
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Set-Based Gain-Scheduled Control via Quasi-Convex Difference
Inclusions

Antonio Sala1 | Carlos Ariño2 | Ruben Robles3

1Instituto de Automática e Informática
Industrial
Universitat Politècnica de València, Cno.
Vera s/n, 46022 Valencia, Spain

2 Department of Industrial Systems
Engineering and Design,
Universitat Jaume I, Av. Vicent Sos Baynat,
s/n. 12071 Castelló de la Plana, Spain

3Universidad Tecmilenio,
Campus Las Torres, Paseo del Acueducto
2610, 64909 Monterrey, N.L., Mexico
Correspondence
*Antonio Sala. Email: asala@isa.upv.es

Summary

A nonlinear system with sector-bounded nonlinearities may be expressed as a quasi-
LPV system (convex combination of linear models), being this a well-known fact.
The convex difference inclusion (CDI) modelling framework proposed by M. Fiac-
chini and coworkers in several of their works generalises the quasi-LPV modelling
procedure and proposes robust controllers enlarging polytopic domain of attraction
estimates. This works further generalises the CDI approach to a gain-scheduled case
including, also, some quasi-convex cases. Controller design is based on convex-
ity properties of two set valued maps describing (with some uncertainty) the state
evolution and the state-dependent set where scheduling variables take values. As
most set-based approaches, the proposal is tractable in low-dimensional cases. The
presented results encompass prior quasi-LPV and CDI models as particular cases.
KEYWORDS:
Convex difference inclusion; invariant sets; quasi-LPV systems; gain-scheduling; robust control; polyhe-
dral Lyapunov function; set-based control

1 INTRODUCTION

Determining invariant and contractive sets for dynamic systems is a control problem which has been addressed in a variety of
settings; indeed, invariance and contractiveness are close cousins of stability definitions1.
Linear parameter-varying models (LPV) are a widely-used modelling paradigm; in this work, for sake of comparison with

later improvements, we will consider discrete-time LPV systems x+ = A(ℎ)x+B(ℎ)u+E(ℎ)d, ℎ ∈ , whose state evolves in the
convex hull of a finite set of linear “vertex models” (A(ℎ) ∈ Co{A1,… , Ar} for all ℎ ∈ ), also referred to as polytopic linear
difference inclusions (LDI)2. Determining contractive sets for LPV systems is a well-studied topic, and it can be approached
either from set-based computations1,3,4,5,6 or via convex optimisation (linear matrix inequalities, LMI)7,8,9,10,11.
Smooth nonlinear systems can be easily embedded in a polytopic LDI, giving rise to quasi-LPVmodels12,13,14,15,16; thus, LPV

results can be applied to prove stability in some nonlinear control problems, with, of course, a dose of conservatism9; actually,
the quasi-LPVmodel of a nonlinear system is not unique, so the best onemight depend on the required performance objectives16.
A broader class of models is that of non-linear parameter varying models (NLPV), x+ = f (x, d, ℎ, u); however, as such, they

are too general to be useful. There is a well-studied particular case when f is a polynomial, giving rise to Sum-of-Squares (SoS)
convex optimisation approaches to nonlinear control17. Being quasi-LPV models a particular case (degree 1), a Taylor series
argumentation can be used to embed a smooth nonlinear system in the convex hull of a finite set of polynomial vertex models18,
so SoS techniques can be easily generalised to such polynomial-NLPV case; Positivstellensatz argumentations generalise S-
procedure to get convex necessary conditions for local positiveness (or Lyapunov decrescence). There are still some inherent

2

sources of conservatism9, however. Importantly, from a modelling perspective, as Taylor-series bounds wildly diverge, they
might give worse results than LPV counterparts for large modelling regions.
This work will pursue extending the above-mentioned non-LMI set-based approaches, to a class of NLPV which will just

require some convexity (or quasi-convexity) conditions on the vertex models: intentionally, neither LMI nor SOS approaches
will be pursued any further in this work.
Seminal prior works in this convexity-related line are19,20,21,22; they show that set-based LDI ideas can be generalised to the

so-called convex differential inclusions (CDI), which are more general models capable of representing nonlinear and uncertain
systems with lower conservatism (overbounding) than LDI, being these a particular case. Furthermore, they present iterative
scaling/shooting algorithms to compute contractive sets, both in analysis and robust control design settings. In the polytopic
case, such steps can be carried out with polytope manipulation software such as the multiparametric toolbox (MPT36). The cited
works, however, do not discuss the gain-scheduling problem we will address here. There are simplified representations of poly-
hedral sets which may have computational advantages (at the expense of generality), such as interval-based23 or zonotopes24,25;
these descriptions are, nevertheless, also left out of the scope of the present work.
The goal of this work is generalising the CDI ideas in19,20,21, in order to incorporate gain-scheduling options; as a corollary,

this work will also extend the set-based quasi-LPV/LDI developments in26,27. The work28 discusses a generalisation of some
concepts in these referred works to a quasi-convex setup, and a preliminary conference work29 by the authors sketches the ideas
that will be fully developed in the present contribution.
The structure of this paper is as follows: next section presents preliminary definitions and problem statement; Section 3 reviews

LPV and non-LPV modelling frameworks to which the presented results apply; Section 4 defines gain-scheduled 1-step sets and
discusses conditions to prove that a given polytope is a subset of the gain-scheduled 1-step one; actual algorithms to approxi-
mately compute such sets as well as contractive set estimates are discussed in section 5; stabilisation via Minkowski polyhedral
Lyapunov functions in undisturbed cases is considered in Section 6; Section 7 provides numerical examples, comparing with
options in prior literature. Finally, a conclusion section closes the paper.
Notation.
Sets: In the sequel, Δ will denote the standard simplex Δ ∶= {ℎ ∈ ℝn ∶

∑n
i=1 ℎi = 1, ℎi ≥ 0, i = 1,… , n}. Given arbitrary

sets Σ and Γ in some vector space and a scalar � ∈ ℝ, �Σ will stand for the linear transformation (scaling) of set Σ. Also, Co(Σ)
will denote the convex hull, and Σ⊕ Γ will denote the Minkowski sum Σ⊕ Γ ∶= {z ∶ ∃s ∈ Σ, g ∈ Γ s.t. z = s+ g}. (Γ) will
denote the power set (set of all subsets) of Γ. Given a polytopic set Γ, vert(Γ) will denote the set of its vertices. In the case of a
set of matrices, denoted in boldface, � ⊂ ℝn×m, given two constant matricesM ∈ ℝq×n,N ∈ ℝm×s, we will define the product
M ⋅ � ⋅N asM ⋅ � ⋅N ∶= {Q ⊂ ℝq×s ∶ ∃S ∈ � s.t. Q =M ⋅ S ⋅N}. Minkowski sum and products of sets of matrices with
compatible dimensions will be also denoted with⊕ and⊗, and product notation ⋅ or⊗will be omitted if clear from the context.
Set-valued maps: A set valued map  with domain Σ and range Γwill be understood as an operator that maps an element of
a vector space x ∈ Σ to a set  (x) ⊆ Γ. Equivalently, it is an ordinary mapping from Σ to the power set of Γ, i.e.,  ∶ Σ → (Γ).
Conversely, ordinary functions f ∶ Σ → Γ can be understood as “deterministic” set-valued maps so the image of x ∈ Σ is a set
consisting of a single point {f (x)}, and “constant” set-valued maps,  (x) ∶= Γ for all x ∈ Σ can be understood, abusing the
notation, as, plainly, a set Γ. The image of a set Ω under a set-valued map  will be understood as  (Ω) ∶= ∪�∈Ω (�).

2 PRELIMINARIES

This paper will consider a discrete-time dynamic system:
x+ = f (x, d, ℎ, u) (1)

where x ∈ X ⊂ ℝn is the state vector, lying inside a so-called modelling region X, x+ ∈ ℝn will be denoted as successor state,
d ∈ D ⊂ ℝv is a vector of unmeasurable time varying parameters or disturbances inside a disturbance region D, ℎ ∈ ℝr is a
vector of scheduling parameters, assumed computable in real-time operation from available measurements, and u ∈ U ⊂ ℝm is
the so-called input vector, taking values in a feasible input region U. In the sequel, sets X, U will be assumed to be convex sets;
for computational reasons, U will be assumed to be polytopic.
Trajectories of (1) are given by x(t + 1) = f (x(t), d(t), ℎ(t), u(t)), for given initial conditions x(0). Gain-scheduled state-

feedback controllers in the form u(t) = ū(x(t), ℎ(t)) will be considered in this work, as ℎ(t) was assumed to be measurable. The

3

presented framework encompasses the cases where either ℎ(t) is a measurable exogenous signal in, say, a “pure” parameter-
varying system, or ℎ(t) ≡ ℎ(x(t))models known nonlinearities in the system (as in quasi-LPV models) or a combination of both
ℎ(t, x(t)).
As d is not measurable, and f may have a complex structure, in many works in literature, system (1) is embedded into

an uncertain or parameter-varying system with a simple-enough structure to allow for various control design techniques. In
particular, embedding (1) in the convex hull of a finite set of linear models motivates the well-known LPV approach to gain
scheduling, see references in the introduction.
Elements of d may be understood as disturbances or, equivalently, as uncertainty: given x, u and ℎ, the successor state

x+ = f (x, d, ℎ, u) can only be asserted to belong to the set ∪d∈Df (x, d, ℎ, u); note that the “shape” of such a set depends on the
source state x, the scheduling variable ℎ, and the control action u. The mathematical structure that maps a point (x, u, ℎ) onto a
set is a set-valued map (see notation at the end of the Introduction section).
Scheduling variable set-valued map. The first set-valued map to consider will be the set of values that parameters ℎ(t, x)
can take for a given state x, i.e., in the sequel we will assume ℎ(t, x) ∈ (x), being  ∶ X → (ℝr) a known set-valued map.
Actually, most LPV and quasi-LPV literature assumes  to be a constant map (i.e., a given, fixed set) such as a parameter box
(hyperrectangle) or the standard simplex; a generic (x) allows conveniently generalising to a state-dependent parameter set,
if so wished.
In the sequel, for notational brevity, possible arguments ℎ(t, x) will be omitted because, as ℎ is directly measurable by

assumption, such arguments are actually irrelevant for theoretical developments.
Embeddings. At the core of quasi-LPV/NLPV techniques is the ability to “embed” a “complex” model (1) into a “simpler”
one (linear, polynomial, convex...) amenable to some stability analysis or control design techniques. The following definitions
will set up the meaning of such “embedding” in the context of this work.
Definition 1. Let us consider a pair of set valued maps,  ∶ Θ → (ℝn), ∶ X → (ℝr), whereΘ ∶= {(x, u, ℎ) ∶ x ∈ X, u ∈
U, ℎ ∈ (x)}. The pair ( ,)will be said to be an embedding of the system (1) in modelling regionX if, for each (x, u, ℎ) ∈ Θ:

⋃

d∈D
f (x, d, ℎ, u) ⊆  (x, u, ℎ) (2)

Definition 2. Wewill say that ( ′,′) is an embedding of ( ,) if(x) ⊆ ′(x) and (x, u, ℎ) ⊆  ′(x, u, ℎ) for all (x, u, ℎ) ∈
Θ.
Informally, we will understand Definition 1 as the fact that the model (1) can be replaced1 by the parameter-dependent

difference inclusion (PDDI), associated to an embedding of it, denoted by:
x+ ∈  (x, u, ℎ), ℎ ∈ (x) (3)

perhaps introducing additional uncertainty due to stating subsethood and not equality in (2), in exchange of  being “simpler”
in a certain sense, to be later discussed: indeed, the union at the left-hand side of (2) is a set-valued map which may not have,
in general, any desirable mathematical property; the goal of the embedding process is finding some  which (conservatively)
overbounds the said union but has a suitable linear/convex structure.
Example 1. The model x+ = sin

(

x + x3 + d
)

+ℎ ⋅ u, x ∈ [−1, 1], d ∈ [−0.1, 0.1], ℎ ∈ [0, |x|] can be embedded2 into a PDDI
(3) with a pair ( ,) given by

 (x, u, ℎ) ∶= Co{0.95x + ℎ ⋅ u, 1.17x + ℎ ⋅ u}⊕ [−0.1, 0.1], (x) ∶= Co{0, |x|}.

