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1. Introduction and basic definitions

The so called McShane-Whitney Theorem is a classical result which es-
tablishes that, given a real valued function on a subspace of a metric space, it
can always be extended to the whole space preserving the Lipschitz constant.
This theoretical result can be easily proved using a constructive procedure:
the extension is given by concrete known formulas involving a supremum—
the McShane formula— or an infimum—the Whitney formula—. The aim of
the present paper is to obtain a similar result for the case of fuzzy Lipschitz
maps on fuzzy metric spaces as a contribution to the general theory of these
spaces, that could find applications in different fields.

In the case of finite spaces, the formulas cited above provide effective com-
putational tools for getting these Lipschitz extensions, and allow to develop
useful applications. Among them, we are particularly interested in the con-
struction of algorithms for artificial intelligence. A classic and simple model
for some machine learning developments is based on controlled extensions of
real valued functions that act in subspaces of metric spaces. For example,
suppose we have a metric model for a given problem —i.e., the individuals
in the model are elements of a subspace (S0, d) of a metric space (X, d)—,
and assume that the learning tool is a real function I. A basic reinforcement
learning scheme is then provided by an increasing subset of metric subspaces
S0 ⊆ S1 ⊆ S2 · · · ⊆ X and the corresponding extensions of the index I0, I1,
I2, · · · , which improve as the process progresses, since we incorporate new
information about the system at each step. Similar arguments provide stan-
dard tools in distance learning (see for example [8]). This and other issues on
the relation among machine learning and Lipschitz functions are of current
interest; the reader can find concrete information about in [1, 8, 9, 19, 32, 24]
and the references therein. Concretely, the authors of the present paper are
involved in the development of algorithms for reinforcement learning based
on the basic idea explained above. Although this is still an open project,
some results on this research have been already published and can be found
in [5].

On the other hand, nowadays it seems to be an objective of the scien-
tific community to enrich the set of mathematical tools for machine learning
by introducing increasingly sophisticated fuzzy methods. The nature of the
topic itself and the multiple applications of the different areas of the machine
learning motivated an early introduction of techniques of fuzzy mathemat-
ics in these areas, both to justify theoretical developments and for concrete
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applications (see for example [18, 36]).
Motivated in part by this situation, the second objective of this work

is to merge the theoretical contexts of Lipschitz maps and fuzzy metrics to
facilitate the construction of new tools in machine learning. In particular, our
aim is to adapt a central theorem of the theory of Lipschitz functions —the
McShane-Whitney extension theorem for real valued Lipschitz functions—
to the framework of fuzzy metric spaces (see [2, 4, 31, 34]).

Let us recall some fundamental definitions. A map f : (X, d) → (Y, q)
between metric spaces is said to be Lipschitz if there is a constant K > 0
such that

q(f(x), f(y)) ≤ Kd(x, y), x, y ∈ X.

The Lipschitz constant of f is the infimum of all the constants K satisfying
the inequality. It is well known that Lipschitz real functions acting in metric
subspaces can always be extended to the whole metric space preserving the
Lipschitz constant. Indeed, the so called McShane-Whitney Theorem estab-
lishes that if S is a subspace of a metric space (X, d) and f : S → R is a
Lipschitz function with Lipschitz constant K, there exists an extension to X
with the same Lipschitz constant. In fact, a lot of extensions are available.
For example, the following function

fM(x) := sup
s∈S
{f(s)−K d(s, x)}, x ∈ X,

that is called the McShane extension of f , gives one of them, and also the
Whitney extension defined as

fW (x) := inf
s∈S
{f(s) +K d(s, x)}, x ∈ X.

The aim of the present paper is to extend this result to the setting of
real-valued fuzzy Lipschitz functions f : (X,M, ∗) → (R, N,~) between
fuzzy metric spaces as introduced in [37]: f is fuzzy Lipschitz if for every
t > 0, the supremum

sup
x 6=y

1−N(f(x), f(y), t)

1−M(x, y, t)

is finite. However, in order to extend the result in a coherent way, we will
first consider functions f : X×(0,∞)→ R, that is, we will consider explicitly
the dependence of the original map on the parameter t. Our main theoretical
result —Corollary 22— gives an extension theorem for fuzzy Lipschitz maps.
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If (X,M, ∗) is a fuzzy metric space and (R, N,~) is what we call a Euclidean
fuzzy metric space, suppose S ⊆ X and f : (S,M, ∗) × (0,∞) → (R, N,~)
is a fuzzy Lipschitz map. Then, under some requirements on M, f can be
extended to a fuzzy Lipschitz map f : X × (0,∞)→ R.

Although this result seems to be the most adequate generalization after
understanding the nature of fuzzy Lipschitz maps, from the point of view of
the applications seems to be relevant the case of extending fuzzy Lipschitz
functions non-depending on t acting in S to fuzzy Lipschitz functions non-
depending on t acting in X. We will show that this is also possible using our
construction.

We intend in this way to provide new tools for opening the door to a new
methodological approach to machine learning, including fuzzy notions in the
design of algorithms of artificial intelligence that use Lipschitz extensions.
Following the principles underlying the fuzzy philosophy, our technique al-
lows to modulate, using the “t” parameter, the level of uncertainty under
which the function fulfills the Lipschitz inequality. This idea is automati-
cally translated into the context of machine learning, thus allowing to build
in future research work a technique to introduce probabilistic interpretations
into forecasting methods based on reinforcement learning such as those that
can be found in [5].

