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Abstract. The goal of this paper is to study the family of singular perturbations
of Blaschke products given by Ba,λ(z) = z3 z−a

1−az + λ
z2 . We focus on the study of

these rational maps for parameters a in the punctured disk D∗ and |λ| small. We
prove that, under certain conditions, all Fatou components of a singularly perturbed
Blaschke product Ba,λ have finite connectivity but there are components of arbitrarily
large connectivity within its dynamical plane. Under the same conditions we prove
that the Julia set is the union of countably many Cantor sets of quasicircles and
uncountably many point components.

1. Introduction

Given a Rational map f : Ĉ→ Ĉ, where Ĉ denotes the Riemann sphere, the Fatou set F(f)

is defined as the set of points z ∈ Ĉ such that the family of iterates {f(z), f2(z) = f(f(z)), ...}
is normal in some open neighbourhood of z. Its complement, the Julia set J (f), corresponds
to the set of points where the dynamics is chaotic. The Fatou and the Julia sets are totally
invariant under f(z). The Fatou set is open and its connected components, known as Fatou
components, map among themselves. The celebrated result of Sullivan [18] states that all
Fatou components of rational maps are either periodic or preperiodic. Moreover, any cycle of
periodic Fatou components has at least a critical point, i.e. a zero of f ′(z), somehow related
to it (see [11]).

The aim of this paper is to study singular perturbations of a family of Blaschke products
and analyse the structure of their dynamical plane. We focus on the special case for which
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Fatou components of arbitrarily large connectivity appear. The study of singular perturba-
tions of rational maps is a very active research field in holomorphic dynamics. They were
used by McMullen to show the existence of buried Julia components for rational maps, i.e.
connected components of the Julia set which do not intersect the boundary of any Fatou
component. He described the nowadays called McMullen Julia sets, Julia sets consisting of
Cantor sets of quasicircles (see [10]). A quasicircle is a Jordan curve which is the image of
the unit circle by a quasiconformal map (c.f. [4]). To prove the existence of such Julia sets,
he studied the singular perturbations of pn(z) = zn given by

Qλ,n,d(z) = zn +
λ

zd
, (1)

where λ ∈ C, n ≥ 2 and d ≥ 1. The map pn(z) has z = 0 and z =∞ as superattracting fixed
points of local degree n. However, the singular perturbation performed on Qλ,n,d transforms
z = 0 on a preimage of ∞ and n + d new critical points appear around it. McMullen
showed that the Julia set J (Qλ,n,d) is a Cantor set of quasicircles if |λ| is small enough and
1/n + 1/d < 1 (see Figure 1 (a)). Afterwards, Devaney, Look and Uminsky [7] studied the
different possible Julia sets of Qλ,n,d which may occur when all of the critical points belong
to the basin of attraction of infinity. They proved that, in this situation, J (Qλ,n,d) can only
be a Cantor set, a Cantor set of quasicircles or a Sierpinski curve (a homeomorphic image
of a Sierpinski carpet). Since then, the family Qλ,n,d has been the object of study of several
other papers (see e.g. [12], [15], [14]).

It arises as a very interesting topic to investigate McMullen-like Julia sets, i.e. Julia sets
of rational maps which are somehow similar to the ones described by McMullen. They may
be obtained by adding one or several poles to a polynomial pn,c(z) = zn + c (see [3] and [9],
respectively), where n ≥ 2 and c ∈ C is such that z = 0 belongs to a superattracting cycle.
In this scenario, the structure of the Julia set of the polynomial pn,c plays a very important
role after the perturbation. The set J (pn,c) coincides with the boundary of the immediate
basin of attraction of z =∞, A∗pn,c(∞). After the perturbation, this remains as a component
of the Julia set which moves continuously with respect to λ. Moreover, many preimages of
it appear (see Figure 1 (b), (c) and (d)). Under certain conditions, this may lead to the
existence of Cantor sets of closed curves instead of quasicircles (c.f. [9]).

In this paper we introduce a family of rational maps with McMullen-like Julia sets which
present different dynamics than the one of the previously mentioned works. To do so, we
consider singular perturbations of rational maps whose Julia set is the unit circle and which
have free critical points, i.e. critical points which do not belong to a superattracting cycle.
The existence of these free critical points allows the appearance of other types of dynamics in
the Fatou set. More specifically, we study a family of singular perturbations of the Blaschke
products

Ba(z) = z3 z − a
1− az

, (2)

where a ∈ D∗ = D \ {0}. These Blaschke products have z = 0 and z =∞ as superattracting
fixed points. The basin of attraction of z = 0 is given by A(0) = D while the basin of

attraction of z = ∞ is the Riemann sphere minus the closed unit disk, A(∞) = Ĉ \ D.
Consequently, the Julia set of these maps is the unit circle, J (Ba) = S1. Moreover, they have
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(a) A Julia set of quasicircles. (b) The Basilica.

(c) A perturbed Basilica. (d) Zoom in Figure (c).

Figure 1. Figure (a) corresponds to the dynamical plane of Qλ,3,2(z) = z3 + λ/z2

for λ = 10−4. Figure (b) corresponds to the dynamical plane of p2,−1(z) = z2 − 1,
known as the Basilica. The map p2,−1 has a period 2 superattracting cycle at {0,−1}.
Figure (c) corresponds to the dynamical plane of f(z) = z2 − 1 + λ/(z7(z + 1)5) for
λ = 10−22. This map is a singular perturbation of the polynomial p2,−1 which adds
a pole at each point of the superattracting cycle. Figure (d) is a magnification of (c)
around the point z = 0. The colours are as follows. We use a scaling from yellow
to red to plot the basin of attraction of z = ∞. In Figure (b) we plot the basin
of attraction of the cycle {0,−1} in black. In the other figures we may observe an
approximation of the Julia set in yellow.
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two free critical points, c−(a) ∈ D and c+(a) ∈ C \D, which play an important role after the
perturbation. See Section 2.1 for a more detailed introduction to their dynamics.

