80	16,00
Intensidad de arra	anque	A	1,00	1,00	1,00	2,00	2,00	2,00	2,00
Presión estática e	xterna (máx.)	Pa	80	80	80	80	80	80	80
Volumen de aire		m³/min	224	224	232	232	232	405	405
Presión sonora	Modo normal	dB[A]	54	56	59	60	61	59	60
Presion sonora	Modo silencioso	dB(A)	51	53	56	57	58	56	57
Potencia sonora	Modo normal	dB	75	77	80	81	82	80	81
Dimensiones	AL x An x Pr	mm	1842×770 ×1000	1842x 770 x 1000	1842x 1180 x 1000	1842x1180 x1000	1842x1180 x1000	1842×1540 ×1000	1842×1540 ×1000
Peso neto		kg	210	210	270	315	315	375	375
	Tuberia de líquido	Pulgadas (mm)	3/8(9,52)/ 1/2(12,70)	3/8 (9,52)/ 1/2 (12,70)	1/2(12,70)/ 5/8(15,88)	1/2(12,70)/ 5/8(15,88)	1/2(12,70)/ 5/8(15,88)	5/8 (15,88)/ 3/4 (19,05)	5/8(15,88)/ 3/4(19,05)
Conexiones de tuberías a	Tuberia de gas	Pulgadas (mm)	3/4(19,05)/ 7/8(22,22)	7/8 (22,22)/ 1 (25,40)	1 (25,40)/ 1-1/8 (28,58)	1 (25,40)/ 1-1/8 (28,58)	1-1/8 (28,58)/ 1-1/4 (31,75)	1-1/8 (28,58)/ 1-1/4 (31,75)	1-1/8(28,58)/ 1-1/4(31,75)
	Tubería de equilibras	do Pulgadas (mm)	1/4 (6,35)	1/4 (6,35)	1/4 (6,35)	1/4(6,35)	1/4(6,35)	1/4 (6,35)	1/4 (6,35)
Refrigerante (R41	DA)/CO_eq.	kg/T	5,60/11,6928	5,60/11,6928	8,30/17,3304	8,30/17,3304	8,30/17,3304	9,50/19,836	9,50/19,836
Relación máxima	permisible de capacida	ad int. / ext. en % 4	50~ 130(200)	50~ 130 (200)	50~130 (200)	50~130 (200)	50~130 (200)	50~130 (200)	50~ 130 (200)
Rango de	Frio min. ~ máx.	°C	-10~+52	-10~+52	-10~+52	-10~ +52	-10~+52	-10~+52	-10~+52
funcionamiento	Cator min. ~ máx.	°C	-25~+18	-25~+18	-25~+18	-25~+18	-25~+18	-25~+18	-25~+18
PVPR		€	9.713	10.847	12.750	15.219	17,124	19.936	21.693

¹⁾ Cálculos EER y COP realizados de acuerdo con EN 16511. 2) SEEN/SCOP se calculan en base a los valores «τη» de efficiencia estacional de refrigeración/calefacción de espacios según el REGLAMENTO (UE) n.º 2281/2016 DE LA COMISIÓN. SEER, SCOP » (η - corrección) x PEF. 3) Diámetro de tubería inferior a 90 m para la última unidad interior / superior a 90 m para la última unidad interior (al la máxima longitud equivalente de tubería es superior a 90 m, es necesario utilizar la tubería principal de liquido y gas del tamaño inmediatamente superior). (4) 51 se cumplan las siguientes condiciones, es posible sobrepasar el 100 % alto llagrar a 200 %. A. Respetar el número máximo de unidades interiores que se pueden conorcial referir del rango de funcionamiento para temperatura exterior de calefacción está limitado a nenos del 130 % de unidades interiores conoctables.

Características principales gas climatización

R-410A

Componentes

Nombre químico	% en peso	N° . CE
Pentafluoroetano (R-125)	50	206-557-8
Difluorometano (R-32)	50	200-839-4

Propiedades físicas

PROPIEDADES FISICAS		R-410A
Peso molecular	(g/mol)	72.6
Temperatura ebullición (a 1.013 bar)	(°C)	-51,58
Deslizamiento temperatura de ebullición (a 1,013 bar)	(K)	0.1
Temperatura crítica	(°C)	72.13
Presión crítica	(bar abs)	49,25
Densidad critica	(Kg/m ³)	488,90
Densidad del líquido (25°C)	(Kg/m ³)	1062
Densidad del líquido (-25°C)	(Kg/m³)	1273
Densidad del vapor sarturado (25°C)	(Kg/m ³)	4,12
Presión del vapor (25°C)	(bar abs)	16.5
Presión del vapor (-25°C)	(bar abs)	3.30
Calor de vaporización a punto de ebullición	(KJ/Kg)	276
Calor específico del líquido (25°C)	(KJ/Kg K)	1.84
Calor específico del vapor (25°C) (1 atm)	KJ/Kg K)	0.83
Conductibilidad térmica del líquido (25°C)	(W/mK)	0.088
Conductibilidad térmica del vapor (25°C) (1 atm)	(W/mk)	0.013
Solubilidad con el agua (25°C)	ppm	despreciable
Limite de inflamabilidad	(% vol.)	Ninguno
Toxicidad (AEL)	ppm	1000
ODP	-	0
PCA (GWP)	-	2088