The structure of the paper is as follows. We begin recalling in Section 2
some necessary concepts about fuzzy metric spaces. Our technique for ex-
tending a fuzzy Lipschitz map is based on a method for constructing a family
of metrics from a fuzzy metric. The problem of obtaining a compatible metric
from a fuzzy metric has already treated in the literature [6, 12, 26, 27]. We
summarize some results in Section 3 and provide a new method in Lemma 7.
Section 4 is devoted to introduce the concept of fuzzy Lipschitz function as
considered in [37]. For completeness, we provide in this section some results
about the relationship of this concept with other notions of Lipschitzness in
the fuzzy framework coming from fuzzy contractiveness notions. Finally, in
Section 5 we obtain a McShane-Whitney extension theorem for fuzzy Lips-
chitz maps taking values in what we call a Euclidean fuzzy metric space.

2. Fuzzy metric spaces

The origins of fuzzy metric spaces are due mainly to Menger [21] (see also
[29]) who introduced the concept of probabilistic metric space which gives a
probabilistic interpretation of the distance between two points by assigning
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a distribution function with every pair of elements. This concept has evolved
in the last decades to various concepts of fuzzy metrics. One of the most
widespread notion is that due to George and Veeramani [10] (see also [11])
and this will be the notion that we will work with. Let us recall its definition.

Definition 1 ([10]). A triple (X,M, ∗) is called a fuzzy metric space if X is a
nonempty set, ∗ is a continuous t-norm, and M is a fuzzy set on X2×(0,∞)
such that for each x, y, z ∈ X and t, s > 0,

(1) M(x, y, t) > 0,

(2) M(x, y, t) = 1 if and only if x = y,

(3) M(x, y, t) = M(y, x, t),

(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s), and

(5) M(x, y, ·) : (0,∞)→ [0, 1], is continuous.

The pair (M, ∗) is said to be a fuzzy metric on X.

Example 2 ([10]). Given a metric space (X, d), let Md be the fuzzy set on
X2 × (0,∞) defined by

Md(x, y, t) =
t

t+ d(x, y)
.

For every continuous t-norm ∗, (Md, ∗) is a fuzzy metric on X which is called
the standard fuzzy metric induced by d.

The class of stationary fuzzy metric spaces was introduced in [15] when
the authors were studying completions of fuzzy metric spaces. We extend
this definition as follows.

Definition 3 (see [15]). A fuzzy metric space (X,M, ∗) is said to be even-
tually stationary (or (M, ∗) is a eventually stationary fuzzy metric on X) if
we can find t0 > 0 such that the function M(x, y, ·) : [t0,+∞) → [0, 1] is
constant for every x, y ∈ X.

(M, ∗) is said to be stationary if M(x, y, ·) is constant for every x, y ∈ X.

Another class of fuzzy metric spaces which includes the stationary fuzzy
metric spaces are the so-called strong fuzzy metric spaces introduced and
studied in [12].
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Definition 4 ([12]). A fuzzy metric space (X,M, ∗) is said to be strong if

M(x, y, t) ∗M(y, z, t) ≤M(x, z, t)

for all x, y, z ∈ X and all t > 0.

It is obvious that every stationary fuzzy metric space is strong. Further-
more, (M, ∗) is strong if and only if {(Mt, ∗) : t > 0} is a family of stationary
fuzzy metrics on X associated to M , where Mt : X ×X × (0,+∞) → [0, 1]
is given by Mt(x, y, s) = M(x, y, t), for all x, y ∈ X and all s > 0.

3. Metrics from fuzzy metrics

George and Veeramani [10] showed that every fuzzy metric (M, ∗) on a
nonempty set X generates a Hausdorff topology τ(M) on X. Moreover, this
topology is metrizable [14]. This naturally leads to the problem of construct-
ing in an easy way a metric d on X compatible with the topology τ(M) such
that we can infer results for the fuzzy metric (M, ∗) from classic results about
metrics. In this way Radu constructed in [26] such a metric d which has been
successfully applied to prove fixed point theorems for complete fuzzy metric
spaces from classic results in the context of metric spaces. This construction
was improved and modified in [6, 27] which allowed the authors to prove
several fixed point theorems for different types of contractions in the context
of fuzzy metric spaces. Their main tool is the construction of a metric from a
fuzzy metric such that it preserves a certain contraction notion. In a different
way, Gregori, Morillas and Sapena [12] developed a method for constructing
a metric from a strong fuzzy metric as follows.

Proposition 5 ([12]). Let (X,M, ∗) be a strong fuzzy metric space such that
∗ ≥ ∗ L, where ∗ L is the  Lukasiewicz t-norm. Let {Mt : t > 0} be the family
of stationary fuzzy metrics associated to (M, ∗). Then

(i) {dMt : t > 0} is a family of metrics on X where dMt (x, y) = 1−M(x, y, t)
for all x, y ∈ X and all t > 0.

(ii) d = supt>0 d
M
t is a metric on X such that τ(Mt) ⊆ τ(d).

We notice that part (i) of Proposition 5 provides the following cha-
racterization of strong fuzzy metrics with respect to the  Lukasiewicz t-norm
∗ L.
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Proposition 6. A fuzzy metric space (X,M, ∗ L) is strong if and only if
{dMt : t > 0} is a family of metrics on X where dMt (x, y) = 1−M(x, y, t) for
all x, y ∈ X and all t > 0.

Proof. Necessity follows from Proposition 5.
For the converse, fix t > 0. Then given x, y, z ∈ X we have that

dMt (x, y) + dMt (y, z) ≥ dMt (x, z)

1−M(x, y, t) + 1−M(y, z, t) ≥ 1−M(x, z, t)

1−M(x, y, t)−M(y, z, t) ≥ −M(x, z, t)

M(x, y, t) +M(y, z, t)− 1 ≤M(x, z, t)

max{M(x, y, t) +M(y, z, t)− 1, 0} ≤M(x, z, t)

M(x, y, t) ∗ L M(y, z, t) ≤M(x, z, t).