We consider singular perturbations of the Blaschke products Ba given by

Ba,λ(z) = z3 z − a
1− az

+
λ

z2
, (3)

where λ ∈ C and a ∈ D∗. If λ = 0, they coincide with the Blaschke products Ba(z) (Equa-
tion (2)). If λ 6= 0 then the point z = 0 becomes a pole and there appear 5 new critical
points and 5 new zeros around it. The fixed point z =∞ remains as a superattracting fixed
point and there are two free critical points c+(a, λ) and c−(a, λ) which come from analytic
continuation of the critical points c+(a, 0) = c+(a) and c−(a, 0) = c−(a) of Ba,0(z) = Ba(z).
For |λ| small enough, the dynamics of Ba,λ(z) around z = 0 are similar to the ones of Qλ,3,2.
Since the maps Qλ,n,d present McMullen Julia sets for |λ| small enough if 1/n+ 1/d < 1 and
we have that 1/3 + 1/2 < 1, we may a priori expect some sort of McMullen-like Julia set for
the maps Ba,λ. On the other hand, the free critical points allow the existence of other types
of Julia sets than the ones described by Devaney, Look and Uminsky in [7]. However, the
lack of symmetry of the critical points of Ba,λ makes it much more difficult to investigate the
family Ba,λ than the family Qλ,n,d from a global point of view. We want to point out that
similar results to the ones presented in this paper could be obtained if replacing the powers
3 and 2 in Equation (3) by naturals n and d such that 1/n+ 1/d < 1.

The goal of this paper is to study the dynamics of the family Ba,λ for a ∈ D∗ and |λ|
small, and to show that this family provides examples of new phenomena related to the
connectivity of Fatou components. More precisely, it is known that any periodic Fatou
component has connectivity 1, 2 or ∞ (c.f. [2]), while preperiodic Fatou components can
have finite connectivity greater than 2. Beardon [2] introduced an explicit family of rational
maps suggested by Shishikura with a Fatou component of finite connectivity greater than
2. This family was studied more deeply in [8]. The authors proved that if the parameter is
small enough then there are Fatou components of connectivity 3 and 5. They also showed the
existence of maps with a Fatou component of connectivity 9 and conjectured that for any given
n ∈ N, there exists a map within the family with a Fatou component of connectivity greater
than n. Baker, Kotus and Lü [1] used a quasiconformal surgery procedure to show that, given
any n ∈ N, there exist rational and meromorphic maps with preperiodic Fatou components
of connectivity n. Later on some explicit examples of rational maps with such properties
were introduced (see [13] and [17]). However, the examples presented in [1], [13] and [17] use
an increasing number of critical points to guarantee the existence of such multiply connected
Fatou components. Therefore, the degree of the rational maps provided as examples grows
with n. In Theorem A we prove that, fixed a ∈ D∗, if λ ∈ C∗ = C \ {0}, |λ| is mall
enough, and c−(a, λ) belongs to the basin of attraction of z =∞, A(∞), then there are only
three possibilities: either every Fatou component has connectivity less or equal than two, or
less or equal than three, or one can find components of arbitrarily large finite connectivity.
Consequently, this family of degree 6 rational functions may contain maps with preperiodic
Fatou components of arbitrarily large finite connectivity within a single dynamical plane.
We do not know of any previous example having this property. In Figure 2 and Figure 3 we
provide numerical evidence that all 3 cases of Theorem A take place for different parameters.
A rigorous proof of the existence of parameters for which all three cases hold is work in
progress and will appear in a manuscript which is currently under preparation.
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Theorem A. Fix a ∈ D∗ and let λ ∈ C∗. There exists a constant C(a) such that if |λ| < C(a)
and c−(a, λ) ∈ A(∞), then c−(a, λ) belongs to a connected component Uc of A(∞) \ A∗(∞)
and exactly one of the following holds.

a) The Fatou component Uc is simply connected. All Fatou components of Ba,λ have connec-
tivity 1 or 2 (see Figure 2 (a) and (b)).

b) The Fatou component Uc is multiply connected and does not surround z = 0. All Fatou
components of Ba,λ have connectivity 1, 2 or 3 (see Figure 2 (c) and (d)).

c) The Fatou component Uc is multiply connected and surrounds z = 0. All Fatou components
of Ba,λ have finite connectivity but there are components of arbitrarily large connectivity
(see Figure 3).

Figure 4 shows the parameter space of Ba,λ for a = 0.5 and |λ| small. We observe hyperbolic
components of different connectivities which presumably correspond to the three different
cases in Theorem A. More specifically, numerical exploration shows that the red annular
regions which surround λ = 0 correspond to parameters for which statement c) holds, that
the red simply connected regions correspond to parameters for which statement a) holds,
and that the red annular regions which surround simply connected regions correspond to
parameters for which statement b) holds. A detailed study of the parameter plane of the
family for a ∈ D∗ and |λ| small is work in progress.

The third case of Theorem A provides dynamical planes with other interesting properties.
Our next theorem shows that Cantor sets of quasicircles and uncountably many point com-
ponents appear in the Julia set in these situations. Even if the result is similar to those in
other examples in the literature (c.f. [3] and [9]), we shall see in the proof that the dynamics
of these maps are quite different.

Theorem B. Fix a ∈ D∗ and let λ ∈ C∗. Assume that |λ| < C(a), that c−(a, λ) ∈ A(∞) and
that c−(a, λ) lies in a multiply connected Fatou component which surrounds z = 0. Then the
Julia set of Ba,λ contains a countable union of Cantor sets of quasicircles and uncountably
many point components.

We want to remark that if statements a) or b) of Theorem A hold then the situation
is essentially different. In this scenario, we can find annular Fatou domains bounded by
quasicircles as described by McMullen in [10]. However, in this case they cannot lead to a
Cantor set of quasicircles in the same way. This is because of the Fatou components which are
homeomorphic to disks. They are to be found between McMullen’s annuli together with other
doubly (and triply) connected Fatou components (see Figure 2). This fact avoids McMullen’s
annuli to accumulate forming a Cantor set of quasicircles.

The paper is structured as follows. In Section 2 we describe the dynamics of the unper-
turbed Blaschke products Ba and investigate the local dynamics of the maps Ba,λ(z) around
z = 0 and the configuration of zeros and critical points (see Theorem 2.5). In Section 3
we study the Fatou components of the singularly perturbed Blaschke products and prove
Theorem A as a restatement of Theorem 3.2. Finally, in Section 4 we investigate the Julia
sets of the maps Ba,λ proving Theorem B.

Acknowledgements. The author would like to thank X. Jarque for the original idea which
lead to this paper. He would also like to thank N. Fagella, A. Garijo and the referee for their
many and useful comments which greatly improved this paper.



6 JORDI CANELA

(a) Dynamical plane of a map Ba,λ for which statement

a) of Theorem A holds.

c−

(b) Zoom in Figure (a).

