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Abstract
At some point in their history, most forests in the Mediterranean Basin have been subjected

to intensive management or converted to agriculture land. Knowing how forest plant com-

munities recovered after the abandonment of forest-management or agricultural practices

(including livestock grazing) provides a basis for investigating how previous land manage-

ment have affected plant species diversity and composition in forest ecosystems. Our study

investigated the consequences of historical “land management” practices on present-day

Mediterranean forests by comparing species assemblages and the diversity of (i) all plant

species and (ii) each ecological group defined by species’ habitat preferences and succes-

sional status (i.e., early-, mid-, and late-successional species). We compared forest stands

that differed both in land-use history and in successional stage. In addition, we evaluated

the value of those stands for biodiversity conservation. The study revealed significant com-

positional differentiation among stands that was due to among-stand variations in the diver-

sity (namely, species richness and evenness) of early-, intermediate-, and late-

successional species. Historical land management has led to an increase in compositional

divergences among forest stands and the loss of late-successional forest species.

Introduction
Most of today’s unmanaged Mediterranean forests were once under intensive management [1–
3]. Since antiquity, those forests have been extensively cleared, and the rate of forest loss accel-
erated in the 18th and 19th C. [4]. In Euro-Mediterranean countries, in particular, many of the
natural forests were coppiced for timber and firewood, which created coppices that differed in
their management intensity and the time since coppicing had ceased.

On the other hand, changes in socioeconomics and production systems in the late 19th C.
and early 20th C. resulted in the abandonment and subsequent afforestation (both spontane-
ously and through planting) of the poorest arable lands and many pastures [5–7]. In many
regions, abandonment and forest encroachment occurred in several phases, which created a
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complex mix of forest stands that are at different stages of succession [8–10]. In Spain, as in
many other European countries, the largest increase in forest cover on abandoned lands that
had been used for agriculture or as pastures occurred in the second half of the 20th C. [11].

In the early 21st C., those human-altered forests have continued to bear the imprint of histor-
ical changes in land-use [9]. In particular, the type of prior land-use and intensity have had a
strong influence on the characteristics of secondary forest stands [12,13], and the type of histori-
cal management has had a similarly strong effect on abandoned coppice stands [14,15]. Further-
more, historical logging, livestock grazing, and agriculture might have affected the diversity and
composition of the plant communities in those forests [8,9,16]. The plant community differs
depending on the time since human disturbance has ceased. Classifying the plant species (e.g.
early-, intermediate-, and late-successional species) found within the successional stages can
increase our understanding of the successional dynamics [8,17]. Investigating how plant species
diversity and composition differ among forest stands that have different land-use histories and
are at different successional stages can increase our understanding of the consequences of past
land-use on plant communities in these forests and provides a basis for predicting the responses
of the communities to future disturbances and environmental changes. Furthermore, given the
increase in human-altered forests in the Mediterranean Basin [1], a greater understanding of the
contribution that these forests can make to biodiversity conservation is crucial [18].

Plant diversity and compositional differences between primarily old growth forests and sec-
ondary growth forests [6,10,19,20] and between managed and unmanaged forests [4,21,22]
have been well studied; however, published studies of formerly managed forests and secondary
growth forests in Mediterranean environments are rare. Studies have emphasized the impor-
tance of anthropogenic disturbances in fostering the establishment of early-successional species
to the disadvantage of forest specialists [23]. A recent review [14] found that a comparison
between two types of forest management (even-aged vs. uneven-aged) did not provide a clear
pattern that could predict the plant diversity response; however, other studies have shown that
uneven-aged stands have the capacity to maintain high plant diversity [15].