In this way, the disturbance-dependent nonlinearity sin (x + x3 + d) is replaced by the convex hull of two undisturbed linear
models plus an interval (which might be interpreted as an additive disturbance, but conceptually different from the original d,
which entered the model in a non-linear way). Further modelling examples will be discussed in Section 3.
Definition 3. Given an input sequence (u0, u1,…), an admissible trajectory of the PDDI (3) will be understood as a sequence
of states {x0, x1,…} and scheduling variables (ℎ0, ℎ1,…) such that xk+1 ∈  (xk, uk, ℎk) and ℎk ∈ (xk) for all k ≥ 0.

1Note that, in the same way as ℎ, the disturbance parameters d may take values in a state-dependent set, say d ∈ Co{−0.1x, 0.1x}, and even the scheduling variables
might take state-and-disturbance-dependent values, so there are more general versions of the sets in which the arguments of f in (1) may take values. They are omitted to
avoid notational clutter, as the ensuing results would be just minor variations of the ones presented in this paper.

2In this simplistic example, bounds were manually obtained by inspection of the plots.

4

�1

 (�1)

�2

 (�2)y = ��1 + (1 − �)�2

Affine
S-Convex

S-Quasiconvex

 (y)

FIGURE 1 Graphical illustration of the concept of affine, S-convex and S-quasiconvex maps.

Convexity-related properties. The embeddings ( ,) in this paper will have, as an assumption in later results, some of the
convexity-related properties below for the intervening set-valued maps  and .
Definition 4. Let us consider a set-valued map  ∶  → (ℝn) with  assumed to be a convex set. The set-valued map  is :

• convex-valued, if  (�) is non-empty and convex for every � ∈ . Additionally, it will be denoted as polytopic if  (�) is
a compact polytope for all � in .

• affine, if  (�1�1 + �2�2) = �1 (�1)⊕ �2 (�2), for all �1, �2 in ℝ; linear if, additionally,  (0) = {0}.
• S-convex, if  (��1 + (1 − �)�2) ⊆ � (�1)⊕ (1 − �) (�2) for all �1, �2 in  and for all 0 ≤ � ≤ 1.
• S-quasiconvex, if  (��1 + (1 − �)�2) ⊆ Co

(

 (�1) ∪  (�2)
) for all �1, �2 in  and for all 0 ≤ � ≤ 1.

Evidently from the definitions, all affine set-valued maps are S-convex, and all S-convex ones are S-quasiconvex.
Figure 1 illustrates Definition 4 with a graphical interpretation: the gray sets depict  (�1) and  (�2); considering now an

interpediate point y ∶= ��1 + (1 − �)�2, the blue set depicts � (x1) ⊕ (1 − �) (x2) (the exact image of an affine map, in
which  (�1) would gradually “morph” to  (�2) as � decreases from 1 to zero), the pink set depicts a possible  (y) of an S-
quasiconvex map, and the green set depicts a possible  (y) of an S-convex map. For convex-valued maps, Definition 4 can be
equivalently stated in terms of linearity, convexity or quasi-convexity of the support function of a non-empty set Ω, given by
ΦΩ ∶= supx∈Ω �Tx, details omitted for brevity, see21 for details.
The key aspect of S-quasiconvexity is that a bound of the image of a polytope can be easily computed from that of its vertices,

as the following theorem states (the result is inspired in the S-convex case in19):
Theorem 1. Given a polytope P ⊂ , and an S-quasiconvex set-valued map  ∶  → (ℝn), we have

 (�) ⊆ Co

(

⋃

�∈vert(P)
 (�)

)

∀� ∈ P (4)

Proof. Denote the vertices of P as {�1,… , �r,… , �NP
}, and denote the convex hull of their images (right-hand side of (4) above)

as Ξ . Every point � ∈ P can be expressed as a convex combination � = ∑Np

i=1 �i(�)�i, with �i ∈ Δ. Let us assume that r of the
coefficients �i are non-zero; we will denote such situation by saying that � can be expressed as a non-zero convex combination
of r vertices. Now, let us assume that the non-zero convex combination of r − 1 vertices fulfills the assertion in the theorem
statement. Any point � ∈ P which is not a vertex and is a non-zero convex combination of r vertices can be expressed, for some
�i(x) > 0, i = 1,… , r as � = ∑r

i=1 �i(�)�i = �r�r + (1 − �r)ẑr−1 being �r ≠ 1 and

ẑr−1 ∶=

(r−1
∑

i=1

�i(x)
1 − �r(�)

�i

)

∈ P (5)

i.e., as the non-zero convex combination of a vertex of P and a point ẑr−1 which is a non-zero convex combination of r − 1
vertices. By the induction assumption,  (ẑr−1) ⊆ Ξ; thus, as  (�r) ⊆ Ξ, Definition 4 entails  (�) ⊆ Ξ. As the theorem is true
for combinations of 2 vertices (r = 2), and so it is trivially for r = 1, it is true for any integer r.

5

Problem statement
A plethora of results exist for quasi-LPV embeddings of nonlinear models proving stability, finding inescapable sets, gain-
scheduled state-feedback controller design, etc. using either set-manipulation software4,6,27 via the polytopic representation (7),
or convex linear matrix inequalities (LMI), see for instance7,8,10,11. However, generic LMI approaches do not easily apply to
more general3 non-LPV models, or to non-symmetric constraints, so the scope of this paper will be directed to the set-based
approach.
Basically, the objective of this work is extending to the gain-scheduled case the ideas in20 and related works19,21,32. Indeed,

the cited works discuss how to embed nonlinear systems x+ = f (x, d, u) into a single set-valued map x+ ∈  (x, u); later on,
they propose non-scheduled (robust) control of the resulting uncertain dynamic system, using a set-based approach, in the case
 is S-convex.
This work pursues generalising the above-cited results to a gain-scheduled case, using the pair ( ,), by exploiting S-

convexity or S-quasiconvexity properties of  or, to design gain-scheduled controllers u = ū(x, ℎ). As in the cited literature,
the developments in this work will use a set-based approach to control, seeking to compute the so-called invariant and contractive
sets1: the class of models used in set-based gain-scheduled LPV developments27 can be considered a particular case of the ones
considered here. Of course, jumping to nonlinear (even non-polynomial) vertex models comes at the expense of compuational
cost: efficient LMI solvers cannot apply to the class of models in consideration. The advantages of the set-based approach in
this work (and the above-cited cited ones) are its applicability to S-convex (but not necessarily linear) set-valued maps, and the
ability to naturally consider saturation and possible non-symmetric constraints in state and input. The disadvantage comes from
convex hull computations which make it impractical for high-dimensional systems in a general case.

3 MODELLING

Let us now present some examples of particular cases of the above embeddings, illustrating its generality and motivating the
usefulness of later results. Due to their popularity, motivating LPV examples are presented first, even if well known, for the sake
of completeness. Actual non-LPV embeddings, which are the main objective of this work, will come immediately afterwards.
Nevertheless, as disscussed at several places in this section, LPV and S-convex modelling issues are comprehensively dealt with
in other literature references, to which the interested reader is referred.

3.1 LPV embeddings
Uncertain LPVmodels. LPV modelling is a well-studied field nowadays, so the reader is referred to, for instance,13,16,12,9,15
for ample detail. In order to understand how to express such models in the notation required in this work, consider an LPVmodel
with disturbances � ∈ D and uncertain model matrices:

x+ =
∑r
i=1 ℎi((Ai +MiΓNi)x + Ei�) + Bu (6)

with ℎ ∈ Δ, being Δ the r − 1-dimensional standard simplex, and being Γ an unknown time-varying matrix such that Γ ∈ �,
being � ∶= Co({Γ1,… ,Γs}) a polytope of matrices. Now, considering the set-valued map:

 (x, u, ℎ) ∶=
r

⨁

i=1
ℎi((Ai ⊕Mi�Ni)x ⊕ EiD)⊕Bu (7)

we have an embedding of (6) in the form (3), considering d in (1) to be d ∶= (�,Γ), –i.e., d contains both the uncertain input
and the uncertain model matrix–, and being the constant map(x) ∶= Δ. Following Definition 4, the map  in (7) is affine
in arguments (x, u) for fixed ℎ, and affine in (ℎ, u) for fixed x.
Quasi-LPV models of nonlinear systems. The quasi-LPV models are a well-known particular case of the embeddings in
Definition 1. Let us illustrate the idea with a straightforward example, to be also used in later results.

3As discussed in the introduction, another way of obtaining more general models is using polynomial bounds and using Sum-of-squares convex programming
techniques for them 17,30,31. The sum-of-squares generalisation of LMIs, however, will not be considered in the scope of this paper, either.

6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x
1

-1

-0.5

0

0.5

1

h
=

1
.6

x
12
x

2

LDI

CDI

-8 -6 -4 -2 0 2 4 6 8

-15

-10

-5

0

5

10

15

FIGURE 2

–Left: quasi-LPV (LDI) bound of ℎ = 1.6x21x2 (red), vs. S-convex bound of the same function (blue); the repre-
sentation depicts a projection on the plane (x1, ℎ).
–Right: a quasiconvex(brown)–quasiconcave(red) bound inducing a S-quasiconvex set-valued map, embedding
the nonlinearity f (x) = sin(x) + x∕3 (grey, dashed).

Example 2. Consider an undisturbed nonlinear system x+ = f (x, u) so:
x1+ = x1 + 0.6x2 − 1.6x2x21 + 1.5u

x2+ = −1.2x1 + 0.4x2 + 0.4u
(8)

Trivially, the above expression (8) can be equivalently rewritten as:
f (x, u) ∈  (x, u, ℎ) ∶=

(

x1 + 0.6x2 − 1.6ℎ + 1.5u
−1.2x1 + 0.4x2 + 0.4u

)

(9)
with ℎ ≡ x2x21, so  is a deterministic set-valued map and, in order to express the above as in Definition 1, we just need to
set up a second deterministic set-valued map  for the scheduling variables and assert ℎ ∈ nonlin(x) ∶= {x2x21}. Evidently,as nonlin(x) is a single point and so it is  , no “uncertainty” in the embedding ( ,) is present at this stage, i.e., (9) is an
apparently linear expression that, once the explicit “shape” of ℎ is plugged into it, renders equivalent to (8).
Considering now a modelling region X ∶= {(x1, x2) ∶ |x1| ≤ a, |x2| ≤ b} we can bound the nonlinearity ℎ = x2x21 by(conservatively) asserting that ℎ ∈ LPV (x) ∶= Co({−ab⋅x1, ab⋅x1}), i.e., assuming ℎ is bounded by two linear vertex models;

uncertainty is now present asLPV (x) is an interval for x1 ≠ 0. Asnonlin(x) ⊆ LPV (x), then ( ,LPV) is an embedding of
( ,nonlin) in the sense of Definition 2, henceforth, it is an embedding of (8). Expressing a nonlinearity as a point in the convex
hull of linear functions of the state, LPV (x), actually amounts to the well-known quasi-LPV modelling, thus, our proposal
includes it as a particular case. Actually, expressing (9) as (6) is straightforward, left to the reader.