(c) Dynamical plane of a map Ba,λ for which statement

b) of Theorem A holds.

c−

(d) Zoom in Figure (c).

Figure 2. Figures (a) and (b) represent the dynamical plane of the map Ba,λ where
a = 0.5 and λ = 3.022 × 10−5. Figures (c) and (d) represent the dynamical plane
of the map Ba,λ where a = 0.5 and λ = 2.8 × 10−5 + 8.4 × 10−7i. These maps
correspond to singularly perturbed Blaschke products for which statements a) and b)
of Theorem A hold. The colours are as follows. We use a scaling from yellow to red
to plot the basin of attraction of z = ∞. An approximation of the Julia set may be
observed in yellow.
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c−

Figure 3. The left corresponds to the dynamical plane of the map Ba,λ where
a = 0.5 and λ = 10−5. The right figure is a magnification of the left one. Statement
c) of Theorem A holds for this map. Colours are as in Figure 2.

Figure 4. The left figure corresponds to the parameter space of the family Ba,λ
for a = 0.5, Re(λ) ∈ (−8.7 × 10−5, 7.3 × 10−5) and Im(λ) ∈ (−8 × 10−5, 8 × 10−5).
The right figure is a magnification of the left one. The colours are as follows. We use
a scaling from yellow to red to plot parameters such that c− ∈ A(∞) and green

otherwise.

2. Preliminaries

The goal of this section is to understand the local dynamics which take place near z = 0
for the singular perturbations of rational maps Ba,λ(z) (Equation (3)). In section 2.1 we
study the dynamics of the Blaschke products Ba(z) (Equation (2)). In Section 2.2 we prove
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Theorem 2.5, which is the main result of the preliminaries. It describes the local dynamics
around z = 0 as well as the configurations of critical points of zeros. It also analyses the
topology of the immediate basin of attraction of z = ∞, A∗(∞), and introduces notation
which is used along the paper.

2.1. Dynamics of the Blaschke products. We consider the family of Blaschke products

of the form Ba(z) = z3(z−a)/(1−az) where z ∈ Ĉ and a ∈ D∗. The dynamics of these maps
was studied in [5] and [6] for a ∈ C. As all Blaschke products, they leave the unit circle S1

invariant. Moreover, z = 0 and z =∞ are superattracting fixed points of local degree 3 and,
therefore, are critical points of multiplicity 2. Given the fact that these rational maps have
degree 4, they have 6 critical points counted with multiplicity. The other two critical points,
denoted by c±, are given by

c± := c±(a) := a · 1

3|a|2
(

2 + |a|2 ±
√

(|a|2 − 4)(|a|2 − 1)
)
.

If a ∈ D∗, then the critical points satisfy c− ∈ D and c+ ∈ C \D. Moreover, since the only
pole z∞ = 1/a does not lie in D, we have that Ba(D) = D and all points in D belong to the

immediate basin of attraction of z = 0, A∗(0). Analogously we also have A∗(∞) = Ĉ\D. We
finish this first part of the preliminaries with Proposition 2.2, which will be used in the next
subsection. During the proof we will use the Riemann-Hurwitz formula (c.f. [11, 16]), which
can be stated as follows.

Theorem 2.1 (Riemann-Hurwitz formula). Let U and V be two connected domains of Ĉ of
finite connectivity mU and mV and let f : U → V be a degree k proper map branched over r
critical points counted with multiplicity. Then

mU − 2 = k(mV − 2) + r.

Proposition 2.2. Fixed a ∈ D∗, there are analytic Jordan curves γ0, γ−1
0 , γ∞ and γ−1

∞ such
that:

a) The curves γ0 and γ−1
0 belong to D and surround z = 0. The curve γ−1

0 is mapped onto

γ0 with degree 4 under Ba. Moreover, we have γ0 ⊂ Int(γ−1
0 ) and z0, c− ∈ Int(γ−1

0 ), where

Int(γ−1
0 ) denotes the bounded component of C \ γ−1

0 .

b) The curves γ∞ and γ−1
∞ belong to C \ D and surround the unit disk D. The curve γ−1

∞
is mapped onto γ∞ with degree 4 under Ba. Moreover, we have γ∞ ⊂ Ext(γ−1

∞ ) and
z∞, c+ ∈ Ext(γ−1

∞ ), where Ext(γ−1
∞ ) denotes the unbounded component of C \ γ−1

∞ .

Proof. We show how to obtain γ0 and γ−1
0 . The curves γ∞ and γ−1

∞ can be obtained in
a similar way. Let U be the maximal domain of definition of the Böttcher coordinate of
the superattracting fixed point z = 0 (see [11]). Then ∂U contains the critical point c−.
Moreover, there is an extra component V of B−1

a (Ba(U)) attached to the critical point c−
which contains the zero z0 (see Figure 5).

To finish the proof it is enough to take an analytic Jordan curve γ0 surrounding Ba(U)

such that γ0 ⊂ U \ Ba(U). We want to show that any such curve satisfies that there is a
unique component γ−1

0 of B−1
a (γ0), which surrounds the set U ∪ V and is mapped with degree

4 onto γ0. Let A be the annulus bounded by γ0 and S1 and let A−1 = B−1
a (A). Since S1

is completely invariant, A−1 consists of a unique connected component. It follows from the
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Riemann-Hurwitz formula (Theorem 2.1) that A−1 is also an annulus since A contains no
critical value (i.e. the image of a critical point) and, therefore, A−1 contains no critical point.
The annulus A−1 is bounded by S1 and an analytic Jordan curve, say γ−1

0 , which is mapped

onto γ0 under Ba and surrounds U ∪ V . Given that Ba|A−1 is proper, Ba maps A−1 onto A
with a certain degree d. Since Ba|S1 has degree 4, we conclude this degree d is precisely 4
and that Ba maps γ−1

0 onto γ0 with degree 4. Consequently, there can be no other preimage
of γ0. �

γ0

0

Ba(U)

c−
U

z0

V

γ−1
0

A−1

S1

Figure 5. Scheme of the sets described in the proof of Proposition 2.2.

2.2. Local dynamics of the singular perturbations near the origin. To understand
the global dynamics of the singularly perturbed maps Ba,λ(z) (Equation (3)), it is important
to control the orbits of the critical points and to know where the preimages of z = 0 and
z = ∞ are. The goal of this section of the preliminaries is to locate them and use them to
understand the local dynamics around z = 0 for |λ| small (see Theorem 2.5).