Since t is arbitrary then (M, ∗ L) is strong.

Observe that the method provided by Proposition 5 of constructing a
metric d from a fuzzy metric (M, ∗) is only valid when (M, ∗) is strong.
Moreover d does not preserve important properties of M since, for example,
τ(d) 6= τ(M) in general.

Next we present a new method for constructing a family of metrics from a
fuzzy metric which is better behaved for our purposes. This method is based
on an standard “convexification” process inspired by classical metrization
theorems [35, Theorem 23.4] and the obtention of a subadditive function
by means of the inf-convolution [7] (it is a particular case of the metrics dε
considered in [20] when ε =∞).

Lemma 7. Let (X,M, ∗) be a fuzzy metric space, and let ϕ : [0, 1) → [0, 1)
be an increasing function such that ϕ−1(0) = {0}. Fix t > 0 and consider
the function pt : X ×X → R+ defined by

pt(x, y) := inf
{ n∑

i=1

ϕ
(
1−M(xi, xi+1, t)

)
: x1 = x, xn+1 = y, xi ∈ X

}
for every x, y ∈ X. Then

(i) pt is a pseudo metric on X, and
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(ii) if (x, y) 7→ ϕ
(
1−M(x, y, t)

)
satisfies the triangular inequality, then

pt(·, ·) = ϕ
(
1−M(·, ·, t)

)
,

and it defines a metric.

Proof. (i) The function is clearly symmetric, due to the symmetry of M . On
the other hand, a direct calculation using the properties of the infimum gives
the triangular inequality.

(ii) Note that, if ϕ
(
1 −M(·, ·, t)

)
satisfies the triangular inequality then

it is a pseudo metric. Moreover given x, y ∈ X we have that for every
x1, . . . , xn+1 ∈ X such that x1 = x, xn+1 = y then

ϕ
(
1−M(x, y, t)

)
≤

n∑
i=1

ϕ
(
1−M(xi, xi+1, t)

)
,

and so the infimum pt(x, y) coincides with ϕ
(
1 −M(x, y, t)

)
. On the other

hand, we have that ϕ
(
1 −M(x, y, t)

)
= 0 if and only if 1 −M(x, y, t) = 0,

and by the definition of fuzzy metric this happens if and only if x = y. This
gives (ii).

In the literature we can find a lot of examples of fuzzy metrics but many
of them are constructed starting from a classic metric [13, 28]. We next show
that the above Lemma allows to recover the metric from the fuzzy metric in
some cases.

Example 8 (cf. [12, Example 25]). Let (X, d) be a metric space and let us
consider, following [13, Example 5], the fuzzy metric (M, ·) on X given by

M(x, y, t) := e(−d(x,y)/g(t)), x, y ∈ X, t > 0,

where g : R+ → R+ is an increasing continuous function.
Let us consider ϕ : [0, 1) → [0, 1) given by ϕ(x) = − log(1 − x). It

is obvious that ϕ−1(0) = {0} and that ϕ is subadditive since it is concave.
Following Lemma 7, given t > 0 we can construct the following metric pt on
X :

pt(x, y) := ϕ(1−M(x, y, t)) = − log(1− 1 + e−d(x,y)/g(t)) =
d(x, y)

g(t)
.
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Observe that if (X,M, ∗) is a strong fuzzy metric space, then by Propo-
sition 5 {dMt : t > 0} is a family of metrics on X. Thus, if ϕ is a metric
preserving function [7] then ϕ(1 − M(·, ·, t)) is also a metric on X for all
t > 0 so we obtain (ii) of the previous result.

We next present an example borrowed from [17], where Lemma 7 can be
applied but Proposition 5 cannot.

Example 9 ([17, Example 2]). Let X = {a, b, c} and M : X×X×(0,+∞)→
[0, 1] given by

M(x, y, t) = M(y, x, t) =


1 if x = y
2t+ 1

2t+ 2
if x = a or x = b and y = c

t

t+ 2
if x = a, y = b

.

It was proved in [17] that (M, ∗ L) is a fuzzy metric on X which is not strong.
Notice that by Proposition 6, there has to be t > 0 such that dMt is not a
metric. In fact, dMt is not a metric for every t > 0, since

dMt (a, b) = 1−M(a, b, t) =
2

t+ 2
6≤ dMt (a, b) + dMt (b, c)

= 1−M(a, b, t) + 1−M(b, c, t) =
2

2t+ 2
.

Hence, we cannot apply Proposition 5 to construct a metric from (M, ∗ L).
Nevertheless, Lemma 7 allows this construction. If we consider the func-

tion ϕ : [0, 1) → [0, 1) given by ϕ(x) = x then this lemma provides a family
of metrics {pt : t > 0} where

pt(x, y) =


2

2t+ 2
if x 6= y

0 if x = y

for every t > 0.

4. Fuzzy Lipschitz maps

Since our aim is to obtain a McShane-Whitney extension theorem in the
context of fuzzy metric spaces, we must look for an appropriate notion of
Lipschitz function in this context. Hence it is natural to analyze the different
notions of fuzzy Lipschitz maps that have been proposed in the literature.
We collect some of them in the following definition.
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Definition 10. Let (X,M, ∗) and (Y,N,~) be two fuzzy metric spaces. A
map f : (X,M, ∗)→ (Y,N,~) is said to be

(1) fuzzy Lipschitz [37] if given t > 0 there exists k > 0 such that

1−N(f(x), f(y), t) ≤ k(1−M(x, y, t))

for every x, y ∈ X. In this case, given t > 0 the t-dilation of f is

dil(f, t) := sup
x 6=y

1−N(f(x), f(y), t)

1−M(x, y, t)
<∞.

Moreover f is said to be stationary fuzzy Lipschitz if

dil(f) = sup
t>0

dil(f, t) <∞.