3.2 NLPV embedding examples
Even if quasi-LPV cases have been presented in first place, the modelling setup with a pair of set-valued maps ( ,) discussed
in Section 2 is more general; it is actually inspired in the non-scheduled cases in19,21.
Trivially, a function f ∶ ℝn → ℝ can be embedded into a set-valued map  , i.e., f (x) ∈  (x), if two bounding functions

f−, f+ can be found such that f−(x) ≤ f (x) ≤ f+(x); indeed,  is the interval  (x) ∶= [f−(x), f+(x)].
Now, given such bounding, if f− is concave (quasiconcave) and f+ is convex (quasiconvex), then  (x) is a S-convex (S-

quasiconvex) map, see19,28 for details. Figure 2 (right) illustrates a simple example. This is not the only way of getting such
set-valued embeddings: for instance, as another NLPVmodelling option, Property 3.18 in19 discusses how to obtain an S-convex
bounding of a function which can be expressed as the difference of two convex functions; the same work discusses additional
options.
Example 3. Considering the same system and modelling region as the quasi-LPV bound in Example 2, we can embed the
nonlinear system (8) by expressing it as (9) and considering ℎ ∈ Q(x) ∶= [−bx21, bx

2
1]: we are bounding the nonlinearity

within quadratic (concave/convex) vertex models. The difference between the linear and the S-convex embedding appears in
Figure 2(left).

7

No convexity properties in Definition 4 can be asserted fornonlin. However,  in (9) is a linear deterministic set-valued map
(indeed, it is actually an ordinary linear function); LPV in Example 2 is, too, a linear set-valued map (but not deterministic,
because its output is an interval), and the just introduced Q is S-convex.
Note thatnonlin(x) ⊆ Q(x) ⊆ LPV (x) in the chosen modelling region, so that ( ,LPV) is an embedding of ( ,Q) and

( ,Q) is an embedding of ( ,nonlin), where the latter pair faithfully replicates (8) as both maps are deterministic. As each
embedding operation enlarges the uncertainty, more conservative results should arise from LPV than from Q (i.e., smaller
set of admissible trajectories in the former, Def. 3); obviously, the least conservative would be consideringnonlin which is what
“pure nonlinear” control would ideally do, out of the scope of this work.
The main motivation of this manuscript is the fact that relaxing “linearity” in LPV to just “convexity” in Q (even quasi-

convexity in other cases) will enable obtaining larger domain of attraction estimates for (8) in a gain-scheduled setting. As usual,
when using LPV or Q, the actual fact that ℎ ≡ x2x21 will not be used at design time in the gain-scheduled designs: only the
bounds (vertex models) will be relevant; of course, in on-line operation gain-scheduled controllers will indeed be implemented
as u = ū(x, x2x21).
Example 4. If multiple nonlinearities are present, the idea can be generalised to “box” NLPV models in the form29:

x+ =
m
∑

l=1

1
∑

il=0
ℎil ⋅ Fl ⋅ fl,il (x) + Gu + Ed (10)

being Fl a constant vector, and fl,0(⋅) concave and fl,1(⋅) convex functions for each l, such that fl,0(x) ≤ fl,1(x). Understanding
(10) as a deterministic  (x, u, ℎ) and letting(x) ∶= Δ, the “reduced” map (x, u) ∶= ⋃

ℎ∈Δ  (x, u, ℎ) is S-convex. In general,
if the vertex models fl,il have uncertainty, results in this work are able to deal with models in, for instance, the form:

x+ ∈
r

⨁

i=1
ℎi ⋅

(

i(x)⊕Giu
) (11)

3.3 Convexification of product nonlinearities
Let us assume that a given nonlinearity �(ℎ, x, u) can be factored as �(ℎ, x, u) = f (ℎ, x, u)g(ℎ, x, u). If separate maps such that
f (ℎ, x, u) ∈  (ℎ, x, u) and g(ℎ, x, u) ∈ (ℎ, x, u) are built, then the product  ⊗  loses the convexity properties that might
be present in  or . For instance, (6) is not convex in (x, u, ℎ) due to the products ℎx and ℎu. Nevertheless, results requiring
convexity in fewer arguments will be later provided in particular cases.
In a generic product case, we can conservatively bound one of the factors by a set (i.e., a constant set-valued map) and keep

S-convexity (and S-quasiconvexity) properties of the other one:
Proposition 1. Consider an expression �(x) = A(x)f (x) and assume that vector f (x) can be embedded into an S-quasiconvex
(S-convex) map, i.e., f (x) ∈  (x). Then, if a polytopic set of matrices A is found such that A(x) ⊆ A for all x ∈ X, with
vert(A) = {Ai, i = 1,… , r}, the map (x) ∶= A⊗  (x) = Co

(

∪ri=1Ai ⋅  (x)
) is S-quasiconvex (S-convex).

Proof. Note that for any set S ⊆ ℝn and a linear transformation given by matrix A, we have that Co(AS) = ACo(S). Thus,
consider x̃ =
x1 + (1 −
)x2, with 0 ≤
 ≤ 1. In the S-quasiconvex case, as  (x̃) ⊆ Co( (x1) ∪  (x2)), we can assert that
(x̃) = Co

(

∪ri=1Ai (x̃)
)

⊆ Co
(

∪ri=1AiCo( (x1) ∪  (x2))
)

⊆ Co(Co
(

∪ri=1Ai ⋅  (x1)
)

∪ Co
(

∪ri=1Ai ⋅  (x2)
)

) = Co((x1) ∪ (x2)) (12)
The proof of the S-convex case roots on:
(x̃) = Co

(

∪ri=1Ai (x̃)
)

⊆ Co
(

∪ri=1Ai ⋅ (
 (x1)⊕ (1 −
) (x2))
)

=
Co
(

∪ri=1Ai ⋅  (x1)
)

⊕ (1 −
)Co
(

∪ri=1Ai ⋅  (x2)
)

=
(x1)⊕ (1 −
)(x2) (13)

Affine-in-control models
An affine-in-control NLPV system

x+ = f (ℎ, x, d) + G(ℎ, x, d) ⋅ u (14)

8

is a widely-used model structure, hence deserving special attention. The left term f (⋅, ⋅, ⋅) can be embedded into an S-convex
mapwith the ideas earlier discussed in this section or the ones in20. However, due to the productG(ℎ, x, d)u, no convexity-related
properties can be usually stated on the input term, as above discussed. One (quite conservative) option is using Proposition 1 to
coverG(ℎ, x, d)uwith an uncertain linear set-valued mapG(ℎ, x, d)u ∈ Gu, beingG a set of matrices encompassing all possible
values ofG(ℎ, x, d). Conservatism arises because subsequent control designs would not be able to schedule on the nonlinearities
in G, not present in G (they are masked as uncertainty).
In order to remove part of such conservatism, there are at least two possible options, both of which use a vector of artificial

input variables, denoted as ū.
a) Basis-function expressions (≈ feedback linearisation). We may consider an input change of variable in the form:

u = Υ(x, ℎ)ū, (15)
with Υ ∈ ℝs → ℝm being a matrix of user-defined “basis functions” and ū being “artificial” input variables; note that the size s
of ū may not be coincident with that of u, if so wished –actually, such an option is later pursued in this section, see (18)–.
Using (15) may remove conservatism if Υ(x, ℎ) is suitably selected to carry out, for instance, cancellation/linearisation/pseu-

doinverse of some elements of G(ℎ, x, d), so G(ℎ, x, d)Υ(x, ℎ) renders in a “simpler” form. The drawback of this approach is
that the choice ofΥ is problem-dependent: in some problems straightforward cancellations can be carried out (for instance, with
g(x, ℎ, d)u = 1

1+x2
u, setting Υ(x) = (1+x2) trivially results in a linearised expression g ⋅Υ ⋅ ū = ū) –indeed, motivation for (15)

comes from feedback linearisation–; however, in many higher-order models, direct input-channel linearisation is not possible.
Note also that, for computational reasons, input bounds in umust be translated to polytopic bounds on ū; this step may introduce
conservatism in a general case.
b) Polya relaxations. Polya (copositivity) relaxations are widely used in LPV gain-scheduling33,27, as well as in Sum-of-

Squares frameworks17. In a set-based LPV approach, they are used in27, for instance. Let us assume that G in the NLPV system
(14) depends only on ℎ and it can be expressed as:

G(ℎ) =
∑r
i=1 �i(ℎ)Gi, 0 ≤ �i ≤ 1,

∑r
i=1 �i = 1 (16)

where, if x is measurable, it can be assumed to be part of ℎ with no loss of generality. Thus, G(ℎ) is, by assumption, an
homogeneous polynomial of degree 1 in � = {�1,… , �r}. For the moment being, we disregard dependence of � on ℎ writing
G(�) instead.
We will represent an homogeneous polynomial of degree d with notation ∑

|s|=d �sqs, being s ∶= {s1,… , sr} an r-
dimensional multi-index composed of non-negative integers, with |s| ∶=

∑r
i=1 si and �s ∶= Πri=1�

si
i . In particular, we will

express
1 = (

r
∑

i=1
�i)d =

r
∑

i1=1
⋯

r
∑

id=1
�i1 ⋅ �id =

∑

|s|=d
�sns (17)

where ns = d!
Πri=1si!

. For instance, for d = 3 and r = 2 we would have (∑2
i=1 �i)

3 = �31 + 3�
2
1�2 + 3�1�

2
2 + �

3
2 , so for s = {3, 0}

and s = {0, 3} we have ns = 1, whereas for s = {1, 2} and s = {2, 1} we have ns = 3.
In general, we will assume that G(�) can be expressed as an homogeneous polynomial on � (degree dg , being (16) the

particular case dg = 1), and artificial ū are introduced so a gain-scheduled u is also defined as an homogeneous polynomial in �
(degree du), expressed as

u(�, ū) ∶=
∑

|s|=du

�s ⋅ ūs (18)

Now, multiplying by (∑r
i=1 �i)

dP (degree dP ≥ 0 is a complexity parameter, arbitrarily chosen), we can write G(�)u(�) as an
homogeneous polynomial of degree d ∶= dP + dg + du in �, i.e., G(�)u(�, ū) = ∑

|s|=d �snsqs(ū), where coefficients nsqs(ū) are
linear functions of ū. Then, an expression in the form (15) immediately arises.
Proposition 2. Under the above assumptions and notation, G(�)u(�, ū) ∈ (ū) ∶= Co

({

qs(ū) ∶ |s| = d
}).

Proof. Evident from the fact that∑
|s|=d �sns = 1 and �sns ≥ 0.