Our study was conducted in oak forests that included formerly managed stands and second-
ary forest stands that differed in their structural properties. The main objective was to investi-
gate the effects of previous forest management and agricultural activities (including livestock
grazing) on contemporary forest plant communities. Specifically, we first assessed the effects of
stand history (abandoned coppices vs. secondary growth stands), stand age (young vs. old), age
structure of the forest stand (even-aged vs. uneven-aged stands), and the extent of the canopy
cover on plant species composition. Secondly, we assessed whether those factors affected the
species diversity (namely, species richness and evenness) of each ecological group defined by
species’ habitat preferences and successional status (i.e. early-, intermediate-, and late-succes-
sional species). Previous studies have suggested that diversity as a measure of community
response can be deceptive if there are increases or decreases in the number of species in the
plant groups; e.g., increases in the abundances of early-successional species might obscure the
loss of or decrease in late-successional species [15,24]. Thirdly, we evaluated the value of the
oak stands for biodiversity conservation as reflected by their ability to support species that are
associated with natural forests (i.e., late-successional species), which can be achieved using
indicator species analysis [25,26] that allows the assessment of the strength of the relationship
between species abundance and forest type. Previous studies have shown that the potential to
develop into forests that are more natural is high in forests that have high diversity in late-suc-
cessional species [27,28]. We hypothesized that differences in historical land-use have led to
the development of forest stands that have contrasting successional trajectories, which
increases the floristic differentiation among oak stands [18]. Furthermore, previous land man-
agement has reduced the diversity of forest specialists in those oak stands [1,18].
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Materials and Methods

Ethics statement
All plant surveys were performed under permits issued by the municipal councils of Nueno
and Arguis, and by the Director of the Parque Natural de la Sierra y Cañones de Guara, Ara-
gón, Spain.

Study area
The study was carried out in oak forests at a moderate elevation (800–1000 m a.s.l.) in the Cen-
tral Pre-Pyrenees, Spain (between 42.32 N and 42.11 N, and 0.31 W and 0.04 W) (Fig 1). Most
of the lithology is conglomerate, limestone, marl, and sandstone developed on Eocene flysch
sedimentary formations. The climate is transitional sub-Mediterranean; i.e., influenced by con-
tinental effects from the north and by milder Mediterranean conditions from the south (i.e.,
the Ebro Basin). Mean annual precipitation is 1317 ± 302 mm (1915–2005) and mean annual
temperature is 11.5 ± 2.8°C (1910–2005) [29].

The oak forests (mainly, Quercus faginea) of the Central Pre-Pyrenees are a mosaic of stands
that differ in their structure and history. Based on historical land-use, those semi-deciduous
oak forests are of two types: abandoned coppice stands (coppices that differed in historical cop-
picing intensities and time since management abandonment) and secondary growth stands
(most of which were established on abandoned farmlands and pastures, primarily, in the sec-
ond half of the 20th C. [30]). The overstorey canopy of those semi-deciduous oak stands was

Fig 1. Study area. The location of the study area in Spain (left panel), and the locations of the stands that were surveyed in the Central Pre-Pyrenees (right
panel) (AB Abena, AG Arguis, AR Ara, BE Belsué, IB Ibort, IP Ipies, LU Lucera, NO Nocito, RA Rasal, RP Rapun).

doi:10.1371/journal.pone.0139031.g001
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mostly Q. faginea interspersed with some scattered pines (Pinus sylvestris and Pinus nigra) and
evergreen oak (Quercus ilex subsp. ballota). The understory comprised shrubs (mainly, Quer-
cus coccifera, Buxus sempervirens, Genista scorpius, Juniperus communis), forbs (mainly, Aphyl-
lanthes monspeliensis, Arenaria montana, Achillea millefolium), and graminoids (mainly,
Brachypodium pinnatum, Carex halleriana, Festuca rubra, Carex flacca, Bromus erectus).

Data collection
Based on historical land-use maps and aerial photographs from 1957 and 2006, we selected ten
Q. faginea-dominated stands that were at different successional stages and had different land-
use histories [29,30] (Table 1). In 2009 and 2010, during the period of peak growth (May and
June), vascular plant species were surveyed in the ten stands. Within each stand, three 500-m
linear transects (N = 30 transects) were established. To estimate plant abundance, richness,
and species composition within each transect, we used the Point-Intercept Method [31], which
involves recording, at 40-cm intervals, the identity of all individuals that are in contact with a
vertical nail [32].