Características principales recuperador de calor

Modelo			PAW-50	DZDX3N	PAW-80	OZDX 3N	PAW-01	KZDX3N
	Tensión	٧	23	10	2	30	230	
Suministro eléctrico	Fase		Monat	ásica	Mono	tásica	Monotásica	
	Frecuencia	Hz	5	0	5	0	5	0
Volumen de aire		m³/min	8,3	13	13,	,33	16,	67
Presión estática externa '	ı	Pa	9	0	12	20	115	
Intensidad máxima	Carga máxima total	A	0,	6	1,4		2,1	
Potencia absorbida		W	150		320		390	
Presión sonora 1		dB[A]	39		42		43	
Conexiones de tuberías Tubería de líquido		Pulg. (mm)	1/4(6,35)		1/4 (6,35)		1/4 (6,35)	
Coneciones de tuberias	Tubería de gas	Pulg. (mm)	1/2(12,70)		1/2(12,70)		1/2(12,70)	
Recuperación de calor			Refrigeración	Calefacción	Refrigeración	Calefacción	Refrigeración	Calefacción
Eficiencia de temperatura	1	%	76	76	76	76	76	76
Eficiencia entálpica		%	63	67	63	65	60	62
Potencia ahorrada en mo	do verano o modo invierno*	kW	1,70	4,30 (4,80)	2,50	6,50(7,30)	3,20	8,20(9,00)
Bateria DX								
Capacidad total / sensible k		kW	3,00/2,10	2,50/2,70	5,10/3,50	4,40/4,80	5,80/4,10	5,20/6,70
Temperatura de apagado		°C	15,9	28,0 (27,3)	15,5	29,6 (29,0)	16,2	28,5 (27,8)
Humedad relativa de apa	gado	%	90	16 (15)	90	14(13)	89	15[14]
PVPR		€	4.1	04	5.3	174	6.1	54

Condiciones nominales de versos: Aire acterior: 32 °C TS, HR 50 %. Aire ambiente: 26 °C TS, HR 50 %. Condiciones nominales de levierne: Aire acterior: -5 °C TS, HR 80 %. Aire ambiente: 20 °C TS, HR 50 %. Condición de la entrada de aire en modo calefacción: 13 °C TS, HR 80 %. (In °C TS, HR 65 %); temperatura de evaporación de la entrada de aire en modo calefacción: 13 °C TS, HR 60 %. (In °C TS, HR 65 %); temperatura de condensación 60 °C. TS: Temperatura soca; HR: Humedad relativa.

Il Refertido a La cadad de aire nominale a la salda del Hitro y del intercambiendo de de calor de placas. 2) Nivel de presión sonora calculado a 1 m de distancia de: conducto de entrada y retorno de aire evacuado primera entrada de aire / lado de servicio, en condiciones normales. * Datos provisionales.

Conditiones monimales. Temperatura del sine insurior (http://cit.com/prospura del sine countrie (notification) (1 to 11 to 12 to 13 to 14 to 14