The usefulness of Proposition 2 lies in the fact that a non-convex G(ℎ)u can be embedded into a polytopic linear set-valued
map (ū) which depends on the new artificial inputs (decision variables), such that a gain-scheduled controller can be designed
from ū. Note that Polya relaxations do apply, with straightforward modifications, for the case of common nonlinearities in f

9

and G, such as x+ =
∑r
i=1 �i(ℎ)

(

fi(ℎ, x, d) + Giu
), as well as in expressions with products of nonlinearities giving rise to

tensor-product expressions of �i, details omitted for brevity, see for instance the notation in34.
Example 5. Consider x+ = f (x)+(2+sin(ℎ))u. Themodel can be expressed as x+ = f (x)+G(�)u, beingG(�) = ∑2

i=1 �i(ℎ)Gi,with G1 = 1, G2 = 3, �1 = 1−sin(ℎ)
2

, �2 = sin(ℎ)+1
2

, i.e., we have dg = 1. Let us consider du = 4 so the control law proposal (18)
results in the following expression involving five augmented input decision variables:

u(�, ū) = �41 ⋅ ū40 + �31�2 ⋅ ū31 + �21�
2
2 ⋅ ū22 + �1�

3
2 ⋅ ū13 + �42 ⋅ ū04 (19)

Last, we will chose complexity parameter dP = 1. In total, we can build a degree 6 homogeneous polynomial:
G(�)u(�, ū) = �61 ⋅ G1ū40 + �51�2 ⋅

(

G1ū31 + (G1 + G2) ⋅ ū40
)

+ �41�
2
2 ⋅

(

G1ū22 + G2u40 + (G1 + G2)ū31
)

+ �31�
3
2 ⋅

(

G1ū13 + G2ū31 + (G1 + G2)ū22
)

+ �21�
4
2 ⋅

(

G1ū04 + G2u22 + (G1 + G2)ū13
)

+ �1�
5
2 ⋅

(

G2ū13 + (G1 + G2) ⋅ ū04
)

+ �62 ⋅ G2ū04 (20)
and, as 1 = (�1 + �2)6 = �61 + 6�51�2 + 15�41�22 + 20�31�32 + 15�21�42 + 6�1�52 + �62 , Proposition 2 asserts that

G(�)u(�, ū) ∈ Co
{

G1ū40,
1
6
(

G1ū31 + (G1 + G2) ⋅ ū40
)

, 1
15

(

G1ū22 + G2ū40 + (G1 + G2)ū31
)

,

1
20

(

G1ū13 + G2ū31 + (G1 + G2)ū22
)

, 1
15

(

G1ū04 + G2ū22 + (G1 + G2)ū13
)

, 1
6
(

G2ū13 + (G1 + G2) ⋅ ū04
)

, G2ū04
}

(21)
and, hence, we can formally design an augmented non-scheduled controller (i.e., obtaining ū40(x), ū31(x), ū22(x), ū13(x), ū04(x)
which do not depend on ℎ) with the 7-vertex 5-input polytopic model (21), and later on reduce it to a gain-scheduled control
law (19). The same idea will be later used in Section 7, see (42) and (44) for instance.
Note that, in order to avoid notational clutter with double subscripts, we could equivalently have written u(�, ū) = �41 ū1 +

�31�2ū2 + �
2
1�

2
2 ū3 + �1�

3
2 ū4 + �

4
2 ū5 in terms of a 5-dimensional augmented input (ū1, . . . , ū5), instead of the multi-index in (19).

Further modelling examples
Additional examples of embedding nonlinearities into S-convex uncertainty (set-valued maps) are presented in19, including
parametric/additive uncertainty elements, ellipsoidal uncertainty, difference-of-convex nonlinearities, etc. The reader is referred
to the cited work and later ones by the same team for in-depth coverage of S-convex NLPV embedding (and robust, i.e.,
non-gain-scheduled, controller design). Some S-quasiconvex options appear in28, but S-quasiconvexity is lost even with linear
transformations so options in this respect are much more limited. Note, finally, that non-scheduled controller design does not
need Polya relaxations; due to this fact, such relaxations are not covered in the cited literature dealing with S-convex modelling.
For brevity, further NLPV modelling details are intentionally out of the scope of this paper.

4 GAIN-SCHEDULED 1-STEP SETS

Basic definitions
Most concepts in set-based control design root on the well-established one-step set4 concept, i.e., the set of “source” states that
can be driven in one step to a given “target set” Ω. Its gain-scheduled generalisation will be defined as:
Definition 5. Given a target setΩ, the gain-scheduled one-step set ofΩ for a pair ( ,) in a modelling regionX is defined as:

(Ω) ∶= {x ∈ X ∶ ∃ �x ∶ (x) → U such that  (x, �x(ℎ), ℎ) ⊆ Ω, ∀ℎ ∈ (x)} (22)
Conversely, if a given point x belongs to (Ω) it will be said to be 1-step feasible for Ω.
In plain words, the gain-scheduled one-step set requires, for each x in (Ω), the existence of a scheduling control function,

denoted as �x(ℎ), whose argument are the scheduling variables ℎ. The function must, obviously, be defined over the set(x) of
possible values of ℎ for a given x. Then, using u = �x(ℎ), the set of all possible successor states, x+ in (3), of the source state
x can be steered to Ω. As �x will be, in general, a different function for different source states x, the above definition implies
that there exists a gain-scheduled controller u = ū(ℎ, x) ≡ �x(ℎ) such that, for all x ∈ (Ω), and for all ℎ ∈ (x) we have
 (x, ū(ℎ, x), ℎ) ⊆ Ω. Note that, in the already cited prior non-scheduled S-convex control literature4,19,32, for each x, only a

10

constant u is considered (amounting to just a state-feedback u(x)), instead of a function �x of the scheduling variables, as done
in the gain-scheduled generalisation presented in this section.
From Definition 5, N (Ω) ∶= ((…(Ω))) is the set of states that can be driven in N steps to Ω with a gain-scheduled

control law, to be denoted as the gain-scheduled N-step set of Ω; in other words, N (Ω) contains all of the N-step feasible
states for Ω.
In general, the “exact” computation of N (Ω) for a generic nonlinear system or a PDDI (3) is a difficult problem. As dis-

cussed in earlier sections, linear (i.e., LPV) settins in a set-based approach appear in27, non-scheduled S-convex cases appear
in Fiacchini’s works20,21 and gain-scheduled options in S-convex and S-quasiconvex cases are the goal of this work. Actually,
numerical algorithms, to be later discussed, will only be able to output a polyhedron Ξwhich is an inner approximation toQ(Ω),
i.e., Ξ ⊆ Q(Ω).
The larger “modelling uncertainty” is, the smaller theN-step sets estimates will be:

Proposition 3. If ( ′,′) is an embedding of ( ,) then the one-step set for ( ′,′), denoted as Q′(Ω) is a subset of the
one-step set Q(Ω) for ( ,).
Proof. Straightforward from the fact that  ⊆  ′ and  ⊆ ′ in (22).
The following notation will be useful for later developments.

Definition 6. Let us define x(u, ℎ) ∶=  (x, u, ℎ) as the restriction to x of  , i.e., a two-argument set-valued map x ∶ U ×
(x) → (ℝn). Likewise, we will denote the restriction to ℎ, ℎ(x, u) ∶=  (x, u, ℎ), i.e., considering ℎ ∶ X̃ℎ × U → (ℝn),
with X̃ℎ ∶= {x ∶ ℎ ∈ (x)}, and the restriction to (x, ℎ) as xℎ(u), ie., xℎ(u)∶U → (ℝn).
Additionaly, in the sequel,  and  will be assumed to be polytopic (Def. 4), for computational reasons.

Conditions for 1-step feasibility (single point)
Under some convexity assumptions on ( ,), we will first present conditions to check if a single point x belongs to (Ω), for
a given “target polytope” Ω, and obtain the control action ensuring feasibility as a by-product.
Proposition 4. Consider a pair ( ,), and a given source state x ∈ X.
If the restriction to x, x(u, ℎ), is S-quasiconvex and, for each � ∈ vert((x)), there exists � ∈ U such that  (x, �, �) ⊆ Ω,

then, the following two assertions hold:
a) 1-step feasibility: x ∈ (Ω).
b) (Control law construction from vertex actions �) Denote the elements of vert((x)) as �i, i = 1,… , N , being N the

number of such vertices. For any ℎ ∈ (x), denote as �(ℎ) ∈ Δ any arbitrary choice of convex coordinates such that
ℎ =

∑N
i=1 �i(ℎ)�i, �i(ℎ) ≥ 0. The scheduling control function:

�x(ℎ) ∶=
∑n
i=1 �i(ℎ)�i (23)

achieves  (x, �x(ℎ), ℎ) ⊆ Ω for all ℎ ∈ (x).
Proof. Theorem 1 ensures that for any ℎ ∈ (x), we have

 (x, �x(ℎ), ℎ) =  (x,
n
∑

i=1
�i(ℎ)�i,

n
∑

i=1
�i(ℎ)�i) ⊆ Co

(

{ (x, �i, �i), i = 1,…N}
)

due to the S-quasiconvexity assumption on x. Now, convexity of the polytope Ω and  (x, �i, �i) ⊆ Ω ensure that the convex
hull at the right-hand side is a subset of Ω, so the control law (23) steers x to Ω, whatever the value of ℎ happens to occur.

4.1 Conditions for 1-step feasibility of a source polytope Ξ
We will now check if a given “candidate polytope” in the state space, say Ξ ⊂ X, is a subset of(Ω). For the moment being, the
target and candidate polytopes will be assumed to be explicitly known; later on, they will be conveniently generated by iterative
algorithms.
For convenience, there is no loss of generality in assuming that  in a pair ( ,) does not depend on the state. First of all, 

might not depend on “all” the state components in the original model, i.e., it might be expressed as  (x̂, u, ℎ) being x̂ only the

11

Ξ

(�1)

(�2)
(�3)

�1

�2
�3

x
(x)

FIGURE 3 Illustration on a polytope in state space Ξ with vertices (�1, �2, �3), and in scheduling variables’ space ((�1), . . .).

states that explicitly appear on the model  . Now, as the state is assumed measurable in gain-scheduled state-feedback control,
we can define ℎ̄ = (x̂, ℎ), and consider a PDDI x+ ∈  (u, ℎ̄), ℎ̄ ∈ ̄(x), i.e., a pair

(

 (u, ℎ̄), ̄(x)
)

, with ̄(x) = (x̂,(x)).
With this notation, a gain-scheduled control law will now be written as u = ū(ℎ̄).
Theorem 2. Given a pair

(

 (u, ℎ̄), ̄(x)
)

, assume that both  and ̄ are S-quasiconvex. Consider a known “target” polytope
Ω, and a candidate “source” polytope Ξ. If every � ∈ vert(Ξ) is 1-step feasible, i.e., vert(Ξ) ⊆ (Ω), then Ξ ⊆ (Ω).
Proof. Let us enumerate the vertices of Ξ as �j , j = 1,… , NΞ. S-quasiconvexity of  ensures that for any x ∈ Ξ (i.e.,
not necessarily a vertex point), we will have (x) ⊆ Co

(

⋃NΞ
j=1(�j)

)

. Equivalently, for any ℎ̄ ∈ (x), there exist convex
coordinates (�1,… , �NΞ

)

∈ Δ, and points ℎ̄j ∈ (�j) such that:

ℎ̄ =
NΞ
∑

j=1
�j ℎ̄j (24)