(2) GS-fuzzy Lipschitz [16] with constant k > 0 if

1

N(f(x), f(y), t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
for each x, y ∈ X and t > 0.

(3) SBR-fuzzy Lipschitz [30] with constant k > 0 if

N(f(x), f(y), kt) ≥M(x, y, t)

for each x, y ∈ X and t > 0.

If f is fuzzy Lipschitz and dil(f, t) < 1 for every t > 0 then we say that
f is fuzzy contractive. The corresponding notions fuzzy expansive and fuzzy
nonexpansive maps are defined when dil(f, t) > 1 and dil(f, t) = 1 for every
t > 0, respectively.

Similar notions can be considered for the other two concepts of fuzzy Lip-
schitz functions.

Yun, Hwang and Chang proved in [37] that a fuzzy Lipschitz map is al-
ways continuous, and they studied the relationship of fuzzy Lipschitz maps
with GS-fuzzy contractive self-maps. For example, they proved [37, Corol-
lary 18] that every GS-fuzzy contractive self-map is fuzzy nonexpansive or
fuzzy contractive. For completeness, we study more in deep the relation-
ship between the different concepts of fuzzy Lipschitz function considered in
Definition 10.
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Proposition 11. Let f : (X,M, ∗)→ (Y,N,~) be a map between two fuzzy
metric spaces.

(i) If f is GS-fuzzy contractive then it is SBR-fuzzy nonexpansive.

(ii) If f is SBR-fuzzy contractive then it is GS-fuzzy nonexpansive.

(iii) f is GS-fuzzy nonexpansive if and only if f is SBR-fuzzy nonexpansive.

(iv) f is SBR-fuzzy nonexpansive (equivalently, GS-fuzzy nonexpansive) if
and only if it is fuzzy contractive or fuzzy nonexpansive.

Proof. (i) Let 0 < k < 1 such that

N(f(x), f(y), t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))

for each x, y ∈ X and t > 0. Given any k′ ≥ 1 we have that

N(f(x), f(y), k′t) ≥ N(f(x), f(y), t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))

>
M(x, y, t)

M(x, y, t) + (1−M(x, y, t))
= M(x, y, t),

so f is SBR-fuzzy nonexpansive.

(ii) Let 0 < k < 1 such that N(f(x), f(y), kt) ≥M(x, y, t) for all x, y ∈ X
and t > 0. Given any k′ ≥ 1 we have that

N(f(x), f(y), t) ≥ N(f(x), f(y), kt) ≥M(x, y, t)

≥ M(x, y, t)

M(x, y, t) + k′(1−M(x, y, t))
.

(iii) This is obvious since if k = 1 we have that

N(f(x), f(y), kt) = N(f(x), f(y), t)

and

M(x, y, t) =
M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))
.
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(iv) The statement follows from the next equivalences.

N(f(x), f(y), t) ≥M(x, y, t) for all x, y ∈ X and t > 0,⇔
1−N(f(x), f(y), t) ≤ 1−M(x, y, t) for all x, y ∈ X and t > 0,⇔
1−N(f(x), f(y), t)

1−M(x, y, t)
≤ 1 for all distinct x, y ∈ X and t > 0,

which finally gives dil(f, t) ≤ 1 for all t > 0.

Remark 12. Notice that by the above proof, if f is GS-fuzzy contractive then
f is an Edelstein map [23], i.e.

N(f(x), f(y), t) > M(x, y, t)

for all x, y ∈ X and all t > 0 (see [37, Lemma 15]). We also observe that GS-
fuzzy contractiveness of a self-map implies fuzzy contractiveness; this follows
from [37, Lemma 16, Theorem 17].

Corollary 13. Let f : (X,M, ∗) → (Y,N,~) be a map between two fuzzy
metric spaces such that (N,~) is stationary. The following statements are
equivalent.

(i) f is SBR-fuzzy Lipschitz;
(ii) f is SBR-fuzzy nonexpansive;
(iii) f is SBR-fuzzy contractive;
(iv) f is GS-fuzzy contractive;
(v) f is fuzzy contractive or fuzzy nonexpansive.

Proof. Equivalence between (i), (ii) and (iii) is obvious from the definitions.
(iii) implies (iv) is also clear since for any 0 < k < 1 we have that

N(f(x), f(y), t) = N(f(x), f(y), kt) ≥M(x, y, t)

≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))
.

The other implications are deduced from Proposition 11.

Remark 14. Notice that if f is fuzzy Lipschitz but not fuzzy contractive then
f is not necessarily SBR-fuzzy Lipschitz. In fact, let us consider X = [0, 1]
and the fuzzy metrics (M, ∗ L), (N, ·) on X given by

M(x, y, t) = e−
|x−y|

t

N(x, y, t) = 1− |x− y|
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for all x, y ∈ X and all t > 0. Then the map f : (X,M, ∗ L)→ (X,N, ·) given
by f(x) = x is fuzzy Lipschitz. In fact, we have that

dil(f, t) = sup
x 6=y

1−N(f(x), f(y), t)

1−M(x, y, t)
= sup

x 6=y

|x− y|
1− e−

|x−y|
t

=
1

1− e− 1
t

<∞.

Hence f is fuzzy Lipschitz but not fuzzy contractive.
Nevertheless, f is not SBR-fuzzy Lipschitz. Otherwise we would have

N(f(x), f(y), t) = 1− |x− y| ≥M(x, y, t) = e−
|x−y|

t

for all x, y ∈ X = [0, 1] and all t > 0. Hence, the function g(x, t) : [0, 1] ×
(0,+∞)→ R given by g(x, t) = 1−x−e−x

t should be greater than 0 for every
t > 0 and every x ∈ [0, 1]. However, for example, g′(x, 1) = −1 + e−x ≤ 0 for
every x ∈ X. Since g(0, 1) = 0 then g(x, 1) < 0 for every x ∈]0, 1], which is
a contradiction.