We recorded all of the vascular plants that touched the nail and any overstorey species
(including Q. faginea) that was above the nail (S1 Appendix). Plant species that could not be
identified with certainty in the field were collected, pressed, and brought to the laboratory for
identification by botanists. Species that have traits that make them difficult to distinguish were
identified to genus, only. Plant nomenclature followed Flora Iberica [33]. The abundance of
each plant species in each transect was calculated as the number of points where the species
occurred. In each transect, canopy cover (CANCOV) was estimated based on the relative abun-
dance (%) of woody species (including trees and large shrubs) that were� 1.5 m tall. For each
stand, we estimated the age of ~ 40 trees (for details on age estimations see [29]), calculated
mean tree-age and the coefficient of variation of tree-age. Two binary variables were derived
from the age data: AGE (young vs. old stands) and CVAGE (even-aged vs. uneven-aged
stands). Forest type (FORTYPE; secondary growth stands vs. abandoned coppice stands) of
each stand was based on observations in the field (see Table 1).

Grouping species by successional status
Analyses based on ecological groups can help to identify the mechanisms that underlie the tree
species-plant diversity relationship [34]. In our study, species were clustered within one of three

Table 1. Characteristics of the tenQuercus faginea stands surveyed in the Central Pre-Pyrenees, Spain.

Abbreviation Location FORTYPE AGE (year) CVAGE (%) CANCOV (%)

AB Abena SF Old (50) EA (19) 47.7, 49.3, 48.4

AR Ara CS Young (35) EA (17) 39.8, 29.3, 29.6

AG Arguis CS Old (50) EA (10) 38.9, 47.1, 45.4

BE Belsué CS Young (40) UEA (43) 43.9, 47.2, 41.0

IB Ibort CS Old (63) EA (17) 75.4, 68.6, 63.6

IP Ipies CS Old (64) EA (15) 08.3, 15.9, 39.9

LU Lucera CS Young (39) EA (12) 53.5, 45.6, 60.9

NO Nocito SF Old (56) UEA (47) 50.4, 36.6, 44.4

RP Rapun CS Old (69) EA (9) 44.6, 46.6, 49.6

RA Rasal SF Young (31) UEA (31) 46.0, 41.2, 29.3

FORTYPE: forest type; AGE: mean stand tree age; CVAGE: coefficient of variation of stand age; CANCOV: canopy cover; SF: secondary growth stand;

CS: abandoned coppice stand; EA: even-aged stand; UEA: uneven-aged stand. CANCOV is reported for the three transects of each stand.

doi:10.1371/journal.pone.0139031.t001
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ecological groups based on species’ habitat preferences and successional status [23,35]: Early-
successional species (ES), which are shade-intolerant pioneer species that reach maximum
abundance in open-canopy and disturbed areas, Intermediate-successional species (IS), which
occupy young to mature, open- or closed-canopy forests, but not excessively disturbed habitats,
and late-successional species (LS), which are shade tolerant species that reach maximum abun-
dance in mature, closed-canopy, forest interiors (S1 Appendix). To assign each plant species to
one of the three ecological groups, we used information in the literature [33,36–40], experience
in the field, and personal knowledge (Dr. Felipe Martínez-García, botanist).

Statistical analyses
To quantify the effects of the explanatory variables (AGE, CVAGE, FORTYPE, and CANCOV)
on species composition, we used a permutational multivariate analysis of variance (PERMA-
NOVA), which is a multivariate, nonparametric analogue of the univariate analysis of variance
(MANOVA). The species abundance data (all species included) were subjected to PERMA-
NOVA using the Bray-Curtis distance measure and 10000 permutations. To identify patterns in
the compositional variation of plant communities among stand types (i.e., young vs. old, even-
aged vs. uneven-aged, secondary growth vs. abandoned coppice stands), we used unconstrained
ordination, non-metrical multidimensional scaling (NMDS). In addition, to test for the effect of
canopy cover, this variable was plotted as a smooth surface in an ordination diagram.