Hence S-quasiconvexity of ensures that the following definition of the gain-scheduled control law ū(ℎ̄), in terms of the schedul-
ing control functions from the vertices of Ξ (denoted as ��j (ℎ), which exist by assumption in the theorem statement; note that ℎ
is the second component of ℎ̄ = (x̂, ℎ)):

ū(ℎ̄) ∶=
NΞ
∑

j=1
�j��j (ℎj) (25)

fulfills:
 (ū(ℎ̄), ℎ̄) = 

(NΞ
∑

j=1
�j��j (ℎj),

NΞ
∑

j=1
�j ℎ̄j

)

⊆ Co

(NΞ
⋃

j=1
 (��j (ℎj), ℎ̄j)

)

⊆ Ω (26)

because  (��j (ℎj), ℎ̄j) ⊆ Ω and Ω is a convex set.
Constant . In many modelling cases, there are products between scheduling parameters and functions of the states, LPV
models being the paradigmatic well-known case; however, scheduling parameters are set to lie in a constant (state-independent)
box, or the standard simplex Δ. Products usually break the convexity properties; conditions below, based on the convexity
properties of the restrictions (Def. 6), apply in such frequent cases.
Theorem 3. Given a pair ( ,), assume that ℎ(x, u) is an S-quasiconvex map, and is a constant map(x) ∶= ℍ. Consider
a known “target” polytope Ω, and a candidate source polytope Ξ. If every � ∈ vert(Ξ) is 1-step feasible, then Ξ ⊆ (Ω).
Proof. Let us enumerate the vertices of Ξ as �j , j = 1,… , NΞ. For any x ∈ Ξ, denote by �(x) ∈ Δ a set of convex coordinates
such that x = ∑NΞ

j=1 �j(x)�j . By assumption, functions ��j (ℎ) exist proving �j ∈ (Ω). With them, let us define the scheduling
function:

�x(ℎ) ∶=
NΞ
∑

j=1
�j(x)��j (ℎ) (27)

Then:

(

x, �x(ℎ), ℎ
)

= 

(NΞ
∑

j=1
�j(x)�j ,

NΞ
∑

j=1
�j(x)��j (ℎ), ℎ

)

⊆ Co

(NΞ
⋃

j=1

(

�j , ��j (ℎ), ℎ
)

)

⊆ Ω (28)

12

Even if products appear, in order to apply the above results, in some cases changes of variable can be made. The follow-
ing corollary casts our preliminary conference paper29 in the context of the just presented results (in fact, a generalisation
incorporating quasiconvexity, disturbances and Polya relaxations).
Corollary 1 (29). Consider the affine-in-control PDDI given by:

x+ ∈
r
∑

i=1
�ifi(x)⊕G ⋅ u ⊕ D (29)

with� ∈ Δ, fi ∶ ℝn → ℝn being the so-called “vertexmodels”, possibly nonlinear,G being a polytopic set ofmatricesmodelling
“input uncertainty” and Polya relaxations, if needed (as discussed in Section 3), andD is a polytopic set where bounded additive
disturbances may take values. Denote (x) ∶= Co(fi(x)), and assume that  is a S-quasiconvex map. Consider a “target”
polytope Ω, and a candidate source polytope Ξ. The vertices of Ξ will be enumerated as �j , j = 1,… , NΞ; those of D will be
enumerated as dk, k = 1,… , ND. If, for each i ∈ {1, 2,… , r}, j ∈ {1,… , NΞ} there exist �ij such that the inclusion condition
below holds:

fi(�j) ⊕ G ⋅ �ij ⊕ D ∈ Ω (30)
then Ξ ⊆  (Ω).
Proof. Alternatively from the proof in29, we can make the change of variable ℎ =

∑r
i=1 �ifi(x). Then, x+ ∈  (x, ℎ, u) =

ℎ ⊕Gu ⊕ D, and, trivially ℎ ∈ (x).
Now, in order to apply Theorem 2, we can state that x̂ is empty, so ℎ ≡ ℎ̄, and, with a slight abuse of notation,  ≡  , ≡ .
Thus,  is affine (hence S-quasiconvex), and  is S-quasiconvex. Also, (30) for fixed j asserts that each vertex of Ξ fulfills

conditions in Proposition 4 so vertices are 1-step feasible (S-quasiconvexity of x trivially holds as  does not depend on the
state). Hence, conditions for Theorem 2 apply, and a gain-scheduled control law can be built.
Corollary 2. Given a PDDI defined by a pair ( ,) or the equivalent representation ( ,), if a collection of points �1, . . . , �N
is 1-step feasible for a target set Ω, and the convexity conditions in the theorem statements in this section hold, the polyhedron
Ξ = Co

(

⋃N
j=1 �j

)

fulfills Ξ ⊆ (Ω).
Proof. Omitted, as it’s trivial from Theorem 1.

5 APPROXIMATION OF 1-STEP SETS: ALGORITHMS

In order to build tractable algorithms based on the above results, we need a polynomial-time sufficient condition to check, given
x, � and a target set Ω, if there exists � such that  (x, �, �) ⊆ Ω. Indeed, Proposition 4 states that if such check is successful for
all � ∈ vert ((x)), then x ∈ (Ω).
Note first that, under the polytopic assumption for  and Ω, Proposition 4 amounts to checking a finite number of conditions

in decision variable � involving vertices of (x), vertices of  , and faces (inequalities) of Ω.
In affine-in-control cases4 such as (29), this check is easy. For instance, consider polytope Ω described as a finite set of linear

inequalities,Ω ∶= {x ∈ ℝn ∶ Rx ≤ s}. Then, checking that one vertex is 1-step feasible with Proposition 4 reduces to checking
(30) for fixed j, suitably enumerating the vertices of G as Gk and those of D as dl, i.e., for all i, k, l in their respective ranges:

R
(

fi(�j) + Gk ⋅ �ij + dl
)

≤ s, (31)
This is a finite set of linear inequalities, whose feasibility is easily assessed by standard Linear Programming code, such as
MPT36, used in later examples.
In order to determine an inner approximation of the gain-scheduled one-step set of a set Ω for a DI x+ ∈  (x, u, ℎ), we can

use the following “ray-tracing” algorithm:

4In the non affine-in-control case, if the support function of xℎ(u), i.e., Φxℎ(u)(�, u) ∶= supy∈xℎ(u) �
T y, is convex or quasi-convex in u, computationally viable

conditions may be cast 19,35 as xℎ(u) ⊆ Ω is equivalent to a finite set of convex (or quasi-convex) constraints Φxℎ(u)(�, u) ≤ ΦΩ(�), see 19 for details, omitted here for
brevity.

13

Algorithm 1 [one-step set, inner polytopic approximation]
Inputs: Ω (target set, verifying Ω ∈ X).
1. Generate an arbitrary set of K unit-norm vectors �1, . . . , �K in ℝn (state space).
2. For each �k, k = 1,… , K , determine by bisection the largest scaling
k such that �k ∶=
k�k ∈ (Ω), using

Proposition 4.
3. Form Ξ ∶= Co({�k, k = 1,… , K}).
4. End. Corollary 2 ensures that Ξ ⊆ (Ω). We will denote the resulting polyhedral approximation as ̃(Ω) ∶= Ξ.

5.1 Contractive set computation
Definition 7. A set Ω ⊆ X is said to be gain-scheduled control �-contractive for a pair ( ,) if Ω ⊆ (�Ω). Setting � = 1,
Ω will be said to be gain-scheduled invariant if Ω ⊆ (Ω).
The above definition is the generalisation of the non-scheduled control �-contractive sets1,4,19 to the scheduled case27: �-

contractive sets are the basic element of geometric decay-rate stability analysis around an equilibrium point set as the origin
x = 0, later analysed on in Section 6. Of course, if only computations regarding “invariance” (� = 1) were pursued, then the
origin would have no special meaning in such a case.
As, by definition contractiveness of Ω is equivalent to Ω ⊆ (�Ω), the one-step set operator approximated by Algorithm 1

can be used to compute a contractive set by repeated application of it.
Indeed, starting with an arbitrary set Ξ0 ∶= S, we can repeat Ξk+1 = ̃(�Ξk) until Ξk ⊆ Ξk+1; then, Ξk ⊆ Ξk+1 ⊆ (�Ξk) so

it is �-contractive.
In a LPV case (see4 for non-scheduled versions, and27 for a gain-scheduled case), there is alternative implementation of

Algorithm 1 that converges to a set Ω fulfilling Ω = Q(�Ω) in a finite number of repetitions if the LPV system is quadratically
asymptotically stabilizable. However, in the general S-quasiconvex case dealt with here, there is no guarantee that repeated
application of the operator ̃ (result of Algorithm 1) reaches a contractive set, due to the approximate nature of ̃. So, if
Algorithm 1 does not succeed in finding a contractive set for a given nonlinear system (perhaps because number of raysK is too
small), an alternative option (at least in a disturbance-free case) is setting a “small enough” modelling region around the origin,
and use an auxiliary LPV embedding. Indeed, if the classical Jacobian linearisation is stabilizable, a small modelling region
will render an LPV representation of a nonlinear systems with vertex models close to such linearisation16, so feasibility of LPV
algorithms can be ultimately guaranteed. This is, for instance, the suggestion in20.
In order to expand the resulting “small” contractive set using less-conservative S-quasiconvex models, we can use Algorithm

2 below, which actually is a gain-scheduled reinterpretation of the shooting algorithm arising from equation (11) in20. The
algorithm can obtain progressively larger �-contractive sets if one of them (to be denoted as “seed” set) is available. It should
run “forever” in theory or, in practice, until some termination criteria (maximum iterations, volume of the set, etc.) is met.

Algorithm 2 [contractive set expansion20]
Inputs: Ω0, an initial gain-scheduled �-contractive polyhedral “seed” set.
1. Set k = 0.
2. Choose a random unit-norm vector �.
3. Determine, by bisection and Proposition 4, the largest scaling
 > 0 such that
� ∈ (�Ωk).
4. Set Ωk+1 = Co(Ωk ∪ {
�}). As Ωk ⊆ Q(�Ωk), Corollary 2 ensures Ωk+1 ⊆ Q(�Ωk) ⊆ Q(�Ωk+1), because
Ωk ⊆ Ωk+1 implies Q(�Ωk) ⊆ Q(�Ωk+1). Thus, Ωk+1 is gain-scheduled control �-contractive.