As all degree 6 rational maps, the functions Ba,λ have 2 · 6− 2 = 10 critical points and 6
preimages of z = 0 and z = ∞, counted with multiplicity. The point z = ∞ is a superat-
tracting fixed point of local degree 3, so it is a critical point of multiplicity 2 and a preimage
of itself of multiplicity 3. Some of the other critical points, zeros and poles can be found by
analytic continuation of the ones of Ba(z) (Equation (2)). Indeed, if we fix a ∈ D∗, then the

maps Ba,λ(z) depend analytically on λ for all z in Ĉ \Dε, where Dε denotes the disc centred
at 0 with radius ε as small as desired. Therefore, we have two free critical points c+(a, λ)
and c−(a, λ), a zero z0(a, λ) and a pole z∞(a, λ) = 1/a which are analytic continuation of the
critical points c+ and c−, the zero z0 and the pole z∞ of the Blaschke product Ba(z). We
shall drop the dependence on a and λ of c+(a, λ), c−(a, λ), z0(a, λ) and z∞(a, λ) whenever it
is clear from the context.

There are 6 critical points, 5 zeros and 2 poles which are not to be found by analytic
continuation of the ones of Ba. They appear in a small neighbourhood of z = 0. Because
of the term λ/z2 of Ba,λ(z), the point z = 0 is a double preimage of infinity and a critical
point of multiplicity 1. Therefore, there are only 5 zeros and 5 critical points whose location
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we have not described yet. We may approximate the values of these zeros and critical points
using the fact that they are fixed points of certain operators (c.f. [9]).

Proposition 2.3. If we fix a ∈ D∗, then Ba,λ has 5 zeros of the form ξ(λ/a)1/5 + o(λ1/5),

where ξ denotes a fifth root of the unity and o(λ1/5) is such that limλ→0 |o(λ1/5)|/|λ1/5| = 0.

Moreover, Ba,λ has 5 critical points of the form −ξ(2λ/3a)1/5 + o(λ1/5).

Proof. We first prove the proposition for the zeros of Ba,λ. They are solutions of

z3 z − a
1− az

+
λ

z2
= 0→ z5 = −λ1− az

z − a
.

For λ = 0, the last equation has z = 0 as a solution of multiplicity 5. If we increase λ, by
continuity, we will have 5 zeros near z = 0. These zeros are fixed points of the operators

Tξ(z) = ξ 5

√
−λ1− az

z − a
= ξλ1/5 5

√
−1− az
z − a

= ξλ1/5R(z).

Notice that R(z) does not depend on λ. We have 5 different choices for the operators Tξ
given by the choice of the fifth root of the unity, denoted by ξ. Fix any of the five choices.
Then one of the five zeros which appear around zero is a fixed point of Tξ, say wλ,ξ. We can

approximate wλ,ξ by T (0) = ξ(λ/a)1/5. Hence, we have

|wλ,ξ − ξ(λ/a)1/5| = |T (wλ,ξ)− T (0)|≤ sup
η∈[0,wλ,ξ]

|T ′(η)| · |wλ,ξ − 0|

= sup
η∈[0,wλ,ξ]

|λ|1/5|R′(η)| · |wλ,ξ|.

Moreover, we can find an upper bound of |R′(η)|, η ∈ [0, wλ,ξ], for |λ| small enough.
Indeed, the function R(z) does not depend on λ and, if |λ| is small enough, the points z = a
and z = 1/a are bounded away from the segment [0, wλ,ξ] given that wλ,ξ → 0 as λ → 0.
Therefore, there is ε > 0 such that if |λ| < ε, then supη∈[0,wλ,ξ] |R

′(η)| < C, where C does not

depend on λ. Finally,

lim
λ→0

|wλ,ξ − ξ(λ/a)1/5|
|λ1/5|

≤ lim
λ→0

C · |wλ,ξ| = 0.

The proof for the critical points is analogous using that they are solutions of the equation

3z2 z − a
1− az

+ z3 1− |a|2

(1− āz)2
− 2

λ

z3
= 0

and fixed points of the operators

Tξ(z) = ξ(2λ)1/5
5

√
1− az

3(z − a) + z 1−|a|2
1−āz

,
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where ξ denotes a fifth root of the unity. As before we can approximate the critical points
by Tξ(0) = −ξ(2λ/3a)1/5. �

The next proposition follows directly from the previous result using the expressions of the
zeros and critical points. The proof is straightforward.

Proposition 2.4. Fix a ∈ D∗. Then, if |λ| is small enough, the 5 critical points and the 5

zeros which appear around z = 0 belong to the annulus of inner radius
(
|λ|
2|a|

)1/5
and outer

radius
(

2 |λ||a|

)1/5
.

The main result of the preliminaries is the following theorem. It describes the local dynam-
ics that takes place near z = 0 for |λ| small. It also describes the topology of the immediate
basin of attraction of infinity, A∗(∞).

Theorem 2.5. Fix a ∈ D∗ and let λ ∈ C∗ = C \ {0}. Then, there is a constant C(a) such
that if |λ| < C(a) the following hold:

a) The immediate basin of attraction of ∞, A∗(∞), is simply connected and ∂A∗(∞) is a
quasicircle. Moreover, A∗(∞) is mapped with degree 4 onto itself and contains only a pole
z∞ and a critical point c+ other than the superattracting fixed point z =∞.

b) There is a simply connected neighbourhood T0 of z = 0 which is mapped 2 to 1 onto A∗(∞).
c) There is an open annulus A0 which contains 5 critical points and 5 preimages of z = 0

and is mapped 5 to 1 onto T0.
d) The annular region in between A0 and A∗(∞) contains a critical point c− and a zero

z0. Moreover, the component D0 of B−1
a,λ(T0) in which z0 lies is simply connected and is

mapped with degree 1 onto T0. Consequently, it does not contain the critical point c−.

A0

T0
0

A∗(∞)

c+

c−
D0

5− 1

1− 1
2− 1

Figure 6. Scheme of the dynamics described in Theorem 2.5. We draw in red the
preimages of zero and in black the critical points.