We also notice that f is not GS-fuzzy Lipschitz.

We next show a particular case where the concepts of SBR-fuzzy Lipschitz
function and GS-fuzzy Lipschitz function coincide.

Proposition 15. Let (X, d) and (Y, q) be two metric spaces. The following
statements are equivalent:

(1) f : (X, d)→ (Y, q) is Lipschitz with constant k > 0;

(2) f : (X,Md, ∗)→ (Y,Mq,~) is SBR-fuzzy Lipschitz with k > 0;

(3) f : (X,Md, ∗)→ (Y,Mq,~) is GS-fuzzy Lipschitz with constant k > 0.

Proof. (1) ⇔ (2) Fix k > 0. The equivalence is a consequence of the follow-
ing:

Mq(f(x), f(y), kt) ≥Md(x, y, t)⇔
kt

kt+ q(f(x), f(y))
≥ t

t+ d(x, y)

⇔ kt

t
≥ kt+ q(f(x), f(y))

t+ d(x, y)

⇔ kt+ kd(x, y) ≥ kt+ q(f(x), f(y))

⇔ kd(x, y) ≥ q(f(x), f(y)).

(1)⇔ (3) This equivalence was proved in [16] in case of GS-fuzzy contractive
self-maps but the proof is similar in this case.
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It is natural to wonder whether in the above proposition we can add an
equivalent statement involving fuzzy Lipschitz functions. Nevertheless, this
is not possible since although it was proved in [37, Lemma 8] that if a map f :
(X, d)→ (Y, q) between two metric spaces is Lipschitz then f : (X,Md, ∗)→
(Y,Mq,~) is fuzzy Lipschitz, the converse is not true in general as the next
example shows (notice that by Propositions 11 and 15, the converse is true
if f : (X,Md, ∗)→ (Y,Mq,~) is fuzzy contractive or fuzzy nonexpansive).

Example 16. Let us consider the real line R, and the discrete metric d and
the Euclidean metric e on R. It is obvious that the map f : (R, d) → (R, e)
given by f(x) = x2 is not Lipschitz since {|x2−y2| : x, y ∈ R} is not bounded.
Nevertheless f : (R,Md, ·) → (R,Me, ·) is fuzzy Lipschitz since given t > 0
we have that

dil(f, t) = sup
x 6=y

1−Me(f(x), f(y), t)

1−Md(x, y, t)
= sup

x 6=y

e(f(x),f(y))
t+e(f(x),f(y))

d(x,y)
t+d(x,y)

= sup
x 6=y

e(f(x), f(y))

d(x, y)

t+ d(x, y)

t+ e(f(x), f(y))
= sup

x 6=y

|x2 − y2|(t+ 1)

t+ |x2 − y2|
≤ t+ 1.

As a consequence of the previous results, we can infer that there is a close
relationship between the different concepts of fuzzy Lipschitz maps mainly
when the Lipschitz constant is less than or equal to 1. But due to its similarity
with the crisp concept of Lipschitz map, we consider the definition of fuzzy
Lipschitz map due to Yun, Hwang and Chang [37] more suitable for the aim
of this paper. Nevertheless, for reasons that will become clear in the next
section, it is convenient to use a broader definition of fuzzy Lipschitz map
including the dependence of the parameter t.

Definition 17. Given two fuzzy metric spaces (X,M, ∗), (Y,N,~), we will
say that a map

f : X × (0,∞)→ Y

is a fuzzy Lipschitz map if the “extended dilation”

dil(f, t) := sup
x 6=y

1−N(f(x, t), f(y, t), t)

1−M(x, y, t)

is finite for every t > 0.
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We will show that the extension results can be applied to this class of
maps: if the original fuzzy Lipschitz map f depends on t, then the extension
depends on t too. But we will also prove that, under reasonable requirements,
if f does not depend on t —despite being a fuzzy Lipschitz map—, then we
can choose an extension which also does not.

We can write the definition of our Lipschitz-type maps in the usual terms,
that is, involving inclusions of sets and inequalities as in the classical presen-
tation of Lipschitz maps. In this way, we can say that f is fuzzy Lipschitz if
and only if for each x ∈ X and t > 0 there is a constant K(t) such that

f(BM
ε (x, t), t) ⊆ K(t)BN

ε (f(x, t), t),

which gives an inequality as the next one for each t > 0,

1−N(f(x, t), f(y, t), t) ≤ K(t)
(

1−M(x, y, t)
)
, x, y ∈ X.

Notice that we can take K(t) = dil(f, t).

5. The McShane-Whitney extension theorem for fuzzy Lipschitz
maps

In what follows we show our main result, the McShane-Whitney extension
theorem in the realm of fuzzy metric spaces. To achieve this, we will consider
a special type of fuzzy metrics on R.

Definition 18. A fuzzy metric (M, ∗) on R is said to be a Euclidean fuzzy
metric if there are functions φ, g : R+ → R+ such that φ is increasing and

M(x, y, t) = 1− φ(|x− y|)g(t).

In this case we will denote M by Mφ,g and we will say that (R,Mφ,g, ∗) is a
Euclidean fuzzy metric space.

Example 19. Let us consider X = [0, 1] and M : X2 × (0,+∞) → [0, 1]
given by M(x, y, t) = 1−|x−y| for all x, y ∈ X and all t > 0. It is easy to see
that (M, ∗ L) is a Euclidean stationary fuzzy metric induced by the functions
φ, g : R+ → R+ given by

φ(x) = x

g(x) = 1

for all x ∈ X.
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Example 20 (cf. [13, Example 6]). Let us consider two functions φ, g :
R+ → R+ such that φ is strictly increasing, subadditive, bounded by k > 0
and φ−1(0) = {0}, meanwhile g is decreasing, bounded by 1

k
and greater than

0. Then it is easy to see that (M, ∗ L) is a Euclidean fuzzy metric on R where

M(x, y, t) = 1− φ(|x− y|)g(t).