5. Set k = k+ 1. If k < kmax, go to step 2, otherwise end. The algorithms provides a sequence of �-contractive sets
which verify Ω0 ⊆ Ω1 ⊆ Ω2 ⊆…

Example 6. In order to illustrate Algorithm 2, let us consider the PDDI
x+ =

(

0.5x1 + ℎ
0.5x2 + ℎ

)

+
(

1
0.5

)

u, (x) = [−0.1(1 + |x1|), 0.1(1 + x21 + x
2
2)]

14

and constraint |u| ≤ 2. Note that  is S-convex as it has concave/convex bounds.
Step 1. The square Ω0 ∶= Co{(−1,−1), (−1, 1), (1,−1), (1, 1)} is gain-scheduled invariant. Indeed, in all four vertices ℎ ∈

[−0.2, 0.3], so with u = 0 the successor state of each vertex lies inside the square Ω0; as the model fulfills the S-quasiconvexity
conditions required in Theorem 2, invariance of the whole square is guaranteed from 1-step feasibility of its vertices.
Step 2. Now, considering Ω0 as seed set, we wish to extend the invariant set in the (arbitrary) direction � = (0.8, 0.6).
Step 3. Setting, say,
 = 2, the resulting candidate point p =
� = (1.6, 1.2)T has(p) = [−0.26, 0.5]. We need to determine

if p is 1-step feasible for Ω0, applying Proposition 4, which allows us to set up independent conditions for each vertex of (p).
For the first vertex of (p), replacing in the model equation, we must find u1 such that x+ =

(

0.54
0.34

)

+
(

1
0.5

)

u1 ∈ Ω0;
this is trivially fulfilled with u1 = 0. For the second vertex of (p), replacing in the model equation, we must find u2 such that
x+ =

(

1.3
1.1

)

+
(

1
0.5

)

u2 ∈ Ω0, fulfilled with, say, u2 = −0.3.
As
 = 2 renders a 1-step feasible point, we can try a larger
 . Bisection ends up finding
 = 3.1097 rendering p =

(2.4878, 1.8658)T so that (p) = [−0.3488, 1.0670]. In this case, the first vertex requires that
(

0.8951
0.5841

)

+
(

1
0.5

)

u1 ∈ Ω0

renders feasible, which is the case with u1 = 0 and the second vertex requires
(

2.3109
1.9999

)

+
(

1
0.5

)

u1 ∈ Ω0, true with u1 = −2.
Larger values of
 would need u above its saturation limit.
Step 4. The convex hull of the original square and the point p = (2.4878, 1.8658)T is, then, gain-scheduled invariant. This new

polyhedron would replace Ω0 and a new iteration would be made. Checking that there exists an input driving a point to a square
can be done “by hand” in the first iteration, but it would need, say, linear programming for an arbitrary Ωk, see Section 5.2 next.

5.2 Control law computation
In this section, we will address the problem of, given (x, ℎ), with x ∈ Q(Ω), finding u such that  (x, u, ℎ) ⊆ Ω.
Note that, even if the prior theorems and algorithms discussed computations with vertices of one-step sets and vertices of the

scheduling variable set, the argumentation in (31) can be applied to a single point x. Under the same assumptions, once x andℎ are
known, computing a control action requires finding a feasible solution for the linear constraintsR(∑r

i=1 ℎifi(x)+Gku+dl) ≤ s,
with k and l taking all values in their respective ranges.
Linear constraints arise in all affine-in-control modelling setups. Given that the solution umay not be unique, one-step optimi-

sation may be used in implementation targeting, say, minimum ‖u‖2 (quadratic programming), minimum ‖u‖1 or ‖u‖∞ (linear
programming, LP), or optimal contraction, obtaining
∗ ∶= minu
 , subject to

R(
r
∑

i=1
ℎifi(x) + Gku + dl) ≤
s (32)

Note that x and ℎ are known in actual operation to compute u(x, ℎ); given that disturbances d are not assumed to be measurable,
their extreme vertex values must be used to build the above constraints for all l ranging over the said vertices.
For instance, if Ω is gain-scheduled �-contractive, this ensures, in the optimal contraction setup, that
∗ ≤ � for all x ∈ Ω.

This is parallel to LDI cases4,27, so details are left to the reader; an example of such computation will be used to generate the
closed-loop trajectories in the examples in Section 7, with a single linprog statement in Matlab.
Note also that, in a general case, to avoid on-line optimisation, the theorems are constructive so they actually build gain-

scheduling control laws in (23), (25), (27) from the solutions of (31) in the successive steps; details are left to the reader, for
brevity.

6 GAIN-SCHEDULED STABILISATION

In undisturbed LPV systems the origin is an invariant set (equilibrium point). In such a setting, it is well known that, if a compact
set Ξ is gain-scheduled �-contractive, so they are its scalings (until saturation or modelling region bounds are hit), and Ξ can be
considered as the level set of a Lyapunov function proving stability with geometric decay �, see1,4,21,27 for details.

15

Ξ

0

x

x̃
�Ξ

�0(ℎ0)

û(x, ℎ)

u(x̃, ℎ1)

V =
1V =

�

FIGURE 4 Illustration of the points and sets involved in the argumentations in the section: û is built from u(x̃, ℎ1) and �0(ℎ0).

The problem to be addressed in this section consists on generalising the idea to non-LPV set-valued embeddings ( ,),
so the gain-scheduled LPV case will be a particular one of Theorem 4, the main result of this section. The S-convex stability
analysis, cf. Proposition 5 in21, will, too, be a particular case of the results here.
Definition 8. A pair ( ,)will be said to have a gain-scheduled controllable equilibrium at the origin if 0 ∈ X and there exists
a function �0 ∶ (0) → U such that  (0, �0(ℎ), ℎ) = {0} for all ℎ ∈ (0), i.e., if the origin is gain-scheduled invariant.
Definition 9. A PDDI (3) is (locally) gain-scheduled stabilisable with geometric decay 0 ≤ � < 1, if there exists a control law
u(x, ℎ) such that:

1. There exists a a compact set Ξ, containing the origin in its interior, which is gain-scheduled invariant with a known control
law u(x, ℎ), i.e.,  (x, u(x, ℎ), ℎ) ∈ Ξ for all x ∈ Ξ, ℎ ∈ (x),

2. there exists an homogeneous Lyapunov function V ∶ Ξ → ℝ+, with V (x) > 0 for x ≠ 0 such that, for all x ∈ Ξ,
V (�x) = �V (x), and for all ℎ ∈ (x), for all x+ ∈  (x, u(x, ℎ), ℎ), V (x+) ≤ �V (x).

Indeed, let us consider x0 ∈ Ξ and an admissible trajectory of the uncertain system (Def. 3) under the gain scheduled law
in Definition 9, i.e., such that xk+1 ∈  (xk, u(xk, ℎk), ℎk) and ℎk ∈ (xk) and, from the above definition (item 1), xk ∈ Ξ
for all k. If conditions in Definition 9 hold, we have V (xk) ≤ �kV (x0) for each k. Homogeneity entails that the level set
Ωk ∶= {x ∈ Ξ ∶ V (x) ≤ �kV (x0)} coincides with the scaling �kΩ0, so we can ensure xk ∈ �kΩ0, and that is what we
understand as geometric decay in the above definition5. Of course, the state converges to the origin, being its norm bounded by
‖xk‖2 ≤M�k‖x0‖2, withM = max�∈Ωk

‖�‖
‖x0‖

, for any k such that Ωk lies entirely in the interior of Ξ, details left to the reader.
Assumption 1. Let us assume that there exists a compact, convex, shape-independent gain-scheduled control �-contractive set
Ξ for the PDDI (3), i.e., a control law u(x, ℎ) exists so  (x, u(x, ℎ), ℎ) ∈ �Ξ for all x ∈ Ξ and ℎ ∈ (x). Let us additionally
assume that the pair ( ,) has a gain-scheduled controllable equilibrium at the origin, and 0 ∈ Ξ.
In the sequel, V (x) will denote the Minkowski function of the set Ξ in the above assumption, i.e.,

V (x) ∶= min {
 ∶
 ≥ 0, x ∈
Ξ} , (33)
which is, trivially, homogeneous. and plays a key role in set-based control1.
Note that, for any x ∈ Ξ, x ≠ 0, the point x̃ ∶= V −1(x)x ∈ Ξ lies in the boundary of Ξ, i.e., V (x̃) = 1 (an illustration on the

meaning of the different points and sets appears on Figure 4).
Assumption 2. Considering that Assumption 1 holds, let us additionally assume that, for all x ∈ Ξ, x ≠ 0, for all ℎ ∈ (x),
being x̃ ∶= V −1(x)x, there exist ℎ0 ∈ (0), ℎ1 ∈ (x̃) such that, defining the interpolated control law:

û(x, ℎ) ∶= V (x) ⋅ u(x̃, ℎ1) + (1 − V (x)) ⋅ �0(ℎ0) (34)
where �0(⋅) comes from Definition 8, the map  and û(x, ℎ) verify:

 (x, û(x, ℎ), ℎ) ⊆ V (x) ⋅  (x̃, u(x̃, ℎ1), ℎ1), (35)
Note that Assumption 2 seems a convoluted one at first glance, but it applies to some of the previously discussed modelling

examples, as follows.
5Well, as the Lyapunov level sets must be included in Ξ, shape may change in the first instants of the trajectory: consider the scaling argumentation as an informal

interpretation of Definition 9.

16

Proposition 5. Given a pair ( ,) having a gain-scheduled controllable equilibrium at the origin, consider Assumption 1 as
true. Then, Assumption 2 holds if any of the following conditions is true:

1. Both  and  are S-convex,
2. ℎ(x, u) is S-convex, and (x) is a constant map (x) = ℍ.

Proof. [Case 1] Assumption 2 is fulfilled because, by S-convexity of , considering any x ∈ Ξ, ℎ ∈ (x), given that x =
V (x)x̃ + (1 − V (x)) ⋅ 0, there exist ℎ0 ∈ (0), ℎ1 ∈ (x̃) such that ℎ = (1 − V (x)) ⋅ ℎ0 + V (x) ⋅ ℎ1. Then,
 (x, û(x, ℎ), ℎ) =  (V (x)x̃, V (x) ⋅ u(x̃, ℎ1) + (1 − V (x)) ⋅ �0(ℎ0), V (x) ⋅ ℎ1 + (1 − V (x)) ⋅ ℎ0)

⊆ V (x) ⋅  (x̃, u(x̃, ℎ1), ℎ1)⊕ (1 − V (x)) ⋅  (0, �0(ℎ0), ℎ0) = V (x) ⋅  (x̃, u(x̃, ℎ1), ℎ1)⊕ {0} = V (x) ⋅  (x̃, u(x̃, ℎ1), ℎ1)

[Case 2] Assumption 2 is fulfilled because, as (0) = (x) = (x̃) = ℍ, considering ℎ1 = ℎ0 = ℎ ∈ ℍ, we have:
 (x, û(x, ℎ), ℎ) =  (V (x)x̃, V (x) ⋅ u(x̃, ℎ) + (1 − V (x)) ⋅ �0(ℎ), ℎ)

⊆ V (x) ⋅  (x̃, u(x̃, ℎ), ℎ)⊕ (1 − V (x)) ⋅  (0, �0(ℎ), ℎ) = V (x) ⋅  (x̃, u(x̃, ℎ), ℎ)⊕ {0}

Theorem 4. If assumptions 1 and 2 hold, the gain-scheduled control law û(x, ℎ) in (34) ensures that Ξ is gain-scheduled
stabilisable with geometric decay �.
Proof. First, convexity of Ξ and 0 ∈ Ξ ensure that �Ξ ⊆ Ξ, so the first condition (invariance) in Definition 9 is fulfilled. Let us
now prove that the Minkowski function V (x) in (33) is a Lyapunov function with the required properties in Definition 9. Under
the definition of V (x), �Ξ = {x ∶ V (x) ≤ �} for any � ≥ 0. Also, V (x) is homogeneous, in the sense that V (�x) = �V (x).
Now, considering any x ∈ Ξ, from (35) and �-contractiveness of Ξ, there exists ℎ1 ∈ (x̃) such that:

 (x, û(x, ℎ), ℎ) ⊆ V (x) ⋅  (x̃, u(x̃, ℎ1), ℎ1) ⊆ V (x) ⋅ �Ξ = �V (x) ⋅ Ξ (36)
Given that the set �V (x) ⋅ Ξ can be expressed as {� ∶ V (�) ≤ �V (x)}, we can assert that for every x+ ∈  (x, û(x, ℎ), ℎ), we
have V (x+) ≤ �V (x).
The above result generalises well-known results prior literature, in an LPV case (corollary below) and in a non-LPV one21:

Corollary 3. If a compact, convex, gain-scheduled �-contractive set Ξ containing the origin is found for the uncertain LPV
model (7) with D = {0}, then it is gain-scheduled stabilizable.
Proof. Indeed, ℎ is linear, hence S-convex,  (0, 0, ℎ) = {0}, and (x) = Δ, so case (2) in Proposition 5 holds, hence
Assumption 2 also does.
Corollary 4. The results in this section imply the stability results for the non-scheduled S-convex case discussed in Proposition
5 in21.
Control law computation
Regarding actual computation of a stabilising gain-scheduled control law, as Theorem 4 is constructive, the control law (34) can
be actually computed from the one which keeps the origin invariant, �0(ℎ), and the control actions on the boundary of Ξ, i.e.,
u(x̃, ℎ). Each of them can be easily computed, at least in affine-in-control cases, with the ideas in Section 5.2.
Nevertheless, from a generic point of view, once a gain-scheduled control Lyapunov function is available, computing the

associated gain-scheduled state-feedback control action is straightforward; indeed, if on-line optimisation were to be used, (36)
guarantees that the optimal solution, say
∗, of the LP problem of minimising
 subject to (32) fulfills
∗ ≤ �V (x) for all x ∈ Ξ.
This on-line option has been the choice for the computation of closed-loop trajectories in the example in Section 7 below.