Differences in species richness and species evenness among stand types (i.e., young vs. old,
even-aged vs. uneven-aged, secondary growth vs. abandoned coppice stands) and the relation-
ship between these two measures of diversity and canopy cover were analyzed using ANCOVA,
both for all species combined and for each ecological group. To account for spatial dependen-
cies, stand location was included as a random factor in the ANCOVAmodels. Normality and
homogeneity of variance were tested by examining the model residuals versus the fitted plots
and the normal q-q plots of the models. The appropriate transformations were used as required.

Indicator species analyses were used to assess the strength of the correlations between plant
species and the following forest classes that resulted from the interaction AGE × CVAGE ×
FORTYP: old even-aged secondary growth stands, old even-aged coppice stands, old uneven-
aged secondary growth stands, young even-aged coppice stands, young uneven-aged secondary
growth stands, and young uneven-aged coppice stands. Indicator species in each forest class
were identified by calculating the indicator values [25] based on plant species abundance (all
species included), then we assigned each selected species to an ecological group (i.e., early-,
intermediate-, or late-successional species).

The statistical analyses were performed using the programming language R [41]. The PER-
MANOVA and the NMDS were performed using the R package ‘vegan’ [42], the ANCOVA
was performed using the R package ‘nlme’ [43], and the Indicator Species Analysis was per-
formed using the R package ‘indicspecies’ [44].

Results
In the ten oak stands in the Central Pre-Pyrenees, we identified 206 vascular plant species (S1
Appendix). The most abundant species, which comprised 60% of all of the individuals
recorded, were Buxus sempervirens (19.17%), Brachypodium pinnatum (13.38%), Aphyllanthes
monspeliensis (8.93%), Carex halleriana (5.95%, IS), Genista scorpius (4.50%), Carex flacca
(4.10%, IS), and Festuca rubra (3.61%).

The classification of plant species by successional status indicated that most (56%) of the
206 vascular plant species were ES species. Twenty-six percent and 18% of the plants were IS
species and LS species, respectively. Genista scorpius (ES), Teucrium chamaedrys (ES), Thymus
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vulgaris (ES), Buxus sempervirens (IS), Festuca rubra (IS), Amelanchier ovalis (IS), Aphyllanthes
monspeliensis (IS), Brachypodium pinnatum (IS), and Rubia peregrina (LS) were the most com-
monly occurring species (found in all transects) (S1 Appendix).

Factors affecting species composition
The PERMANOVA analysis revealed that plant species composition differed significantly
between stand types (i.e., young vs. old, even-aged vs. uneven-aged, secondary growth vs. aban-
doned coppice stands). In addition, canopy cover “CANCOV” and plant species composition
were significantly correlated.

The explanatory variables explained almost 40% of the variation in the composition of plant
communities (Table 2). “FORTYPE” explained the largest proportion (15.2%) of the composi-
tional variation, followed by “CANCOV”, which explained 11% of the variation. “AGE” and
“CVAGE” each explained ~ 7% of the variation. Fig 2 shows the grouping of plant transects by
stand type in the ordination space determined by the NMDS analysis.

Factors affecting the species diversity of each successional species
group
Each of the four explanatory variables explained a significant amount of the variation in overall
plant species richness and, collectively, they explained>70% of the total variance (Table 3).
Based on the variance explained by each variable, “FORTYP” was the most important variable,
followed by “CANCOV”, “AGE”, and “CVAGE” (Table 3).

Secondary growth stands that had been established on abandoned lands, young stands, and
uneven-aged stands had the highest plant species richness (Fig 3), which was negatively corre-
lated with “CANCOV” (Fig 4). Using successional species groups, the same trends in species
richness were apparent among ES and IS species (Table 3; Figs 3 and 4), although the effect of
“AGE” among IS species was not statistically significant (Table 3). None of the explanatory var-
iables had a significant effect on the species richness among LS species (Table 3). Among ES
and IS species, evenness was affected by “CANCOV” and, among LS species, “CVAGE” had a
significant effect on species evenness (Table 3). Species evenness among LS species was signifi-
cantly higher in even-aged stands than it was in uneven-aged stands (Fig 3). Furthermore,
evenness was positively correlated with “CANCOV” among ES species, but was negatively cor-
related with “CANCOV” among IS species (Fig 4).