Características principales sistema ventilación

HP			4P	SHP	64P	MP	SHP	6HP	SHP	10HP
Unitfades or teris	2706		U-ALEXE	U-REXE	U-GERE	0-44530	U-GLEZER	U-6LE258	U-GLETER	U-10LE1EB
	Temple	V	720-200-200	220-220-250	220-230-240	200-400-415	200-600-415	390-400-415	200-400-415	280-400-415
Suminitaro elátorico	Face		Monofficica	Monotinica	Monoticica	Trifánica	Trifficica	Triticia	Triflicita	Trifficia
THE REAL PROPERTY.	Frequencia	Re	50	50	50	50	50	50	50	50
Capacidad frigor	fica	KW .	12,1	14,0	15,5	12,1	14,0	15,5	22,6	29,0
EER*		W/W	4,50	4,04	2,72	4,50	4,04	3,73	2,90	2,11
SEER*			7,9	7,5	7,3	7,9	7,5	7,3	4,3	6,6
Intencidad on tri	0	Δ	10,00710,70712,00	14,00/15,60/17,00	2020/19/07/19/00	4,29/4,17/4,02	5,58/5,30/5,11	6,71/6,27/6,14	7,40/7,15/8,90	14,70/14,00/125
Consumo eléctri	ca en trio	KW .	2,69	3,45	6,15	2,69	3,65	4,15	5,99	7,00
Capacidad calori	fa	KW	12,5	16,0	14,5	12,5	16,0	16,5	25,0	29,0
00P 4		W/W	5,19	4,60	6,27	5,19	4,60	4,27	4,02	2,92
SCOP 4			4,9	6,6	6,2	4.9	4,4	4,2	6,2	4J
Intentitiad en cal	br	٨	12;25/11,63/11,20	17,60/16,80/14,10	1930/10,23/1738	3,99/3,79/3,64	5,62/5,34/5,16	4,26/5,93/5,71	10,20/9,45/9,30	11,4911,10/107
Consumo eléctri	co en calor	kW.	2,41	3,48	2,5%	2,41	3,69	3,94	6,72	7,12
Interetidad de an	audne	A	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Interesticad makin	8	A	17,20	24,30	27,60	7,90	10,10	10,70	12,70	17,60
Posencia missima	absorbida	KW.	3,50/3,66/3,92	4,72/5,14/5,37	5,61/5,86/6,12	4,34/5,09/5,29	6,25/6,55/6,82	6,62/6,97/7,23	9,16	12,10
Numero máximo:	ie unitade: imeriores	conscribing	7(10)**	8 (10)*	9(12)**	7(10)*	8 (10) *	9(12)*	154	154
Preción estánica	RESPONSE .	Pa	0-25	0 - 35	0-25	0-25	0-35	0-25	0-35	0-35
Volumen de aire		mÿmin	47	72	74	47	72	74	150	160
	Rife	dR(A)	52	52	54	52	52	53	60	8
Proción conors	Prio (Silencio 1 / 2 / 3 / 4)	dR(A)	50,5/40/47/45	21,5/50/48/46	52,5/51/48/44	50,5/40/40/47	a(5/50/48/46	48,5/50/48/44	57/52/52	40/50/54
	Calor	dR(A)	56	56	54	56	54	54	44	65
Posencia sanora	Rris / calor	di)	49/72	71/75	73/75	49/72	71/75	72/75	81/85	96/96
Dimensiones	Alla Ana Pr	mm	9% a 990a 370	996 x 780x 270	79 for 700 to 370	794a 990a 270	9% x 990x 270	9%x 990x 370	1500±790±370	1500±990±37
Peso seso		kg	106	106	104	106	106	106	132	120
Conectiones de	Tuberio de liquido	Pulgadas (mm)	2/0 (7,52)	3/9(9,52)	3/6(9,52)	3/8 (9,52)	3/9(9,52)	3/8 (7,52)	39(9,52)* 1/2(12,70)*	3/8/9,52]* 1/2/12,78]+
suberbs:	Tuberio de gas	Pulgadas (mm)	\$10(15,00)	\$48 (15,00)	\$/0 (15,00)	\$10(15,00)	\$9(15(8)	5/8 (15,88)	3/4/19 (B)* 3/8 (22,22)+	7/8 (22,22)* 1 (25,40)*
Longitud más ins	de tuberts (total)		150 (190)	150(180)	150(100)	150 (190)	150(180)	150(100)	7,5-150 (7,5-300)	7,5-158 (7,5-300)
			50 junidad exertor	50 junidad @ serior	SI (unidad especial	50 junidad espector	50 junidad graefor	50 junidad experior	50 (unidad epserior	50 junidad @swior
Decrive) de altur	int/vat.)	m	40 junidad	60 junidad	60 junided	40 junidad	60 junidad	60 junided	40 junided	60 junidad
			exertor inferiori	 serior inferiori 	eserior inferiori	equator	 serior inferiori 	esserior inferiori	equerior inferiori	distrior inferiori
Refrigerance (Ril	10A) / CD, eq.	kg/T	4,70 (14,40)/ 12,7094	6,70(16,48)/ 13,7996	4,70 (14,40) / 13,98%	4,70(14,40)/ 12,9994	4,70(14,40)/ 12,7094	6,70 (16,40) / 13,999 6	4,30(24,00)/ 12,1544	4,60(24,00)/ 12,7908
Relación máxima capacidad inserio		*	50-130	50-120	50-130	50-130	50-120	50-130	50-130	50-130
Rango de	Riomin - min.	+0	-10-+66	-10- +l6	-10-+46	-10-+66	-10-+44	-1046	-10-+66	-10-+66
	Calar min mia.	+0	-20-+10	-20- +10	-20-+10	-20-+10	-2010	-20-+11	-20-+19	-20-+10