We only check the triangle inequality. Let x, y, z ∈ R and t, s > 0. Since φ
is subadditive and strictly increasing then φ(|x− y|) ≤ φ(|x− y|+ |y− z|) ≤
φ(|x− z|) + φ(|z − y|). Using that g is decreasing we have that

φ(|x− y|)g(t+ s) ≤ φ(|x− z|)g(t+ s) + φ(|z − y|)g(t+ s)

≤ φ(|x− z|)g(t) + φ(|z − y|)g(s).

That is,

1− φ(|x− y|)g(t+ s) ≥ 1− φ(|x− z|)g(t)− φ(|z − y|)g(s),

what gives
M(x, y, t+ s) ≥M(x, z, t) ∗ L M(z, y, s).

Let (X,M, ∗) be a fuzzy metric space and consider a Euclidean fuzzy
metric space (R, Nφ,g,~). If f : (X,M, ∗)× (0,∞)→ (R, Nφ,g,~) is a fuzzy
Lipschitz map then for each t > 0 there is a positive real number K(t) such
that

1−Nφ,g(f(x, t), f(y, t), t) ≤ K(t)
(

1−M(x, y, t)
)

φ(|f(x, t)− f(y, t)|)g(t) ≤ K(t)
(

1−M(x, y, t)
)

for all x, y ∈ X. By composing with the increasing function φ−1 we obtain

|f(x, t)− f(y, t)| ≤ φ−1
(K(t)

g(t)

(
1−M(x, y, t)

))
, x, y ∈ X.

Due to the fact that | · | is a norm on R, we automatically get from the
inequality above that for each t > 0, the inequality

|f(x, t)− f(y, t)|

16



≤ inf
n

{ n∑
i=1

φ−1
(K(t)

g(t)

(
1−M(xi, xi+1, t)

))
, x1 = x, x2, ..., xn, xn+1 = y, xi ∈ X

}
,

where x, y ∈ S. We will write dt,f (x, y) for the second term of this inequal-
ity, that is clearly a pseudometric on X for each t > 0. Therefore, we obtain
in this way a typical Lipschitz inequality for the function f(·, t) : X → R,
where the spaces X and R are assumed to be pseudometric spaces with the
explained pseudometrics.

This construction gives the proof of the following extension theorem. Note
that we have to take the elements xi in all the set X in the definition of dt,f
and not only the ones of S.

Theorem 21. Let (X,M, ∗) be a fuzzy metric space and (R, Nφ,g,~) be a
Euclidean fuzzy metric space. Let S ⊆ X and suppose that f : (S,M, ∗) ×
(0,∞) → (R, Nφ,g,~) is a fuzzy Lipschitz map. Then the following state-
ments are equivalent.

(i) f(·, t) : (S, dt,f )→ R is nonexpansive for all t > 0.

(ii) The function f can be extended as a fuzzy Lipschitz map to X×(0,∞).

Proof. (i) ⇒ (ii) Fix t > 0. By assumption, the function f(·, t) : (X, dt,f )→
R is Lipschitz so, for example, the McShane formula provides an extension
f̂(·, t) of f(·, t) to all the set X. Therefore, we have in particular that for each
x, y ∈ X,

|f̂(x, t)− f̂(y, t)| ≤ dt,f (x, y) ≤ φ−1

(
K(t)

g(t)

(
1−M(x, y, t)

))
,

and so

1−Nφ,g(f̂(x, t), f̂(y, t), t) = φ(|f(x, t)− f(y, t)|)g(t) ≤ K(t)
(
1−M(x, y, t)

)
.

Since t > 0 is arbitrary, f̂ is a fuzzy Lipschitz map.
(ii) ⇒ (i) Suppose that f allows an extension f̂ to the whole X which is

fuzzy Lipschitz. Then given t > 0 we have that

1−Nφ,g(f̂(x, t), f̂(y, t), t) ≤ K(t)(1−M(x, y, t))

φ(|f̂(x, t)− f̂(y, t)|)g(t) ≤ K(t)
(
1−M(x, y, t)

)
|f̂(x, t)− f̂(y, t)| ≤ φ−1

(
K(t)

g(t)

(
1−M(x, y, t)

))
(1)
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for all x, y ∈ X. Fix now x, y ∈ S. Given n ∈ N and {x1, . . . , xn+1} ⊆ X such
that x1 = x and xn+1 = y we can use inequality (1) to obtain

|f(x, t)− f(y, t)| = |f̂(x, t)− f̂(y, t)|

≤
n∑
i=1

|f̂(xi, t)− f̂(xi+1, t)| ≤
n∑
i=1

φ−1
(K(t)

g(t)

(
1−M(xi, xi+1, t)

))
.

Since this holds for all n ∈ R and for all xi
′s, we obtain that for x, y ∈ S,

|f(x, t)− f(y, t)| ≤ dt,f (x, y).

Therefore, (i) holds.

The following result will be the main tool for working in concrete appli-
cations.

Corollary 22. Let (X,M, ∗) be a fuzzy metric space and (R, Nφ,g,~) be a
Euclidean fuzzy metric space. Let S ⊆ X and suppose that f : (S,M, ∗) ×
(0,∞) → (R, Nφ,g,~) is a fuzzy Lipschitz map with extended dilation K(t).
Assume also that for every t > 0 the map ρt : X ×X → R+ given by

ρt,f (x, y) := φ−1

(
K(t)

g(t)

(
1−M(x, y, t)

))
, x, y ∈ X,

is a metric on X. Then the function f can be extended as a fuzzy Lipschitz
map to X × (0,∞).