Indicator species
Overall, 70 species were significant (p< 0.05) indicator species, and most (39 species) were
indicative of young uneven-aged coppice stands, followed by young uneven-aged secondary

Table 2. Non-parametric MANOVA test for the effects of explanatory variables on the plant species
composition of tenQuercus faginea forest stands in the Central Pre-Pyrenees, Spain.

F R2 P

AGE 2.6 0.072 <0.001

CVAGE 2.6 0.071 0.004

FORTYPE 3.8 0.152 <0.001

CANCOV 7.6 0.110 <0.001

AGE: Stand Age; CVAGE: coefficient of variation of stand age; FORTYPE: forest type; CANCOV: Canopy

Cover. R2 is the variance (%) explained by each variable.

doi:10.1371/journal.pone.0139031.t002
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growth stands (12), old even-aged secondary growth stands (7), old uneven-aged secondary
growth stands (7), and young even-aged coppice stands (4) (Table 4, S2 Appendix). One signif-
icant indicator species was found in old even-aged coppice stands. LS indicator species
occurred in all of the forest classes except old even-aged secondary growth- and coppice-
stands; however, young uneven-aged coppice stands harbored the highest number of LS indica-
tor species (Table 4).

Discussion
Our study has demonstrated the importance of previous land-use and forest management in
shaping the development of plant species assemblages and the richness and evenness of plant
species. Evidently, human-induced disturbances can have a strong influence on plant commu-
nities in forest ecosystems, which have been reported elsewhere [8,9,19].

Fig 2. Nonparametric multidimensional scaling (NMDS) ordinations. NMDS diagrams indicating the groupings of the floristic transects by stand type of
Quercus faginea in the Central Pre-Pyrenees, Spain: young vs. old stands, even aged vs. uneven aged stands, secondary growth stands vs. abandoned
coppice stands. Canopy cover is indicated in the ordination diagram as a smooth surface (below right hand plot).

doi:10.1371/journal.pone.0139031.g002
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Plant species composition
The oak stands differed significantly in species composition, which underscores the importance
of considering compositional differences in addition to differences in diversity parameters
[45]. The evenness of all species collectively did not differ significantly among stand types,
which indicated that the differences in species composition were not because of differences in
species abundances; rather, they were mainly due to differences in species richness. Further-
more, the high overall richness in young stands (vs. old stands), secondary growth stands (vs.
abandoned coppice stands), and uneven-aged stands (vs. even-aged stands) suggest that the
compositional dissimilarities were not due to species turnover, only, but were the result of spe-
cies turnover and nestedness [46]. That is, part of the compositional differentiation is due to
species replacement and another part is due to differences in richness between stands; i.e., the
richest stands have species that are not present in the poorest stands [46].

Plant species diversity
Overall species richness was significantly higher in secondary growth stands than it was in
abandoned coppice stands, which might have been because of the high number of ES and IS
species in the secondary growth stands, which drove the dissimilarities that were apparent in
plant community composition between secondary growth stands and abandoned coppice
stands (see above). In stands that developed on abandoned agricultural terraces, the persistence
of old-field species might have contributed to the high total richness in these stands [8]. The
secondary growth stands in our study area were established on formerly abandoned lands (i.e.,
agricultural terraces and pastures) that were on relatively flat land, and some were in valley bot-
toms where the soils have large amounts of nutrients and water [29,47]. Those conditions

Table 3. ANCOVA Test for the effects of four explanatory variables on plant species diversity (species richness and evenness) in ten oak stands
in the Central Pre-Pyrenees, Spain.