The conclusions of Theorem 2.5 are summarized in Figure 6. The proof of Theorem 2.5
is structured as follows. We first prove statement a). Afterwards we give a criterion which
guarantees that a point z belongs to the preimage T0 of A∗(∞) (Lemma 2.6). Finally we use
the previous results and Proposition 2.4 to prove the remaining statements of Theorem 2.5.
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Proof of statement a) of Theorem 2.5. Let a ∈ D∗. We prove that if |λ| is small enough,
then statement a) holds. Take the curves γ0 and γ∞ from Proposition 2.2. Then, it follows
from continuity with respect to λ that if |λ| is small enough then we can take connected
components γ−1

0,λ and γ−1
∞,λ of B−1

a,λ(γ0) and B−1
a,λ(γ∞), respectively, such that the following

hold:

• The sets γ−1
0,λ and γ−1

∞,λ are analytic Jordan curves.

• The application Ba,λ maps γ−1
0,λ and γ−1

∞,λ onto γ0 and γ∞ with degree 4, respectively.

• The curves satisfy γ0 ⊂ Int
(
γ−1

0,λ

)
and γ∞ ⊂ Ext

(
γ−1
∞,λ

)
⊂ A∗(∞).

• There is no zero, pole or critical point in the annular region bounded by γ−1
0,λ and

γ−1
∞,λ. Moreover, Ba,λ maps the annulus bounded by γ−1

0,λ and γ−1
∞,λ onto the annulus

bounded by γ0 and γ∞ with degree 4.

• We have the inclusion Ext
(
γ−1
∞,λ

)
⊂ A∗(∞). Moreover, Ext

(
γ−1
∞,λ

)
contains the pole

z∞ and the critical point c+ and no other than z =∞.

Indeed, all of these properties were satisfied by the curves obtained in Proposition 2.2. By
continuity, all of them are still satisfied as long as the perturbation is small enough.

We can now apply a standard quasiconformal surgery procedure to obtain a quasiregu-
lar map F (z) which agrees with Ba,λ(z) on the annulus bounded by γ−1

0,λ and γ−1
∞,λ and is

quasiconformally conjugate to z → z4 inside the regions Int
(
γ−1

0,λ

)
and Ext

(
γ−1
∞,λ

)
. In this

surgery we use the curves γ0, γ−1
0,λ, γ∞ and γ−1

∞,λ to glue the dynamics of z4 in Int
(
γ−1

0,λ

)
and

Ext
(
γ−1
∞,λ

)
. We refer to [4] for an introduction to quasiconformal surgery and to [4, proof of

Theorem 7.4] for the details on how to glue the dynamics of z4. After the surgery we obtain
a quasiregular map F (z) such that the following hold.

• The map F (z) is conformally conjugate to z → z4 inside the regions Int
(
γ−1

0

)
and

Ext
(
γ−1
∞
)

and has z = 0 and z =∞ as superattracting fixed points of local degree 4.
• The map F (z) has topological degree 4 and no other critical point than z = 0 and
z = ∞ in the sense that it is bijective in a neighbourhood of any point other than
z = 0 or z =∞.
• The map F (z) is conjugate to a holomorphic map f(z) via a quasiconformal map
ϕ(z) that fixes 0 and ∞, i.e. f(z) = ϕ−1 ◦ F ◦ ϕ(z).

Since the quasiregular map F (z) has topological degree 4 and has z = 0 and z = ∞ as
superattracting fixed points of local degree 4, then also does the holomorphic function f(z).
Therefore, f(z) is necessarily of the form f(z) = bz4 where b ∈ C∗ = C \ {0}. Consequently,

the Julia set of f(z) consists of a circle S (of radius (1/|b|)1/3) which is the common boundary
of the basins of attraction of z = 0 and z = ∞. The image under the quasiconformal map
of this circle, ϕ(S), necessarily belongs to the region bounded by γ−1

0,λ and γ−1
∞,λ since its

complement belongs, by construction, to the basins of attraction of z = 0 and z =∞ under
the quasiregular map F (z).

We finish the proof noticing that, by construction, the immediate basin of attraction of
∞ under the quasiregular map F , A∗F (∞), coincides with the immediate basin of attraction
of ∞ under Ba,λ, A∗Ba,λ(∞), and that ∂A∗F (∞) = ϕ(S). Since ϕ(S) is the image of a circle
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under a quasiconformal map it is, by definition, a quasicircle. We conclude that A∗Ba,λ(∞) is

a simply connected domain bounded by a quascircle.

�

The next lemma provides a criterion which guarantees that a point z belongs to a preimage
of A∗(∞), for |λ| small.

Lemma 2.6. Let a ∈ D∗ and λ ∈ C∗. If |λ| is small enough, then the following hold.

a) We have the inclusion {z ∈ C; |z| > 2} ⊂ A∗(∞).

b) If |z| <
(
|λ|
3

)1/2
then Ba,λ(z) ∈ A∗(∞).

Proof. The first statement follows by continuity of Ba,λ(z) with respect to λ and the fact
that when λ = 0 the immediate basin of attraction of infinity consists of the complement of
the closed unit disk (see Section 2.1).

Now assume that |z| <
(
|λ|
3

)1/2
< 1. Then, using that |z3(z − a)/(1 − az)| < 1 and that

|λ|/|z|2 > 3 we have:

|Ba,λ(z)| =
∣∣∣∣z3 z − a

1− az
+
λ

z2

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣ λz2

∣∣∣∣− ∣∣∣∣z3 z − a
1− az

∣∣∣∣∣∣∣∣ > 3− 1 = 2.

Hence, |Ba,λ(z)| > 2 and Ba,λ(z) ∈ A∗(∞) by statement a). �

We can now finish the proof of Theorem 2.5.

Proof of statements b), c) and d) of Theorem 2.5. By Proposition 2.4 we know that if |λ| is

small enough, then the round annulus A of inner radius
(
|λ|
2|a|

)1/5
and outer radius

(
2 |λ||a|

)1/5

contains the 5 critical points and the 5 zeros which appear around z = 0 after the perturba-
tion. We first show that, if |λ| is small enough, then A is mapped under Ba,λ into the Fatou

component T0 which contains the pole z = 0. Every point w ∈ A has the form w = bλ1/5 with
b ∈ C such that (1/2|a|)1/5 < |b| < (2/|a|)1/5. Using the Taylor expansion of (z− a)/(1− az)
around z = 0 we have

Ba,λ(z) = −az3 +O(z4) +
λ

z2
⇒ |Ba,λ(w)| ≤ C|λ|3/5 +O(|λ|4/5),

where C is a bounded constant which can be taken independently of b and λ. We know from

Lemma 2.6 that if |λ| is small enough and |z| <
(
|λ|
3

)1/2
, then Ba,λ(z) ∈ A∗(∞). Since |λ|3/5

tends to zero faster than |λ|1/2, we can conclude that if |λ| is small enough then Ba,λ(A) ⊂ T0,
where T0 denotes the preimage of A∗(∞) that contains z = 0.