PRESUPUESTO

1. SISTEMA DE CLIMATIZACIÓN	104
2. SISTEMA DE VENTILACIÓN	105
3. SISTEMA DE ACS	106
4. COSTES TOTAL INSTALACIÓN	107

1. SISTEMA DE CLIMATIZACIÓN

SISTEMA DE
CLIMATIZACION

CLIMATIZACION						
CONCEPTO	DESCRIPCION	MARCA	MODELO	UDS	PRECIO UD	PRECIO TOTAL €
UNIDADES EXTERIORES	Serie ECOi EX ME2 de 2 tubos	PANASONIC	U- 14ME1E81	1	15219	15.219,00 €
	Cassette de 4 vías 90x90 tipo U2	PANASONIC	S- 90MU2E5A	1	1710	1.710,00€
	Cassette de 4 vías 90x90 tipo U2	PANASONIC	S- 28MU2E5A	2	1146	2.292,00€
UNIDADES	Cassette de 4 vías 90x90 tipo U2	PANASONIC	S- 22MU2E5A	1	1136	1.136,00€
INTERIORES	Cassette de 4 vías 90x90 tipo U2	PANASONIC	S- 60MU2E5A	1	1444	1.444,00€
	Cassette de 4 vías 90x90 tipo U2	PANASONIC	S- 45MU2E5A	1	1325	1.325,00€
	Cassette de 4 vías 90x90 tipo U2	PANASONIC	S- 140MU2E5A	1	2236	2.236,00€
	Control remoto inalámbrico	PANASONIC	CZ-RWS3	7	100	700,00€
ACCESORIOS	Receptor inalámbrico	PANASONIC	CZ-RWRU3	7	105	735,00 €
	Control remoto simplificado	PANASONIC	CZ-RE2C2	7	105	735,00 €
	Panel	PANASONIC	CZ-KPU3	7	307	2.149,00 €
	Tuberías		1/2" x 1 1/8"	4,3	9,58	41,19€
	Tuberías		3/8" x 7/8"	10,7	7,16	76,61 €
CONDUCTOS	Tuberías		3/8" x 3/4"	4,5	6,89	31,01€
	Tuberías		3/8" x 5/8"	3,8	4,4	16,72 €
	Tuberías		1/4" x 1/2"	2	3,58	7,16 €
DERIVACIONES	Derivación	PANASONIC	CZ- P680BK2BM	5	170	850,00 €
	Derivación	PANASONIC	CZ- P224BK2BM	1	110	110,00€
TOTAL 30						