Richness Evenness

R2 F P R2 F P

AS AGE 0.150 12.8 <0.001 - 0.08 0.770

CVAGE 0.107 9.2 0.006 - 0.01 0.980

FORTYPE 0.291 25.0 <0.001 - 0.00 0.459

CANCOV 0.160 13.7 <0.001 0.324 11.61 0.004

ES AGE 0.150 16.04 <0.001 - 2.68 0.123

CVAGE 0.146 15.60 <0.001 - 3.25 0.091

FORTYPE 0.326 34.72 <0.001 - 0.00 0.985

CANCOV 0.156 16.98 <0.001 0.291 11.88 0.003

IS AGE - 0.17 0.904 0.09 0.764

CVAGE 0.122 5.35 0.029 0.01 0.981

FORTYPE 0.197 8.61 0.007 1.04 0.316

CANCOV 0.150 6.53 0.017 0.324 10.11 0.002

LS AGE - 0.4 0.538 - 0.97 0.340

CVAGE - 0.0 0.962 0.293 10.2 0.003

FORTYPE - 1.6 0.219 - 1.03 0.322

CANCOV - 0.7 0.412 - 0.21 0.648

AS: all plant species; ES: Early-successional species; IS: Intermediate-successional species; LS: Late-successional species. Significant effects (P < 0.05)

are shown in bold. R2 is the variance (%) explained by each significant explanatory variable.

doi:10.1371/journal.pone.0139031.t003
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strongly favor shade-intolerant, ruderal, and competitive species [4], which can increase total
richness.

The large number of ES colonizers was responsible for the high species richness in young
oak stands, which might have contributed to the differences in the plant species composition of
young and old stands (see above). ES species are the first to colonize disrupted or damaged eco-
systems [9,48]. In our study, the disappearance (i.e., competitive exclusion) of ES species in the
transition from one successional stage to another might have been responsible for the compar-
atively low overall species richness in old (> 50 yr) stands. The richness of ES and IS species
was higher in uneven-aged stands than it was in even-aged stands, which might explain the dis-
similarities in the plant community composition of even-aged and uneven-aged stands (see

Fig 3. Influence of predictor variables on plant species diversity in ten oak stands in the Central Pre-
Pyrenees, Spain. Species richness and evenness (AS: all plant species; ES: Early-successional species; IS:
Intermediate-successional species; LS: Late-successional species) as influenced by stand age “AGE” (O: old
stands; Y: young stands), age structure of stand “CVAGE” (EA: even-aged stands; UEA: Uneven-aged
stands), and forest type “FORTYPE” (SF: secondary growth stands; CS: abandoned coppice stands). Boxes
that have the same letter did not differ significantly based on ANCOVA.

doi:10.1371/journal.pone.0139031.g003
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above). Those dissimilarities might have occurred because of the high resource availability
caused by the formation of gaps in the canopy of uneven-aged stands [14], which can provide
conditions that favor the establishment of ES and IS species [49]. In contrast, in even-aged
stands, the structure of the overstorey canopy, the amount of interspecific competition, and the
resources available on the forest floor change more dramatically and phases of development
occur more uniformly than they do in uneven-aged stands, which might reduce the richness of
shade-intolerant species [17], most of which are ES and IS species.

Overall species richness and the species richness of ES and IS species were negatively corre-
lated with the extent of the canopy cover. Many studies have demonstrated the negative effect
of canopy closure on shade-intolerant species [50,51]. The reduction in the availability of light
as a forest canopy closes can reduce species richness and limit the growth and survival of many

Fig 4. Effects of canopy cover on plant diversity in ten oak stands in the Central Pre-Pyrenees, Spain. Canopy cover (CANCOV) and species richness
and evenness (AS: all plant species; ES: Early-successional species; IS: Intermediate-successional species; LS: Late-successional species).

doi:10.1371/journal.pone.0139031.g004
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species that became established during the stand initiation stage, and allow LS species to per-
sist, only [50,52]. Furthermore, the high abundance of the competitor shrub Buxus sempervi-
rens in stands that have closed canopies might out-compete other shade-intolerant species by
reducing the amount of resources (i.e., light, soil nutrients, water) in the understorey (the abun-
dance of this competitor species was positively associated with the extent of the canopy cover).
In our study, the explanatory variables did not explain a significant amount of the variation in
the richness of LS species, which indicates that the number of LS species did not differ signifi-
cantly between stand types. Similarly, [23] found that forest stands that differed in manage-
ment intensity did not differ in the number of LS species. In the oak forests in the Central Pre-
Pyrenees, the extent of canopy cover and ES species evenness were positively correlated, per-
haps, because canopy closure increases interspecific competition, which can lead to the exclu-
sion of rare species and increase the mortality rate of highly abundant ES species. Probably, the
reduction in sunlight caused by canopy closure contributed to a reduction in the evenness of IS
species [4]. Furthermore, that reduction might have been due to the greater dominance of the
competitor shrub B. sempervirens in stands that had closed canopies.