Proof. If the above defined map is a metric on X, then we clearly have that
it coincides with dt,f . Then we directly get (i) in Theorem 21, and the result
holds.

Remark 23. Observe that under the hypotheses of the previous corollary, we
can provide directly an extension of f by using:

• the following modified McShane formula

fM(x, t) = sup
s∈S

{
f(s)− φ−1

(
K(t)

g(t)
(1−M(x, s, t))

)}
for all x ∈ X and all t > 0.
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• the following modified Whitney formula

fW (x, t) = inf
s∈S

{
f(s) + φ−1

(
K(t)

g(t)
(1−M(x, s, t))

)}
for all x ∈ X and all t > 0.

Remark 24. The main problem to define the extension of a fuzzy Lips-
chitz function is that the Lipschitz extension obtained by our method de-
pends on the parameter t. However, under some assumptions, it can be
proved that we can obtain an extension not depending on t. For example,
let (X,M, ∗), (R, Nφ,g,~) be two stationary fuzzy metric spaces such that
(Nφ,g,~) is a Euclidean fuzzy metric. Given S ⊆ X and a fuzzy Lipschitz
function f : (S,M, ∗) → (Y,Nφ,g,~), then f is a stationary fuzzy Lipschitz
function. Furthermore, if φ−1 is subadditive then it is easy to see [7] that the
function ρt considered in the previous corollary is a metric on X which does
not depend on t, so the function f can be extended to the whole X without
depending on t (see also [3]).

Nevertheless, we can improve a little bit this result as follows.

Proposition 25. Let (X,M, ∗) be a eventually stationary fuzzy metric space
with ∗ ≥ ∗ L and (R, Nφ,g,~) be a Euclidean stationary fuzzy metric space
such that φ is strictly increasing and φ−1 is subadditive. Let S ⊆ X and
suppose that f : (S,M, ∗) → (R, Nφ,g,~) is fuzzy Lipschitz. Then f can be
extended as a fuzzy Lipschitz map to X.

Proof. Although we could use Corollary 22 to prove this proposition, for
completeness, we present a direct proof by using a suitable McShane formula.

Since (Nφ,g,~) is stationary then g must be constant. Otherwise, if
g(t1) 6= g(t2) for some t1, t2 > 0 then Nφ,g(0, 1, t1) = 1 − φ(|1 − 0|)g(t1) 6=
1−φ(|1− 0|)g(t2) = Nφ,g(0, 1, t2) which contradicts stationarity of (Nφ,g,~).

Furthermore, since (X,M, ∗) is eventually stationary we can find t0 > 0
such that M(x, y, t) = M(x, y, s) for all x, y ∈ X and all t, s ≥ t0. By
assumption we can find K(t0) > 0 such that

1−Nφ,g(f(s), f(s′), t0) ≤ K(t0)(1−M(s, s′, t0))

for all s, s′ ∈ S. Observe that dt0 : X × X → [0,+∞) given by dt0(x, y) =
K(t0)
g(t0)

(1−M(x, y, t0)) is a metric on X.
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Consider f̂ : X → R defined by the following modified McShane formula:

f̂(x) = sup
s∈S

{
f(s)− φ−1

(
K(t0)

g(t0)
(1−M(x, s, t0))

)}
for all x ∈ X. Let us check that f̂ is fuzzy Lipschitz. Given x, y ∈ X we have
that

1−Nφ,g(f̂(x), f̂(y), t) = φ(|f̂(x)− f̂(y)|)g(t0)

= φ
(∣∣∣ sup

s∈S

{
f(s)− φ−1

(
K(t0)

g(t0)
(1−M(x, s, t0))

)}
− sup

s∈S

{
f(s)− φ−1

(
K(t0)

g(t0)
(1−M(y, s, t0))

)} ∣∣∣)g(t0)

≤ φ
(∣∣∣ sup

s∈S

{
f(s)− φ−1

(
K(t0)

g(t0)
(1−M(x, s, t0))

)
− f(s) + φ−1

(
K(t0)

g(t0)
(1−M(y, s, t0))

)}∣∣∣)g(t0)

= φ

(∣∣∣∣sup
s∈S

{
φ−1

(
K(t0)

g(t0)
(1−M(y, s, t0))

)
− φ−1

(
K(t0)

g(t0)
(1−M(x, s, t0))

)}∣∣∣∣)
= φ(

(∣∣∣∣sup
s∈S

{
φ−1(dt0(y, s))− φ−1(dt0(x, s))

}∣∣∣∣) g(t0)

≤ φ
(
φ−1(dt0(x, y))

)
g(t0) = K(t0)(1−M(x, y, t0))

≤ K(t0)(1−M(x, y, t))

where in the last inequality we have used that M(x, y, t) = M(x, y, t0) when-
ever t ≥ t0 and M(x, y, t) ≤ M(x, y, t0) whenever t < t0. Consequently, f̂ is
fuzzy Lipschitz.

Moreover, f̂ extends f to X. In fact, if s0 ∈ S then

f(s0) = f(s0)− φ−1

(
K(t0)

g(t0)
(1−M(s0, s0, t0))

)
≤ f̂(s0).

On the other hand, since f is fuzzy Lipschitz for every s ∈ S we have that

1−Nφ,g(f(s), f(s0), t0) ≤ K(t0)(1−M(s, s0, t0)),

φ(|f(s)− f(s0)|)g(t0) ≤ K(t0)(1−M(s, s0, t0)),

|f(s)− f(s0)| ≤ φ−1

(
K(t0)

g(t0)
(1−M(s, s0, t0))

)
,
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and then

f(s)− φ−1

(
K(t0)

g(t0)
(1−M(s, s0, t0))

)
≤ f(s0).