17

7 NUMERICAL EXAMPLES

Example 7. This example will consider a variation of the 2nd-order nonlinear system (8) presented in Example 2, now with
nonlinearity in the input channel, as follows:

x+ = f (x) + g(x)u (37)
where

f (x) ∶=
(

x1 + 0.6x2 − 1.6x2x21
−1.2x1 + 0.4x2

)

∈  (x, ℎ) =
(

x1 + 0.6x2 − 1.6ℎ
−1.2x1 + 0.4x2

)

(38)
and

g(x) ∶=
⎛

⎜

⎜

⎝

1.5
1+x22

0.5
1+x22

− 0.1

⎞

⎟

⎟

⎠

(39)

with ℎ = x2x21, and a control input u constrained to U ∶= [−0.8, 0.8]. We will consider a modeling region X = {(x1, x2) ∶ x1 ∈
[−a, a], x2 ∈ [−b, b]}, for some values of a > 0 and b > 0.
Input nonlinearity modelling. Let us first consider modeling the input-channel nonlinearity g(x). As a first bound, given
that 1∕(1 + x22) is a monotonic function, we can state that:

g(x) ∈ G[1] ∶= Co ({g(0), g(b)}) . (40)
Thus, considering nonlinearities in g(x) as plain polytopic uncertainty, we can state g(x)u ∈ G[1]u.
We will now consider a less-conservative convexification of the input-channel nonlinearity g(x)u, as discussed in Section 3.3.
Defining:

�2(x2) =
x22(1 + b

2)

b2(1 + x22)
, �1(x2) = 1 − �2(x2) (41)

we have that (�1(x2), �2(x2)) ∈ Δ for every x2 ∈ [−b, b], and g(x) = �1(x2)G1 + �2(x2)G2, denoting G1 ∶= g(0), G2 ∶= g(b),
as done in (16); for the moment being, this is just a rewriting of (40). However, now the functions � can be considered to be
part of the scheduling vector in state-feedback control, and we can propose a control law u(�, x) ∶= �1(x2)ū1(x) + �2(x2)ū2(x)
which would correspond to using Υ(x, ℎ) ∶= (�1 �2) in (15); note that, in the sequel, arguments of � are omitted for a simpler
notation. In this way, the control synthesis problem is recast to finding a suitable ū = (ū1 ū2)T augmented control law.
Now, analogously to (20) and (21) in Example 5, using dP = dg = du = 1, a Polya expansion of degree 3 allows writing:
G(x)u(x) = (�1 + �2)(�1G1 + �2G2)(�1ū1 + �2ū2)

= �31G1ū1 + �
2
1�2((G1 + G2)ū1 + G1ū2) + �1�

2
2(G2ū1 + (G1 + G2)ū2) + �

3
2G2ū2 (42)

and, as 1 = (�1 + �2)3 = �31 + 3�21�2 + 3�1�22 + �32 , following the argumentation in Proposition 2 and the referred example, we
can define:

G[3] ∶= Co
(

[G1 0], [0 G2],
1
3
[G1+ G2 G1],

1
3
[G2 G1+ G2]

)

(43)
In this way, the input nonlinearity g(x)u in (37) with the above-proposed expression u(�, x) can be embedded6 in the polytopic
set-valued map:

g(x) u(�, x) ∈ G[3]
(

ū1
ū2

)

(44)
Actually, the more conservative bound arising from (40) would be recovered if the control law were constrained to ū1 = ū2.

State nonlinearity modelling. The embedding options for f (x) have already been considered in examples 2 and 3, arising
from (38) and different boundings of ℎ ∶= x2x21. For convenience, we will recall such results here:

1. LPV bound, ℎ ∈ LPV = [−bax1, bax1].
2. NLPV (S-convex) bound, ℎ ∈ Q = [−bx21, bx

2
1].

As discussed in Example 3, the S-convex bound is tighter than the LPV one for the same value of b. Note, additionally, that
only the bound on x2 has been used to craft the above S-convex embedding. Thus, the S-convex bound actually applies to a
modelling region X̂ ∶= {(x1, x2) ∶ −b ≤ x2 ≤ b}, thus x1 being unconstrained.

6The bound (44) is shape-independent, in the sense that it holds for any �1 and �2 in the standard simplex, without any explicit knowledge of the actual “shape” of
the functions in (41).

18

Test cases: We will compute �-contractive sets for one LPV setup (prior literature) and three NLPV ones:
1. Gain-scheduled LPV approach (cf. LMIs in well-known literature, or set-based approach in27) with  from (38) and

degree-3 Polya relaxation:
x+ = f (x) + g(x)u(�, ℎ, x) ∈  (x, ℎ)⊕G[3] ⋅ ū(x, ℎ) ℎ ∈ LPV (x) (45)

2. Robust (non-scheduled) CDI approach in19,
x+ = f (x) + g(x)u(x) ∈ CDI (x)⊕G[1] ⋅ u(x) (46)

with
CDI (x) ∶=

(

x1 + 0.6x2 − 1.6[−bx21, bx
2
1]

−1.2x1 + 0.4x2

)

(47)
i.e., considering the nonlinearity bounds as state uncertainty.

3. Gain-scheduled CDI model, with non-augmented input:
x+ = f (x) + g(x)u(ℎ, x) ∈  (x, ℎ)⊕G[1] ⋅ u(x, ℎ) ℎ ∈ Q(x) (48)

4. Gain-scheduled CDI model, with augmented input (Polya relaxation):
x+ = f (x) + g(x)u(�, ℎ, x) ∈  (x, ℎ)⊕G[3] ⋅ ū(x, ℎ) ℎ ∈ Q(x) (49)

Computation of �-contractive sets.
In order to compute shape-independent gain-scheduled contractive sets, a contraction rate of � ∶= 0.99 was sought, and the size
of modelling region X was chosen by, for instance, setting (a = 0.7, b = 1.35). The used software for polyhedron manipulation
was MPT36.
∙ Test case 1 (LPV gain scheduling): For test case 1, a first option would be finding solutions to, for instance, the LMIs, for

decision variables X = XT ∈ ℝ2×2, Fi =∈ ℝ2×2, i = 1, 2, j = 1,… , 4, k = 1, 2:
(

�2X ∗
AiX + BjFi X

)

⪰ 0, X11 ≤ a2, X22 ≤ b2,
(

X (F rowk
i)T

F rowk
i 0.82

)

≥ 0 (50)

being Bj each of the four vertices of G[3] in (43), and Ai the two vertices:

A1 =
(

1 − 1.6ab 0.6
−1.2 0.4

)

A2 =
(

1 + 1.6ab 0.6
−1.2 0.4

)

(51)
so conditions amount to requiring that the ellipsoid  ∶= {x ∶ xTX−1x ≤ 1} is contained in X and, also, u = FiX−1x does
not saturate in  . Maximisation of the geometric mean of the eigenvalues ofX with YALMIP+SEDUMI 36 produced the dashed-
line ellipsoid in Figure 5, labelled as ‘Case 1 (LMI)’. Nevertheless, the above LMIs are given just as a simple example for the
sake of illustration, because any shape-independent LMIs will yield a contractive set estimate included, by sheer definition,
into the maximal gain-scheduled shape-independent �-contractive set whose (approximate, asymptotically exact) computation
is discussed in27, in a non-LMI, set-based, approach. This justifies the use of Algorithm 1 in27 to compute the green polyhedron
in Figure 5, labelled as ‘Case 1 (MPT3)’; as discussed in the cited work, it includes the convex hull of all feasible ellipsoids from
the above LMIs as well as these from other parameter-dependent options (for the same Polya-relaxation complexity). Details on
these LPV-specific issues are out of the scope of the present manuscript.
∙ Test case 2 (non-scheduled S-convex models): Algorithm 2 has been used to compute the cyan set in Figure 5 labelled as

‘Case 2’, with a non-scheduled controller, thus reducing to the proposals in20. Note that the cited Algorithm needs a contractive
seed set. Such as set was obtained by classical set-based robust polytopic control4 in a smaller modelling region (reducing the
range of x1, i.e., the value of a). Note that the green LPV set is not “comparable” to this cyan one, i.e., there is no inclusion
relation that can be actually proved: neither ( ,) from (45) are an embedding of those from (46), nor vice-versa. As test cases
1 and 2 are from prior literature, details are not relevant to the discussion here.
∙ Test cases 3 and 4 (gain-scheduled S-convex models):
For test case 3, we defined:

ℎ̄ ≡ f, ̄(x) = CDI (x),  (u, ℎ̄) ∶= ℎ̄ ⊕G[1]u

19

FIGURE 5 Results of the shooting/LDI algorithms with different set-valued maps and gain-scheduling options embedding the
model (38)–(39).