The evenness of LS species was highest in even-aged stands, which have a more homoge-
neous structure and are more uniformly limiting in shade and microhabitats than are uneven-
aged stands [14,53]. Under those conditions, interspecific competition inhibits the establish-
ment of shade-intolerant species, but favors the establishment of LS species that can thrive in
those environments [50,54–56], which can increase the abundance of uncommon LS species
and, thereby, increase species evenness. Other studies have suggested that facilitation or release
from inhibition by preceding successional species, or intrinsic characteristics such as arrival
time, growth rate, and the absence of direct interaction with early species might lead to the
establishment of LS species [12].

Indicator species
Indicator species analysis revealed that, in the absence of old uneven-aged coppice stands in
our study area, young uneven-aged coppice stands have a high value for biodiversity conserva-
tion. In addition to harboring the highest number of significant indicator species, those stands
included a sizeable portion the LS indicator species (e.g., Brachypodium sylvaticum, Lathyrus
linifolius, and Ranunculus repens). We predict that LS species will progressively replace the ES
and IS indicator species (e.g., Brachypodium distachyon, Plantago lanceolata, Dactylis glomer-
ata) identified in our study. The chronic fluctuations in resources that occur in the successional
process might lead to the reordering of plant species: species loss and colonization by species
that are better suited to the new environment (in this case, LS species) [57]. The uneven-aged

Table 4. The number of early- (ES), intermediate- (IS), and late-successional (LS) Indicator Species
identified in each forest class found in the tenQuercus faginea forest stands surveyed in the Central
Pre-Pyrenees, Spain.

Forest class ES IS LS Total

Old even-aged secondary growth stands 2 5 0 7

Old even-aged coppice stands 1 0 0 1

Old uneven-aged secondary growth stands 3 2 2 7

Young uneven-aged secondary growth stands 3 8 1 12

Young even-aged coppice stands 1 2 1 4

Young uneven aged coppice stands 32 4 3 39

Indicator species are those that had significant (p < 0.05) indicator values in the multilevel pattern analysis.

doi:10.1371/journal.pone.0139031.t004
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secondary growth stands, only, harbored significant LS indicator species, and the highest num-
ber were in old uneven-aged secondary growth stands (i.e., Cornus sanguinea, Rubia peregrine).
Variation in the ages of trees in uneven aged stands increases the variety of habitats, which per-
mits the coexistence of species that have different requirements [14,15]; however, the ability of
those stands to provide habitat for LS species makes them very important for biodiversity
conservation.

Implications for biodiversity conservation
Agriculture, livestock grazing, and forest coppicing, which were once common types of land
management in the Mediterranean Basin, were abandoned in many places in the late 19th C.
and 20th C. After the abandonment of marginal agricultural lands, pastures, and coppices, for-
est stands that differed in land-use histories and structural properties developed. The coexis-
tence of different types of stands can provide heterogeneous habitats that maximize
biodiversity conservation at the regional scale [18]. Furthermore, although our study focused
on the presence of plant species in previously disturbed oak forests, we recognize that these for-
ests provide vital resources for fauna, ecosystem services, and forest products [58]. Therefore,
the conservation of those oak stands might provide ecosystem and economic benefits (e.g., eco-
tourism) and should be promoted through government incentives and land-use regulations.
The uneven-aged oak stands and, specifically, the abandoned uneven-aged coppice stands
seem to represent a progression in the transition towards native forests, which increases their
importance from a conservation perspective.

Supporting Information
S1 Appendix. Plant species abundance. Plant species abundance (mean ± SD) in the 10 oak
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species; IS, Intermediate-successional species; LS, Late-successional species.
(XLSX)

S2 Appendix. Multilevel pattern analysis. A test of the relationship between plant species and
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(DOCX)
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