Up to this point we have studied the dynamics of all critical points and zeros of Ba,λ but
the critical point c− = c−(a, λ) and the zero z0 = z0(a, λ), which come from continuation
of the critical point c−(a, 0) and the zero z0(a, 0) of Ba(z) (Equation (2)). By continuity, if
|λ| is small enough we can take a curve γ such that it contains c−, separates A and z0, and
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such that Ba,λ(γ) ⊂ C \ {T0 ∪A∗(∞)}. This implies that c− and z0 belong to different Fatou
components than A.

We can now finish the proof. Take C(a) to be a positive real constant depending on a such
that if |λ| < C(a) then all previous considerations hold. Since z = 0 is a double preimage of
∞ and there are no other poles outside A∗(∞), we know that the preimage T0 of A∗(∞) is
mapped with degree 2 to A∗(∞) under Ba,λ. By application of the Riemann-Hurwitz formula
(Theorem 2.1), we can conclude that T0 is simply connected since it contains no other critical
point than z = 0. This proves statement b).

We denote by A0 the Fatou component which contains the round annulus A. We know
that it contains exactly 5 critical points and 5 zeros. Since it contains exactly 5 zeros, then
A0 is mapped onto T0 with degree 5. Since T0 is simply connected, by application of the
Riemann-Hurwitz formula the set A0 is doubly connected. This proves statement c).

Finally, the annular region in between A0 and A∗(∞) contains c− and z0 because of the
choice of γ. Moreover, the connected component D0 of B−1

a,λ(T0) which contains z0 is mapped

with degree 1 onto T0 since it only contains a preimage of z = 0 counting multiplicities.
Consequently, it can not contain the critical point c− and is simply connected. This proves
statement d).

�

3. Fatou set of the singularly perturbed Blaschke products: proof of
Theorem A

The goal of this section is to study the Fatou components of the singular perturbation
Ba,λ in the case that c− ∈ A(∞) and to prove Theorem A. The main result of the section
is Theorem 3.2. Theorem A is a direct corollary of Theorem 3.2. Indeed, Theorem A is a
simpler restatement of Theorem 3.2 which omits some technicalities.

The main ingredients for the proof of Theorem 3.2 are Theorem 2.5, the Riemann-Hurwitz
formula (Theorem 2.1) and Proposition 3.1. This proposition describes the dynamics of Ba,λ
in the case that |λ| < C(a), that the orbit of c−, O(c−) = {c−, Ba,λ(c−), B2

a,λ(c−), · · · },
intersects the annulus A0, and that c− belongs to a Fatou component which surrounds z = 0
(see Figure 7).

Proposition 3.1. Fix a ∈ D∗ and let λ ∈ C∗. If |λ| < C(a) and O(c−) intersects the annulus
A0, then the critical point c− lies in a triply connected Fatou component, say Uc, which is
eventually mapped onto A0. Moreover, if Uc surrounds z = 0 then the following hold.

• The triply connected Fatou component Uc bounds a closed disk V1 which is mapped
with degree 1 onto the closed disk bounded by Ba,λ(Uc), which contains T0.
• The closed annular region V2 in between T0 and A0 is mapped with degree 2 onto the

annular region in between T0 and A∗(∞).
• The closed annular region V3 in between A0 and Uc is mapped with degree 3 onto the

annular region W3 in between T0 and Ba,λ(Uc).
• The closed annular region V4 in between Uc and A∗(∞) is mapped with degree 4 onto

the annular region W4 in between Ba,λ(Uc) and A∗(∞).
• The Fatou component Uc is contained in the region W4.
• The Fatou component Uc is mapped with degree 4 onto the annulus Ba,λ(Uc).
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A∗(∞)

T0

A0

Uc

Ba,λ(Uc)

T0

A∗(∞)

4− 1

3− 1

V4

V3

V2

c−

V1 W3

W4

Figure 7. Summary of the dynamics of Ba,λ described in Proposition 3.1. The
triply connected region Uc is mapped with degree 4 onto the annulus Ba,λ(Uc). The
green annular region V4 is mapped with degree 4 to the green annular regionW4. The
blue annular region V3 is mapped with degree 3 to the blue annular region W3. The
pallid blue disk V1 is mapped with degree 1 to the region bounded by Ba,λ(Uc). The
red region V2 is mapped with degree 2 to the full annular region bounded by A∗(∞)
and T0. Since Uc ⊂ W4, V4 ⊂ W4 and either Ba,λ(Uc) = A0 or Ba,λ(Uc) ⊂ V3 ∪ V2.

Proof. It follows from the Riemann-Hurwitz formula (Theorem 2.1) that the preimage of
an annulus A which contains no critical value (i.e. the image of a critical point) under a
holomorphic map is another annulus A′. Therefore the iterated preimages of the annulus
A0 are also annuli until one of them, which we denote by Uc, contains the critical point c−.
Since Uc contains only one critical point and is mapped to a doubly connected domain with a
certain degree k, it follows again from the Riemann-Hurwitz formula that Uc has connectivity
k(2 − 2) + 1 + 2 = 3. Therefore, ∂Uc consists of 3 connected components. Moreover, since
these boundary components are eventually mapped onto ∂A∗(∞), which is a quasicircle that
intersects no critical orbit, they are quasicircles.

Notice that the iterated preimages of A0 either surround z = 0 or some iterated preimage
of z = 0. Moreover, if a connected component V of B−na,λ(A0) does not surround z = 0, then

no component of B−1
a,λ(V ) does. Now assume that Uc surrounds z = 0. Since the boundary

curves of Ba,λ(Uc) also surround z = 0, we conclude that all boundary components of Uc
surround z = 0 or its preimage z0 or both. Indeed, since c− lies in the annular region in
between A0 and A∗(∞), then so does Uc and the only zero that a connected component of
∂Uc can bound without surrounding z = 0 is z0. On the other hand, at most one component
can bound both z = 0 and z0. Indeed, if two such boundary curves did, then the third one
should lie in the annulus bounded by them but it could not surround neither z0 nor z = 0.
Similar arguments yield that at most one such component surrounds z = 0 and not z0 and
at most one of them surrounds z0 and not z = 0. Therefore, Uc has 2 exterior boundary
components, which are quasicircles that surround z = 0 (and consequently also the annulus
A0), and an interior boundary γ1, which surrounds z0 and not z = 0 (see Figure 7). We
denote by γ3 and γ4 the exterior boundary components, where γ3 ⊂ Int(γ4).
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Since the closed disk V1 bounded by γ1 contains no pole and no critical point, it is mapped
with degree 1 onto the closed disk bounded by Ba,λ(Uc) under Ba,λ. Notice that D0 ⊂ V1,
where D0 is the Fatou component described in Theorem 2.5 which contains the zero z0.