Página 104 de 113

2. SISTEMA DE VENTILACIÓN

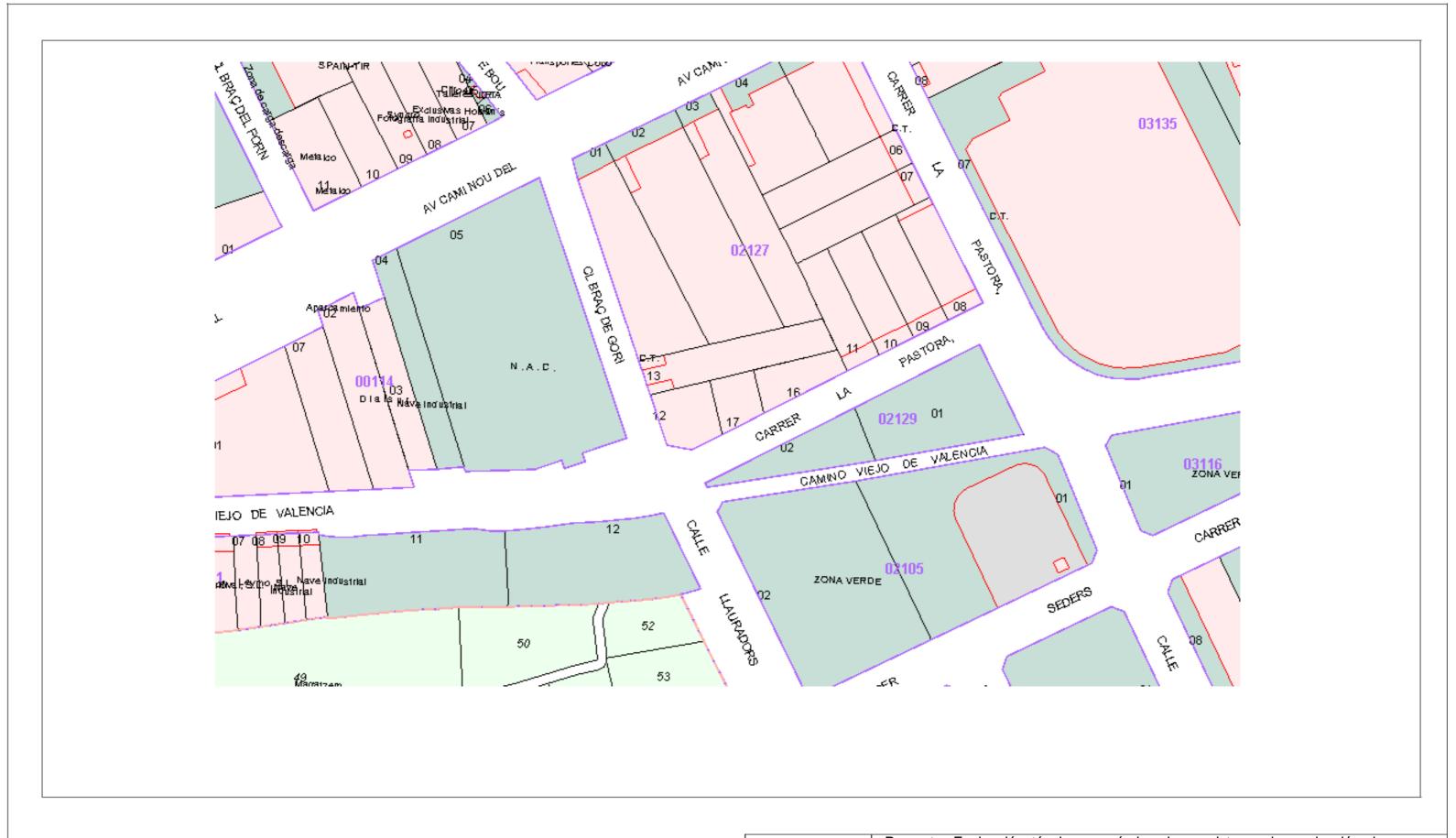
SISTEMA DE
VENTILACION

VENTILACION						
CONCEPTO	DESCRIPCION	MARCA	MODELO	UDS	PRECIO UD	PRECIO TOTAL €
UNIDADES EXTERIORES	Serie Mini ECOi LE	PANASONIC	U-4LE2E5	2	5540	11.080,00 €
RECUPERADOR	Recuperación de calor con batería DX	PANASONIC	PAW- 01KZDX3N	2	6154	12.308,00 €
CONDUCTOS	Control remoto inalámbrico	PANASONIC	CZ-RWS3	75,3	33	2.484,90 €
	CONDUCTOS			75,3	33	2.484,90 €
DIFUSORES Y	REGILLA RETORNO	MASTERZONE	DH 450x400	8	41,8	334,40 €
REJILLAS	REJILLA IMPULSION	TROX	AT-AG 325x625	8	231	1.848,00 €
		TOTAL				30.540,20 €

3. SISTEMA DE ACS

700						
CONCEPTO	DESCRIPCION	MARCA	MODELO	UDS	PRECIO UD	PRECIO TOTAL €
Depósitos de ACS	Depósito combinado	PANASONIC	PAW- TD20B8E3- 1	1	3950	3.950,00 €
VALVULAS	Kit de válvula de 3 vías para gestión del ACS. Instalado dentro del hydrokit de la Bi-bloc	PANASONIC	CZ-NV1	1	385	385,00€
CONDUCTOS	TUBERIAS			20	35	700,00€
CONDUCTOS	ACCESORIOS			15	8	120,00€
						E 4 E E 00