For test case 4, the definition of  is changed to  (u, ℎ̄) ∶= ℎ̄ ⊕G[3]ū, being the rest of elements as in case 3.
Using Algorithm 2 in this work, test case 3 produced the gray contractive set in gray, and test case 4 yields the red one in

Figure 5. The contractive seed sets were the same as in case 2. Given that our gain-scheduled proposal generalises the LPV and
robust cases 1 and 2, the resulting contractive sets are larger than these from the mentioned cases, as expected.
Stability: Note that ̄(0) = {0} and u = 0 keeps the state at the origin, ensuring that the proposed models have a gain-
scheduled equilibrium at the origin in the sense of Definition 8. Hence, conditions in Proposition 5 hold for all 4 cases (of course,
stability proofs for cases 1 and 2, once feasible LMIs or contractive sets are found, are discussed in the above-cited works).
Thus, the found (gain-scheduled) control �-contractive sets are a level set of the Minkowski Lyapunov function (33) proving
closed-loop stability with their respective controllers.
Controller simulation. Regarding explicit control law computations, in this particular undisturbed example, once the
Minkowski function is proven to be a gain-scheduled control Lyapunov function, computation of a control law is straightfor-
ward as solving for u such that V (f (x) + g(x)u) ≤
V (x) is guaranteed feasible for any
 ≤ 0.99, as discussed in the central
sections of this work. Now, LP comes handy to minimise
 , i.e., targeting maximum contraction. If the red contractive polytope
in Figure 5 is described as {x ∶ Rx ≤ S}, control computation amounts to the following Matlab code:

u_ga=linprog([0 1],[R*g(x) -S],-R*f(x),[],[],[-.8 0],[.8 0.99]); u=u_ga(1);

Of course, in generic models with disturbances or unknown nonlinearities, constraints for LP would need to be built considering
all vertices of the uncertain input set, as previously discussed in (32), instead of only f (x) and g(x) in the above linprog

statement. Note, importantly, that gain scheduling is not “explicitly” visible; indeed, this roots on the same idea that well-
known quasi-LPV models for nonlinear control: quasi-LPV or S-convex embeddings enable gain-scheduled controllers to be
designed (assuming scheduling variables unknown at design time) but, later on, when scheduling variables are replaced by
known nonlinearities they become, plainly, nonlinear controllers, and the Minkowski functions end up being standard control
Lyapunov functions: gain-scheduling was merely an instrumental tool for nonlinear control.
The resulting closed-loop trajectories for 90 points on the boundary of the contractive set are depicted on Figure 6. All

trajectories, after just 4 time steps reach a small neigbourhood of the origin (brown dots), faster than the proven worst-case
geometric decay of 0.99 from uncertain embeddings, as expected.
Example 8 (3rd-order system and seed set generalisation). Consider a 3rd-order nonlinear system, whose model in the region
−2.99 ≤ x3 is given by:

x1+ = 0.8x1 + 0.5x2 + 0.1x3 + �1(x) + 0.1u 0 ≤ �1(x) ≤ 0.2(x21 + x
2
2) (52)

x1+ = 0.8x2 + 0.5x3 + 2(x) + 0.2�(x) ⋅ u −0.1|x1| ≤ 2(x) ≤ 0.2e(x2∕3)
4 − 0.2 (53)

x3+ = 0.9x3 + 3(x) + (1 − 0.4�(x)) ⋅ u 0.5 log(1 +
x3
2
) ≤ 3(x) ≤ 0.25x3, 0 ≤ �(x) ≤ 1 (54)

where �1 is an unknown-but-bounded nonlinearity, but ℎ1 ∶= 2, ℎ2 ∶= 3 and ℎ3 ∶= � are considered measurable so the
control action can depend on them. Control action is saturated to |u| = 1.5. In order to convexify the product � ⋅ u, Polya

20

FIGURE 6 Closed-loop trajectories (model and Minkowski LF from test case 4, cf. Fig. 5) with initial conditions (red) on the
frontier of the computed contractive set; simulations are carried out with the original nonlinear model (38)–(39).

FIGURE 7 Projections and perspective view of the obtained 0.999-contractive set from Algorithm 2 in Example 8. Seed set is
a prism whose projections are shown in blue.

.

relaxation with du = 1, dP = 0 introduces an augmented input (ū1, ū2) and a 3-vertex polytopic input uncertainty matrix. As all
lower/upper bounds in (52)–(54) are concave/convex, the results in this paper do apply to the above model. Aiming for a 0.999-
contractive set in closed-loop, after 1700 iterations of Algorithm 2, the resulting gain-scheduled contractive set (544 vertices,
1084 faces) appears in Figure 7, jointly with the initial seed7 set (blue) Ω0. As the uncertainty and scheduling variables (�1, 2,
 3) are not necessarily odd functions, a non-symmetric contractive set estimate is obtained as a result of the algorithm.

7Note, importantly, that the chosen seed set Ω0 (an arbitrary prism) is not proven to be gain-scheduled contractive. Nevertheless, once Algorithm 2 (fortunately)
obtains a set Ωk with Ω0 strictly in its interior, then all vertices of Ωk can be driven to the �-scaling of Ωk−1 ⊆ Ωk, so Ωk is �-contractive. Note that, in a general case
(specially with disturbed systems), there is no guarantee that Algorithm 2 ends up with a set having an arbitrary seed one in its interior. Details omitted, for brevity.

21

8 CONCLUSIONS

This paper has presented a gain-scheduled generalisation of set-based algorithms to compute control �-contractive sets in prior
literature, designing gain-scheduled state-feedback for discrete-time systems with nonlinear vertex models. The results in this
work prove larger contractive set estimates than these prior works, due to the additional information available to compute
parameter-dependent control actions (compared to robust S-convex literature) and to the less conservative convex or quasi-
convex vertex models (instead of plain linear ones in gain-scheduled LPV literature). Actual computations for affine-in-control
systems in the examples are based on polyhedron manipulation software MPT3, and gain-scheduled controllers are computed
with linear programming code in on-line operation.

Acknowledgements
The authors are grateful to the financial support of Spanish ministry of Economy and European Union, grant DPI2016-81002-R
(AEI/FEDER, UE) to this line of research.

References

1. Blanchini F. Set invariance in control. Automatica 1999; 35(11): 1747–1767.
2. Kouramas KI, Rakovic SV, Kerrigan EC, Allwright J, Mayne DQ. On the minimal robust positively invariant set for linear

difference inclusions. In: Proc. 44th IEEE Conf. on Decision and Control, European Control Conf. ; 2005: 2296–2301.
3. Mayne DQ. Control of constrained dynamic systems. European Journal of Control 2001; 7(2): 87–99.
4. Kerrigan EC. Robust constraint satisfaction: Invariant sets and predictive control. PhD thesis. University of Cambridge,

2001.
5. Rakovic S, Grieder P, Kvasnica M, Mayne D, Morari M. Computation of invariant sets for piecewise affine discrete time

systems subject to bounded disturbances. 43rd IEEE Conf. on Decision and Control 2004; 2: 1418–1423.
6. Herceg M, Kvasnica M, Jones C, Morari M. Multi-Parametric Toolbox 3.0. Proc. of the European Control Conference

2013: 502–510.
7. Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press . 2004.
8. Guerra TM, Vermeiren L. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-

Sugeno’s form. Automatica 2004; 40(5): 823 - 829.
9. Sala A. On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annual Reviews in Control

2009; 33(1): 48–58.
10. Wu F, Dong K. Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions. Automatica 2006;

42(1): 39–50.
11. Sala A. Stability analysis of LPV systems: scenario approach. Automatica 2019; 104: 233–237.
12. Rugh WJ, Shamma JS. Research on gain scheduling. Automatica 2000; 36(10): 1401–1425.
13. Tanaka K, Wang HO. Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley & Sons

. 2004.
14. Bianchi F, Mantz R, Christiansen C. Gain scheduling control of variable-speed wind energy conversion systems using

quasi-LPV models. Control Engineering Practice 2005; 13(2): 247–255.
15. Kwiatkowski A, Werner H. PCA-based parameter set mappings for LPVmodels with fewer parameters and less overbound-

ing. IEEE Transactions on Control Systems Technology 2008; 16(4): 781–788.

22

16. Robles R, Sala A, Bernal M. Performance-Oriented Quasi-LPV Modelling of Nonlinear Systems. Int. J. Robust Nonlinear
Control 2019; 29(5): 1230–1248.

17. Prajna S, Papachristodoulou A, Wu F. Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based
approach. Proc. 5th Asian Control conference 2004; 1: 157–165.

18. Sala A, Ariño C. Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach. IEEE Transactions on Fuzzy
Systems 2009; 17(6): 1284-1295.

19. Fiacchini M.Convex difference inclusions for systems analysis and control. PhD thesis. Universidad de Sevilla, Spain, 2010.
20. Fiacchini M, Alamo T, Camacho EF. On the computation of convex robust control invariant sets for nonlinear systems.

Automatica 2010; 46(8): 1334–1338.
21. FiacchiniM, Alamo T, Camacho EF. Invariant sets computation for convex difference inclusions systems. Systems&Control

Letters 2012; 61(8): 819–826.
22. Riah R, Fiacchini M, Alamir M. Iterative method for estimating the robust domains of attraction of non-linear systems:

Application to cancer chemotherapy model with parametric uncertainties. European Journal of Control 2019; 47: 64 - 73.
23. Rotondo D, Cristofaro A, Johansen TA, Nejjari F, Puig V. State estimation and decoupling of unknown inputs in uncertain

LPV systems using interval observers. International Journal of Control 2018; 91(8): 1944-1961.
24. Pourasghar M, Puig V, Ocampo-Martinez C. Interval observer versus set-membership approaches for fault detection in

uncertain systems using zonotopes. Int. J. Robust Nonlinear Control 2019; 29: 2819–2843.
25. Li J, Wang Z, Shen Y, Rodrigues M. Zonotopic fault detection observer for linear parameter-varying descriptor systems.

International Journal of Robust and Nonlinear Control; 29(11): 3426-3445.
26. Shamma JS, Xiong D. Set-valued methods for linear parameter varying systems. Automatica 1999; 35(6): 1081–1089.
27. Ariño C, Sala A, Pérez E, Bedate F, Querol A. Asymptotically exact stabilization for constrained discrete Takagi–Sugeno

systems via set-invariance. Fuzzy Sets and Systems 2017; 316: 117–138.
28. Sala A. Generalising quasi-LPV and CDI models to Quasi-Convex Difference Inclusions. IFAC-PapersOnLine 2017; 50(1):

7560 - 7565. 20th IFAC World Congress.
29. Sala A, Ariño C, Robles R. Gain-Scheduled Control via Convex Nonlinear Parameter VaryingModels. IFAC-PapersOnLine

2019; 52(28): 70 - 75. 3rd IFAC Workshop on Linear Parameter Varying Systems LPVS 2019.
30. Chesi G. Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica 2009; 45(6):

1536 - 1541.
31. Sala A, Pitarch JL. Optimisation of transient and ultimate inescapable sets with polynomial boundaries for nonlinear

systems. Automatica 2016; 73: 82–87.
32. Fiacchini M, Prieur C, Tarbouriech S, others . Necessary and sufficient conditions for invariance of convex sets for discrete-

time saturated systems. Proc. 52nd IEEE Conf. on Decision and Control 2013.
33. Scherer CW. LMI relaxations in robust control. European Journal of Control 2006; 12(1): 3–29.
34. González T, Bernal M, Sala A, Aguiar B. Cancellation-Based Nonquadratic Controller Design for Nonlinear Systems via

Takagi–Sugeno Models. IEEE Transactions on Cybernetics 2017; 47(9): 2628-2638.
35. Eppstein D. Quasiconvex Programming. arXiv preprint 2004; http://arxiv.org/abs/cs/0412046.
36. Löfberg J. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. Proc. IEEE Int. Conf. Robotics and

Automation 2004.

	Set-Based Gain-Scheduled Control via Quasi-Convex Difference Inclusions
	Abstract
	Introduction
	Preliminaries
	Modelling
	LPV embeddings
	NLPV embedding examples
	Convexification of product nonlinearities

	Gain-Scheduled 1-step sets
	Conditions for 1-step feasibility of a source polytope

	Approximation of 1-step sets: algorithms
	Contractive set computation
	Control law computation

	Gain-Scheduled Stabilisation
	Numerical Examples
	Conclusions
	References