Hence f̂(s0) ≤ f(s0) so f̂(s0) = f(s0).

Remark 26. Notice that under the conditions of the previous proposition,
we can provide directly an extension of f not depending on t by using

• the following modified McShane formula (as used in the proof)

fM(x) = sup
s∈S

{
f(s)− φ−1

(
K(t0)

g(t0)
(1−M(x, s, t0))

)}
for all x ∈ X, or

• the following modified Whitney formula

fW (x) = inf
s∈S

{
f(s) + φ−1

(
K(t0)

g(t0)
(1−M(x, s, t0))

)}
for all x ∈ X.

6. Applications: the extension formulas for two fuzzy metric spaces

To finish the paper, let us explain how to obtain explicit formulas provid-
ing parameterized families of extensions. These families can be used to build
machine learning tools as the ones in [5], but integrating new fuzzy elements
in them. This would provide more flexible algorithms, in the sense of not
depending so heavily on the Lipschitz constant, which could easily increase a
lot as a result of outliers among the data, producing as a consequence impre-
cise extensions. Although the same construction that we present here can be
done for a broader class of fuzzy metric spaces, we will center our attention
in two standard cases for the aim of clarity, and also because these particular
cases can be easily implemented in the context of [5].

Let us consider a strong fuzzy metric space (X,M, ∗) with ∗ ≥ ∗ L and
the Euclidean fuzzy metric space (R, NE, ∗ L) (see Example 20), given by

NE(x, y, t) = 1−min{|x− y|, 1}g(t), x, y ∈ R,

where g : [0,+∞)→ (0, 1] is a decreasing function.
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Let S ⊆ X and I : (S,M, ∗) → (R, NE, ∗ L) be a fuzzy Lipschitz map.
Since (M, ∗) is a strong fuzzy metric, by using Proposition 5 we can obtain
that the hypotheses of Corollary 22 are satisfied. Thus, we know (see Remark
23) that there are two canonical extensions of I, —provided by the McShane
and Whitney formulas—, IM , IW : X × (0,+∞)→ R. Parameter dependent
interpolations of these functions can be considered as optimal extensions of
I, and would be given by

Iα(x, t) := α(t) IM(x, t) +
(
1− α(t)

)
IW (x, t), x ∈ X, t > 0.

Here, α : (0,+∞)→ [0, 1].

• The metric model depending on a parameter. Take a metric space (X, d)
and construct the associated strong fuzzy metric space (X,Mk, ∗ L) (cf.
[13, Example 6]) defined by

Mk(x, y, t) = 1− min{d(x, y), k}
h(t)

, x, y ∈ X,

where k > 0 and h : (0,+∞) → (k,+∞) is an increasing continuous
function. Let S ⊆ X. Suppose that the function I : (S,Mk, ∗ L) →
(R, NE, ∗ L) is a fuzzy Lipschitz map. Its corresponding Lipschitz in-
equality is

1−NE(I(x), I(y), t) ≤ K(t)
(
1−Mk(x, y, t)

)
, x, y ∈ S,

for all x, y ∈ X and all t > 0, which can be rewritten as

min{|I(x)− I(y)|, 1} ≤ K(t)

g(t)h(t)
min{d(x, y), k}.

That is, there is a function Q : R+ → R+ such that

min{|I(x)− I(y)|, 1} ≤ Q(t) min{d(x, y), k}

for all x, y ∈ S and all t > 0. Then the McShane and Whitney exten-
sions of I to X × (0,∞) are given by

IM(x, t) := sup
s∈S
{I(s)−Q(t) min{d(s, x), k}}, x ∈ X,
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and

IW (x, t) := inf
s∈S
{I(s) +Q(t) min{d(s, x), k}}, x ∈ X.

Thus, a possible family of extensions would be given by functions as

Iα(t)(x, t) =α(t) IM(x, t) + (1− α(t)) IW (x, t)

=α(t) sup
s∈S
{I(s)−Q(t) min{d(s, x), k}}

+ (1− α(t)) inf
s∈S
{I(s) +Q(t) min{d(s, x), k}},

x ∈ X, t > 0. An adequate function α(t) could be given for example
by an optimization procedure, in order to define a machine learning
method incorporating fuzzy elements.

• The exponential fuzzy model. In this case, we consider the stationary
fuzzy metric (M1, ·) given by [13, Example 5],

M1(x, y, t) = e−d(x,y), x, y ∈ X,

where (X, d) is a metric space. As above, let S ⊆ X and I : (S,M1, ·)→
(R, NE, ∗ L) be a fuzzy Lipschitz function. Then, for each t > 0 we can
find K(t) > 0 such that

1−NE(I(x), I(y), t) ≤ K(t)
(
1−M1(x, y, t)

)
, x, y ∈ S,

for all x, y ∈ X and all t > 0, which can be rewritten as

min{|I(x)− I(y)|, 1} ≤ K(t)

g(t)
(1− e−d(x,y)).

Notice that since · ≥ ∗ L we have by Proposition 5 that 1− e−d(x,y) is a
metric on X.

Using the same arguments than in the previous example, we obtain
that the family of extensions would be given by functions as

Iα(t)(x, t) = α(t) IM(x, t) + (1− α(t)) IW (x, t), x ∈ X, t > 0,

where

IM(x, t) = sup
s∈S

{
I(s)− K(t)

g(t)

(
1− e−d(s,x)

)}
, x ∈ X, t > 0,
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and

IW (x, t) = inf
s∈S

{
I(s) +

K(t)

g(t)

(
1− e−d(s,x)

)}
, x ∈ X, t > 0.
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