5.155,00 €

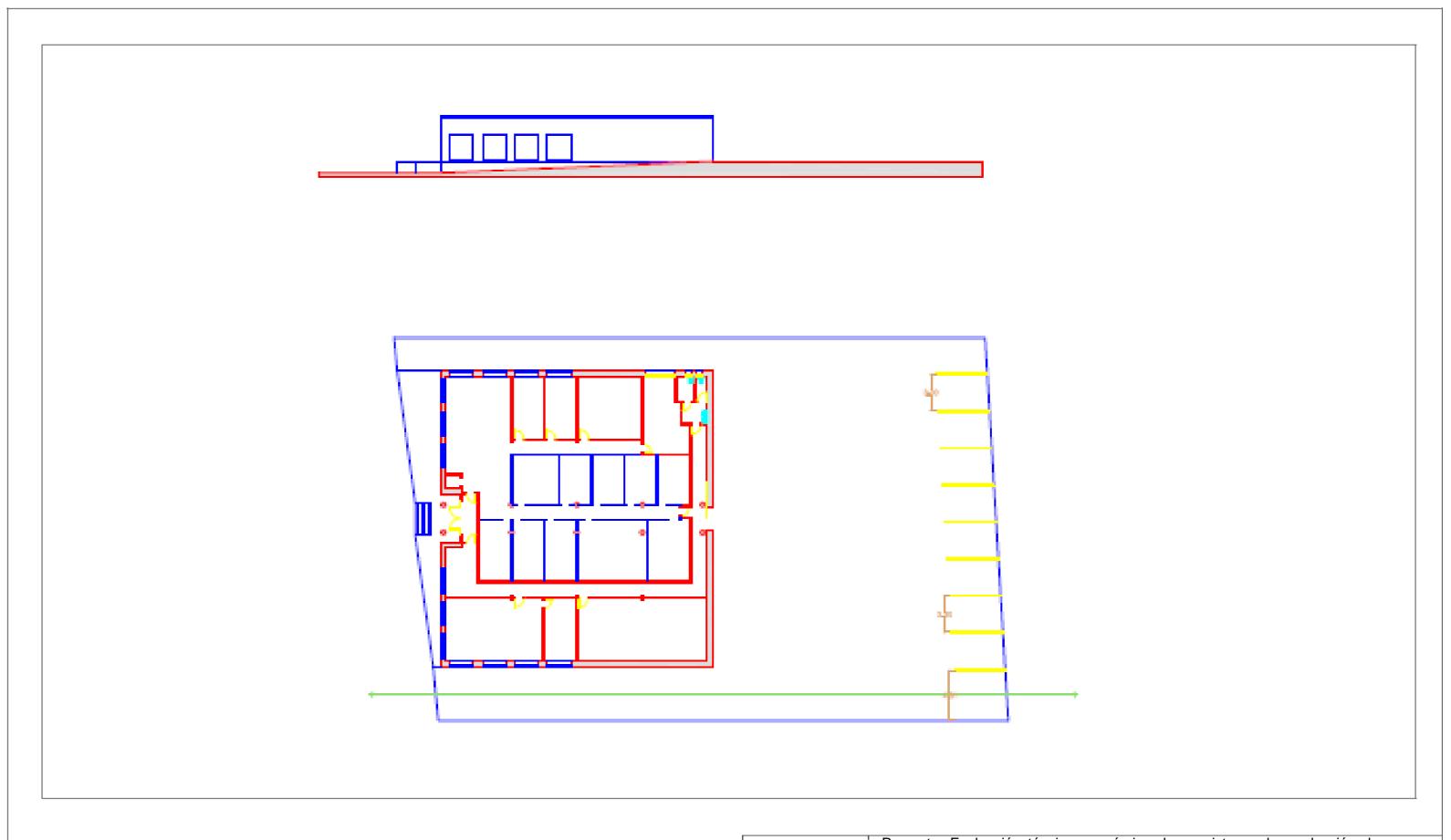

TOTAL

4. COSTES TOTAL INSTALACIÓN

COSTES DE INSTALACIÓN	
CONCEPTO	PRECIO TOTAL €
SISTEMA DE	31.584,00 €
CLIMATIZACION	31.304,00 €
SISTEMA DE VENTILACION	24.586,00 €
SISTEMA DE ACS	5.247,00 €
TOTAL	61.417,00 €

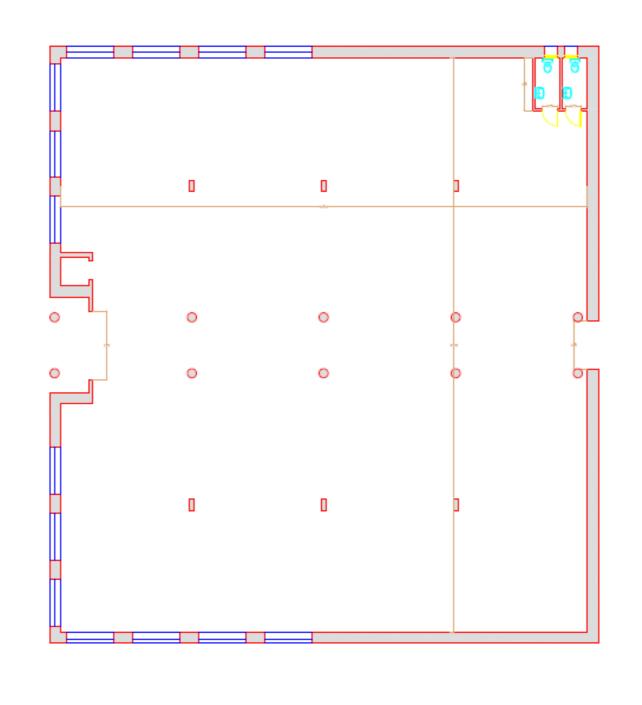
TOTAL	
CONCEPTO	PRECIO TOTAL €
SISTEMA DE	62.397,69 €
CLIMATIZACION	02.397,09 €
SISTEMA DE VENTILACION	55.126,20 €
SISTEMA DE ACS	10.402,00 €
TOTAL	127.925,89 €