Let V4 be the closed annular region in between Uc and A∗(∞). Since Ba,λ|V4 is proper, V4

is mapped onto the closed annular region W4 in between Ba,λ(Uc) and A∗(∞) with a certain
degree d which is accomplished on the boundaries. Given that ∂A∗(∞) is mapped with degree
4 onto itself we can conclude that this degree is 4. Analogously, since T0 is mapped with
degree 2 onto A∗(∞), we can conclude that the annular region V2 in between T0 and A0 is
mapped with degree 2 onto the annular region in between T0 and A∗(∞).

The domain Uc is contained inside the region W4 since otherwise the region V4 would be
mapped into itself. Therefore, the points in V4 would never leave V4 under iteration. It would
then follow from Montel’s Theorem (see [11]) that the points in the interior of V4 would lie
in a Fatou component which would not belong to A(∞), which is impossible since all critical
points belong to A(∞).

The annular region V3 in between A0 and Uc is mapped with degree 3 onto the region W3

in between T0 and Ba,λ(Uc). Indeed, Ba,λ(V3) has 6 preimages since Ba,λ has degree 6 and it
has 3 preimages missing since the sets V1 and V2 contain 1 and 2 preimages of it, respectively.

Finally, the domain Uc is mapped with degree 4 onto Ba,λ(Uc) since its boundaries are
mapped with degree 4. Indeed, γ4 is mapped with degree 4 onto one of the boundary com-
ponents of Ba,λ(Uc) while γ1 and γ3 are mapped onto the other boundary component with
degree 1 and 3, respectively.

�

Using the information provided by Theorem 2.5 we can study the Fatou set of Ba,λ in the
hyperbolic scenario for which the critical point c− belongs to A(∞). Notice that A0 and D0

are the only preimages of T0, which is the only preimage of A∗(∞). Therefore, a point in
A(∞) \ (A∗(∞) ∪ T0) is eventually mapped under iteration of Ba,λ into A0 or into D0. The
Fatou domains that we may obtain depending on whether c− is eventually mapped into A0

or D0 can be very different and are studied in Theorem 3.2. In particular, Theorem 3.2 tells
us that if c− belongs to a preimage of A0 which surrounds z = 0 then all Fatou components
have finite connectivity but there are components of arbitrarily large connectivity.

Theorem 3.2. Fix a ∈ D∗ and let λ ∈ C∗. Assume that |λ| < C(a) and that c− ∈ A(∞).
Then all Fatou components are bounded by quasicircles and exactly one of the following is
satisfied.

a) The critical point c− eventually falls under iteration into D0 and lies in a simply con-
nected Fatou component. All Fatou components are either simply or doubly connected (see
Figure 2 (a) and (b)).

b) The critical point c− eventually falls under iteration into A0 and lies in a triply con-
nected Fatou component Uc which does not surround z = 0. All Fatou components have
connecivity 1, 2 or 3 (see Figure 2 (c) and (d)).

c) The critical point c− eventually falls under iteration into A0 and lies in a triply connected
Fatou component Uc which surrounds z = 0. All Fatou components have finite connectivity
but there are components of arbitrarily large connectivity (see Figure 3).
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Proof. Notice that all critical points belong to A(∞). Therefore, all Fatou components other
than A∗(∞) are preimages of it. Since ∂A∗(∞) is a quasicircle and no critical orbit intersects
it we can conclude that the boundaries of all Fatou component are also quasicircles.

Since c− ∈ A(∞)\(A∗(∞) ∪ T0), the only preimage of A∗(∞) is T0 and the only preimages
of T0 are A0 and D0, we can conclude that c− is eventually mapped under iteration of Ba,λ
into D0 or into A0.

First we assume that O(c−) intersects D0. Since all Fatou components other than A∗(∞),
T0, D0 or A0 are eventually mapped under iteration onto A0 or D0 we have that all of them
are either disks or annulus. Indeed, since O(c−) does not intersect A0 we obtain from the
Riemann-Hurwitz formula (Theorem 2.1) that all iterated preimages of A0 are annuli. On
the other hand, it also follows from the Riemann-Hurwitz formula that at least two different
critical points are required to map a multiply connected domain onto a disk. Hence, all
iterated preimages of D0 are disks.

Second we assume that O(c−) intersects A0. It follows from Proposition 3.1 that there is
a triply connected domain Uc which contains the critical point c−. As in the previous case,
every Fatou component which is not eventually mapped under iteration into Uc is either a
disk or an annulus. If we also assume that Uc does not surround z = 0 then all its iterated
preimages are triply connected domains. To show that we can consider the filled disk U ′c
which consists of the union of the points in Uc and the points contained in the bounded
components of C \ Uc. Notice that all critical points are in U = A∗(∞) ∪ T0 ∪A0 ∪ Uc. Since
B−na,λ(U ′c)∩U = ∅ for all n ≥ 1, all branches of the inverse B−na,λ restricted to U ′c are conformal

for all n ∈ N. Consequently, all iterated preimages of Uc are also triply connected domains.

Finally we assume that O(c−) intersects A0 and that Uc surrounds z = 0. In that case,
the domain Uc has a unique preimage in V2 and another one in V3 or V4, which also surround
z = 0. This follows from the fact that every Jordan curve surrounding z = 0 and contained in
the annular regionsW3 orW4 has a unique preimage in the regions V3 or V4, respectively, and
a unique preimage in V2. Let V be any of the two Fatou components which are preimages of
Uc and surround z = 0. Since Ba,λ restricted to Vi has degree i, it follows from the Riemann
Hurwitz-formula that V has connectivity i(3 − 2) + 2 > 3, where V ⊂ Vi. Repeating this
process we obtain a sequence of iterated preimages of Uc which surround z = 0 and have
connectivity j(m − 2) + 2 > m, where m is the connectivity of its image. In this way we
obtain Fatou components of arbitrarily large connectivity (see Figure 3).