PLANOS



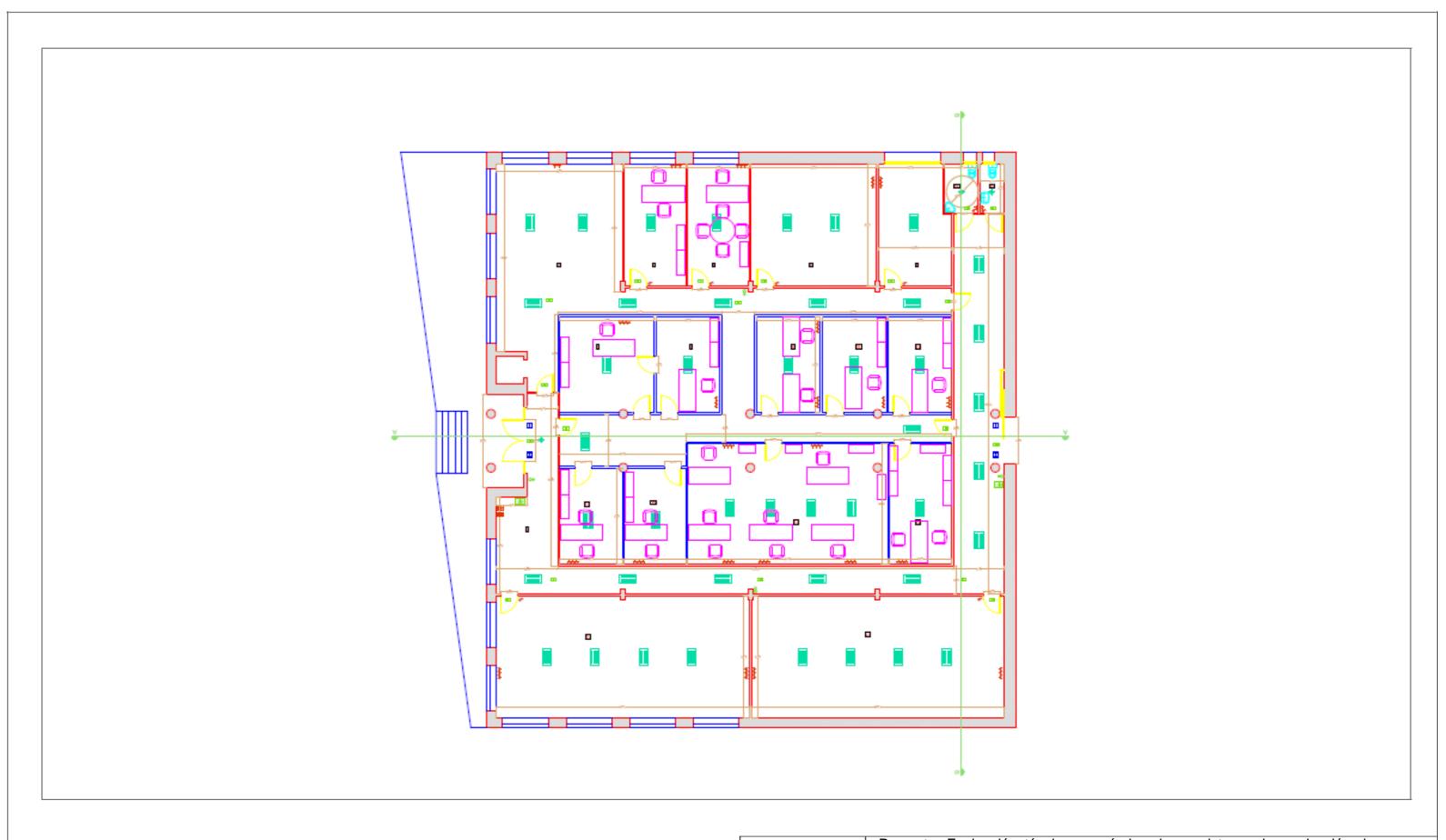
Proyecto: Evaluación técnico económica de un sistema de producción de acs y climatización par un edificio Plano: Plano Nº 1 Plano: Plano Nº 1

FIANO. FIANO	Fiano. Fiano in i		
ESCALA	Curso: 2019-2020	Máster MUEES	Fecha: 01/11/2020
1:1000	Autor: Vicente Lónez Morte		


Autor: Vicente López Morte

Proyecto: Evaluación técnico económica de un sistema de producción de acs y climatización par un edificio

Plano: Plano Nº 2			Plano: Plano Nº 2
ESCALA	Curso: 2019-2020	Máster MUEES	Fecha: 01/11/2020
1:50	1:50 Autor: Vicente López Morte		•