�

4. Julia set of the singularly perturbed Blaschke products: proof of
Theorem B

The goal of this section is to describe the Julia sets of the maps Ba,λ in the case that
statement c) of Theorem 3.2 holds and to prove Theorem B. To do so, we first show the
existence of a Cantor set of quasicircles as described by McMullen in [10]. Afterwards we
show how to obtain countably many copies of the original Cantor set of quasicircles using
the dynamics of the map. Finally we use symbolic dynamics to show the existence of an
uncountable number of point components in the Julia set.

Proof of Theorem B. We first show the existence of a Cantor set of quasicircles. Let A0 be
the annulus containing the 5 critical points and 5 zeros which appear around z = 0. It follows
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from the structure of the dynamical plane shown in Proposition 3.1 that it has exactly two
preimages which are Fatou components that surround z = 0. One of them lies in V2 and the
other one lies in V3 ∪V4 ∪Uc. We can iterate this process, obtaining at each step exactly two
new Fatou components which surround z = 0 from every old component. These preimages
are annuli, unless one of them is the triply connected Fatou component Uc. In that case we
repeat the process considering the annulus A′c = Uc ∪ V1 instead. In this fashion we obtain a
sequence of open annuli whose boundaries are quasicircles which surround z = 0 and belong
to the Julia set. These boundaries together with its accumulation sets form a Cantor set of
quasicircles in the same way as described by McMullen in [10].

We now see where the countable number of Cantor sets of quasicircles comes from. We
know from Proposition 3.1 that the closed disk V1 is mapped with degree one onto the
closed disk bounded by Ba,λ(Uc). This last disk contains the part of the previously described
Cantor set of quasicircles that lies in W3, which is also a Cantor set of quasicircles. Since
the map Ba,λ restricted to V1 is a homeomorphism (it is conformal in a neighbourhood of
V1), we conclude that V1 contains a Cantor set of quasicircles. To finish the argument it is
enough to notice that the disk V1 has exactly 6 preimages and so does every set which is
eventually mapped onto V1. Therefore, V1 has countably many iterated preimages which are
also homeomorphic to V1 since they cannot bound any critical point and, therefore, Ba,λ is
conformal in a neighbourhood of them. Each of these disks contains a copy of the Cantor set
in V1, which leads to the existence of a countable union of Cantor sets of quasicircles in the
Julia set. Notice that these iterated preimages are not disjointed. Indeed, as we shall see in
the remaining of the proof, many of these disks are contained in other ones.

The description that we have given of the Julia set up to this point is not complete. Indeed,
it is known that periodic points are dense in the Julia set. However, the Cantor sets of
quasicircles contained in the iterated preimages of V1 are eventually mapped into the original
Cantor set of quasicircles and, therefore, contain no periodic point. The missing points of
the Julia set are those whose orbit never leaves the union D of V1 and the disks which are
eventually mapped onto it, D =

⋃∞
n=0B

−n
a,λ(V1). To understand the dynamics of those points

we will use symbolic dynamics. We begin by labelling the filled annulus A′c = Uc ∪ V1 by 0,
A′0 := A′c. Afterwards we label the iterated preimages of A′c which surround z = 0 with the
natural numbers, i.e. we denote every connected component of

⋃∞
n=1B

−n
a,λ(A′c) in V2 ∪V3 ∪V4

which surrounds z = 0 by A′i with i ∈ N. With these labels we can associate to every point z

whose orbit never leaves D an itinerary S(z) = (s0, s1, s2, ...), where sj = k if Bj
a,λ(z) belongs

to A′k. Notice that the itinerary depends on the chosen labelling, but this is not relevant.

It is now important to understand how the realizable itineraries, i.e. the itineraries which
are realized by some point z ∈ D, look like. The fact that if A′i 6= A′0 then Ba,λ(A′i) is another
annulus, say A′s(i), implies that the index i must always be followed by the index s(i). By

Proposition 3.1 the disk V1, which is contained in A′c = A′0, is mapped ontoW3∪T0. Therefore,
we conclude that the index 0 must be followed by an index which labels an annulus contained
in W3. Again by Proposition 3.1, since Uc ⊂ W4 we conclude that we cannot have two zeros

in a row. Moreover, given any i, there is an n = n(i) such that sn(i) = s ◦
n)
· · · ◦ s(i) = 0.

Therefore, the index 0 appears infinitely many times in any realizable sequence S(z).

We now discuss the simpler case where the sequence S(z) is periodic. Without loss of gener-
ality we may assume that it begins with the index 0. Then we have S(z) = (0, s1, s2, ..., sn) =
(0, s1, s2, ..., sn, 0, s1, s2, ..., sn, ...). The first step is to understand the set of points which
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follow the sequence (0, s1, s2, ..., sn, 0). Since V1 does not intersect any critical orbit, every
branch of the inverse B−na,λ is conformal in a neighbourhood of V1 for all n ∈ N. Given that

Bn
a,λ maps A′s1 onto A′0 with a certain degree k ≥ 2, there are k disjoint preimages of V1 in

A′s1 . Since Ba,λ maps V1 onto T0 ∪W3 ⊃ A′s1 with degree 1, the set of points with itinerary
(0, s1, s2, ..., sn, 0) corresponds to the disjoint union of k sets which are compactly contained
in V1. Notice that we can take small annuli in the Fatou set which surround these k disks.
Analogously, the set of points with itinerary (0, s1, s2, ..., sn, 0, s1, s2, ..., sn, 0) correspond to
k2 disks compactly contained in the k previous ones. Indeed, every original disk contains k
sub-disks, each of which is mapped univalently onto one of the original ones by Bn+1

a,λ . As

before, these new disks are surrounded by small annuli in the Fatou set. Repeating this
process, at the step p we obtain kp closed disks which are compactly contained in the kp−1

disks of the previous step and are surrounded by small annuli in the Fatou set. Standard
arguments of complex dynamics yield that these disks shrink to a Cantor set. We conclude
that the set of points with itinerary S(z) = (0, s1, s2, ..., sn) corresponds to Cantor set of
points. Moreover, since each of these points is surrounded by arbitrarily small annuli in the
Fatou set we conclude that they are point components of the Julia set.

The general case derives analogously. The only difference is that every time that we come
back to the index 0, the number of disks compactly contained in the previous ones varies
depending on the subsequence. For each realizable sequence we obtain a nested sequence of
disks which will also converge to a Cantor set of points which are point components of the
Julia set (c.f. [3]).

�
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