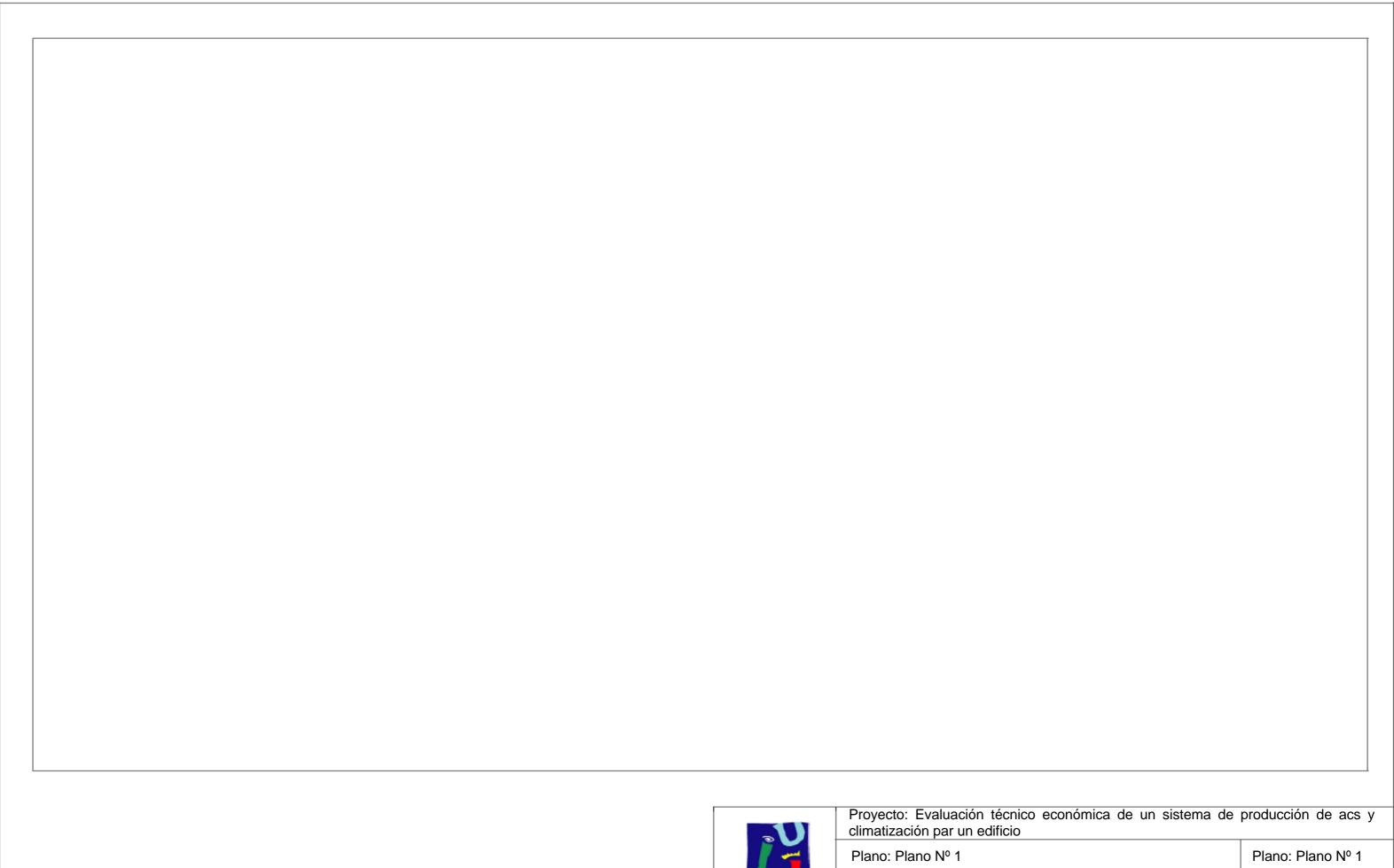


1:10

Proyecto: Evaluación técnico económica de un sistema de producción de acs y climatización par un edificio

Plano: Plano Nº 3			Plano: Plano Nº 3
ESCALA	Curso: 2019-2020	Máster MUEES	Fecha: 01/11/2020

Autor: Vicente López Morte



1:10

Proyecto: Evaluación técnico económica de un sistema de producción de acs y climatización par un edificio

Plano: Plano	Plano: Plano Nº 4		
ESCALA	Curso: 2019-2020	Máster MUEES	Fecha: 01/11/2020

Autor: Vicente López Morte

Plano: Plano Nº 1			Plano: Plano Nº 1
ESCALA	Curso: 2019-2020	Máster MUEES	Fecha: 01/11/2020

1:500 Autor: Vicente López Morte